
Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Taming energy cost of disk encryption software on data-intensive
mobile devices
Yang Hu a,b, John C.S. Lui a,*, Wenjun Hu c, Xiaobo Ma b, Jianfeng Li b, Xiao Liang b

a The Chinese University of Hong Kong, Hong Kong, China
b MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an, Shaanxi, China
c Palo Alto Networks Inc., USA

a r t i c l e i n f o

Article history:
Received 31 October 2016
Received in revised form 26 August 2017
Accepted 7 September 2017
Available online xxxx

Keywords:
Privacy protection
Disk encryption
Energy-efficient computing

a b s t r a c t

Disk encryption software is frequently used to secure confidential data on mobile devices. However, it
is notoriously challenging for disk encryption software to ensure its security in cryptography without
involving significant energy overhead. To address the challenge, we design a both cryptographically
secure and energy-efficient disk encryption software for mobile devices, Populus. On the one hand,
Populus uses modular linear algebra and one-time pad technique to encrypt/decrypt sensitive data on
mobile devices, thus ensuring its security in cryptograph. To illustrate, we prove Populus’s semantic
security. On the other hand, Populus is based on client–server pattern. Its client side works on the kernel
layer of mobile devices powered by batteries, while its server side works on the application layer of
computing devices powered by fixed electric power source. The server side helps the client side do the
computation tasks unrelated to plaintext/ciphertext in the encryption/decryption process, therefore, the
energy cost on mobile devices significantly declines. To demonstrate, we conduct energy consumption
experiments on Populus and dm-crypt, a famous disk encryption software for Android and Linux mobile
devices. The experimental results show that Populus consumes 50%–70% less energy than dm-crypt.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, mobile devices (e.g., smartphones, smart-
watches and mobile video surveillance devices) have become an
integral part in our daily life. Meanwhile, mobile devices are usu-
ally facing profound security challenges [1], especially when being
physically controlled by attackers. For example, due to device loss
or theft, data leakage in mobile devices happens more frequently
than before [2]. To deal with the aforementioned security chal-
lenge, mobile devices can encrypt secret data and store its cipher-
text locally on itself, which is also known as disk encryption [3]. This
method attracts extensive attention in industry and academia [4].
Generally speaking, there are two types of disk encryption solu-
tions: software and hardware solutions. This paper mainly focuses
on software solutions, as they usually have advantages in compat-
ibility and scalability.

However, for data-intensive applications such as mobile video
surveillance [5] and seismic monitor [6], the whole energy con-
sumption of mobile devices highly rises after applying state-of-
the-art disk encryption software. One evidence proposed by Li et al.

* Correspondence to: Room 111, Ho Sin Hang Engineering Building, The Chinese
University of Hong Kong, Hong Kong, China.

E-mail addresses: huyang0905@126.com (Y. Hu), cslui@cse.cuhk.edu.hk
(J.C.S. Lui), whu@paloaltonetworks.com (W. Hu), xma.cs@xjtu.edu.cn (X. Ma),
jfli@sei.xjtu.edu.cn (J. Li), qingyuanxingsi@163.com (X. Liang).

states that for data-intensive applications nearly 1.1–5.9 times
more energy is required on mobile devices when turning on their
disk encryption software [7]. Worse, mobile devices are usually
battery-powered in order to improve portability. For example,
a mobile video surveillance device is equipped on a multi-rotor
unmanned aerial vehicle, and battery becomes its sole power sup-
ply [5]. Due to mobile devices’ limited battery capacity, state-of-
the-art disk encryption software may strongly affect their normal
usage.

After our careful analysis, we find that the cipher (i.e., the
encryption/decryptionmodule) used in disk encryption software is
themain source of energy overhead. In particular, the cipher of disk
encryption software contains many CPU and RAM operations, and
disk encryption software has to conduct those operations many
times for data-intensive applications. As a result, disk encryption
software has to conduct a large amount of CPU and RAM opera-
tions, which causes significant energy overhead. To illustrate, con-
sider mobile video surveillance devices which need to real-timely
record and encrypt a large amount of video data [5]. According
to our experiments, nearly 1/3 of the energy consumption comes
from popular disk encryption software in mobile video surveil-
lance.

In fact, the energy consumed by CPU and RAM operations
tends to become more prominent than other sources such as

https://doi.org/10.1016/j.future.2017.09.025
0167-739X/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2017.09.025
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:huyang0905@126.com
mailto:cslui@cse.cuhk.edu.hk
mailto:whu@paloaltonetworks.com
mailto:xma.cs@xjtu.edu.cn
mailto:qingyuanxingsi@163.com
https://doi.org/10.1016/j.future.2017.09.025

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

2 Y. Hu et al. / Future Generation Computer Systems () –

screen and network communication, especially when disk en-
cryption software handles data-intensive tasks. About six years
ago, about 45%–76% of daily energy consumption came from
screen and GSM [8]. However, the distribution of energy con-
sumption has been changed dramatically in recent years due to
software/hardware optimization. A recent study [9] shows that
for typical usage of mobile devices, only about 28% of energy
consumption comes from screen and GSM, while 35% of energy
consumption comes fromCPU and RAM, and CPU and RAMbecome
two largest energy consumption sources in mobile devices. Fur-
thermore, both [8] and [9] measure energy consumption without
enabling disk encryption software. Considering that existing disk
encryption software owns many CPU and RAM operations, we
believe that the percentage of the energy consumption on CPU
and RAM may be much higher than 35% if mobile devices enable
disk encryption software when handling data-intensive tasks. Li’s
experimental results [7] exactly verified it. Hence, to build a both
energy-efficient and secure mobile system, reducing the energy
consumption on disk encryption software is a rational starting
point.

To reduce the energy consumption of disk encryption software,
some researchers try to reduce the number of CPU or RAM op-
erations in disk encryption software. But it is really challenging
to make disk encryption software both energy-saving and crypto-
graphically secure in this way. Generally speaking, the less com-
putation disk encryption software needs, the less energy it costs,
but possibly themore insecure in cryptography. For example, some
trials [10] are faced with challenges in terms of cryptography [11].
In state-of-the-art cryptographically secure disk encryption soft-
ware, the disk encryption software used in Linux and Android, also
known as dm-crypt, owns less computation than others. But our
experimental results show that nearly 30%–50% of mobile device’s
energy consumption comes fromdm-crypt for typical usage of data
collection and transmission.

In this paper, we design a both cryptographically secure and
energy-efficient disk encryption software for mobile devices, Pop-
ulus. Populus is built upon client–server pattern. Its client side is
deployed on battery-poweredmobile devices, and its server side is
deployed on computing devices powered by fixed electric power
source. Before encrypting/decrypting sensitive data, the client side
requests the server side to do the input-free computation tasks in
the encryption/decryption tasks. Here, the input-free computation
refers to the cipher’s operations that are not involved with the
input text (i.e., plaintext or ciphertext). For example, in AES-CBC ci-
pher, its key expansion can be regarded as input-free computation.
After accomplishing these tasks in the computing environment
with enough power supply, the server side sends the computation
results back to the client side. Finally, the client side accomplishes
the residual computation in the encryption/decryption tasks.

In addition, to avoid energy overhead caused by frequent com-
munication between the client side and the server side, the client
side can reduce the request frequency by asking the server side
to do the input-free computation tasks in the predictable future
encryption/decryption tasks. For example, if a mobile device is
going to encrypt x-GB data in the future y days, the client side can
ask the server side to do input-free computation in the x-GB data
encryption task in one request. Therefore, the client side will not
need to send more requests in the future y days.

