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Abstract—Mobile edge computing (MEC) facilitates compu-

tation offloading to edge server, as well as task processing via

device-to-device (D2D) collaboration. Existing works mainly focus

on centralized network-assisted offloading solutions, which are

unscalable to scenarios involving collaboration among massive

users. In this paper, we propose a joint framework of decentralized

D2D collaboration and efficient task offloading for a large-

population MEC system. Specifically, we utilize the power of two

choices for D2D collaboration, which enables users to beneficially

assist each other in a decentralized manner. Due to short-range

D2D communication and user movements, we formulate a mean
field model on a finite-degree and dynamic graph to analyze the

state evolution of D2D collaboration. We derive the existence,

uniqueness and convergence of the state stationary point so as

to provide a tractable collaboration performance. Complementing

this D2D collaboration, we further build a Stackelberg game to

model users’ task offloading, where edge server is the leader

to determine a service price, while users are followers to make

offloading decisions. By embedding the Stackelberg game into

Lyapunov optimization, we develop an online offloading and

pricing scheme, which could optimize server’s service utility and

users’ system cost simultaneously. Extensive evaluations show

that our D2D collaboration can mitigate users’ workloads by

73.8% and task offloading can achieve high energy efficiency.

I. INTRODUCTION

In recent years, we have witnessed a rapid growth of
data generated from the network edge, especially with the
enormous popularity of mobile devices [1]. Many intelligent
mobile applications, such as interactive gaming, real-time face
recognition and natural language processing, are emerging
which typically demand intensive computation and low la-
tency. In general, mobile devices have constrained resources,
while remote-resided cloud server suffers from high latency
due to long-haul transmissions. To support the compute-
intensive yet delay-sensitive applications, mobile edge com-
puting (MEC) is recognized as a new paradigm to push cloud
frontier close to the edge for such service requirements [2].

At a high level, MEC enables mobile users to offload tasks
to the local edge server endowed with computing function-
alities. Compared to the cloud datacenter, an individual edge
server basically has limited computing capacity, making it dif-
ficult to accommodate huge amount of tasks since over 90% of
the data will be stored and processed at the network edge [3].
Under this scenario, exploiting collaboration among users is a
promising complementary approach to task offloading for eas-
ing the strain on the edge server [4]. Device-to-device (D2D)

communication (e.g., via Bluetooth or Wi-Fi Direct) generally
is more energy-saving while less time-consuming [9], thereby
providing a low-latency service for users when they collabo-
ratively process tasks via D2D links [5]. Specifically, heavily-
loaded users can seek immediate assistance from lightly-
loaded ones within proximity, and hence the average task delay
is expected to decrease significantly.

Despite the clear advantage of D2D collaboration, task
offloading to edge server is still indispensable for MEC as high
latency is witnessed if compute-intensive tasks are handled
solely by resource-constrained mobile devices. Along with the
offloading, a service price is charged by the edge server when
providing computing service for mobile users [27]. Needless
to say, setting a proper price is critical, as an excessively low
price is insufficient to compensate for the server’s operation
cost, whereas an unduly high price will certainly cause a
decrease in user demands of task offloading and further
increase the delay in task execution. Therefore, a reasonable
pricing scheme is required to incentivize task offloading while
also bringing benefits to the edge server operator.

Various efforts have been dedicated to investigate D2D
collaboration in MEC or fog computing [4]–[6]. Benefiting
from users’ mutual assistance, D2D collaboration can ef-
fectively improve energy efficiency and delay performance
for MEC system. In these works, the edge server mainly
serves as a central coordinator to aid the collaborative task
processing, whereas the potential benefit of task offloading
was not explored. Few following works further incorporate
D2D collaboration into task offloading to take advantage of
the computing capacity embedded in mobile devices and edge
server [7], [8]. However, these works mostly concentrate on a
centralized offloading and/or collaboration optimization, with
a restrictive assumption of time-invariant D2D links in order to
achieve a tractable analysis. When there are a large population
of moving mobile users, which is often the case in D2D col-
laboration, how to characterize a decentralized collaboration
and develop an efficient offloading for “dynamic” MEC system
still remains unresolved. To answer this critical question,
researchers are faced with the following challenges.

First, due to short-range D2D communication, collaboration
occurs mainly among nearby users, thus leading to a graph
structure formed by spatially distributed mobile users. A
decentralized collaboration scheme should encompass both
static and dynamic connectivity setting when considering user978-0-7381-3207-5/21/$31.00 ©2021 IEEE
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movements, which however is theoretically challenging in
general. Therefore, it brings new modeling requirements for
D2D collaboration to achieve rigorous theoretical guarantee as
well as good empirical performance. Second, task offloading is
influenced by the service price set by edge server, whereas the
pricing scheme is also dependent on the strategic offloading
decision of mobile users. Their mutual-dependency raises
difficulty in the optimal offloading and pricing design. Third,
D2D collaboration is intertwined with task offloading due to
various task executions including collaborative execution and
offloaded execution. This demands incorporating decentralized
collaboration into determining appropriate proportions of tasks
to be offloaded and to be processed locally so as to reduce the
execution latency while enhancing energy efficiency.

In this paper, we propose a joint D2D collaboration and task
offloading for a large-population MEC system. We first use the
power of two (Po2) choices to enable a decentralized collabo-
ration among massive mobile users, where each user randomly
polls a neighbor within its D2D range and forwards a task if
the polled neighbor has a lighter workload. We develop a novel
mean field model on graph to analyze this D2D collaboration,
through which we can characterize the state evolution of MEC
system in both static and dynamic situations. By incorporating
the steady state of D2D collaboration, we further formulate a
Stackelberg game to model the task offloading from mobile
users to edge server. Specifically, users are followers in making
their offloading decisions, while edge server is the leader in
determining a dynamic price based on Lyapunov optimization
for providing computing service. As a result, we consider the
intertwined collaboration and offloading processes so as to
collectively promote an efficient task execution. This paper
has the following main contributions:
• We develop a joint D2D collaboration and task offloading

framework which facilitates users to collaboratively process
tasks in a decentralized manner and offload computation to
local edge server. Our framework targets the real-life large-
population MEC system so as to fully unleash the potentials
of widely-distributed mobile devices and the edge server’s
capacity. Evaluations show that we can reduce users’ work-
loads by 73.8% and improve the energy efficiency as well.

