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Abstract

The science of social networks is a central �eld of sociological study, a major application
of random graph theory, and an emerging area of study by economists, statistical physicists
and computer scientists. While these literatures are (slowly) becoming aware of each other,
and on occasion drawing from one another, they are still largely distinct in their methods,
interests, and goals. Here, my aim is to provide some perspective on the research from these
literatures, with a focus on the formal modeling of social networks and the two major types
of models: those based on random graphs and those based on game theoretic reasoning.
I highlight some of the strengths, weaknesses, and potential synergies between these two
network modeling approaches.
JEL Classi�cation Numbers: A14, C71, C72
Keywords: Networks, Social Networks, Network Games, Network Formation, Game The-

ory

�HSS 228-77, California Institute of Technology, Pasadena, California 91125, USA, jacksonm@hss.caltech.edu
and http://www.hss.caltech.edu/�jacksonm/Jackson.html. I thank the Lee Center for Advanced Networking,
The Guggenheim Foundation, and the Center for Advanced Studies in Behavioral Sciences for �nancial support.
I am very grateful to collaborators on networks projects, who have helped me learn about social networks and the
fascinating questions they present; and who are inexorably tied to the views I take herein. So I thank (in chrono-
logical order), Asher Wolinsky, Alison Watts, Bhaskar Dutta, Anne van den Nouweland, Toni Calvó-Armengol,
Francis Bloch, Gary Charness, Alan Kirman, Jernej Copic, Brian Rogers, Dunia Lopez-Pintado, and Leeat Yariv.
I also thank Yann Bramoullé, Toni Calvó-Armengol, Yannis Ioannides, Alan Kirman, Dunia Lopez-Pintado, Lau-
rent Mathevet, Torsten Persson, Nicolas Quérou, Alessandro Vespignani, Stanley Wasserman, Duncan Watts, and
Leeat Yariv for comments on an earlier draft. I am grateful to Tom Palfrey for an insightful discussion of the
paper.

yThis is a written version of a lecture prepared for presentation at the 2005 World Congress of the Econometric
Society, which is to appear in the Proceedings of the 9th World Congress of the Econometric Society, edited by
Richard Blundell, Whitney Newey, and Torsten Persson, Cambridge University Press.

1



1 Introduction

Social networks are the fabric of many of our interactions. Such networks include the rela-
tionships among friends and relatives with whom we share information and favors on a regular
basis, and reach as far as in�uencing decisions by many of the world�s companies regarding with
whom and how they conduct their business. The many regularities in network structure across
applications makes a scienti�c study of social networks a possibility. The deep and pervasive
impact that networks have on behavior makes such a study a necessity.

The science of social networks was initiated by sociologists more than a century ago, and
has grown to be a central �eld of sociological study over the past �fty years.1 Over that same
period, a mathematical literature on the structure of random graphs moved steadily along, with
intermittent ties to the sociological literature.2 While economists have occasionally showed in-
terest in networks, an explosion of studies of networks using game-theoretic modeling techniques
and with economic perspectives has occurred over the last decade.3 A recent awakening of an
interest in social networks has also occurred in the computer science and statistical physics lit-
eratures, mainly over the past �ve or six years.4 While these literatures are (slowly) becoming
aware of each other, and on occasion drawing from one another, they are still largely distinct
in their methods, interests, and approaches. My goal here is to provide some perspective on
the research from these literatures, with a focus on the formal modeling of social networks, and
to highlight some of the strengths, weaknesses, and potential synergies between the two main
approaches.

Given the breadth of these combined literatures, and the fact that there are surveys covering
the various literatures,5 my aim here is not to try to give a comprehensive overview of the
literatures, but rather to try to put some of the main contributions and techniques of formal
modeling of social networks in context and to relate them to each other. I focus on two main
threads of the literatures: the �rst is models of the formation of networks and the second is
models of how social behavior and economic outcomes are in�uenced by network structure.