With the design above, Populus helps to save much energy on
mobile devices, when the encryption/decryption process of Popu-
lus ownsmuch input-free computation. However, the ciphers used
in existing disk encryption software are based on substitution–
permutation network (SPN), which only has a little input-free com-
putation. For example, we find that the input-free computation of
AES-CBC cipher accounts for at most 1% of all its computation.

To improve the proportion of the input-free computation
without sacrificing Populus’s security in cryptography, Populus

uses modular linear algebra and one-time pad technique to en-
crypt/decrypt sensitive data on mobile devices. The server side
generates pseudo random numbers (PRNs) and global matrices in
an input-free manner and send their ciphertext to the client side.
Then the client side decrypts them and uses them to construct
temporary matrices and then uses carefully designed matrix mul-
tiplication to encrypt/decrypt disk sectors with those temporary
matrices. In this way, Populus can save much energy on mobile de-
vices without destroying its security in cryptography, because the
encryption method with temporary matrices effectively defends
against chosen-plaintext attack and almost 98% of its computation
is input-free. In addition, Populus only needs to use 6.1%–7.8% extra
storage space to store global keys, PRNs and etc.

We conduct security analysis on Populus. In particular, we prove
that Populus is semantically secure against state-of-the-art chosen-
plaintext attack methods. We also conduct a series of energy con-
sumption experiments on both Populus and dm-crypt. Our experi-
mental results indicate that Populus can save 50%–70%more energy
than dm-crypt. The contributions of this work are as follows.

• To the best of our knowledge, this paper is the first work
focusing on extracting input-free computation from disk
encryption software, which can be used to reduce its energy
consumption.

• We design and implement a both cryptographically secure
and energy-efficient disk encryption software Populus.

The remainder of the paper is organized as follows. Section 2
introduces the threat model in disk encryption theory. In Section
3, we introduce the details on input-free computation. Section 4
presents our system Populus in detail. Thenwe showour cryptanal-
ysis in Section 5 and present the experimental results of Populus’s
energy consumption in Section 6. Section 7 summarizes related
work. Concluding remarks then follow.

2. Threat model

We assume that the disk encryption software manages disk
sectors for secure storage. The user requests the disk encryption
software to encrypt certain plaintext with a secret key. Then the
disk encryption software allocates some disk sectors to the user
and stores the ciphertext on these disk sectors. The attacker aims to
obtain the plaintext with the following abilities. First, the attacker
knows the encryption/decryption algorithm that the disk encryp-
tion software uses. Second, the attacker can read the data stored in
any disk sectors that the disk encryption software manages. Third,
the attacker can write arbitrary data to any disk sectors that the
disk encryption system manages. Fourth, the attacker can request
the disk encryption software to encrypt arbitrary data, and the
disk encryption software allocates some unused disk sectors to the
attacker in order to store the corresponding ciphertext. Fifth, the
attacker can request the disk encryption software to decrypt the
data in the disk sectors allocated to the attacker.

3. Input-free computation

In this section, we first explain why state-of-the-art disk en-
cryption software is lack of input-free computation. Thenwe show
how Populus improves the proportion of input-free computation.

3.1. Low input-free computation

To explain the causes of low input-free computation, we should
first understand the design considerations of disk encryption soft-
ware. According to the threat model introduced in Section 2, we
can infer that different disk sector should be encryptedwith differ-
ent key. Otherwise, the attacker can solve the plaintext by reading

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

Y. Hu et al. / Future Generation Computer Systems () – 3

the ciphertext of the privacy from the disk sectors allocated to the
user, writing the ciphertext to the disk sectors allocated to the
attackers and requesting the disk encryption software to decrypt
the ciphertext in the disk sectors allocated to the attacker. Hence,
most existing disk encryption software uses the key provided by
the user and disk sector ID to produce the keys of all disk sectors,
which is known as tweakable scheme [12].

However, tweakable scheme is not absolutely secure in cryp-
tography. In detail, since tweakable scheme allows the attacker to
get multiple (plaintext, ciphertext) pairs in the same disk sector,
the attacker can conduct chosen-plaintext attack (CPA) to solve
the privacy the user stores. One of the most effective methods to
defend against CPA is to apply substitution–permutation network
(SPN) [13] to tweakable-based block cipher in disk encryption soft-
ware. SPN separates one encryption/decryption process into sev-
eral rounds, and each round uses substitution boxes, permutation
boxes and round key to diffuse and confuse plaintext. SPN achieves
Shannon’s confusion/diffusion properties and can highly reduce
the probability that CPA succeeds in a reasonable computational
complexity [13].

Despite the merits of SPN, we find that nearly all SPN-based
block ciphers only have a little input-free computation because
their core components (i.e., substitution box and permutation box)
directly or indirectly rely on inputs. Fig. 1(a) depicts an example
of SPN-based cipher, where P denotes the plaintext, K is the key
of a disk sector, K1, . . . , K4 are four round keys produced by key
expansion, C is the ciphertext and L1, . . . , L8 are themiddle results
when the SPN processes P . To illuminate why this cipher lacks
input-free computation, we describe its data dependency in Fig.
1(b). Each node denotes one of P, C, K , K1, . . . , K4, L1, . . . , L8. We
draw an arrow from a node A to another node B only when the
computation of B must be conducted after the computation of
A. For example, computing L1 must happen before computing L2,
because L1 and L2 are separately the input and the output of the
same substitution box. As P is the input, any computation which
directly or indirectly relies on P does not belong to input-free
computation. Therefore, the computation of K1, . . . , K4 is input-
free while the computation of L1, . . . , L8, C is not input-free. Since
the computation of K1, . . . , K4 is far less than that of L1, . . . , L8, C ,
preprocessing the input-free computation of the cipher has little
effect on saving energy.

3.2. How to improve input-free computation

To improve input-free computation,we construct Populusbased
on nonce-based scheme [14]. Populus’s core design can be briefly
described as follows: (a) for ith encryption, produce an indepen-
dent temporary key based on the key provided by the user and
i; (b) use the temporary key and a light-weight block cipher to
accomplish ith encryption. Our design has three advantages. First,
it makes attackers hard to get multiple (plaintext, ciphertext) pairs
sharing same key so as to mitigate the threat from CPA. Second,
nearly all procedures in (a) are input-free. Third, SPN becomes
unnecessary in (b), which gives us more freedom to design a light-
weight block cipherwithmuch input-free computation. As a trade-
off, our scheme needs extra storage space for the results of input-
free computation. Fortunately, the storage space can be reduced
to an acceptable level by carefully designing the temporary key
production method in (a) and the block cipher in (b). In Section 4,
we complement details regarding the design and implementation
of Populus.

(a) An example of SPN-based cipher. (b) Data
dependencies in
the SPN-based
cipher.

Fig. 1. An illustration that SPN-based ciphers are lack of input-free computation.

Fig. 2. Overview of Populus.

4. Populus: An energy-saving disk encryption software system

The overview of Populus is shown in Fig. 2. Populus consists of
two parts: server side and client side. The server side accomplishes
all input-free computation and sends its result to the client side,
which is used for processing real-time encryption and decryption
requests later. Populus works at a 512-byte disk sector level, and
it allows users to manually configure private disk sectors, which
store users’ confidential information. We design Populus for 64-bit
systems because 64-bit processors are popular for mobile devices.
Throughout the paper, the default value of a number’s size is 64
bits unless stated otherwise.