• We propose a novel mean field model on static and dynamic
graphs to characterize D2D collaboration, based on which
we can analyze the stochastic state evolution by determin-
istic ordinary differential equations (ODEs). We rigorously
prove the existence and uniqueness of mean field stationary
point to provide a theoretically tractable performance for
D2D collaboration. To the best of our knowledge, this is
the first work that conducts a thorough analysis of mean
field model on finite-degree and dynamic graphs.

• We design an online offloading and pricing scheme using a
Lyapunov optimization framework to determine the optimal
offloading and pricing decisions over time. By embedding a
Stackelberg game into the online decision making, we can
simultaneously minimize users’ system cost while meeting
their stringent task delay requirements, and maximize the
server’s long-term utility with only current information.

Fig. 1: Snapshot of the MEC system.

II. SYSTEM MODEL

We consider a MEC system with large-population mobile
users N = {1, 2, ..., N} and an edge server. Users’ tasks can
be offloaded to edge server via cellular network or processed
by their collaboration via D2D link, as shown in Fig. 1.

A. System Overview
Due to short-range D2D communication, collaboration is

mainly among users within proximity, and we model this
collaboration structure as a connected graph G = {N , E} with
E denoting the D2D links. Besides, along with task offloading,
a price p is charged by the edge server for providing computing
service, where p remains fixed for a long period, e.g., weekly
or monthly basis [26]. In return, users strategically choose to
offload tasks with probability x 2 [0, 1], while handling the
rest via D2D collaboration. A task is typically characterized
by the required service time (CPU cycles) and the amount of
cellular traffic (data size) [10]. By convention, task generation
of each user follows a rate-� Poisson process, where the
service time of a task obeys an exponential distribution with
normalized unit mean value, and the data size has an average
value of B [11]. The normalized service rates of mobile
devices and edge server are µ and �, respectively, with � < µ
to keep the MEC system stable. Moreover, the server can
process the offloaded tasks in parallel because it has a more
powerful computing capability than mobile devices [12].

B. D2D Collaboration
We use the Po2 choices for decentralized collaboration [13].

Let Qu(t) be the number of tasks, or workload, of user u 2 N
at time t. For Po2, when a task is generated by u and not
offloaded, u randomly polls a neighbor, say v, and forwards
the task to v if Qu(t) > Qv(t); otherwise the task joins Qu(t)
with ties being broken arbitrarily. Denote du as the number of
u’s neighbors, also known as its degree in graph G. The degree
du is distributed in a finite degree set K = {kmin, ..., kmax}
due to short-range D2D communication. W.l.o.g., the graph G
is uncorrelated [14], i.e., the probability p(k0|k) that a user
with degree k has a link to a neighbor with degree k0 satisfies:

p(k0|k) = k0p(k0)

k
, (1)

where p(k) is the probability that a user has degree k and k =
E[k] =

P
k2K p(k)k is the expected degree. Eq. (1) means the

degree distribution of two neighboring users is independent.
For k 2 K, i � 0, we define qk,i(t) and sk,i(t) as:

qk,i(t) =

P
u2N 1du=k,Qu(t)=iP

u2N 1du=k
, (2)
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sk,i(t) =
X

j�i
qk,j(t). (3)

Physically, qk,i(t) or sk,i(t) can be regarded as the probability
that a user with degree k holds i or at least i tasks, respectively.
Also, qk,i(t) = sk,i(t)�sk,i+1(t) and sk,0(t) = 1, 8k 2 K. We
say sk,1(t) is the busy probability as it implies the case where
a k-degree user has a non-empty workload. Denote s(t) =
{sk,i(t)} as the system state, that is, the workload distribution
of the MEC system. Hereinafter, we will use qk,i, sk,i, Qu and
s without index t if there is no confusion.

Our objective is to demonstrate that D2D collaboration
can effectively mitigate users’ workloads, by characterizing
the stationary point s⇤ for state evolution when user number
N ! 1 and ṡ⇤ = 0 (MEC system is stable). Given the graph
collaboration structure, we develop a new analysis framework
as existing Po2 methods are no longer applicable.

C. Task Offloading
Upon generating a task, users offload it to the edge server

with probability x, and are charged with a price p. Since p
is fixed for a long time, the offloading and pricing decisions
are made in terms of discrete time slot {0, 1, ..., n, ...}, say at
a time interval of every week. The probability x[n] and price
p[n] are constant in each slot, and the MEC system is regarded
to be stable. Hence, we can leverage the stationary point s⇤
in offloading and pricing scheme design.

1) Offloading constraint: Together with D2D collaboration,
users also collaboratively decide the probability x[n] in each
time slot, which actually only relies on the information of s⇤.

Task delay. If a task is offloaded to the server, the expected
task delay includes the transmission time and server processing
time, that is do = x[n](Br + 1

� ) where r denotes the data rate
of cellular network and 1 is the normalized unit service time.
With probability xc[n] = 1�x[n], a task will be processed via
D2D collaboration, then the delay amounts to the queueing
time, which is dq = xc[n]

P
i

P
k p(k)s⇤k,i

xc[n]�
=

P
i

P
k p(k)s⇤k,i

�
based on Little’s law. Here, the transmission delay of fast and
short-range D2D communication is negligibly small compared
to do and dq [9]. Therefore, the average task delay d(x[n]) is:

d(x[n]) = do + dq. (4)

Note that s⇤k,i depends on xc[n], or offloading probability x[n].
Collaboration fairness. Due to heterogeneous number of

neighbors, users have unbalanced contributions in D2D collab-
oration, i.e., busy probability s⇤k,1 varies over degree k. When
deciding the probability x[n], collaboration fairness requires
that the gap between the highest and lowest s⇤k,1 should not
be too large so as to prevent the “free-riding” scenario.

2) Pricing constraint: The offloading probability x[n] of
mobile users is affected by the service price p[n] charged by
the edge server. In general, setting a high price will restrain
user demands of task offloading, or low x[n], whereas positing
a low price will lead to overloaded situation at the edge
server because of too many offloaded tasks. We consider that
the server can adaptively choose p[n] for compensating its
operation cost and avoiding being overloaded.

3) Problem formulation: We now formulate the system cost
of users and the service utility of the server in task offloading.

