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Abstract—Point-to-point shortest distance queries are fun-
damental to large graph analytics. Motivated by the need for
low-latency distance queries in large-scale “dynamic” graphs,
we consider the problem of answering exact shortest distance
queries on disk-resident scale-free dynamic graphs. Our query
processing uses the canonical labeling method, which is a special
2-hop distance labeling for fast distance queries. In this paper,
we propose two I/O efficient algorithms to update the canonical

labeling. To the best of our knowledge, our proposed methods are
the first practical disk-based methods to “incrementally update”
the canonical labeling on dynamic graphs. We also show how to
answer distance queries on the latest network based on outdated
labels and new edges. Extensive experiments demonstrate the
efficiency of our methods. Our update methods are an order
of magnitude faster than reconstructing the canonical labeling.
When the number of new edges is small, say less than 1% of
the previous number of edges, our query algorithm based on
outdated labels provides exact shortest distance and the query
time is comparable to other query algorithms using latest labels.

I. Introduction
Shortest distance computation is fundamental in many large

graph analytics, online social network analytics, or computer
network applications [1]. For example, to analyze a large
graph, we often need to compute closeness centrality, diameter,
etc. Many of these applications require efficient computation
of shortest distances. For instance, in online social networks
(OSNs), users may request a list of users sharing common
interests. The efficiency of recommendation algorithms based
on shortest distances also relies on fast distance query.

To substantially reduce the latency for answering distance
queries, a series of works focused on building space-efficient
data structures for fast distance query. In the seminal work [2],
Cohen et al. first proposed the idea of 2-hop labeling, a data
structure for answering Point-to-Point (P2P) shortest distance.
Cohen et al. proved that finding the 2-hop labeling with
minimum size is NP-hard. Researchers have proposed various
methods to efficiently construct small-sized 2-hop labeling.
Some recent works include [3], [4], [5], [6], [7]. Akiba et
al. proposed the Pruned Landmark Labeling (PLL) [5], and
an incrementally update method Dynamic PLL [6]. Jiang et al.
proposed the disk-based Hop-Doubling Labeling method for
static scale-free networks [7]. To the best of our knowledge,
Dynamic PLL is the state-of-the-art method to efficiently pro-
cess incremental graph updates, and Hop-Doubling Labeling is
the state-of-the-art method for disk-based static graphs. Note
that PLL and Hop-Doubling Labeling are essentially special
cases of the canonical labeling formally defined in [3].
Challenges: In this work, we consider how to efficiently
answer exact distance queries on disk-resident graphs which

are both dynamic and scale-free. We use the canonical labeling
to answer distance queries. We summarize the challenges as
follows. First, to answer exact distance queries, how can we
efficiently update the canonical labeling of the graph? Second,
the graph may change quickly, how can we answer exact
distance queries before the update finishes? The issue is how
we can design an I/O efficient algorithm to update the labeling
and at the same time, quickly answer exact distance queries.
Contributions: To the best of our knowledge, there is no
existing work that could efficiently answer distance queries on
disk-resident dynamic graphs via 2-hop labeling. For example,
the Dynamic PLL [6] cannot handle disk-resident graphs,
and the work proposing Hop-Doubling Labeling [7] does not
consider dynamic graphs. In this paper, our contributions are:

• We propose a single edge update algorithm that processes
each inserted edge, and efficiently updates the canonical
labeling. We also present several refinements which further
speed up the single edge update method.

• We propose a batch update algorithm which takes a batch of
inserted edges as input, and update the canonical labeling.

• We propose a method to answer distance queries toward the
most updated graph using only outdated canonical labeling
and a set of new edges. This is useful when we decide not
to update the labeling stored on disk, or when we are in the
progress of updating the canonical labeling.

• We conduct extensive experiments using real scale-free
networks. Experimental results show that both of our update
methods could run up to an order of magnitude faster than
reconstructing the labels. And, given that the number of
new edges is not too large, the performance of our query
algorithm based on out-dated labels is comparable with that
of query algorithm based on latest labels.

This is the outline of our paper. Section II gives prelim-
inaries. We present the single edge update method in Sec-
tion III, the batch update method in Section IV, and the query
algorithm based on outdated labels in Secion V. We show
experimental results in Section VI. Section VII concludes.

II. Preliminaries
A. Notations
Static graph: A static network can be modeled as a graph G =

(V,E) with n = |V | nodes and m = |E| directed edges. For
a node v 2 V , we denote its out-neighbor (resp. in-neighbor)
by N+

(v) (resp. N�
(v)). For two nodes u and v, we denote

the distance of the shortest path from u to v by d(u, v). If u
cannot reach v, let d(u, v) = +1. We focus on unweighed
graphs (or networks) in this paper.
Dynamic graph: For a network, we denote its snapshot at time
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t by G
t

= (V
t

, E
t

). For simplicity, we assume that timestamps
are contiguous integers and G0 is the initial snapshot of the
network. Because we only consider the insertion of nodes and
edges, we assume V

t�1 ✓ V
t

and E
t�1 ✓ E

t

for all t > 0. We
sometimes use G to denote the latest snapshot of the network
and let d(u, v) be the latest distance from u to v.
Problem definition: In this paper, given snapshots of a dy-
namic network, we focus on how to efficiently answer point-
to-point (P2P) distance queries on the latest snapshot. To be
more specific, our goal is to provide I/O efficient algorithms
to answer queries about d(u, v), for u, v 2 V .
Computation model: The analysis of our disk-based algo-
rithm is based on the external memory model [8]. Let M denote
the memory size and B denote the disk block size. We assume
1  B ⌧M . The I/O cost of reading or writing N elements
is denoted by scan(N) = ⇥(N/B). The I/O cost for sorting
N elements is denoted by sort(N) = O(

N

B

log

M/B

N

B

).

B. 2-Hop Labeling
We first introduce the general idea of answering distance

query for “static graphs” via 2-hop labeling [2]. For a given
graph G, we first pre-process it and construct the 2-hop
labeling for it. The 2-hop labeling is defined as follows.