4.1. Server side

The server side includes three input-free modules: PRN gen-
erator, master key generator and IFCR encryption. Here, IFCR is

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

4 Y. Hu et al. / Future Generation Computer Systems () –

the abbreviation of input-free computation result. PRN generator
produces PRNs,which are basic for generatingmaster key and real-
time encryption/decryption. Next, Populus encrypts IFCR and then
stores it on disk.

4.1.1. PRN generator
To produce PRNs, we use Salsa20/12 stream cipher, which has

been extensively studied and found to produce PRNs of very high
quality [15]. Salsa20/12 requires a 320-bit input, and we use the
SHA3 algorithm [16] to map a user’s arbitrary-length key into a
384-bit number and extract the first 320-bit hash key as the input
of Salsa20/12 stream cipher. PRNs are mainly used for master
key production and real-time encryption/decryption, which are
separately namedMK-PRNs and RT-PRNs.

4.1.2. Master key generator
Populus generates master key using MK-PRNs. We define that a

square matrix A is modular invertible when there exists a matrix
B such that AB mod 264 = I , where I is the identity matrix. If
this is the case, then the matrix B is uniquely determined by A
and is called the modular inverse of A. For simplicity, the modular
inverse of A is denoted by A�1 in this paper. We define the master

key as U = (U (1), . . . ,U (125)), where each U (i) =
✓

u(i)1,1 u(i)1,2

u(i)2,1 u(i)2,2

◆
,

1  i  125, is a 2⇥ 2matrix andU (i) ismodular invertible, which is
critical for the real-time encryption and decryption discussed later.

We randomly select matrices U (1), . . . ,U (125) from the set of
modular involutory matrices based on the Acharya’s method [17].
Here, a modular involutory matrix is defined as a matrix whose
modular invertible matrix is itself. Using the method proposed
by [18] , we can compute that the number of all possible U is about
3.38 ⇥ 104860, which is much larger than the size of our hash key
space (i.e., 2320 ⇡ 2.14⇥ 1096). Therefore, the master key is more
difficult to brutally crack than the hash key.

4.1.3. IFCR encryption and decryption
In our threat model, attackers can physically access disk. To

avoid attackers reading the plaintext of IFCR (i.e., RT-PRNs and
master key) from disk, Populus encrypts them and then sends them
to the client side. During real-time encryption/decryption, Populus
decrypts the master key and RT-PRNs from disk. Later, we will
introduce more details in Section 4.3.

4.2. Client side

The client side performs disk encryption and decryption when
the file systemwrites/reads data on disk in real time.We introduce
each of its modules as follows.

4.2.1. Transparent encryption and decryption
Our transparent encryption and decryption are based onmatrix

multiplication in modular linear algebra. In cryptography, matrix
multiplication has achieved Shannon’s diffusion [13], and it dissi-
pates statistical structure of the plaintext into long-range statistics
of the ciphertext to thwart cryptanalysis based on statistical analy-
sis [19]. However,matrixmultiplication is usually computationally
intensive. For example, a general matrix multiplication between a
64 ⇥ 64 matrix and a 64 ⇥ 1 matrix requires at least 64 ⇥ 64 +
64⇥ 63 + 128 = 8256 operations.

To reduce its computation, Populus only constructs 125 64⇥ 64

sparse matrices H (i) =
✓I62�|63�i| 0 0

0 M(i) 0
0 0 I|63�i|

◆
, where i 2

{1, . . . , 125}, Ii is the i-dimensional identity matrix and M (i)

is a 2 ⇥ 2 modular invertible matrix. Then Populus computes

H (125) . . .H (1)P as encryption or (H (1))�1 . . . (H (125))�1C as decryp-
tion, where P is a 64 ⇥ 1 matrix as one 512-byte plaintext and
C is a 64 ⇥ 1 matrix as one 512-byte ciphertext. Given that H (i)

is a sparse matrix, 125 64-dimensional matrix multiplications can
be simplified to 125 2-dimensional matrix multiplications. The
simplified encryption and decryption only consist of 125⇥(2⇥2+
2⇥ 1)+ 128 = 868 operations. Now, we describe our transparent
encryption and decryption in more detail. Fig. 3 presents its full
view. Let P = (P (1), . . . , P (64))T , C = (C (1), . . . , C (64))T and M =
(M (1), . . . ,M (125)) denote its plaintext, ciphertext and temporary
key respectively, where P (i) is the ith number in the plaintext, C (i)

is the ith number in the ciphertext and M (i) =
✓

m(i)
1,1 m(i)

1,2

m(i)
2,1 m(i)

2,2

◆
is the

ith 2 ⇥ 2 matrix in M . For simplicity, we use the notation [m]n to
denote the functionm mod n, i.e., [m]n = m mod n. The encryption
function E(P,M)works as follows.We first set� (1,j) = P (j) and then
iteratively compute � (i+1,j), 1  i  125, 1  j  64, as

� (i+1,j) =

8
><

>:

[� (i,j)m(i)
1,1 + � (i,j+1)m(i)

1,2]264 , j = i, 126� i

[� (i,j�1)m(i)
2,1 + � (i,j)m(i)

2,2]264 , j = i + 1, 127� i
�i,j, otherwise.

Finally, we set E(P,M) = (� (126,1),. . . , � (126,64))T .
The decryption D(C,M) function works as follows. Let

(M (i))�1 =
✓

l(i)1,1 l(i)1,2

l(i)2,1 l(i)2,2

◆
and k = 126 � i. We set � (1,j) = C (j) and

then iteratively compute � (i+1,j), 1  i  125, 1  j  64, as

� (i+1,j) =

8
><

>:

[� (i,j)l(k)1,1 + � (i,j+1)l(k)1,2]264 , j = i, 126� i

[� (i,j�1)l(k)2,1 + � (i,j)l(k)2,2]264 , j = i + 1, 127� i
� (i,j), otherwise.

Finally, we set D(C,M) = (� (126,1), . . . , � (126,64))T .

4.2.2. Temporary key manager
To avoid chosen-plaintext attack, M cannot be reused many

times. In particular, if an attacker can get 64 (plaintext, ciphertext)
pairs corresponding to the same temporary key M , the attacker
can directly solve M with linear transformation (see Section 5 for
more detail). To solve this problem, we design a temporary key
manager with a low reusing rate. For each time of the disk sector
encryption, Populus randomly selects one temporary key from a
large key space, hence lowering the probability of reusing the same
temporary key and making attackers hard to accomplish chosen-
plaintext attack. In addition, the storage cost of temporary keys can
be controlled in a low level.

Next, we give a formal description on the temporary key man-
ager. Populus only stores U and RT-PRNs R = (R1, . . . , R2d) instead
of d temporary keys. When conducting jth encryption, Populus
computes the temporary key based on U , R2j�1 and R2j. This way,
Populus only costs about 16 bytes for each temporary key when d
is large. Then we introduce how to produce the temporary key M
with U, R2j�1, R2j for jth encryption.

m(i)
p,q =

8
>>>>>><

>>>>>>:

[2(u(i)
p,q � R2j�1) + [u(i)

p,q]2]264 , i = 1,

[2(u(i)
p,q � R2j�1 � R2j) + [u(i)

p,q]2]264 , i = 63,

[2(u(i)
p,q � R2j) + [u(i)

p,q]2]264 , i = 125,

u(i)
p,q, otherwise.

This method makes sure that M (i) is modular invertible, therefore,
M (i) can be used in our transparent encryption/decryption.

Theorem 1. M (i) is modular invertible.

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

Y. Hu et al. / Future Generation Computer Systems () – 5

Fig. 3. An illustration of transparent encryption and decryption.