Users’ system cost. Since D2D communication is energy
efficient, the system cost of a user is mainly composed of
charged fee, processing cost, and offloading transmission cost.
Formally, the charged fee is the payment to the edge server
for task offloading, which is x[n]�p[n]. When processing a
task, it needs an average 1

µ time, so the energy consumption
is ⇢mc

1
µ where ⇢mc is the energy cost per CPU cycle for com-

putation in a mobile device [10]. Moreover, the expected busy
probability is s⇤1 , P

k2K p(k)s⇤k,1 from Eq. (3). Therefore,
the processing cost becomes s⇤1

⇢m
c
µ . Finally, the transmission

cost is x[n]�⇢mt
B
r where ⇢mt is the unit cost for transmitting

cellular traffic. Overall, the system cost c[n] in time slot n is:

c[n] = x[n]�p[n] + s⇤1
⇢mc
µ

+ x[n]�⇢mt
B

r
. (5)

Server’s service utility. On the server’s side, its average
profit in time slot n is x[n]�p[n], and average processing cost
is x[n]�⇢s

c
� with ⇢sc representing the energy cost per CPU cycle

in the edge server. Then, the service utility u[n] is acquired:

u[n] = x[n]�p[n]� x[n]�
⇢sc
�
. (6)

Stackelberg game. Given the price p[n], users aim to reduce
their system cost by deciding the probability x[n], subject to
constraints of task delay and collaboration fairness:

minx[n] c[n] (7)
s.t. d(x[n])  d (7a)

max{s⇤k,1}�min{s⇤k,1}  s. (7b)

As for the edge server, its objective is to optimize the long-
term utility via dynamically setting the service price p[n]:

maxp[n] lim
T!1

1

T

XT�1

n=0
E[u[n]] (8)

s.t. lim
T!1

1

T

XT�1

n=0
E[x[n]�]  x (8a)

p[n] 2 (0, pu], (8b)

where the inequality in Eq. (8a) is the overloaded constraint
and pu denotes the highest price users could accept.

In time slot n, the server first chooses a price p[n], and then
users react via the offloading decision x[n], which is modeled
as a Stackelberg game. Note that optimizing cost and utility is
intertwined with D2D collaboration. Also, we have to design
an offloading and pricing scheme to simultaneously maximize
service utility online and minimize system cost offline.

III. MEAN FIELD D2D COLLABORATION

In this section, we formulate a mean field model on graph
to analyze D2D collaboration. Specifically, we will derive
the state evolution by allowing the number of users N to
approach infinity. Since users may move around, we consider
the decentralized collaboration on both static and dynamic
graphs to encompass the case of time-varying D2D links.
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A. Collaboration on Static Graph
Basically, a static graph implies that D2D links are time-

invariant, i.e., the graph G remains unchanged throughout the
collaboration. To characterize state s, we explore the transition
of each sk,i from the perspective of a particular k-degree user
u, as users are asymptotically independent when N ! 1.

1) State evolution: Considering sk,i represents the work-
load distribution of k-degree users, then the transition events
for the Markov chain include the following three instances:
• The number of tasks is Qu = i� 1, and u generates a task

which stays at u, so the state transits from sk,i�1 to sk,i.
• The number of tasks is Qu = i � 1, and u receives a task

sent from a neighbor, then sk,i�1 transits to sk,i.
• The number of tasks is Qu = i, and u processes a task

locally. Hence, the state changes from sk,i to sk,i�1.
Transition probability of each instance is now pro-
vided. For the first instance, the polled neighbor by u
must have no fewer tasks, which occurs with probabil-
ity qk,i�1

P
k02K p(k0|k)sk0,i+qk,i�1

1
2

P
k02K p(k0|k)qk0,i�1.

The first term qk,i�1
P

k02K p(k0|k)sk0,i means Qu = i �
1 and the polled neighbor has at least i tasks. The sec-
ond term qk,i�1

1
2

P
k02K p(k0|k)qk0,i�1 denotes tie break-

ing, namely the polled user also holds i � 1 tasks. As
for the second instance that u receives a task from a
neighbor, its probability is kqk,i�1

P
k02K p(k0|k)sk0,i

1
k0 +

kqk,i�1
1
2

P
k02K p(k0|k)qk0,i�1

1
k0 , where kqk,i�1 is because

u has k neighbors and 1
k0 implies that a k0-degree neighbor

randomly polls u in Po2 choices (D2D collaboration) with
probability 1

k0 . Similarly, the two terms represent situations
where u has fewer tasks and tie breaks, respectively. The
probability of the last instance is simply qk,i. Combining task
generation rate �, offloading probability x and service rate of
a mobile device µ, the state evolution is specified:

ṡk,i = �µqk,i + xc�qk,i�1

X

k02K
p(k0|k)

⇣
sk0,i +

1

2
qk0,i�1

⌘

+ kxc�qk,i�1

X

k02K

1

k0
p(k0|k)

⇣
sk0,i +

1

2
qk0,i�1

⌘
,

(9)
where xc = 1 � x is the probability that a task is processed
via D2D collaboration and x would be x[n] if in time slot n.

2) ODE system: Remember that qk,i = sk,i� sk,i+1 and G
is an uncorrelated graph. Based on Eq. (1), we have p(k0|k) =
k0p(k0)

k
. Therefore, for i > 0, Eq. (9) is simplified to:

ṡk,i = �µ(sk,i � sk,i+1)

+ xc�(sk,i�1 � sk,i)
h1
2

X

k02K

k0 + k

k
p(k0)(sk0,i�1 + sk0,i)

i
.

(10)
Besides, sk,0 = 1 according to Eq. (3). Define the drift
function F (s) = {Fk,i(s)}, where Fk,0(s) = 0 and Fk,i(s) =
ṡk,i, 8i > 0. We have the following form:

ṡ = F (s). (11)

The deterministic ODE system of Eq. (10) corresponds to the
mean field model for our characterized D2D collaboration.

B. Collaboration on Dynamic Graph
As users may move around, their neighbors within D2D

communication range also change accordingly, resulting in
a time-varying graph structure. Specifically, we leverage the
model in [15], [16] to capture this dynamic feature.

1) Dynamic graph model: In a dynamic graph, each user
has an expected degree k which is fixed and drawn from a
finite set K = {kmin, ..., kmax} with probability p(k). Value
of expected degree indicates the willingness of a user to
participate in collaboration. Hence, a D2D link between two
users is established based on their expected degrees and spatial
distance. In this regard, the number of D2D neighbors, or
realized degree, of a user follows certain distribution condi-
tioned on its expected degree k, which is specified as a Poisson
distribution with the mean value being k in [16]. Due to user
mobility, graph G(t) is dynamic with a time-varying edge set
E(t), or changing realized degrees. Similar to the static case,
G(t) formed by realized degrees is considered uncorrelated.