Definition 1 (2-hop Labeling). In a 2-hop labeling, every node
u 2 V has an out-label Lout(u) and an in-label Lin(u). Label
Lout(u) contains a set of out-entries in the form of (v, d), which
denotes the shortest distance from u to v is d. Similarly, label
Lin(u) contains a set of in-entries in the form of (v, d), which
denotes the shortest distance from v to u is d. If node x can
reach node y, we require that there exist (w, d1) 2 Lout(x) and
(w, d2) 2 Lin(y) such that d(x, y) = d1 + d2. We say that the
pair (x, y) is covered by w, or the (distance of) node pair (x, y)
is covered by entries (w, d1) 2 Lout(x) and (w, d2) 2 Lin(y).
The set of labels for all nodes is denoted by L.

0 1

2 3 45

Node Lout Lin
0 (0, 0) (0, 0)
1 (1, 0) (0, 1), (1, 0)
2 (1, 1), (2, 0) (0, 1), (2, 0)
3 (1, 2), (3, 0) (0, 1), (2, 1), (3, 0)
4 (1, 1), (4, 0) (0, 2), (1, 1), (3, 1), (4, 0)
5 (0, 1), (5, 0) (0, 1), (5, 0)

Fig. 1. A simple graph and one of its 2-hop labelings.

To illustrate, consider the static graph G and one of its 2-
hop labelings in Figure 1. Once we have a 2-hop labeling, it is
easy to see that we could answer distance query from node u
to v using only Lout(u) and Lin(v). Note that there are trivial
entries (u, 0) 2 Lout(u) and (v, 0) 2 Lout(v). With trivial
entries, we could write the query processing in a compact form:

QUERY(L,u,v)=min{d1+d2|(w,d1)2Lout(u), (w,d2)2Lin(v)}.

To simplify the notations, we also denote an out-entry
(v, d)2Lout(u) by (u ! v, d)2Lout and an in-entry (v, d)2
Lin(u) by (v ! u, d) 2 Lin. The size of a 2-hop labeling is
defined as

P
v2V

(|Lout(v)|+ |Lin(v)|). Constructing a small-
sized 2-hop labeling is the key to the query efficiency.

Abraham et al. formally defined a special type of 2-hop
labeling named the canonical labeling [3]:

Definition 2 (Canonical Labeling). We are given a ranking r
of nodes in V where each node has a unique rank. For nodes

u, v 2 V , let handle(u, v) denote the node with the highest
rank among nodes in all shortest path from u to v. In the
canonical labeling, label Lout(u) contains (v, d) if and only if
handle(u, v) = v and d(u, v)=d. Label Lin(v) contains (u, d)
if and only if handle(u, v) = u and d(u, v)=d.

The definition of the canonical labeling guarantees that
all distance queries could be answered correctly. Also, the
labeling is minimal, meaning that every entry is necessary for
answering some distance queries. Suppose in Figure 1, nodes
with smaller id have higher rank, then, the labeling in Figure 1
is a canonical labeling based on the rank.

C. Hop-Doubling Labeling
Recently, Jiang et al. proposed a Hop-Doubling Labeling

technique for answering distance queries on unweighed scale-
free “static” networks. They proposed an I/O efficient labeling
algorithm for disk-resident graphs. Since we are interested
in extending this work to answer distance queries for disk-
based scale-free dynamic graphs, we first briefly review the
main results in [7]. The Hop-Doubling Labeling algorithm first
ranks nodes according to the “product” of their in-degree and
out-degree, where the highest rank is given to the node with
the largest product. Then, the algorithm iteratively generates
label entries to cover node pairs with increasing distances. Let
r denote the ranking of nodes, the Hop-Doubling Labeling
algorithm generates the canonical labeling based on r.

Jiang et al.[7] proved that given an unweighted scale-free
static graph G, the number of entries generated for any vertex
is O(h), where h is assumed to be a small integer based on
the properties of scale-free networks. The intuition behind the
small label size is as follows. We say a path p is hit by a node
v, if p passes through it. Intuitively, for a scale-free network,
a significantly large fraction of long shortest paths could be
hit by a small number of top degree nodes. The Hop-Doubling
Labeling algorithm tries to place high degree nodes into labels
of relevant nodes, so that a small number of label entries could
cover a large fraction of distance queries. Moreover, for every
node u, there exists a small set of nodes in its neighborhood so
that all short shortest paths passing through u could be hit by
these nodes. The Hop-Doubling Labeling method determines
a very small number of label entries to cover queries about
node pairs with small distance.

D. Incremental Maintenance Objective
In reality, many real-networks (e.g., online social networks)

are growing. In order to efficiently answer distance queries in
the latest network G, we need a 2-hop labeling of G. One
straightforward strategy is to reconstruct the 2-hop labeling
based on the latest graph G. However, for disk-based graphs,
it is extremely time consuming even with the state-of-the-art
method. For example, in our experiments, the Hop-Doubling
Labeling algorithm [7] takes almost three hours to construct a
2-hop labeling for a graph with 3.2 million nodes and 9.4
million edges. Another problem is that one cannot answer
distance queries efficiently until the construction finishes.

In this paper, we propose two methods to incrementally
update the canonical labeling, each has its own merits. Suppose
we have a canonical labeling Lt�1 for graph G

t�1 based on
rank r. Unless we state otherwise, we assume that |Lt�1

in (u)|
and |Lt�1

out (u)| are small for all u 2 V . The labeling Lt�1

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

441



generated by the Hop-Doubling Labeling method is one ex-
ample. Our goal is to update Lt�1 and obtain an r-based
canonical labeling for the latest graph. Note that we reuse
the rank r computed in past snapshots for good reasons. First,
while a scale-free network grows, high degree nodes (high
rank nodes) tend to receive more links, which is justified by
the preferentially attachment [9]. Hence, it is safe to assume
that high rank nodes in past snapshots tend to have high rank
in the latest snapshot. And, these high rank nodes still hit a
great fraction of long shortest paths in the latest network. Thus,
in the updated labeling based on r, the label size for every
node is still small. Second, it helps us to keep the labeling
minimal. We reuse rank r in both of our update methods, and
our experiments show only a small increase in the label size.