Proof. From [20], one can claim that M (i) is modular invertible if
and only if |M (i)| and 264 are co-prime, where |M (i)| denotes the
determinant of matrix M (i). Therefore, M (i) is modular invertible
when |M (i)| is an odd number. Next, we prove |M (i)| is an odd
number. From the definition of m(i)

p,q, we can easily find that m(i)
p,q

and u(i)
p,q have the same parity for any p, q 2 {1, 2}. Thus, |M (i)| =

m(i)
1,1m

(i)
2,2 �m(i)

1,2m
(i)
2,1 and |U (i)| = u(i)

1,1u
(i)
2,2 � u(i)

1,2u
(i)
2,1 have the same

parity. U (i) is modular invertible, so we know |U (i)| and 264 are co-
prime. Thus, |U (i)| and |M (i)| are both odd numbers.

After applying ourmethod, only small storage space of RT-PRNs
is able to satisfy most applications in practice. Suppose that on
average mobile devices require to securely store l-byte data each
day and canwork t days without enabling disk encryption. Populus
needs at most lt/256 pseudo random numbers in RT-PRNs. For
example, as for a smartphone, we let t = 4 and l = 231 so that
only 256 MB are required to store 225 pseudo random numbers.

4.3. Iterative encryption and decryption on IFCR

In Section 4.1.3, we have briefly introduced the function of
IFCR (i.e., the master key and RT-PRNs) encryption and decryption.
However, IFCR decryption may cost much energy if we choose
existing block ciphers as its encryption/decryption algorithm. For
example, if Populus uses AES-CBC to encrypt IFCR, all encrypted
IFCR should be decrypted for one transparent encryption in the
worst case, which obviously costs lots of energy when the size of
IFCR is large.

We propose the iterative encryption/decryption to reduce the
energy cost on IFCR decryption. To protect users’ sensitive data in
some disk sectors, Populus produces IFCR ⌦1 and encrypt those
disk sectors with ⌦1. Then, Populus produces another IFCR ⌦2
whose size is smaller than ⌦1, encrypt ⌦1 with ⌦2 through our
transparent encryption method and store the ciphertext of ⌦1 to
the disk. We continue this iteration n times when the size of ⌦n
is small enough. Finally, we use a user key ⌦u to encrypt ⌦n with
existing block ciphers such as AES-CBC and store the ciphertext of
⌦n to the disk. Note that the user key ⌦u is not stored in disk.
The user needs to remember the user key and input it to our
system during its initialization. This way, all content in the disk is
encrypted, so attackers cannot directly read the plaintext of those
keys from the disk.

Next, we describe iterative encryption/decryption in detail.
Considering that Populus only needs one new master key (4000
bytes) and 2k new RT-PRNs (16k bytes) to encrypt 512k-byte data,
Populus iteratively encrypts them as follows: (a) if 4000 + 16k �
512k (k  9), Populus directly encrypts 512k-byte data with a SPN-
based cipher (e.g., AES-CBC); (b) if 4000 + 16k < 512k (k > 9),
Populus produces one new master key and d(16k + 4000)/512e
new RT-PRNs and use them to encrypt the 512k-byte data with our
proposed transparent encryption method. Then Populus encrypts
the new master key and new RT-PRNs with step (a) and (b). As
for iterative decryption, just reverse the whole process of iterative
encryption. This way, iterative encryption/decryption can protect
IFCRwith less computation than existing block cipher, which plays
a important role in saving energy on mobile devices.

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

6 Y. Hu et al. / Future Generation Computer Systems () –

To illustrate that the iterative encryption/decryption helps to
save energy on mobile devices, we give a computational com-
plexity analysis on iterative encryption/decryption and AES-CBC, a
baseline block cipher. Let f (n) denote the computational complex-
ity of decrypting one of the n encrypted disk sectors for sensitive
data when using iterative encryption/decryption to protect the
IFRC for the n encrypted disk sectors. When n  9, f (n) = O(1).
When n > 9, we should first iteratively decrypt its corresponding
IFCR which occupies d(16n + 4000)/512e disk sectors. The master
key has 4000 bytes stored in eight disk sectors and two pseudo
random numbers are stored in one disk sector. Therefore, we
should iteratively decrypt nine of the d(16n + 4000)/512e disk
sectors. So we can get:

f (n) =
⇢
9f (d(16n + 4000)/512e) + O(1), n > 9
O(1), n  9

Using master theorem, we can obtain f (n) = O(log(n)). Let g(n)
denote the computational complexity of decrypting one of the
n encrypted disk sectors for sensitive data when using AES-CBC
to protect the IFRC for the n encrypted disk sectors. Since de-
crypting one disk sector needs its corresponding IFCR, we should
use AES-CBC to decrypt its corresponding IFCR which occupies
d(16n + 4000)/512e disk sectors. So we can get g(n) = O(d(16n +
4000)/512e) = O(n). Comparing f (n) with g(n), we can see itera-
tive encryption/decryption has a smaller computation complexity,
thus saving more energy under most data-intensive scenarios.

One limitation of our iterative encryption/decryption is that it
has to cost extra storage due to the newly produced IFCRs. But,
according to our analysis, its storage overhead is slight and tolera-
ble in most data-intensive scenarios. To illustrate, let us compute
and analyze the storage cost of IFCR. Let h(n) denote the storage
cost (i.e., number of disk sectors) of all IFCRs when using iterative
encryption to protect the IFRC for the encrypted n-sector sensitive
data. When n  9, h(n) = 0.When n > 9, we need to produce new
IFCRwhich occupies d(16n+4000)/512e disk sectors and then use
iterative encryption to protect the newly produced IFCR. Therefore,
we can get:

h(n) =
⇢
h(d(16n + 4000)/512e) + d(16n + 4000)/512e, n > 9
0, n  9

When n = 32kb + 9, k � 0, b 2 {1, . . . , 31},
h(32kb + 9)  h(32k�1b + 9) + 32k�1b + 9

 (32k � 1)b/(32� 1) + 9k + h(9 + b)
 (32k � 1)b/(32� 1) + 9k + h(40)
 (n� 9� b)/31 + 9log32(n� 9)� 9log32(b) + 19
 (n� 10)/31 + 9log32(n� 9)� 9log32(1) + 19
< n/31 + 9log32(n) + 19

When 32kb + 9 < n < 32k(b + 1) + 9,

h(n)  h(32k(b + 1) + 9)
 (32k � 1)(b + 1)/(32� 1) + 9k + h(9 + b)
 (32k � 1)(b + 1)/(32� 1) + 9k + h(40)
 ((n� 9)(b + 1)/b� b� 1)/31 + 9log32(n� 9)
� 9log32(b) + 19
 (2(n� 9)� 2)/31 + 9log32(n� 9)� 9log32(1) + 19
< 2n/31 + 9log32(n) + 19

Since 0 < n/31+9log32(n)+19 < 2n/31+9log32(n)+19, we can
finally get h(n) < 2n/31 + 9log32(n) + 19.

We use a widely-used storage cost metric h(n)/(h(n) + n), the
percentage of IFCR’s storage cost among total storage cost. We
compute h(n)/(h(n) + n) when n 2 {225, 226, . . . , 245}, which
restrains the storage space of encrypted sensitive data between
1MB to 1PB. As a result, only nomore than 7.8% of the total storage

cost comes from IFCR, when n 2 {215, 226, . . . , 245}. Moreover,
when n grows larger, h(n)/(h(n) + n) will become closer to

lim
n!+1

h(n)/(h(n) + n) = 2/33 ⇡ 6.1%

Sacrificing 6.1%–7.8% extra storage cost for saving 50%–70% energy
is usually cost-efficient for mobile devices in data-intensive sce-
narios.