2) State evolution: Define qk,i, sk,i as Eqs. (2)-(3), whereas
k now denotes the expected degree. Similar to the static graph,
transitions of state sk,i on dynamic graph also entail three
instances. The main difference lies in the probability p(k0|k),
a user has expected degree k and its neighbor has expected
degree k0, is no longer the expression in Eq. (1). Instead, we
use the conditional distribution of the realized degree to help
compute this p(k0|k). Due to space limit, we elucidate the
details of deriving the state evolution in Appendix A in [29],
and only present the final result here. We find out that the
evolution of sk,i is exactly Eq. (10), i.e., the mean field models
on static and dynamic graphs are unified by the same ODE
system. Hereinafter, we will rely on Eq. (10) to analyze D2D
collaboration in both static and dynamic scenarios as a whole.

C. Mean Field Model on Finite-degree Graphs
There have been many efforts devoted to mean field model

on graphs, while existing works mostly focus on complete
and infinite-degree graphs [13], [18], or apply the mean field
analysis without theoretical guarantees [14], [19]. Therefore,
our work has two novel contributions in the mean field aspect.
First, we extend current mean field model on graphs to
both static and dynamic graphs with finite yet heterogeneous
degrees. Second, we also provide rigorous proofs (in the next
section), along with extensive evaluations to demonstrate the
effectiveness of our mean field model.

Now we discuss a special case where users have a homo-
geneous degree, that is the degree set K = {k} and p(k) = 1.
Consider that the graph G is connected and uncorrelated. The
mean field model becomes (irrelevant to degree k indeed):

ṡk,i = xc�(s
2
k,i�1 � s2k,i)� µ(sk,i � sk,i+1). (12)

This in fact degenerates to the classical Po2 result [13].
Our main objective is to obtain the stationary point s⇤ for

state evolution, such that F (s⇤) = 0. To this end, we will
derive the existence and uniqueness of the stationary point, as
well as demonstrating that the system state from any initial
point will eventually converge to this stationary point.
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IV. STATIONARY POINT FOR STATE EVOLUTION

In this section, we specify the stationary point for the mean
field model to obtain the steady state of D2D collaboration.

A. Stationary Point
Since drift at the stationary point is 0, the MEC system is

statistically stable, and hence we are able to achieve a tractable
collaboration performance. For this reason, the existence and
uniqueness issues of stationary point need to be explored.

1) Existence of stationary point: We first demonstrate that
there exists a stationary point s⇤ for our mean field model.
Considering F (s⇤) = 0, we attain the existence by showing
that the ODE system of Eq. (10) has a fixed point.

Theorem 1. There exists a stationary point s⇤ for the mean
field model.

See Appendix B in [29] for the detailed proof. With the
existence of stationary point s⇤, we still can not use s⇤ to
directly represent the steady system state, as there may be
multiple stationary points or the state s(t) may not converge to
s⇤. This requires us to further address the problems of unique
stationary point and convergence of state s(t).

2) Uniqueness and convergence: Due to the graph struc-
ture, mean field model also depends on the degree distribution,
which makes it difficult to characterize the unique stationary
point and state convergence. To circumvent this problem, we
will show the uniqueness and convergence issues alternatively.

Coordinate-wise dominance. The state evolution of sk,i(t)
is identified by the ODE of Eq. (10). To obtain the state conver-
gence, we have to figure out how the initial values s(0) would
influence the state s(t) at later time t. Define coordinate-wise
dominance s ⌫ ŝ if sk,i � ŝk,i, 8k 2 K, i � 0. The lemma
below states that the dominance at any time t is consistent
with that of the initial values.

Lemma 1. Let s(t) and ŝ(t) be the solutions to the ODE
system of Eq. (10) at time t with the initial values being s(0)
and ŝ(0), respectively. If s(0) ⌫ ŝ(0), then s(t) ⌫ ŝ(t).

See Appendix C-A in [29] for the proof. With the domi-
nance consistency, we demonstrate that every trajectory of the
state converges to the stationary point in an appropriate metric.

Exponential convergence rate. To show convergence, we
need to find a Lyapunov function �(s) which satisfies: 1) �(s)
relates to the distance between s and s⇤; 2) �(s) is strictly
decreasing, except at s⇤. Here, �(s) is constructed as:

�(s) = min
s⇤2S⇤

X

i�0

|
P

k2K p(k)(sk,i � s⇤k,i)|
2i

, (13)

where S⇤ is the stationary point set. To simplify �(s), we
denote si =

P
k2K p(k)sk,i and s(k),i =

P
k2K p(k)ksk,i. In

line with Eq. (10), the evolution of si is specified as:

ṡi =
xc�

k

�
si�1s(k),i�1 � sis(k),i

�
� µ(si � si+1). (14)

Using si, we have �(s) = mins⇤2S⇤
P

i�0
|si�s⇤i |

2i . The
convergence of state s is derived by showing �(s) ! 0.

Lemma 2. If initial points s(0) ⌫ s⇤, 8s⇤ 2 S⇤ or s⇤ ⌫
s(0), 8s⇤ 2 S⇤, s(t) converges to S⇤ with exponential rate.

Please refer to Appendix C-B in [29] for the detailed proof.
The exponential convergence rate in Lemma 2 is derived
under certain initial conditions. However, if there is only one
stationary point, global convergence from any initial point will
be naturally obtained. This is because when there is a unique
stationary point s⇤, s(t) always converges to s⇤ if s(0) ⌫ s⇤

or s⇤ ⌫ s(0). The dominance consistency in Lemma 1 then
ensures the convergence of s(t) to s⇤ from other initial values.

Unique stationary point. Now we show that our mean field
model has a unique stationary point, which will be proved
by combining the dominance consistency property and the
exponential convergence result.

Theorem 2. There is a unique stationary point s⇤ for the
mean field model.

See Appendix C-C in [29] for the proof. Lemma 2 and
Theorem 2 imply the result as stated in the following theorem.

Theorem 3. The state evolution of D2D collaboration globally
converges to a unique stationary point with exponential rate.

B. Influence of Heterogeneous Degrees
In minimizing the system cost, one constraint is the collabo-

ration fairness in Eq. (7b) pertaining to heterogeneous degrees.
Concretely, a user with larger degree receives more tasks in
D2D collaboration, meanwhile having a higher probability to
forward tasks to its neighbors. This effect is presented below.

Theorem 4. At the stationary point s⇤, larger-degree users
tend to have heavier workloads. In other words, s⇤k,i �
s⇤k0,i, 8i � 0 if k > k0.