III. Single Edge Update for Dynamic Networks
In this section, we consider how to efficiently update

canonical labeling when a new edge is inserted into the graph.
Let G

t�1 be the old graph and Lt�1 be its corresponding label.
Suppose Lt�1 is based on the rank r. We use G to denote the
new graph with the new edge e

xy

. Without loss of generality,
we assume x 6= y and e

xy

/2 E
t�1. The update method has two

phases, the patch generation phase and the patch merge phase.
In the patch generation phase, we aim to create a minimal set
of supplementary labels so that we could correctly answer all
distance queries. Let P be the set of newly created entries,
we refer to it as the patch of labels. Patch P could be kept
in memory or written to disk. In the patch merge phase, we
merge patch labels P with Lt�1 and obtain L. In order to keep
the labeling L minimal, we also remove entries in Lt�1 which
are no longer necessary for any distance query.

A. Patch Generation
In the patch generation phase, we create a minimal set

P of label entries to reflect the graph update. A key fact for
the distance change after an edge addition is that, for nodes
u and v, d(u, v) < d

t�1(u, v) if and only if every shortest
path from u to v in G passes through the new edge e

xy

. Let
Source(e

xy

) = {u|d(u, y) < d
t�1(u, y)} be the set of nodes

whose distances to y decrease after the insertion of e
xy

.

0
1 2

34
5 6

7

8

9

10

11

12

13

14

Fig. 2. Example of “sink” and “source”: The graph Gt�1 contains 15
nodes and 16 edges each represented by a solid arrow. We insert an edge
e56 into Gt�1 and obtain G. We have Source(e56) = {4, 5, 9, 10} and
Sink(e56) = {3, 6, 13, 14}.

Similarly, let Sink(e
xy

) = {u|d(x, u) < d
t�1(x, u)}. The

distance from x to every node in Sink(e
xy

) decreases after
the insertion of e

xy

. Then, d(u, v) < d
t�1(u, v) if and only

if u 2 Source(e
xy

) and v 2 Sink(e
xy

). Moreover, 8u 2
Source(e

xy

), v2Sink(e
xy

), we know d(u, v)=d
t�1(u, x)+1+

d
t�1(y, v). Figure 2 shows an example of “sink” and “source”.

Our objective of the patch generation phase is as follows.

Objective 1 (Patch Generation Objective). Suppose u 2
Source(e

xy

) and v 2 Sink(e
xy

). Let w = handle(u, v). If
(w, d(u,w)) /2 Lt�1

out (u), then (w, d(u,w)) 2 Pout(u). Simi-
larly, if (w, d(w, v)) /2 Lt�1

in (v), then (w, d(w, v)) 2 Pin(v).

With a patch P achieving the above objective, for any
nodes u and v such that d(u, v) < +1, the shortest distance
between them is covered by handle(u, v). Therefore, for all
u, v 2 V , we have d(u, v) = QUERY(Lt�1 [ P ) = min{d1 +
d2|(w, d1) 2 Lt�1

out (u) [ Pout(u), (w, d2) 2 Lt�1
in (v) [ Pin(v)}.

We now provide a lemma describing how to efficiently find
handles that should be placed into P .

Lemma 1. Suppose u 2 Source(e
xy

), v 2 Sink(e
xy

), and
w=handle(u, v). We have (w, d

t�1(w, x)) 2 Lt�1
in (x) and/or

(w, d
t�1(y, w)) 2 Lt�1

out (y).

Proof: If w = x or w = y, the lemma holds naturally
according to the definition of the canonical labeling. Now,
assume w 6= x and w 6= y. From w = handle(u, v) and
the fact that every shortest path from u to v now passes
through e

xy

, we can conclude that w = handle(u, x) and/or
w = handle(y, v). Moreover, because none of the shortest
paths from u to x passes through e

xy

in G, we know
d
t�1(u, x) = d(u, x) and handle(u, x) = handle

t�1(u, x).
Similarly, handle(y, v) = handle

t�1(y, v) holds. From the
definition of the handle, we have (w, d

t�1(w, x)) 2 Lt�1
in (x) if

w = handle
t�1(u, x), and we have (w, d

t�1(y, w)) 2 Lt�1
out (y)

if w = handle
t�1(y, v).

With a slight abuse of notation, we also consider Lt�1
in (x)

and Lt�1
out (y) as subsets of nodes in V . From Lemma 1, for any

u 2 Source(e
xy

) and v 2 Sink(e
xy

), set Lt�1
in (x) [ Lt�1

out (y)
contains handle(u, v). The key idea for generating entries in P
is that, in order to correctly answer all distance queries from a
node in Source(e

xy

) to a node in Sink(e
xy

), we need to place
entries containing relevant handles to relevant nodes labels.
Moreover, our goal is to keep P minimal. We now describe
the rules to generate patch entries. For u 2 Source(e

xy

),
we insert (u ! w, d(u,w)) into P if w = handle(u,w),
d(u,w) < d

t�1(u,w). Such a node w must be in Lt�1
out (y).

For v 2 Sink(e
xy

), we insert (w ! v, d(w, v)) into P if
w = handle(w, v), d(w, v) < d

t�1(w, v). Node w must be in
Lt�1

in (x). To illustrate, consider Figure 2. The patch entries are
Pin = {(5 ! 6, 2), (4 ! 6, 3)} and Pout = {(5 ! 3, 2), (4 !
3, 3), (9 ! 3, 4), (10 ! 3, 4)}. The following corollary holds
from Lemma 1.

Corollary 1. Set P achieves Objective 1 so we could answer
arbitrary distance query correctly with Lt�1 [ P . Moreover,
Lt�1 [ P is a superset of the canonical labeling based on r.

Now we provide a lemma showing that set P is minimal.