5. Security analysis of populus

In this section, we analyze Populus’s security in cryptography
based on semantic security model in cryptography. First, we in-
troduce the security model and notations. In particular, we define
a encryption scheme and a IND-CPA game. Then we prove the at-
tacker cannot win the gamewith the best effective method known
today, indicating that Populus is a semantically secure cryptosys-
tem in practice.

5.1. Security model and notations

Semantic security model has been widely used in the security
proofs of cryptosystems such as [21,22]. This model consists of the
encryption scheme and IND-CPA game. The encryption scheme is
a tuple of key space, one encryption method and one decryption
method. One should choose a key randomly from the key space
and then use the encryption/decryptionmethod and the key to en-
crypt/decrypt data. In IND-CPA game, the attacker has two groups
of plaintexts. The attacker sends these two groups of plaintexts to
the challenger. Then the challenger chooses one of them randomly,
uses the encryption scheme to encrypt the plaintexts in the group
and sends its ciphertext back to the attacker. Finally, the attacker
determines which group the challenger chooses according to the
two groups of plaintexts and received the ciphertext. If the attacker
cannot correctly determine thiswith high success probability and a
reasonable computational complexity, then we say the encryption
scheme is semantically secure against CPA or IND-CPA secure.

Now we define the encryption scheme for the security proof of
Populus.

Definition 1 (Encryption Scheme of Populus). Let ⇧ = (T , E,D)
denote the encryption scheme of Populus, where T denotes the
space of temporary keys, E : {0, 1}4096 ⇥ T ! {0, 1}4096 denotes
the encryptionmethod and D : {0, 1}4096⇥T ! {0, 1}4096 denotes
the decryption method.

Now we define a IND-CPA game for the security proof of Pop-
ulus. In fact, there are two widely accepted definitions for IND-
CPA game: the concrete definition and the asymptotic definition.
The concrete definition assumes that the key length is fixed, while
the asymptotic definition allows varying key length. Since the
key length of Populus is fixed, we define our IND-CPA game in a
concrete manner. For simplicity, we use A r � B to denote that the
atom A is randomly chosen from the set B.

Definition 2 (IND-CPA Game). Let � ⇧
Adv : {0, 1} ! {0, 1} denote

the IND-CPA game. In � ⇧
Adv , an attacker and a challenger interact

with each other with the following steps:

Step 1. The attacker chooses two groups of plaintexts denoted
by P1:✓ = (P1, . . . , P✓) and P 01:✓ = (P 01, . . . , P

0
✓), where

P1 6= . . . 6= P✓ , P 01 6= . . . 6= P 0✓ and Pi, P 0i 2 {0, 1}4096.
Then the attacker sends P1:✓ and P 01:✓ to the challenger.

Step 2. The challenger sends Y1:✓ = (E(X1,M1), . . . , E(X✓ ,M✓)) to
the attacker, where X1:✓ = P1:✓ when the game input is 0,
X1:✓ = P 01:✓ when the game input is 1 andM1:✓

r � T ✓ .

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

Y. Hu et al. / Future Generation Computer Systems () – 7

Step 3. The attacker uses a distinguisher method Adv :
{0, 1}4096 ! {0, 1} to determine which group the chal-
lenger chooses (i.e., 0 for P1:✓ and 1 for P 01:✓) and return
Adv(Y1:✓).

We say ⇧ is (t, ✏, ✓) semantically secure against Adv if and only if
the computational complexity of Adv is not more than t and

|P(� ⇧
Adv(0) = 1)� P(� ⇧

Adv(1) = 1)|  ✏.

If t = 280, ✏ = 2�60 and ✓  t for Adv, we say ⇧ is semantically
secure or IND-CPA secure against Adv in practice.

In addition, when discussing Populus’s security, we assume that
Populus’s pseudo random number generator is secure in cryptog-
raphy. We do not discuss attack techniques beyond cryptography
such as DMA-based attack, cold boot attack and evil maid attack.

5.2. Security proof of populus

Nowwe prove the attacker cannot win the IND-CPA game with
the most efficient Adv methods known today. Since Populus is
based on matrix multiplication, one of the most efficient Adv to
the best of our knowledge is to exploit the algebraic properties in
linear system. For example, C1 = LP1, . . . , Cn = LPn where L is n⇥n
matrix, Pi, Ci are n⇥1matrices or vectors and P1 6= . . . 6= Pn. Given
[C1, . . . , Cn] = L[P1, . . . , Pn], the attacker can solve L by computing

L = [C1, . . . , Cn][P1, . . . , Pn]�1.

Similarly, the attacker can solve a temporary key of Populus if the
attacker obtains 64 (plaintext, ciphertext) pairs sharing the same
temporary key. With a temporary key, the attacker can decrypt
its corresponding ciphertext received from the challenger and can
use the decryption result to determine which group the challenger
chooses.

Now, we formally describe the attack method. For simplicity,
we reuse the notations in IND-CPA game. The attack method
consists of two steps. First, the attacker lets P1 = P 01, . . . , Pr =
P 0r (64  r < ✓) and then send P1:✓ , P 01:✓ to Populus. Then
Populus encrypts either P1:✓ or P 01:✓ with a set of temporary keys
M1:✓ and sends the encryption results Y1:✓ back to the attacker.
As Pi = P 0i (i 2 {1, . . . , r}), Yi = E(Pi,Mi) (i 2 {1, . . . , r}), no
matter which plaintext group (i.e., P1:✓ or P 01:✓) Populus chooses to
encrypt. This way, the attacker can get r (plaintext, ciphertext)
pairs (P1, C1), . . . , (Pr , Cr), where Ci = E(Pi,Mi) (i 2 {1, . . . , r}).
Second, the attacker constructs a distinguisher method Adv with
(P1, C1), . . . , (Pr , Cr) as follows. For every possible Y1:✓ ,

Adv(Y1:✓) =
⇢
0, event V(Y1:✓) happens,
1, otherwise.

Here, V(Y1:✓) is the event that there exists 64 distinct temporary
keysMi1 , . . . ,Mi64 selected fromM1, . . . ,Mr andµ 2 {r+1, . . . , ✓}
satisfying

Mi1 = · · · = Mi64 = Mµ,

[Ci1 , . . . , Ci64][Pi1 , . . . , Pi64]�1Pµ = Yµ.

Next, we demonstrate the key process of computing the upper
bound of |P(� ⇧

Adv(0) = 1) � P(� ⇧
Adv(1) = 1)| using following two

lemmas and one theorem.

Lemma 1. |P(� ⇧
Adv(0) = 1)� P(� ⇧

Adv(1) = 1)|  maxP(V(C1:✓)).

Proof. With Bayes’ theorem, we can obtain the following equation.

|P(� ⇧
Adv(0) = 1)� P(� ⇧

Adv(1) = 1)|
= |P(Adv(C1:✓) = 1)� P(Adv(C 01:✓) = 1)|
= |P(Adv(C1:✓) = 0|V(C1:✓))P(V(C1:✓))

+P(Adv(C1:✓) = 0|¬V(C1:✓))P(¬V(C1:✓))
�P(Adv(C 01:✓) = 1|V(C 01:✓))P(V(C 01:✓))
�P(Adv(C 01:✓) = 1|¬V(C 01:✓))P(¬V(C 01:✓))|.

Since P(Adv(C1:✓) = 0|V(C1:✓)) = P(Adv(C 01:✓) = 1|V(C 01:✓)) = 1
and P(Adv(C1:✓) = 0|¬V(C1:✓)) = P(Adv(C 01:✓) = 1|¬V(C 01:✓)) = 0,
we can have

|P(Adv(C1:✓) = 1)� P(Adv(C 01:✓) = 1)|
= |P(V(C1:✓))� P(V(C 01:✓))|
 maxP(V(C1:✓)).