See Appendix D in [29] for the proof. This theorem reveals
that users with heterogeneous degrees have uneven workloads
because larger-degree users generally have higher contribu-
tions in D2D collaboration. Note that s⇤k,1 indicates the busy
probability of a k-degree user with processing tasks. To avoid
small-degree users free-ride large-degree neighbors, we bound
the gap between max{s⇤k,1} and min{s⇤k,1} in the system cost
minimization so as to ensure the collaboration fairness, where
max{s⇤k,1} and min{s⇤k,1} now become s⇤kmax,i

and s⇤kmin,i
,

respectively, from Theorem 4. Fig. 2 compares typical values
of s⇤kmax,i

and s⇤kmin,i
for some basic understanding.

Fig. 2: Illustration of workload distribution.
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C. Convergence to Mean Field Model
The mean field model makes use of a deterministic ODE

system to analyze D2D collaboration in a stochastic MEC
system. In the following, we show that the original stochastic
N -user system will converge to the deterministic mean field
model when N is large, namely the ODE system of Eq. (10)
is accurate in describing the state evolution.

Consistent with Eq. (3), we denote s(N)(t) as the state of
N -user system. Our goal is to demonstrate that s(N)(t) ! s(t)
when N ! 1. To arrive at this conclusion, we first prove the
drift function F (s) in Eq. (11) is Lipschitz continuous.

Lemma 3. The drift function F (s) is ||·||1-Lipschitz as there
is a constant C = 3xc�

�
1+ kmax

k

�
+2µ such that for any s, ŝ:

||F (s)� F (ŝ)||1  C||s� ŝ||1. (15)

See Appendix E-A in [29] for the proof. With Lemma 3,
we can claim the convergence of N -user system to the mean
field model based on the Kurtz’s theorem [20].

Theorem 5. Fix a time t⇤. When the number of users N ! 1,
the state s(N)(t) converges to s(t) in the mean field model of
Eq. (10) if they start from the same initial points.

lim
N!1

sup
t2[0,t⇤]

||s(N)(t)� s(t)||1 = 0, a.s. (16)

Please refer to Appendix E-B in [29] for the proof. Theo-
rem 5 ensures that the mean field model is effective for large
population N . On this basis, one can obtain the existence and
uniqueness of stationary point to characterize the steady state
of MEC system and show the power of D2D collaboration.

D. Discussion of Stationary Point
1) Relation to classical Po2: The mean field models on

static and dynamic graphs are unified by the ODE system of
Eq. (10). When users have a homogeneous degree, Eq. (10)
boils down to the classical Po2 of Eq. (12), which is indepen-
dent of the degree and has a closed-form stationary point [13]:

⇡⇤
i =

⇣xc�

µ

⌘2i�1
. (17)

For a more general graph of heterogeneous degrees, an explicit
expression for stationary point s⇤ is not available. Neverthe-
less, we can use the traditional Po2 as a bound for s⇤. Define
two ratios:

�1 =
kmax

k
, �2 =

kmin

k
. (18)

Here, �1 > 1 and �2 < 1. Also, let 1+�1
2

xc�
µ < 1 to guarantee

the system stability.

Corollary 1. For the mean field model of Eq. (10), if
1+�1
2

xc�
µ < 1, then s⇤k,i, 8k, i has an upper bound:

s⇤k,i 
⇣1 + �1

2

xc�

µ

⌘2i�1
, (19)

and a lower bound:

s⇤k,i �
⇣1 + �2

2

xc�

µ

⌘2i�1
. (20)

See Appendix F-A in [29] for the proof. According to this
corollary, if the degree distribution is slightly heterogeneous,
i.e., both the ratios �1 and �2 in Eq. (18) are close to 1, the gap
between upper and lower bounds will be small, thereby leading
to an accurate estimation of s⇤k,i with closed-form expressions.

2) Busy probability: The probability that a user is busy with
processing task, s⇤1 =

P
k2K p(k)s⇤k,1, is critical in computing

the system cost in Eq. (5). The corollary below provides the
value of s⇤1 with the proof presented in Appendix F-B in [29].

Corollary 2. The busy probability is s⇤1 = xc�
µ .

3) Workload distribution relation: In the end of this section,
we illustrate the relation between s⇤i and s⇤i�1. Based on
Eq. (17), traditional Po2 satisfies ⇡⇤

i = xc�
µ

�
⇡⇤
i�1

�2. As for
our mean field model on graph, similar conclusion is attained.
Specifically, from Eq. (14), we know that the stationary point
satisfies the following condition:

xc�

k

⇣
s⇤i�1s

⇤
(k),i�1 � s⇤i s

⇤
(k),i

⌘
� µ(s⇤i � s⇤i+1) = 0. (21)

Corollary 3. For any i � 1, we have s⇤i = xc�
kµ

s⇤i�1s
⇤
(k),i�1.

See Appendix F-C in [29] for the proof. Compared to
the classical Po2, the graph structure causes the difference
between ⇡⇤

i = xc�
µ ⇡⇤

i�1 ⇥ ⇡⇤
i�1 and s⇤i = xc�

µ s⇤i�1 ⇥
s⇤(k),i�1

k
.

V. ONLINE OFFLOADING AND PRICING SCHEME

D2D collaboration can effectively reduce workloads of
users. However, due to constrained resources of mobile de-
vices, offloading a portion of tasks to a more powerful edge
server is still essential to further mitigate task execution delay.
Along with the offloading, there is a price charged by the edge
server, so that users have to balance how many tasks should be
offloaded and how many should be processed collaboratively.
Task offloading between mobile users and edge server is
modeled as a Stackelberg game, where the server is the leader
in setting a service price which remains fixed for a long time,
and users are followers in deciding the offloading probability.

A. Lyapunov Optimization
With currently available information, the server is interested

in maximizing its long-term utility subject to the overloaded
constraint by setting a proper price p[n] in each time slot,
as shown in Eq. (8). Meanwhile, mobile users aim to reduce
their system cost while maintaining satisfactory task delay and
collaboration fairness through determining the offloading prob-
ability x[n], which is described in Eq. (7). To achieve these
two goals, Lyapunov optimization is leveraged to maximize the
long-term utility online, with each time slot corresponding to
a Stackelberg game to minimize the system cost offline.