In order to provide some context, I start by giving some basic background on social networks
and a very cursory look at a few things that have been learned from empirical studies. Next,
I turn to discuss models of formation of networks. Here, I distinguish between two di¤erent
approaches that have been taken. One has its roots in the random graph literature and models
formation by specifying either some stochastic process or an algorithmic process through which
the links in a network are formed. This literature has mainly deduced properties of large

1See Freeman (2004) for some history of thought of the sociology literature.
2See Bollobás (2001) for a survey of the random graph literature.
3The books edited by Dutta and Jackson (2003) and Demange and Wooders (2004) contain surveys.
4See Newman (2003).
5The sociology literature is too vast for any article to adequately survey, but introductory texts, such as

Wasserman and Faust (1994), as well as the recent history of thought book by Freeman (2004), are useful starting
points. Concerning the economics literature, see Jackson (2003, 2004) for strategic modeling of networks; van den
Nouweland (2004) for graphs and networks in cooperative game theory; Goyal (2004) for learning on networks;
Ioannides and Datcher-Loury (2004) for networks in labor economics; Page and Kamat (2004) for farsighted
formation of networks; and Bloch (2004) for networks in industrial organization. See Newman (2003, 2004) for
surveys covering some of the recent statistical physics and part of the computer science literatures. There are also
books that touch on some parts of the physics literature, such as Watts (1999) and Barabasi (2002). A text that
bridges some of the modeling from the various literatures is by Jackson (2005).
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networks. The second approach is game theoretic and stems from the economics literature. It
has mainly focussed on models where the links are formed at the discretion of the nodes who
derive bene�ts and face costs associated with various links and network con�gurations. These
two approaches lead to complementary insights regarding networks, each of which is adapted
to answering di¤erent sorts of questions. They also have di¤erent strengths and weaknesses
that I highlight. Finally, I discuss models that take network structure as a given and study
the in�uence that networks have on social and/or economic outcomes. This last area of study
shows why the science of social networks is important for more than just an understanding of
the networks themselves.

2 Some Background on Networks

The systematic study of social networks by sociologists dates from the 1920�s and 30�s, took
root in the 1960�s, and has grown rapidly over the past four decades.6 That literature includes
many case studies from which has emerged a rich mosaic of characteristics that are shared by
many social networks, as well as a taxonomy for measuring and describing social networks and a
broad set of hypotheses and theories about network form and in�uence. Much of what I discuss
in this section is either directly from that literature, or was in�uenced by it.

Just to get a feeling for one such case study, consider a network analyzed by Padgett and
Ansell (1993). It is the network of marriages between the key families in Florence in the 1430�s.
The following �gure provides the links between the key families in Florence at that time, where
a link represents a marriage between members of the two linked families.7

Figure 1: 15th Century Florentine Marriges (Padgett and Ansell (1993))

As Padgett and Ansell (1993) explain, during this time period the Medici (with Cosimo
de�Medici playing the key role) rose in power and largely consolidated control of the business

6Again, see Freeman (2004) for some history of thought. Interestingly, while Freeman laments the disconnect
between the traditional sociology literature and the emerging physics literature on networks, the gulf between the
sociology and economics literatures seems to be equally large.

7The data here were originally collected by Kent [105], but were �rst coded by Padgett and Ansell (1993) who
discuss the network relationships in more detail.
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and politics of Florence. Previously Florence had been ruled by an oligarchy of elite families.
A key to understanding this, as Padgett and Ansell (1993) detail, can be seen in the network
structure. To the extent that marriage relationships were keys to communicating information,
business deals, and reaching political decisions, the Medici were much better positioned than
other families, at least according to some measures of betweeness or centrality. Padgett and
Ansell (1993) point out that, �Medician political control was produced by network disjunctures
within the elite, which the Medici alone spanned.� It should be emphasized that the Medici
came to have such a special position in the network through careful planning. As Padgett and
Ansell (1993) say (footnote 13), �The modern reader may need reminding that all of the elite
marriages recorded here were arranged by patriarchs (or their equivalents) in the two families.
Intraelite marriages were conceived of partially in political alliance terms.� Thus, in order to
understand how this network, and not some other network, came to arise it is important to have
models of strategic network formation, a theme that I return to below.

2.1 Some Notation

Let N = f1; 2; : : : ; ng denote a set of nodes, which represent the social agents who might be tied
in a network of social relationships. In the example above, these are the Florentine families. In
the next example these are individual people (researchers), and in other examples they might
be �rms, web pages, countries, etc.

A network g can be represented by an n � n matrix taking on values 0 or 1. The idea is
that if gij = 1, then i is linked to j. In various applications, it might be that these links are
undirected, as in the Florentine families example where marriage is a reciprocal relationship.
In such settings gij = gji by necessity. In other applications, such as an example where a link
represents a citation of one research article by another, the network is naturally directed. In
such cases, it is possible that gij = 1 6= 0 = gji.8

For simplicity, I write ij to represent the link between i and j, and also write ij 2 g to
indicate that i and j are linked under the network g. Shorthand notations for the network
obtained by adding or deleting a link ij to or from an existing network g are g + ij and g � ij,
respectively.