Lemma 2. The patch P is minimal, i.e., one will not correctly
answer some distance queries if we remove any entry in P .

Proof: We first study entries in Pin. Suppose Pin contains entry
(w ! v, d(w, v)), we know w = handle(w, v). If we remove
this entry, we cannot answer distance query about d(w, v)
correctly. We show this by contradiction. Suppose we are able
to compute d(w, v) without entry (w ! v, d(w, v)), there must
exist a node u 6= w such that (u, d(w, u))2Lt�1

out (w)[Pout(w),
(u, d(u, v))2Lt�1

in (v)[Pin(v) and d(w, v) = d(w, u)+d(u, v).
Then, r(u) > r(w) holds because u 6= w. This implies that
node w does not have the highest rank among the set of nodes
in one of the shortest paths from w to v, which contradicts
with the fact that w = handle(w, v). Therefore, every entry
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in Pin is necessary for at least one distance query. Similarly,
entries in Pout are also minimal.

Algorithm 1 shows the pseudo code for generating patch
entries in Pin. Line 2-12 run a Breadth-First Search (BFS)
to place handles in Lt�1

in (x) to labels of relevant nodes. In
BFS, only (a subset of) nodes in Sink(e

xy

) will be pushed into
the queue. For every node u dequeued, Line 4-7 insert entry
(w ! u, d(w, u)) into Pin(u) for every w 2 Lt�1

in (x) satisfying
d(w, u) < d

t�1(w, u) and w = handle(w, u). Note that
r(handle(x, u)) is essentially the highest rank among all short-
est paths from x to u, the condition r(w) � r(handle(x, u))
in Line 6 is equivalent with condition w = handle(w, u).
The value of r(handle(x, u)) for node u visited is easy to
maintain during the BFS. Line 11 guarantees only nodes in
Sink(e

xy

) will be pushed into the queue. One key feature of
our patch generation method is that it may not push all nodes
in Sink(e

xy

) into queue. Line 7-9 effectively prune the BFS.
Suppose there is a node u 2 Sink(e

xy

) such that Pin(u) = ;,
no in-entry will be added to any descent of u in the BFS tree.
In this case, the pruning strategy effectively prunes the BFS at
node u. For example, in Figure 2, we would have Pin(3) = ;
and there is no need to visit “sink” nodes 13 and 14. The
generation of Pout is symmetric, so we omit the pseudo code.

Algorithm 1 Patch Generation (Pin)
Input: G

t�1, Lt�1, r, e
xy

Output: Pin (patch entries)
. initialize Pin

1: Pin(u) ;, 8u 2 V
. run pruned BFS to generate patch entries

2: Q a queue with element (y, d
xy

= 1)

3: while Q is not empty do
4: dequeue (u, d

xu

) from Q
. generate patch entries

5: for all (w, d(w, x)) 2 Lt�1
in (x) do

6: if r(w)�r(handle(x, u)) and QUERY(Lt�1, w, u) >
d(w, x) + d

xu

then
7: Pin(u) Pin(u) [ {(w, d(w, x) + d

xu

)}
. try to prune the BFS

8: if Pin(u) = ; then
9: prune the BFS and continue to dequeue

. visit neighbors of u
10: for all unvisited out-neighbor v of u do
11: if QUERY(Lt�1, x, v) > d

xu

+ 1 then
12: enqueue (v, d

xv

= d
xu

+ 1) onto Q

Analysis of Algorithm 1: We analyze the I/O cost for gener-
ating the patch. We make the following mild and realistic as-
sumptions. First, while generating Pin (resp. Pout), we assume
that Lt�1

out (x) and Lt�1
out (w), 8w 2 Lt�1

in (x) (resp. Lt�1
in (y) and

Lt�1
in (w), 8w 2 Lt�1

out (y)) fits into the main memory. We also
assume loading Lin(y) or Lout(u) of a node u from disk costs
O(1) I/Os. These two assumptions are realistic because we
have assumed that the labeling is based on a rank r so that the
number of entries for every node is small. We also assume
loading in-edges or out-edges of a given node costs O(1)

I/Os since real networks are sparse. The I/O cost of the patch
generation phase is stated as follows.

Lemma 3. Let e
xy

be the newly inserted edge, define

Sink+(e
xy

)= Sink(e
xy

) [ {u|u 2 N+
(v), v2 Sink(e

xy

)}, and
Source�(e

xy

)=Source(e
xy

)[{u|u2N�
(v), v2Source(e

xy

)}.
The patch generation phase performs O(|Sink+(e

xy

)| +

|Source�(e
xy

)|) I/Os in the worst case. We need to perform
scan(|P |) = ⇥(|P |/B) extra I/Os if we write P to disk.

Proof: We first analyze Algorithm 1 which generates Pin.
For every node u visited in BFS, Line 2-12 load its out-edges
at most once and Lt�1

in (u) at most twice. In the worst case
where no node is pruned by Line 7-9, the number of nodes
visited by BFS is |Sink+(e

xy

)|. Therefore, the worst case I/O
cost is O(|Sink+(e

xy

)|). Similarly, the I/O cost for generating
Pout is O(|Source�(e

xy

)|) in the worst case.

Note that in practice, the pruning strategy in Line 7-9 is
effective and the actual performance is much better than the
O(|Sink+(e

xy

)|+ |Source�(e
xy

)|) bound.

B. Patch Merge
In the patch merge phase, we first prune label entries that

are no longer necessary for answering distance queries. Then,
we merge labels survived from the pruning and obtain the
updated label L. We use the following pruning rule: we remove
an entry (u!v, d) if there exist (u! w, d1) and (w ! v, d2)
so that d1>0, d2>0 and d1+d2d. Algorithm 2 depicts the
pseudo code for the patch merge phase for in-labels. Note that
P is minimal, there is no need to try to prune patch entries.