Lemma 1 implies that we only need to compute maxP(V(C1:✓))
instead of directly computing the upperbound of |P(Adv(C1:✓) =
1) � P(Adv(C 01:✓) = 1)|. The following lemma is on computing
maxP(V(C1:✓)).

Lemma 2. When r < 2122, we have

P(V(C1:✓))  (✓ � r)e�rT (64r , 1
2128

)
,

where T (x, y) = xlog(xy) + (1� x)log(1�x1�y).

Proof. Let ↵l,µ(l 2 {0, . . . , r}, µ 2 {r+1, . . . , ✓}) denote the event
that there are exactly lmatrices inM1:r which are equal toMµ.With
Inclusion–Exclusion Principle, we have

P(V(C1:✓)) 
✓X

µ=r+1

(1�
63X

l=0

(rl)P(↵l,µ)).

Next, we computeP(↵(j)). Since Populus uses amaster key and two
RT-PRNs (128 bits in total) to produce a temporary key, we can get
that P(Mi = Mµ) = 1

2128 . So we can get ↵l,µ ⇠ B(r, 1
2128) where

B denotes the binomial distribution. Using the Chernoff Bound, we
have

1�
63X

l=0

(rl)P(↵l,µ)  e�rT (64r , 1
2128

)
,

when 1
2128 < 64

r < 1. Finally, we have

P(V(C1:✓)) 
✓X

µ=r+1

(e�rT (64r , 1
2128

))

= (✓ � r)e�rT (64r , 1
2128

)

when r < 2122.

Theorem2. Populus is (t, (✓�r)e�tT (64t , 1
2128

)
, ✓) semantically secure

against the Adv when r < 2122.

Proof. From Lemmas 1 and 2, we can get |P(� ⇧
Adv(0) = 1) �

P(� ⇧
Adv(1) = 1)|  maxP(V(C1:✓))  (✓ � r)e�tT (64t , 1

2128
) when

r < 2122. Hence, Populus is (t, (✓ � r)e�tT (64t , 1
2128

)
, ✓) semantically

secure against the Adv when r < 2122.

Using the scientific computational software Wolfram Mathe-
matica, we get (✓ � r)e�tT (64t , 1

2128
) ⌧ 2�60 when r < ✓  t = 280,

indicating that Populus is semantically secure against the Adv in
practice.

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

8 Y. Hu et al. / Future Generation Computer Systems () –

6. Energy consumption evaluation

In this section, we use Monsoon power monitor to measure
energy consumption of the whole mobile device and estimate the
energy cost of disk encryption software.We chooseGoogleNexus 4
smartphone with Android 5.0 OS as our test mobile device. We use
dm-crypt as the baseline, since it is widely used in mobile devices.

6.1. Evaluation on the typical usage for mobile device

We conduct a series of experiments to measure the energy
consumption of the typical usage of mobile devices. Through those
experiments, we can verify whether enabling dm-crypt tremen-
dously raises the whole mobile device’s energy consumption and
whether Populus can mitigate it.

We design three configurations for the mobile device: only
enabling dm-crpyt, only enabling Populus and disabling any disk
encryption. For each configuration, wemeasure themobile device’s
whole energy consumption in four typical usage scenarios: video
recording, video playing, data sending through WIFI and data re-
ceiving throughWIFI. As for video playing and recording, the video
format is mp4, and the video resolution is 480 ⇥ 270, and the
choices of video length are 50 min, 100 min, 150 min and 200min,
and the video quality is of high definition. As forWIFI network, the
choices of transferred data size are 256 MB, 512 MB, 768 MB, . . .,
2048 MB.

Then we introduce our experimental results separately. Video
playing is a common function for handheld mobile devices such as
smartphone, and its energy consumption is depicted in Fig. 4(a).
Note that when playing an encrypted video, the disk encryption
software should decrypt it in advance so that part of energy con-
sumption comes from Populus or dm-crypt if they are enabled. As
can be seen, nearly 1/2 of the whole energy consumption comes
from dm-crypt, and Populus can reduce the proportion to nearly
1/4.

We also present experimental results of video recording in Fig.
4(b), as video recording on mobile devices is widely used in per-
sonal life, industry and military (e.g., mobile video surveillance).
When recording a video, the disk encryption software encrypts
the video data so that part of energy consumption comes from
Populus or dm-crypt if they are enabled. Our experimental results
show that nearly 1/3 of energy is cost by dm-crypt, and Populus can
reduce it to nearly 1/6.

As for network data transference, Fig. 4(c) demonstrates mo-
bile device’s energy consumption when it sends data to another
device throughWIFI network. The data has been encrypted by disk
encryption software in advance so that the energy cost by data
decryption before network transference should be considered if
disk encryption software is enabled. Apparently, there is an ap-
proximate linear relation between transferred data size andmobile
device’s energy consumption. On average, 51% of energy consump-
tion on mobile device is cost by dm-crypt and Populus can reduce
it to 20%. Fig. 4(d) depicts mobile device’s energy consumption
when it receives data from another device through WIFI network.
The received data is finally stored in disk sectors, therefore, disk
encryption software will encrypt the received data if it is enabled.
On average, 56% of energy consumption is cost by dm-crypt, and
Populus can reduce it to 25%.

6.2. Evaluation on pure disk encryption/decryption operations

To compare dm-crypt with Populus, one effective method is to
compute the energy consumption of pure disk encryption opera-
tions in dm-crypt and Populus and then compute the improvement
percentage. However, both of their energy consumption cannot be
directly measured by Monsoon power monitor. To overcome this

(a) Energy consumption of video
playing.

(b) Energy consumption of video
recording.

(c) Energy consumption of data send-
ing through WIFI.

(d) Energy consumption of data receiv-
ing through WIFI.

Fig. 4. Energy consumption on typical usage for mobile devices.

problem, we first run a test program to conduct disk operations
while using Monsoon power monitor to measure the energy cost
of the whole mobile device and the time cost during the execu-
tion of the test program. Note that disk operations trigger disk
encryption/decryption operations when disk encryption software
is enabled so that part of the energy cost of the whole mobile
device comes from disk encryption/decryption. Then we use an
energy consumption model to estimate and compare the energy
consumption of pure disk encryption/decryption operations of dm-
crypt and Populus.

Here, we introduce the basic idea behind our model. Since
our test program only triggers disk operations, the energy con-
sumption of the whole mobile device during the execution of the
test program mainly comes from three sources: disk operations,
disk encryption/decryption and system maintenance. Since the
energy consumption of the whole mobile device can be directly
measured, we can compute the energy consumption on disk en-
cryption/decryption if we can estimate the energy consumption on
system maintenance and disk operations.

Now, we give more details on how to estimate the energy
consumption on system maintenance and disk encryption. For
system maintenance, we notice that the maintenance operations
are conducted periodically, therefore, the energy consumption on
system maintenance in a period does not change much due to
the usage of disk encryption software or the execution of our test
program. Hence, we first measure the energy consumption of the
whole mobile device in a period without running our test program
and enabling disk encryption software. Note that at this stage, the
energy consumption of the whole mobile device is nearly equal to
the energy consumption of systemmaintenance. Thenwe compute
the average energy consumption of system maintenance per time

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

Y. Hu et al. / Future Generation Computer Systems () – 9

unit as the power of system maintenance. To estimate the energy
consumption on system maintenance during the execution of our
test program, we first measure the time cost of the execution
and then multiply the time cost with the power of the system
maintenance as an estimated result of the energy consumption
from system maintenance.