For any network g and agent or node i, let Ni(g) be the neighborhood of i in g, that is, the
set of agents linked to i in the network g, so that Ni(g) = fj j ij 2 gg.

The degree is the most basic characteristic of a node - it represents the number of links
that each node has, and is thus simply the cardinality of Ni(g). Generally, there tends to be a
wide range of degrees across nodes within a network, and di¤erent applications will have very
di¤erent distributions of degrees across nodes, a topic I return to below.

A path in a network g 2 G between agents i and j is a sequence of agents i1; : : : ; iK such
that ikik+1 2 g for each k 2 f1; : : : ;K � 1g, with i1 = i and iK = j. The length of such a path
is K � 1, the number of links involved.9

8 In some applications, the strength of a link or some other aspect of link may be important, or there may be
di¤erent types of links that can be simultaneously held between nodes. For the purposes of this article, I stick
with the basic model.

9 In the case of directed networks, one can keep track of directed paths as well as undirected ones. I will be
explicit when necessary, and otherwise assume that links are treated as if they are not directed.
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A component of a network is a maximal connected subgraph. That is, g0 is a component of
g if: (a) g0 is a subnetwork of g (so ij 2 g0 only if ij 2 g), (b) ij 2 g0 and k` 2 g0 implies that
there is a path between i and k in g0, and (c) ij 2 g0 and ik 2 g implies ik 2 g0. The network
pictured in Figure 3 has two components, one consisting of the isolated node 25, and the other
consisting of the graph between nodes 1 to 24.

The distance between two nodes i and j, denoted d(i; j), is the minimum path length between
i and j (and set to be in�nite if no such path exists).

The diameter of a network g is de�ned as �d(g) = maxi;j d(i; j), the maximum distance
between any two nodes. If a network is not connected (there are at least two nodes that have no
path between them), then the diameter is in�nite. As many social networks are not connected,
the diameter is often reported for the largest component. For example, in Figure 1, the network
is not connected as the Pucci are isolated, and the diameter of the largest component is 5 (the
distance from the Pazzi to the Lambertes or the Pazzi to the Peruzzi).

Another characteristic of networks is referred to under a variety of names including cliquish-
ness, transitivity, and clustering. While there are many variations, the basic idea is to measure
how dense the network is on a very local level. Given a node, what fraction of that node�s
friends or neighbors are friends or neighbors of each other? In particular, if i has links to both
j and k, are j and k linked to each other?10 The percentage of times that the answer is �yes�
with regard to a node i is i�s clustering coe¢ cient. One can then average across all nodes in the
network. Thus the clustering for a node i is11

Ci(g) =
#fjk 2 g j k 6= j; j 2 Ni(g); k 2 Ni(g)g
#fjk j k 6= j; j 2 Ni(g); k 2 Ni(g)g

:

In Figure 1, the clustering for the Medici is 1/15, for the Bisteri is 1/3, and for the Guadagni is
0. The average clustering coe¢ cient is12

Cavg(g) =
X
i

Ci(g)

n
:

Example 1 Erdös Numbers and Co-authorship Networks Among Researchers

With some de�nitions in hand, let us turn to another example. These are networks that keep
track of collaboration among researchers. Here a link represents the co-authorship of a paper
during some time period covered by the study. The well-known and proli�c mathematician Paul
Erdös had many co-authors, and as a fun distraction many mathematicians (and economists

10For a directed network, one can either treat links as if they are undirected, or else can look for cycles (when
directed links ij and jk are present, one counts the percent of ki�s).
11 If the node i has fewer than two neighbors so that the denominator is of Ci(g) is 0, then one can adopt the

convention of setting Ci(g) = 1. When averaging across i to determine average clustering, such a convention can
make a di¤erence and so it makes sense to ignore nodes that have fewer than two neighbors.
12Note that this weights the calculations by averaging across nodes rather than links. That is, a node that

has just two neighbors is weighted the same as a node that has two hundred neighbors, even though the second
node accounts for many more potential triangles in the network. An alternative measure simply examines the
number of times the link ik is present over all combinations of pairs of links ij and ik in the network, and divides
by the number of pairs of links present in the network. The di¤erence between these two measures can be quite
substantial.
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for that matter) have found the shortest path(s) from themselves to Erdös. These networks are
also of scienti�c interest themselves, as they tell us something about how research is conducted
and also how information and innovation might be disseminated. Such studies have now been
conducted in various �elds, including mathematics (Grossman and Ion (1995), de Castro and
Grossman (1999)), biology and physics (Newman (2001, 2002)), and economics (Goyal, van der
Leij and Moraga-González (2003)). Various statistics from these studies give us some impression
of the network structure.13