Algorithm 2 Patch Merge (Lin)
Input: Lt�1 on disk, P on disk
Output: Lin on disk

. Lt�1
in , Pin contains (w ! v, d) sorted by v

. Lt�1
out , Pout contains (u! w, d) sorted by u

1: allocate Bufin with size M�2B to load Lin(u) and Pin(u)
in batch

2: allocate Bufout with size B to load Lout(u) and Pout(u) in
batch

3: for each buffer block Bufin do
4: set the status of all label entries in Bufin to unpruned
5: for each buffer block Bufout do
6: for each unpruned entry (u! v, d) in Bufin do
7: for each entry (u! w, d1) (d1 > 0) in Bufout do
8: if (w!v,d2)2Bufin, d2>0, d1 + d2d then
9: set the status of (u! v, d) to pruned

10: write all unpruned entries in Bufin to disk

Analysis of Algorithm 2: We allocate buffer Bufin with size
M � 2B and buffer Bufout with B while pruning in-entries.
The last block of memory serves as the output buffer. Then,
we load out-entries into memory d(|Lt�1

in |+ |Pin|)/(M�2B)e
times. We load every in-entries into memory once. The amount
of data we write to disk is |Lin|, which is at most |Lt�1

in |+|Pin|.
Therefore, the I/O cost to obtain Lin is O(d(|Lt�1

in |+|Pin|)/Me·
scan(|Lt�1

out |+ |Pout|)+ scan(|Lt�1
in |+ |Pin|)). The analysis of

the I/O cost to obtain Lout is similar. We summarize the total
I/O cost to obtain L from P and Lt�1 in the following lemma.

Lemma 4. The total I/O cost for the patch merge phase is

O
�⌃
(|Lt�1|+ |P |)/M

⌥
· scan(|Lt�1|+ |P |)

�
.

Note that our buffer allocation strategy differs from that in the
pruning of the Hop-Doubling Labeling algorithm [7], which
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allocates two buffers, each with size M/2. To obtain Lin, they
load out-entries into memory d(2|Lt�1

in | + |Pin|)/Me times.
Our method only loads out-entries into memory d(|Lt�1

in | +
|Pin|)/(M � 2B)e times.

From Corollary 1, Lemma 3 and Lemma 4, we have the
following theorem for the single edge update method.

Theorem 1 (Single Edge Update). The I/O complexity for the
single edge update method is

O
⇣
|Sink+(e

xy

)|+|Source�(e
xy

)|+
l
|Lt�1|+|P |

M

m
·scan

�
|Lt�1|+|P |

�⌘
.

The new labeling L is a canonical labeling based on r.

C. Refinements
Lazy Patch Merge. Note that the patch merge phase is time-
consuming compared with the patch generation phase. There
are two main reasons. First, even if P is almost empty and we
do not prune label entries, loading Lt�1 from disk and writing
L to disk require performing O(|Lt�1|/B) I/Os. Second, in
order to prune unnecessary label entries, we need to examine
every entry in Lt�1 and see whether it could be removed. The
examination process has high I/O cost as one can see from
Algorithm 2. For these two practical concerns, we recommend
performing lazy patch merge as follows. Suppose the initial
graph is G0 = (V0, E0) and E

t

/E
t�1 = {e

t

} for all t � 1.
Given L0 and e1, we perform a single edge update without
the merge phase and obtain a set P 1 of patch entries. We
keep P 1 in memory. Given L0 [ P 1 and a new edge e2, we
generate patch entries P 2. Likewise, we generate patches for
new edges one by one, until the size of all patches exceeds
a pre-specified threshold. Suppose the size of patches exceeds
our threshold after generating patch entries for e

t

, we write
P = P 1[P 2[· · ·[P t to disk. Then, we perform patch merge
as described in Algorithm 2 to prune unnecessary entries and
obtain Lt. Note that we also prune entries in P i for all i <
t, because some entries there might be unnecessary after the
insertion of newer edges. After the lazy patch merge process,
we proceed to process the insertion of e

t+1.
Label Prefetch. To reduce the number of I/Os during the
patch generation phase, we allocate a small buffer to keep
some “hot data” (i.e., label) in memory. Recall that to
generate P when there is a new edge e

xy

, we need to load
Lt�1

out (w1), 8w1 2 Lt�1
in (x) and Lt�1

in (w2), 8w2 2 Lt�1
out (y).

For a canonical labeling where nodes with top ranks tend to
appear in labels of a large fraction of nodes, we know that
Lt�1

(u) tends to be “hot” if u has a high rank. Therefore,
we load labels of nodes in decreasing order of their ranks
into main memory until the buffer is full. We will show via
experiments the impact of the buffer size using real data.

IV. Batch Update for Dynamic Networks
We now show how to efficiently update the degree-based

canonical labeling when a set of new edges is inserted. One
way is to use the single edge update method to handle the
insertion of each new edge. However, the I/O cost of repeatedly
applying the single edge update method grows almost linear
with the number of new edges. Here, we propose the batch
update method, which has smaller I/O cost compared with
repeatedly applying the single edge update when the number of
new edges is very large. We assume that we have a canonical
labeling Lt�1 for graph G

t�1 and Lt�1 is based on rank r.

Our goal is to generate the canonical labeling based on r for
the latest graph G. To simplify notations, we assume V = V

t�1

and isolated nodes in V
t�1 have the lowest ranks in r.

A. Basic Idea
The batch update method iteratively generates entries in

the canonical labeling. Moreover, it utilizes entries in Lt�1 so
as to avoid generating label entries from the scratch. In each
iteration, we denote the set of entries generated in the current
iteration as Lcand. We treat the initialization process as the 0-
th iteration. Before initialization, let L = Lt�1. In the 0-th
iteration, Lcand is constructed as follows.

Lcand={(u! v, 1)|e
uv

2 E\E
t�1, r(u)>r(v)},

[ {(u! v, 1)|e
uv

2 E\E
t�1, r(v)>r(u)}. (1)

Note that our goal is to let L be an r-based canonical labeling,
which is minimal. Hence, at the end of each iteration, including
the special initialization iteration, we merge Lcand into L using
the same method as the patch merge phase for the single edge
update. The set Lcand of entries can be treated as a set of patch
entries for L.