To estimate the energy consumption on disk operations, we run
our test program when disk encryption software is disabled and
measure the energy cost of the whole mobile device and the time
cost of the execution of our test program. Note that without the
disk encryption, the energy cost of the whole mobile device only
comes from disk operations and systemmaintenance. Thenwe use
the method discussed previously to estimate the power of system
maintenance. Since the energy consumption of the whole mobile
device can be directly measured and the energy consumption on
system maintenance can be estimated with the time cost and the
power, the energy consumption from disk operations can also be
computed.

Let us formally describe ourmodel.WedefineG = A�P
A , whereA

denotes the energy cost of dm-crypt and P denotes the energy cost
of Populus. Our aim is to compute G, since it can reflect the per-
centage of the energy that Populus can save relative to dm-crypt.
Here, we present how to estimate G with what we can directly
measure. For simplicity, we define three different configurations
as: Conf .1, all disk encryption systems are disabled; Conf .2, only
dm-crypt is enabled; Conf .3, only Populus is enabled. Considering
that the energy consumption of the whole mobile device can be
separated into two (when disk encryption software is disabled) or
three parts (when disk encryption software is enabled), we have
E1 = F + T1S, E2 = F + T2S + A, E3 = F + T3S + P , where Ei (i 2
{1, . . . , 3}) denotes the energy consumption of the whole mobile
device during the execution of the test programwhen the Conf .i is
enabled, Ti (i 2 {1, . . . , 3}) denotes the time cost of the execution
of the test program when the Conf .i is enabled, S denotes the
power of system maintenance, F denotes the energy consumption
of disk operations. Since Ei, Ti, S can be directly measured, we can
compute G as follows:

G = A� P
A

= (E2 � F � T2S)� (E3 � F � T3S)
E2 � F � T2S

= (E2 � F � T2S)� (E3 � F � T3S)
E2 � (E1 � T1S)� T2S

= (E2 � E3)� S(T2 � T3)
(E2 � E1)� S(T2 � T1)

.

We measure S 200 times and show the distribution of those
measured results in Fig. 5(a). As one can observe, most measured
results are between 261 and 290mWwhile a fewmeasured results
are between 526 and 565 mW. Finally, we average all measured
results and obtain 294 mW as an estimated value of S.

To measure Ei and Ti, we run our test program which uses JNI
technique to randomly read/write files without caching data into
various buffer mechanism. Fig. 5(b) shows the measured results
of Ei, i 2 {1, 2, 3}. When the data size (i.e., the size of data
written to storage or read from storage) is small, E1, E2, E3 are very
close. But when the data size becomes larger, E2 > E3 > E1
becomes more obvious. Fig. 5(c) depicts the measured results of
Ti, i 2 {1, 2, 3}. Similar to the trend of E1, E2, E3, T2 > T3 > T1
tends to be more obvious with the growth of data size. Fig. 5(d)
depicts the estimated results of G. When the data size is small, G
fluctuates between 50% and 70%. When the data size grows larger,
G is close to 60%. In fact, when the data size is small, the energy
consumption of disk encryption/decryption is also small so that the
estimated results can be easily affected by noises in other sources

(a) The distribution of 200 samples of S. (b) The energy cost of the whole mo-
bile device.

(c) The time cost of our test program. (d) The percentage of the energy that
Populus saves relative to dm-crypt.

Fig. 5. Experimental results regarding the energy consumption of pure disk encryp-
tion/decryption operations.

of energy consumption. When the data size increases, the energy
consumption of disk encryption/decryption becomes thedominant
part. In conclusion, Populus saves around 50%–70% less energy than
dm-crypt system.

7. Related work

Popular disk encryption software includes dm-crypt [23] (for
Linux and Android), BitLocker [24] (for Windows), FileVault [25]
(for Mac OS X) and etc. These systems use classic SPN-based block
ciphers such as AES, BlowFish, Two Fish [26] with common disk
encryption modes such as CBC and XTS [4]. These systems are
secure in cryptography, but usually have a large number of CPU
and RAM operations, which may cause performance overhead and
energy overhead [7,27].

To solve this problem,manyhardware solutions such as [28–31]
were proposed tomitigate performance or energy overhead. Those
hardware solutions can execute complex block ciphers in high
speedwithout consumingmuch energy, but usually rely on certain
hardware architecture or platform. Given compatibility and scala-
bility, software solutions such as [5,10,32,33] were also proposed.
Despite the low energy cost of those software solutions, they either
have security vulnerabilities in cryptography [11] or only apply
to the protection of certain data types or formats (e.g., image
and video). Different from previous work, our work Populus is a
both cryptographically secure and energy-efficient disk encryption
software that can protect various types of data.

8. Conclusion

In this paper, we develop a cryptographically secure and
energy-efficient disk encryption software Populus. Populus uses
modular linear algebra and one-time pad technique to encrypt
sensitive data. Plus, Populus is based on client–server pattern. Its
server side helps the client side do input-free computation, thus
saving energy onmobile devices. We prove Populus is semantically
secure against state-of-the-art CPA methods. We also conduct

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

10 Y. Hu et al. / Future Generation Computer Systems () –

energy consumption experiments, and our experimental results
show that Populus consumes 50%–70% less energywhen compared
with dm-crypt.

Acknowledgment

The work of John C.S. Lui was supported in part by the GRF
14208816.

References

[1] M.A. Bouazzouni, E. Conchon, F. Peyrard, Trusted mobile computing: An
overview of existing solutions, Future Gener. Comput. Syst. (2016).

[2] A. Lima, B. Sousa, T. Cruz, P. Simões, Security formobile device assets: A survey,
in: ICMLG2017 5th International Conference on Management Leadership and
Governance, Academic Conferences and publishing limited, 2017, p. 227.

[3] T. Müller, F.C. Freiling, A systematic assessment of the security of full disk
encryption, IEEE Trans. Dependable Secure Comput. 12 (5) (2015) 491–503.

[4] L. Khati, N. Mouha, D. Vergnaud, Full disk encryption: Bridging theory and
practice, in: Cryptographers Track At the RSA Conference, Springer, 2017,
pp. 241–257.

[5] C. Xiao, W. Wang, N. Yang, L. Wang, A video sensing oriented speed adjustable
fast multimedia encryption scheme and embedded system, in: Computing,
Communications and IT Applications Conference (ComComAp), 2014 IEEE,
IEEE, 2014, pp. 234–238.

[6] A.M. Zambrano, I. Perez, C. Palau, M. Esteve, Distributed sensor system for
earthquake early warning based on the massive use of low cost accelerom-
eters, Lat. Amer. Trans., IEEE (Rev. IEEE Amer. Lat.) 13 (1) (2015) 291–298.

[7] J. Li, A. Badam, R. Chandra, S. Swanson, B.L. Worthington, Q. Zhang, On the
energy overhead of mobile storage systems, in: FAST, 2014, pp. 105–118.

[8] A. Carroll, G. Heiser, An analysis of power consumption in a smartphone, in:
USENIX Annual Technical Conference, vol. 14, Boston, MA, 2010.

[9] F. Xia, C.-H. Hsu, X. Liu, H. Liu, F. Ding, W. Zhang, The power of smartphones,
Multimedia Syst. 21 (1) (2015) 87–101.

[10] P. Crowley, Mercy: A fast large block cipher for disk sector encryption, in: FSE,
Vol. 1978, Springer, 2000, pp. 49–63.