1) Optimal task offloading: At the beginning of time slot n,
assume the edge server has declared a price p[n]. Users then
collectively determine the offloading decision x[n] to minimize
their average system cost c[n]. Combining Eq. (5) and the busy
probability in Corollary 2, we can rewrite c[n] as:

c[n] = x[n]�p[n] + (1� x[n])�
⇢mc
µ2

+ x[n]�⇢mt
B

r
. (22)
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Critical points. Task delay d(x[n]) in Eq. (4) is composed
of two parts. The first part is the transmission delay and
completion time of task offloading, that is do = x[n]

�
B
r + 1

�

�
.

The second part corresponds to the sojourn time of D2D col-
laboration dq =

P
i

P
k p(k)s⇤k,i

� . If x[n] increases from 0 to 1,
do will monotonically increase whereas dq will monotonically
decrease. Hence, there exist a lower bound x⇤

l and an upper
bound x⇤

u such that when x[n] 2 [x⇤
l , x

⇤
u] the delay constraint

is fulfilled, where critical points x⇤
l , x

⇤
u satisfy:

d (x[n] = x⇤
l ) = d (x[n] = x⇤

u) = d. (23)

Note that the stationary point s⇤ is dependent on x[n]. We
will compute each s⇤k,i numerically given the value of x[n],
say x[n] = x⇤

l , x
⇤
u, since there is no closed-form solution.

Let us discuss the collaboration fairness constraint, which is
s⇤kmax,1

�s⇤kmin,1
 s according to Theorem 4. The trend of the

gap s⇤kmax,1
� s⇤kmin,1

over x[n] is not obvious. Nevertheless,
if x[n] approaches 1, i.e., users offload all tasks to the edge
server, both s⇤kmax,1

and s⇤kmin,1
will be 0, and then their gap

will be 0. When we push x[n] approaching 0, that is users
do not offload but only collaborate, all users will be heavily
loaded, and hence s⇤kmax,1

and s⇤kmin,1
will be close to �

µ , with
the gap being very small. As a result, we can characterize two
feasible regions for x[n]: [0, x0

l][ [x0
u, 1]. If jointly considering

the delay and fairness constraints, Fig. 3 provides a typical
illustration of the feasible region for the offloading decision
x[n]. In this paper, we assume that [x⇤

l , x
⇤
u]\([0, x0

l][[x0
u, 1]) 6=

;, namely x[n] has a feasible solution. Additionally, for any
feasible region, we denote xl and xu as its lower and upper
boundary points, respectively, which hinge on the values of
x⇤
l , x

⇤
u, x

0
l, x

0
u, as also displayed in Fig. 3.

Fig. 3: Feasible region for offloading decision.

Threshold based offloading decision. To minimize the
system cost in Eq. (22), provided the price p[n], the optimal
probability x[n] for users is specified by a threshold based
decision:

x[n] =

8
<

:
xu if

⇢mc
µ2

� p[n] + ⇢mt
B

r
,

xl otherwise.
(24)

The intuition behind Eq. (24) is now explained. If the server
sets an excessively high price such that the cost of offloading
task is greater than the cost of processing task collaboratively,
users will offload as few tasks as possible to reduce their sys-
tem cost, and vice versa. With this reacted offloading decision

x[n], the edge server in turn determines the optimal price p[n]
in each time slot to maximize its service utility. Note that
the critical points xl, xu are altered by p[n] in that the price
will affect the offloading decision. Recall from the overloaded
constraint in Eq. (8a), it implies that x 2 [xl�, xu�].

2) Dynamic service pricing: The server will judiciously
choose the price over time to maximize its long-term utility,
which follows an online Lyapunov optimization framework.

Drift-minus-utility. In view of the overloaded constraint
in utility maximization, we define a virtual queue X[n] for
the edge server which buffers the virtual amounts of offloaded
tasks. Here, we use the prefix “virtual” to denote that tasks
are not actually offloaded from users, but rather, to reflect the
requirement of the overloaded constraint. Consistent with this
queue definition, tasks will enter into the queue with arrival
rate x[n]� where x[n] is users’ offloading probability, and will
leave the queue with departure rate x. Therefore, we have the
following dynamic equation for the virtual queue X[n]:

X[n+ 1] = max(X[n] + x[n]�� x, 0). (25)

Based on Eq. (25), we construct Lyapunov function as 1
2X

2[n],
and compute Lyapunov drift which basically is the change of
Lyapunov function from one time slot to the next:

�(X[n]) = E
h1
2
X2[n+ 1]� 1

2
X2[n]

��X[n]
i
. (26)

The expectation is taken over the randomness in task genera-
tion, offloading decision and pricing scheme. By minimizing
Lyapunov drift �(X[n]), one can drive the queue backlog to a
small value so as to maintain X[n] rate stable, limn!1

X[n]
n =

0, with probability 1. From the queue stability theorem [21], a
queue X[n] is stable if and only if the arrival rate is no larger
than the departure rate, i.e., limT!1

1
T

PT�1
n=0 E[x[n]�]  x,

and hence the overloaded constraint is satisfied. Furthermore,
we define drift-minus-utility �(X[n])�V E[u[n]|X[n]], where
V is the importance weight on the utility term. Minimizing
drift-minus-utility will simultaneously push the queue backlog
to a small value and maximize the utility as well [21].

Bound of drift-minus-utility. In time slot n, the queue
X[n] is known in advance. Besides, the offloading decision
x[n] is given in Eq. (24), which is also expressed as x(p[n])
to explicitly indicate its dependence on the price p[n].

Lemma 4. Drift-minus-utility �(X[n])�V E[u[n]|X[n]] sat-
isfies the following condition:

�(X[n])� V E[u[n]|X[n]]  E
⇥
X[n](x(p[n])�� x)|X[n]

⇤

� E
h�
V x(p[n])�p[n]� V x(p[n])�

⇢sc
�

���X[n]
i
+D,

(27)
where D = max( 12

�
�� x)2, 1

2x
2
�
.