Denote the set of entries in an r-based canonical labeling
with distance d by C

d

, where d � 0. Let D
G

be the diameter
of graph G, it is easy to see C

d

= ;, 8d > D
G

. From Eq. (1),
we have the following lemma about the initialization.

Lemma 5. After the initialization, we have C0 [ C1 ✓ L.

The high level idea of the batch update methods is that
we expand L by inserting entries in C2, C3, . . . , CDG into L
iteratively. Also, to keep L minimal, we prune entries that are
no longer necessary for distance queries.

In the i-th iteration (i � 1), denote the set of entries
generated and survived from the pruning in the (i � 1)-th
iteration by Lprev. Label L contains entries generated and
survived from the pruning in all previous iterations. We rewrite
the generation rules [7] in the following compact form. In the
i-th iteration, we generate entries in Lcand as follows.

1) Suppose (u ! v, d1) 2 L and (v ! w, d2) 2 Lprev, we
insert (u ! w, d1 + d2) into Lcand if r(w) > r(u) and
there does not exist (u! w, d) 2 L such that d  d1+d2.

2) Suppose (u ! v, d1) 2 L and (w ! u, d2) 2 Lprev, we
insert (w ! v, d1 + d2) into Lcand if r(w) > r(v) and there
does not exist (w ! v, d) 2 L such that d  d1 + d2.

Note that the existence of entry (u! v, d) implies that there
is a path from u to v with distance d. The intuition behind
generation rules is that we try to concatenate two paths into
a longer one. When we finish generating Lcand, we merge it
into L using the same method as the patch merge phase for
the single edge update method. To be specific, we prune every
entry in Lcand and L, and merge entries survived from the
pruning into the new L.

The batch update method terminates naturally when
Lcand = ; after the pruning. Note that if E

t�1 = ;, the batch
update method degenerates into the Hop-Doubling Labeling
algorithm. The following lemma for the Hop-Doubling Label-
ing algorithm also holds for the batch udpate method.

Lemma 6. After the 2i-th iteration (0  i  dlog(D
G

)e), we
have C

d

✓ L for all d  2

i.
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For the proof of Lemma 6, we refer interested readers to the
proof by Jiang et al. [7]. From Lemma 6, we have the following
theorem about the batch update method.

Theorem 2. The batch update method returns a canonical
labeling L based on rank r.

Proof: From Lemma 6, we know L is a superset of an
r-based canonical labeling. Moreover, L is minimal because
every entry survives from the pruning. Thus, we can conclude
that L is an r-based canonical labeling.

I/O efficient candidate generation. We describe our method
to generate entries in Lcand. In each iteration, we allocate buffer
Bufall with size M � 2B to load entries in L and we allocate
buffer Bufprev with size B to load entries in Lprev. We adopt a
similar nested loop join strategy as the patch merge algorithm.
We generate out-entries in Lcand as follows. We first sort entries
(u ! v, d) in Lin by u. In the outer loop, we load entries
(u1 ! v, d), (u1 ! v0, d), . . . , (u2 ! v, d), in Lout (sorted
by u

i

) and entries (u1 ! v, d), (u1 ! v0, d), . . . , (u2 !
v, d), . . . , in Lin (sorted by u

i

) into Bufall. In the inner loop,
we load entries Lprev (sorted by u) into Bufprev in batch. For
entries in Bufall and Bufprev, we try to apply the first generation
rule to generate candidate out-entries. For generating in-entries
in Lcand, the algorithm is similar. We summarize the I/O cost
for each iteration, including the candidate generation process
and the pruning process.

Lemma 7. In each iteration, let L be the set of entries gen-
erated and survived from pruning from all previous iterations.
Let Lprev be the set of entries generated and survived from
pruning from the previous iteration. Let Lcand be the set of
entries generated in the current iteration. The total I/O cost
for candidate generation and pruning is

O(d(|L|+ |Lcand|)/Me · scan(|L|+ |Lcand|)). (2)

Proof: We first consider the I/O cost for generating out-entries
in Lcand. Before loading entries into memory, we sort in-entries
in L, which needs sort(|L|) I/Os. In the nested loop, all the
entries in Lprev are loaded into buffer d|L|/(M � 2B)e times,
and all entries in Lall are loaded into buffer once. The time for
loading entries is thus O(d|L|/Me·scan(|Lprev|)+scan(|L|)).
We then consider the cost for merging and pruning out-entries,
the I/O cost is O(d(|L|+|Lcand|)/Me·scan(|L|+|Lcand|)) from
Lemma 4. Note that because log

M/B

|L|/B  |L|/B when |L|
is sufficiently large, we have sort(|L|) = O(|L|/B ·d|L|/Me).
Thus, the total I/O cost for generating, pruning and merging
out-entries is O(d(|L| + |Lcand|)/Me · scan(|L| + |Lcand|)).
The analysis for generating, pruning and merging in-entries
is similar. In conclusion, the total I/O cost in one iteration is
O(d(|L|+ |Lcand|)/Me · scan(|L|+ |Lcand|)).

B. Discussion
Practical issues: To avoid generating too many candidate
entries in one iteration, Jiang et al. [7] suggest using entries in
L with distance equals to 1 to construct candidate entries. We
adopt their suggestion. In the first ten iterations of the batch
update method, while applying generation rules, we ignore
entries in L with distance larger than 1.
Utilizing Lt�1. By inserting entries in Lt�1 into L in the
initialization process, the batch update method may generate

entries with distance greater than 2

i in the i-th iteration,
which is impossible in the Hop-Doubling Labeling algorithm.
However, utilizing Lt�1 also introduces some extra cost. In
every iteration, the size of L in the batch update method is no
smaller than that in the Hop-Doubling Labeling algorithm.

V. Distance Queries on the Most Update Network
Here, we show how to answer distance queries toward the

most updated graph G with label Lt�1 for graph G
t�1. This

is useful when we are running the batch update method, or
when we decide not to update labels stored on disk.