[11] S.R. Fluhrer, Cryptanalysis of themercy block cipher, in: Fast Software Encryp-
tion, Springer, 2002, pp. 28–36.

[12] M. Liskov, R.L. Rivest, D. Wagner, Tweakable block ciphers, J. Cryptology 24 (3)
(2011) 588–613.

[13] C.E. Shannon, Communication theory of secrecy systems*, Bell Syst. Tech. J.
28 (4) (1949) 656–715.

[14] M. Bellare, B. Tackmann, Nonce-based cryptography: Retaining security when
randomness fails, in: Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2016, pp. 729–757.

[15] P. Yadav, I. Gupta, S. Murthy, Study and analysis of estream cipher salsa and
chacha, in: 2016 IEEE International Conference on Engineering and Technol-
ogy, (ICETECH), IEEE, 2016, pp. 90–94.

[16] J. Sharma, D. Koppad, Low power and pipelined secure hashing algorithm-3
(SHA-3), in: India Conference (INDICON), 2016 IEEE Annual, IEEE, 2016, pp. 1–
5.

[17] B. Acharya, S.K. Patra, G. Panda, Involutory, permuted and reiterative key
matrix generation methods for Hill cipher system, Matrix 2 (2009) 1.

[18] J. Overbey, W. Traves, J. Wojdylo, On the keyspace of the Hill cipher,
Cryptologia 29 (1) (2005) 59–72.

[19] W. Stallings, Cryptography and Network Security, 6/E, Pearson Education, Inc.,
publishing as Prentice Hall, 2016.

[20] N. Sharma, S. Chirgaiya, A Novel Approach to Hill Cipher, Int. J. Comput. Appl.
108 (11) (2014) 34–37.

[21] X. Yao, Z. Chen, Y. Tian, A lightweight attribute-based encryption scheme for
the Internet of Things, Future Gener. Comput. Syst. 49 (2015) 104–112.

[22] L. Zhang, Z. Yan, R. Kantola, Privacy-preserving trust management for un-
wanted traffic control, Future Gener. Comput. Syst. 72 (2017) 305–318.

[23] L. Demir, M. Thiery, V. Roca, J.-L. Roch, J.-M. Tenkes, Improving dm-crypt
performance for xts-aes mode through extended requests: first results, in:
GreHack 2016. The 4th International Symposium on Research in Grey-Hat
Hacking-Aka GreHack, 2016.

[24] D. Goyal, Survey on Bitlocker Techniques, Int. J. Adv. Res. Comput. Sci. 7 (6)
(2016).

[25] C.L. Baron, File vault and cloudbaseddocument notary service, Google, Patents,
US Patent App. 15/138,372, (Apr. 26 2016).

[26] R. Yegireddi, R.K. Kumar, A survey on conventional encryption algorithms
of cryptography, in: International Conference on, ICT in Business Industry &
Government, (ICTBIG), IEEE, 2016, pp. 1–4.

[27] A. Fujimoto, P. Peterson, P. Reiher, Comparing the power of full disk encryption
alternatives, in: Green Computing Conference (IGCC), 2012 International, IEEE,
2012, pp. 1–6.

[28] J. Lee, K. Ganesh, H.-J. Lee, Y. Kim, FESSD: A fast encrypted SSD employing on-
chip access-control memory, IEEE Comput. Archit. Lett. (2017).

[29] D. Liu, X. Luo, Y. Li, Z. Shao, Y. Guan, An energy-efficient encryptionmechanism
for NVM-based main memory in mobile systems, J. Syst. Archit. 76 (2017) 47–
57.

[30] M.A. Alomari, K. Samsudin, A.R. Ramli, S.J. Hashim, Efficient android-based
storage encryption usingmulti-core cpus, Secur. Commun. Netw. 9 (18) (2016)
5673–5686.

[31] X. Luo, D. Liu, L. Liangy, Y. Li, K. Zhong, L. Long, MobiLock: An energy-aware en-
cryption mechanism for nvram-based mobile devices, in: Non-Volatile Mem-
ory System and Applications Symposium (NVMSA), 2015 IEEE, IEEE, 2015,
pp. 1–6.

[32] S. Hong, J. Im, S.M. Islam, J. You, Y. Park, Enabling Energy Efficient Image
Encryption using Approximate Memoization, J. Semicond. Technol. Sci. 17 (3)
(2017) 465–472.

[33] H. Xu, X. Tong, X. Meng, An efficient chaos pseudo-random number generator
applied to video encryption, Optik-Int. J. Light Electron. Opt. 127 (20) (2016)
9305–9319.

Yang Hu received the B.Eng. degree in software engi-
neering at Xi’an Jiaotong University, Xi’an, China in 2014
and received the M.Eng. degree in software engineering
at Xi’an Jiaotong University in 2017. He was a research
assistant in the CSE Department at The Chinese University
of Hong Kong, China. His research interests include net-
work/system security, machine learning and data mining.

John C.S. Lui is currently the Choh-Ming Li Chair Profes-
sor in the CSE Department at The Chinese University of
Hong Kong. His current research interests are in Inter-
net, network sciences with large data implications, ma-
chine learning on large data analytics, network/system
security, network economics, large scale distributed sys-
tems and performance evaluation theory. He received var-
ious departmental teaching awards and the CUHK Vice-
Chancellor’s Exemplary Teaching Award. John also re-
ceived the CUHK Faculty of Engineering Research Excel-
lenceAward (2011–2012). John is a co-recipient of the best

paper award in the IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS. He is a Fellow
of ACM and IEEE.

Wenjun Hu received the B.S. degree and the M.Sc. degree
in control science and engineering at Xi’an Jiaotong Uni-
versity, Xi’an, China. He is currently a malware research
engineer at Palo Alto Networks, Inc. His research interests
include behavior analysis of Android applications and An-
droid malware detection.

Xiaobo Ma received the Ph.D. degree in control science
and engineering from Xi’an Jiaotong University, Xi’an,
China in 2014. He was a Post-Doctoral Fellow with the
department of computing, Hong Kong Polytechnic Univer-
sity from Feb. 2015 to Feb. 2016. He is currently an assis-
tant professor with the department of computer science
and technology of Xi’an Jiaotong University, as well as a
research faculty with the MOE KLINNS Lab. His research
interests include network security and privacy, vehicle
network, and mobile systems.

http://refhub.elsevier.com/S0167-739X(17)32011-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb4
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb4
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb4
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb4
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb4
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb5
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb16
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb17
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb17
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb17
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb18
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb18
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb18
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb19
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb19
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb19
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb24
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb24
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb24
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb26
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb26
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb26
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb26
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb26
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb29
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb33
http://refhub.elsevier.com/S0167-739X(17)32011-3/sb33

Please cite this article in press as: Y. Hu, et al., Taming energy cost of disk encryption software on data-intensive mobile devices, Future Generation Computer Systems
(2017), https://doi.org/10.1016/j.future.2017.09.025.

Y. Hu et al. / Future Generation Computer Systems () – 11

Jianfeng Li received the B.S. degree in automation en-
gineering in 2010 from Xi’an Jiaotong University, Xi’an,
China. He is currently Ph.D. candidate with the System
Engineering Institute and MOE KLINNS Lab of Xi’an Jiao-
tong University. His research interests include network
modeling, measurement and botnet detection.

Xiao Liang received the B.Eng. degree in software engi-
neering at Xi’an Jiaotong University in 2014. He received
the M.Sc. degree in control science and engineering at
Xi’an Jiaotong University in 2017. His research interests
includemobile system security, natural language process-
ing, machine learning and deep learning.