See Appendix G-A in [29] for the proof. Lemma 4 allows us
to use a simple-form bound rather than the original complex
drift-minus-utility in deriving the optimal price. As X[n] is
a priori knowledge in each time slot n and D is a constant,
the remaining terms of Eq. (27) precisely correspond to the
overloaded constraint and the service utility, respectively.
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Optimal service price. In every time slot n, we minimize
the bound of drift-minus-utility with x(p[n]) in Eq. (24):

min X[n](x(p[n])�� x)� V x(p[n])�p[n] + V x(p[n])�⇢s
c
� (28)

s.t. p[n] 2 (0, pu]. (28a)

First, suppose that p[n]  ⇢m
c
µ2 � ⇢mt

B
r , then x(p[n]) = xu,

thus the objective of Eq. (28) is u1(p[n]) = X[n] (xu�� x)�
V xu�p[n]+V xu�

⇢s
c
� . The price p[n] should be ⇢m

c
µ2 �⇢mt

B
r in

order to minimize u1(p[n]). Following this line, assume that
p[n] > ⇢m

c
µ2 � ⇢mt

B
r , and the objective becomes u2(p[n]) =

X[n](xl�� x)� V xl�p[n] + V xl�
⇢s
c
� , thereby p[n] ought to

be pu. In general, we compare the two values u1(p[n] =
⇢m
c
µ2 �

⇢mt
B
r ) = X[n](xu� � x) � V xu�(

⇢m
c
µ2 � ⇢mt

B
r ) + V xu�

⇢s
c
�

and u2(p[n] = pu) = X[n](xl�� x)� V xl�pu + V xl�
⇢s
c
� to

determine p[n]. Let X⇤ =
V xu(

⇢mc
µ2 �⇢m

t
B
r )�V xlpu

xu�xl
�V ⇢s

c
� , then:

p[n] =

8
<

:

⇢mc
µ2

� ⇢mt
B

r
if X[n]  X⇤,

pu otherwise.
(29)

After setting price p[n], offloading decision x[n] is made based
on Eq. (24), and queue X[n] is updated following Eq. (25).

B. Performance of Offloading and Pricing Scheme
Now we provide the performance analysis of our task

offloading and service pricing. In particular, we demonstrate
that an asymptotically optimal utility is obtained and the queue
backlog X[n] has a constant upper bound.

Theorem 6. Suppose the initial queue backlog X[0] = 0. For
any importance weight V > 0, the proposed task offloading
and service pricing satisfy the following properties.

a) The queue backlog in any time slot n is bounded:

X[n] 
V xu(

⇢m
c
µ2 � ⇢mt

B
r )� V xlpu

xu � xl
�V

⇢sc
�

+xu��x. (30)

b) Denote u⇤ as the optimal time average utility for Eq. (8),
then the achieved utility satisfies:

lim
T!1

1

T

T�1X

n=0

E[u[n]] � u⇤ � D

V
. (31)

Please refer to Appendix G-B in [29] for the detailed proof.
Theorem 6 unveils an (O(V ), O(1/V )) tradeoff between the
queue backlog and the service utility. Specifically, as the im-
portance weight V increases, the queue backlog also increases
as fast as the order of O(V ), while the time average utility
approaches the theoretical optimum within an O(1/V ) gap.
In addition, because X[n] is upper bounded by a finite value
given in Eq. (30), and then X[n] is rate stable, that is the
overloaded constraint will hold asymptotically.

VI. PERFORMANCE EVALUATION

In this section, we carry out evaluations to illustrate D2D
collaboration among users and task offloading to edge server,
especially to evaluate the mean field model on graph and
Lyapunov optimization based offloading and pricing scheme.

A. Parameter Setting
In line with the real measurements [10], we set the average

service time of a task to 1000 Megacycles which is normalized
to 1 as stated in the system model, and the average data
size B to 2000 KB. Service rates of a mobile device and
the edge server are 1 GHz and 5 GHz, respectively, thus
µ = 109

1000⇤106 = 1 and � = 5⇤109
1000⇤106 = 5 accordingly.

Moreover, the typical real-world data rate of 4G cellular uplink
is around r = 10 Mbps [22].

For D2D collaboration, task generation rate � is set to 0.9
for modeling a heavy workload situation. User’s (expected)
degree in (dynamic) static graph is uniformly distributed in
the set K = {6, 7, 8, 9}, that is p(k) = 1

4 , 8k 2 K and kmin =
6, kmax = 9. Besides, user’s realized degree given its expected
degree obeys a Poisson distribution for dynamic graph [16],
and the graph structure varies over time with rate 1.

Regarding task offloading, let d = 1.6 for the delay con-
straint, and s = 0.06 for the collaboration fairness constraint.
The per energy costs are (⇢mc , ⇢mt , ⇢sc) = (0.9, 0.3, 1), which
correspond to 900 mW, 300 mW for processing and trans-
mitting tasks in mobile devices, and 1000 mW for processing
tasks in the edge server. The overloaded threshold x is set to
0.6, and the highest acceptable price pu is assigned to 0.5.

B. Mean Field D2D Collaboration
Stationary point. We first demonstrate that the mean field

model on graph is effective to characterize D2D collaboration
by comparing the theoretical stationary point s⇤ obtained from
the ODE system of Eq. (10) and that from simulating the Po2
choices. In particular, we compute the theoretical stationary
point s⇤ using scipy.integrate.odeint in Python to solve the
ODE system, since s(t) will converge to s⇤ when time t is
large enough. On the other hand, the simulated MEC system
consists of 800 users for static graph and 1000 users for
dynamic graph. The static graph is generated by the config-
uration model [14] with both self-loops and multiple edges
between two users being cut off to obtain an uncorrelated
graph. Similarly, the configuration model is revoked when the
graph structure changes to produce dynamic graph. Varying
the value xc�, namely the proportion of tasks processed via
D2D collaboration, from 0.1 to 0.9 with an increment of 0.1
each time, we run the simulated Po2 for eight times under
each xc�. Figs. 4-5 exhibit the values of theoretical s⇤kmin,1
and averaged simulated s⇤kmin,1

on static and dynamic graphs,
respectively, which tell that theoretical results perfectly match
with simulated results. Therefore, the mean field model is
effective in analyzing D2D collaboration.

Furthermore, we show each averaged simulated s⇤k,i and
theoretical s⇤k,i when xc� = 0.7 in Table I. Results validate the
accuracy of mean field model as the error between theoretical
and simulated s⇤k,i on static/dynamic graph is negligibly small.

User number influence. We continue discussing how the
simulated Po2 behaves over time for different number of users
N . In particular, we display the evolution of skmin,1(t) when
N = 100, 300, 800 for static graph and N = 100, 300, 1000
for dynamic graph in Figs. 6 and 7, respectively. We can see
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Fig. 4: Stationary point on static
graph.

Fig. 5: Stationary point on dy-
namic graph.

Fig. 6: Convergence to mean
field model on static graph.

Fig. 7: Convergence to mean
field model on dynamic graph.