Let Enew = E
t

\E
t�1 be the set of new edges. Let Vnew =

{u|9e
uv

2 Enew, or 9e
vu

2 Enew} be the set of endpoints of
new edges. To answer the query about d(s, t), we construct a
weighted query graph GQ = (V

Q

, E
Q

) such that d
GQ(s, t) =

d(s, t). The query graph contains two types of edges.

• Update-related: Edges in Enew are in GQ. Moreover, for
v 2 Vnew, every entry in Lt�1

out (v) and Lt�1
in (v) corresponds

to an edge in G
Q

. For example, if entry (u, d)2Lt�1
in (v),

there is an edge from u to v with distance d in G
Q

.
• Query-related: For node v 2 Vnew, there is an edge from s

to v with distance QUERY(Lt�1, s, v) and an edge from v to
t with distance QUERY(Lt�1, v, t). Moreover, G

Q

contains
an edge from s to t with distance QUERY(Lt�1, s, t).

Using the fact that Lt�1 is a 2-hop labeling of G
t�1,

it is easy to verify that, with all update-related edges, we
have d

GQ(u, v) � d(u, v) for all u, v 2 Vnew. Query-related
edges are “shortcuts” from s to every node in Vnew, “short-
cuts” from every node in Vnew to t, and the “shortcut”
from s to t. Distances of these “shortcuts” are distances in
G

t�1. The existence of query-related edges further ensure that
d
GQ(s, t) = d

G

(s, t). Formally, we have the following theorem
claiming the correctness of the query graph.

Theorem 3. The distance from s to t in G
Q

is d(s, t).

Algorithm. When there is a new query about d(s, t), the
construction of G

Q

could be fast. Note that the update-related
edges are not related to any particular query. Thus, we could
assume that we have loaded all update-related edges into
memory beforehand. When there is a new query, we load
Lt�1

out (s) and Lt�1
in (t) from disk. With Lt�1

out (s), Lt�1
in (t), and

Lt�1
(v) for all v 2 Vnew, we could construct query-related

edges in memory. Finally, we run the bidirectional Dijkstra
algorithm on the query graph to get d(s, t).

Theorem 4. The I/O cost for answering the above distance
query is O(1). Let h be the average size of label (in and out-
label) for a node in Lt�1, the CPU cost for answering a query
is O(|Vnew| log |Vnew|+ |Vnew|h+ |Enew|).

Proof: To answer the query about d(s, t), only loading
Lt�1

out (s) and Lt�1
in (t) from the disk perform I/Os. Therefore,

the I/O cost is O(1). To construct the query graph, we need
to answer 2|Vnew| distance queries and the CPU complexity is
O(|Vnew|h). In the query graph, the number of update-related
edges is O(|Vnew|h+ |Enew|) and the number of query-related
edge is O(|Vnew|h). Thus, we have |V

Q

| = O(|Vnew|) and
|E

Q

| = O(|Vnew|h + |Enew|). The total CPU complexity for
answering a query is O (|Vnew|h+ (|V

Q

| log |V
Q

|+ |E
Q

|)) =
O (|Vnew| log |Vnew|+ |Vnew|h+ |Enew|).
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VI. Experimental Results
We perform experiments on real world networks. First, we

show the efficiency of the single edge update method and the
batch update method. In particular, we show the importance
of refinements for our single edge update method. Second,
we show the I/O efficiency of our query algorithm, which
runs based on the outdated labeling and a set of new edges.
We implement our proposed algorithms and the Hop-Doubling
Labeling algorithm in C++. Experiments are conducted using
4GB memory (so to create I/O activities) on a Linux machine
with Intel 3.20GHz CPU and 7200 RPM SATA hard disk.
Datasets. Table I summarizes our datasets. We treat each
dataset as a directed graph and we remove duplicated edges.
Dataset Enron-email and Youtube have timestamp on edges
indicating their arrival time. For these two datasets, we sort
edges in the ascending order of their arrival time. For du-
plicated edges, we keep the one with the smallest timestamp.
Then we let G

t�1 contains the first half of the sorted edges and
let other edges be new edges. For datasets without timestamp
on edges, we treat the complete dataset as G

t�1 and we obtain
G

t

by randomly inserting 100, 000 edges not in E
t�1.

TABLE I. REAL SCALE-FREE DATASETS
Dataset |V | |Et�1| timestamp directed or not
Epinion [10] 76K 509K no directed
Slashdot [11] 77K 905K no directed
Enron-email [12] 87K 160K yes directed
Gowalla [13] 197K 1.9M no undirected
Wiki-Talk [14] 2.4M 5.0M no directed
Youtube [15] 3.2M 9.4M yes undirected

A. Comparison among update methods.
Disk-based update methods. We test the efficiency of our
two update methods. For each dataset, we first construct the
canonical labeling Lt�1 using the Hop-Doubling Labeling
algorithm and we record the rank r for later use. Then, we
run the single edge update algorithm and the batch update
algorithm. For the single edge update method, we adopt our
lazy patch merge strategy and allocate 1% (⇡ 40MB) of
the main memory as the “prefecth buffer”. We also run the
Hop-Doubling Labeling algorithm to reconstruct a canonical
labeling with re-computed ranks and let it be the benchmark.

Figure 3 shows the results on datasets with timestamps. Our
experimental results suggest that, if the number of new edges is
no greater than 100, 000, the batch update method is preferred
over the reconstruction method because of the smaller label
maintenance time. Moreover, when the number of new edges
is relatively small, the single edge update method outperforms
the other two methods. The cumulative patch generation time
(i.e., single edge update (w/o merge)) grows almost linear with
the number of new edges, which is consistent with our analysis
of the patch generation phase. Moreover, the gaps between the
single edge update time with and without the merge phase
show that the lazy patch merge refinements significantly reduce
the amortized patch merge cost over new edges.
Memory-based update methods. We compare the Single edge
update method with the update method (Dynamic PLL) of
the Pruned-Landmarking Labeling (PLL) [6]. Since both the
PLL construction algorithm and Dynamic PLL are memory-
based, we directly change our single edge update algorithm to
a memory-based one for comparison. We did not use datasets
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Batch update  Reconstruction  
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Fig. 3. Comparison among update methods and the reconstruction method.