Fig. 8: Workload comparison. Fig. 9: Utility vs. V . Fig. 10: Cost vs. V . Fig. 11: Queue backlog X[n].
TABLE I: Theoretical and simulated stationary points.

s⇤k,i Theoretical Static graph Dynamic graph Max error

s⇤6,1 0.66504 0.66706 0.67742 0.01238
s⇤7,1 0.68972 0.68924 0.696 0.00628
s⇤8,1 0.7123 0.71732 0.71786 0.00556
s⇤9,1 0.73295 0.73329 0.7325 0.00039
s⇤6,2 0.30585 0.31042 0.32056 0.01471
s⇤7,2 0.33239 0.34009 0.3492 0.01681
s⇤8,2 0.35814 0.35022 0.36905 0.00792
s⇤9,2 0.38302 0.36972 0.3852 0.0133

that as N increases largely, simulated results tend to approach
the theoretical stationary point with impaired variances.

Power of collaboration. Theorem 4 reveals that largest-
degree users have heaviest workloads. We now show that, even
for those users, their workloads are still effectively mitigated
in D2D collaboration, compared to the non-collaborative case
which is a M/M/1 queue. Fig. 8 depicts the average workload
and workloads for the largest-degree users as well as the non-
collaborative case when value of xc� varies. We can observe
that the average and heaviest workloads are much smaller
than the non-collaborative scenario, with the workload being
mitigated by 73.8% when xc� = 0.9. Hence, the task delay
is also significantly reduced as a result of the collaboration.

C. Lyapunov Optimization Based Offloading and Pricing
Critical points. We first derive the critical points for task

offloading. As for the delay constraint, we implement golden
section search to numerically compute critical points x⇤

l , x
⇤
u

by using Eq. (23), and hence we obtain x⇤
l = 0.26586, x⇤

u =
0.72978. Similarly, golden section search is leveraged to cal-
culate critical points x0

l, x
0
u for the fairness constraint, and their

values are 0.08505 and 0.49953, respectively. Overall, the fea-
sible region for the offloading decision is [0.49953, 0.72978],
namely xl = 0.49953, xu = 0.72978.

Utility and cost. Now we compare the performance of Lya-
punov optimization (Optimal PO) with two baseline methods.
• Constant PO: edge server always chooses the Price pu and

users react with the Offloading probability xl.
• Adapted PO: based on Eq. (29), edge server chooses the

Price ⇢m
c
µ2 �⇢mt

B
r or pu with probability x�xl�

xu��xl�
or xu��x

xu��xl�
,

and users react with the Offloading probability xu or xl.

It can be verified that the overloaded constraint also holds for
these baseline methods. Let the total time slot T = 100, and
we vary the importance weight V from 5 to 100 to obtain the
corresponding service utility and system cost. Fig. 9 displays
the time average utility, which shows that the utility will
increase over V for Optimal PO as more emphasis is on the
utility term. Besides, Optimal PO can achieve higher utility
compared to Constant PO and Adapted PO. We then exhibit
the time average system cost in Fig. 10, and we can see that
Optimal PO leads to a lower cost than the baseline methods.
With the increase of V , the edge server is more likely to set a
lower price ⇢m

c
µ2 � ⇢mt

B
r from Eq. (29), that is why the system

cost will decrease for Optimal PO. Therefore, Optimal PO can
achieve high energy efficiency in optimizing utility and cost.

Queue backlog. Lastly, we depict the queue backlog X[n]
in Fig. 11 when the importance weight is V = 20. Results
demonstrate that the queue backlog is finite under a constant
bound derived in Theorem 6. This also implies the overloaded
constraint in utility maximization is satisfied.

VII. RELATED WORK

Collaborative MEC. Emerging MEC offers new possibility
for intelligent mobile applications [1]. As single edge server
has limited computing capacity, collaborative MEC is effective
to accommodate more computation [23]. Li et al. propose
an online learning aided collaborative offloading allowing
edge servers to transmit tasks to each other based on a joint
consideration of trust, delay and multi-hop transmission [24].
These works mainly focus on the collaboration among edge
servers, instead of, among mobile users. To explore how users
can help each other, Pu et al. study an incentive-aware task
offloading among users via D2D links [5], but offloading to
edge server is not considered. He et al. further incorporate
D2D collaboration and task offloading to edge server for
enhancing the computation capacity [8]. However, existing
works rarely investigate D2D collaboration and task offloading
as a whole. Besides, they mainly concentrate on the centralized
collaboration for finite, often a handful of, users which makes
them hard to be extended to large-population MEC systems.

Mean field model. Mean field model is used to characterize
interactions among a large number of agents. Mitzenmacher
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uses the mean field model to analyze the power of d choices
in randomized load balancing, where d queues are randomly
sampled and a task will join the shortest queue [13]. Results
show that even d = 2, the average sojourn time still decreases
dramatically. Later on, Gast investigates the power of two
choices on finite-degree graphs, but only simulation results
are provided [19]. Budhiraja et al. show that the power of d
choices on graphs can still be analyzed via mean field model,
as long as each node has infinite degree [18]. Nevertheless, for
D2D collaboration, the degree of a user (node) will not scale
with the total number of users due to short-range D2D commu-
nication, so that users actually have finitely many neighbors.
Another strand of researches using mean field model on graphs
focus on epidemic processes in networks [14]. These works
usually assume an uncorrelated graph, and use an ODE system
to represent the state evolution, whereas the convergence to
mean field model is often not proved [25]. Therefore, previous
studies have not yet rigorously analyzed the mean field model
on finite-degree or dynamic graphs.

Service pricing. Pricing scheme is important to a service
provider when providing specific service for end users [26].
Regarding MEC, Zhao et al. propose a pricing scheme to
charge mobile users when they offload computation via access
points [27]. A Stackelberg game based heterogeneous pricing
is designed to make decisions for edge servers (leaders) and
mobile users (followers) in [28]. However, these works only
consider finitely many users, and their pricing schemes are too
complicated as uniform pricing is more easily implementable.

VIII. CONCLUSION

In this paper, we develop a joint D2D collaboration and task
offloading for a large-population MEC system. Specifically,
to characterize the state evolution of D2D collaboration, we
propose a mean field model to analyze the stochastic MEC
system by a deterministic ODE system. On this basis, we
derive the existence and uniqueness of the stationary point, and
further demonstrate the global convergence of state evolution
to this unique stationary point. By incorporating D2D collab-
oration, we then design a pricing scheme for task offloading
following a Lyapunov optimization framework. In particular,
the offloading process is modeled as a Stackelberg game,
where edge server is the leader to determine a reasonable
price and users are followers to make the offloading decision.
Extensive evaluations validate the effectiveness of our mean
field model and the superiority of Lyapunov optimization.
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