Wiki-Talk and Youtube because they are too large for memory-
based algorithms. For each dataset, we treat it as an undirected
graph, and prepare 2-hop labeling of G

t�1 for Dynamic PLL
(resp. single edge update method) using the PLL algorithm
(resp. Hop-Doubling algorithm). Then, we insert 100, 000 new
edges in sequence using single edge update method and Dy-
namic PLL. Table II summarizes our experimental results. For
four datasets tested, the update time of our single edge update
method is comparable with that of Dynamic PLL. Suppose the
2-hop labeling before and after update is L1 and L2, the “label
increase” is defined as |L2�L1|/|L1|. Table II shows that the
average “label increase” of the single edge update algorithm is
two to three orders of magnitude smaller than that for Dynamic
PLL. This is mainly because if there is an outdated entry
whose distance needs to be decreased, Dynamic PLL inserts
a new entry instead of update the distance. Therefore, our
experiments suggest that, to maintain a small label size, we
should update outdated entries instead of insert new entries.
The small “label increase” for the single edge update method
also implies that we could keep label patches in memory for
many edge insertions before we perform the lazy patch merge.

TABLE II. COMPARISON BETWEEN MEMORY-BASED UPDATE METHODS

Dataset |V | |Et�1|
Single edge update Dynamic PLL

Time
(µs)

Label increase
(·10�6)

Time
(µs)

Label increase
(·10�6)

Epinion 76K 509K 134 4.5 122 3201.7
Slashdot 77K 905K 215 3.0 251 2074.3
Enron-email 87K 160K 135 13.0 197 5846.7
Gowalla 197K 905K 290 5.0 201 3880.7

Refinements of single edge update. We show the performance
gain of allocating a small buffer to prefetch labels of nodes
with top ranks. Table III shows the speedup of the patch
generation phase by using only 1% of memory as buffer. Note
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that in the extreme case where the buffer is large enough
to load all entries, the disk-based label update algorithm
essentially becomes memory-based. Therefore, the larger the
buffer is, the higher speedup can be achieved. For a fixed
buffer size, Table III shows that the patch generation phase
tends to achieve higher speedup for smaller networks, which is
consistent with our analysis. Moreover, even for the two largest
datasets where the size of outdated labeling is larger than 1GB,
applying the label prefecth refinements could still speedup the
patch generation. In conclusion, we suggest adopting the label
prefetch refinements in general. As to how to select the buffer
size, it may depend on other factors such as whether there are
other jobs sharing resources of the machine. If possible, one
may allocate a buffer as large as possible so that the single
edge update method achieves the highest speedup.

TABLE III. SPEEDUP OF PATCH GENERATION (BUFFER SIZE: 40.96MB)

Dataset |Lt�1|
Speedup verses number of new edges
100 1000 10000 100000

Epinion 68MB 22.85 24.74 9.28 4.78
Slashdot 138MB 37.24 24.65 7.91 7.26
Enron-email 60MB 6.15 4.97 4.98 4.87
Gowalla 190MB 8.00 8.18 5.00 3.73
Wiki-Talk 1.4GB 1.39 1.22 1.19 1.20
Youtube 3.4GB 1.34 1.48 1.15 1.36

B. Distance Query on the most update network
For each dataset, we construct the canonical labeling for

graph G
t�1 using the Hop-Doubling Labeling algorithm. Then,

we test our query algorithm by measuring the average query
time when there is different number of new edges. For each
experiment, we answer 5, 000 randomly generated distance
queries and show the average query time. In our experiments,
we clear the filesystem memory cache before answering each
query. By doing so, we are actually measuring the worst case
query time because every I/O request results in a physical I/O.

Figure 4 shows the performance of our query algorithm.
When the number of new edges is small, say below 1% of
the previous number of edges, the number of new edges has
a negligible impact on the query time. The reason is that
the CPU time is small as compared with the I/O cost for
loading labels for two nodes. Note that for all disk-based 2-
hop labeling, answering query about d(u, v) requires loading
Lout(u) and Lin(v) from disk. Therefore, our query perfor-
mance is comparable with the query performance where the 2-
hop labeling is up-to-date. For the four smaller datasets, when
the number edges exceeds 10

4, the query time increases with
the number of new edges because the CPU cost starts to factor
in. But the overall query time is still acceptable. In general,
our experimental results demonstrate that our proposed query
algorithm is a good approach to handle distance query while
the system is also processing the label update algorithms.
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Fig. 4. Results of query algorithm on real datasets.

VII. Conclusion
In this paper, we address the problem of efficiently an-

swering exact distance queries on disk-resident scale-free “dy-
namic” graphs. The query processing is based on the canonical
labeling, which is a special case of the 2-hop labeling. To
answer exact distance queries efficiently on dynamic graphs,
we present two methods to “incrementally update” the general
canonical labeling. The two update methods, namely the single
edge update method and the batch update method, have signif-
icantly different designs and each has its own merits. For the
scenario where one has decided not to update the disk-based
labeling, we propose a query algorithm that returns shortest
distance toward the latest network based on out-dated labeling
and a set of new edges, which is also a good approach to
handle exact distance queries while the system is updating the
labeling. We conduct extensive experiments on real scale-free
networks to test our proposed methods. Experimental results
demonstrate that it is possible to update disk-based canonical
labeling efficiently and incrementally, instead of reconstructing
the labeling from the scratch. Moreover, we show via experi-
ments that one could efficiently answer distance queries even
with out-dated disk-based canonical labeling, given that the
number of new edges is not too large. Considering that many
large-scale networks cannot fit into memory of a typical PC,
we believe that studying how to incrementally maintain 2-
hop labeling using external memory algorithms or distributed
algorithms is a challenging yet promising future direction.
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