Table 1: Co-Authorship Networks

Biology Economics Math Physics
number of nodes 1520521 81217 253339 52909
avg. degree 15.5 1.7 3.9 9.3

avg. path length 4.9 9.5 7.6 6.2
diameter 24 29 27 20
clustering .09 .16 .15 .45

% size largest component .92 .41 .82 .85

Here we see that despite the noncomparabilities of the networks along many dimensions,
average path length and diameters of each of the networks are very comparable. Moreover,
these are of an order substantially smaller than the number of nodes in the network. This is an
aspect of the �small-world�nature of social networks discussed below.

2.2 The Prevalence of Network Interactions

While the examples in the previous section give us an idea of the variety of networks that have
been studied, it is also important for us to have an idea of what role networks might play in a
society and how they might in�uence economic outcomes.

The most obvious and perhaps pervasive role of networks is as a conduit of information, and
one of the most extensively documented role for social networks in economics is that of contacts
in labor markets.14 The magnitude of use of social contacts as a method of matching workers and
�rms can be seen from various studies. One of the earliest studies, by Myers and Shultz (1951),
was based on interviews with textile workers and found that 62 percent had found their �rst job
through a social contact, in contrast with only 23 percent who applied by direct application, and
the remaining 15 percent who found their job through an agency, ads, etc. A study by Rees and
Shultz (1970) showed that these numbers were not peculiar to textile workers, but applied very
broadly. For instance, the percentage of those interviewed who found their jobs through the use
of social contacts as a function of their profession was: typist - 37.3 percent, accountant - 23.5
percent, material handler - 73.8 percent, janitor - 65.5 percent, and electrician - 57.4 percent.
Moreover, the prevalent use of social contacts in �nding jobs is robust across race and gender

13As these networks are not connected (there are many isolated authors), the �gures for average path length
and diameter are reported for the largest component.
14For a recent comprehensive overview of research on networks in labor markets see Ioannides and Loury (2004).
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(See Corcoran, Datcher, and Duncan (1980)) and across country (see Pellizzari (2004)).
The role of social networks is not unique to labor markets, but has been documented much

more extensively. For example, networks and social interactions play a role in crime,15 in trade,16

social insurance,17, as well as disease transmission, language and culture, and interactions of
�rms.

2.3 Some Basic Characteristics of Social Networks

Beyond the fact that social networks play a role in many interactions, we also know a great deal
about some basic characteristics of social networks.

2.3.1 Small Worlds

One of the most in�uential studies of social networks was Stanley Milgram�s (1967) ingenious
�small-worlds�experiment. Milgram gave booklets with instructions to individuals in one place
(Nebraska, in the original experiment). The objective was to get the booklet to a geographically
distant individual (on the east coast), where the sender is given some information about the
target (e.g., the person�s name, occupation, and where they live). The key was that the subjects
could only send the booklet to an acquaintance. The acquaintance could then forward the
letter to another acquaintance, with the same objective of having the booklet eventually reach
the target. The experiment collected information regarding the full chain that the booklets
followed, including demographic information about each of the acquaintances along the route.
One remarkable statistic was that roughly a quarter of the booklets reached their destination.18

Of the chains that were successful, the maximum number of links that a booklet took was 12
and the median was 5! Given that these would generally not have taken the shortest routes from
initial sender to target (as the senders are often not fully aware of the most e¢ cient path to the
target), these numbers were quite striking.

A simple back-of-the-envelope calculation gives some insight into this. If most individuals in
the world have hundreds of acquaintances, then starting from a given individual, the network
size (in terms of number of individuals reached) will expand by a factor on the order of a hundred
raised to the power of the path length.19 It will not take very long paths until the network is
the size of the whole world�s population.

15Reiss (1980, 1988) �nds that two thirds of criminals commit crimes with others, and Glaeser, Sacerdote
and Scheinkman (1996) �nd that social interaction is important in determining criminal activity, especially with
respect to petty crime, youth activity in crime, and in areas with less intact households.
16Uzzi (1996) �nds that relation speci�c knowledge is critical in the garment industry and that social networks

play a key role in that industry. Weisbuch, Kirman, Herreiner (2000) study repeated interactions in the Marseille
�sh market and discuss the importance of the network structure.
17Fafchamps and Lund (2003) show that social networks are critical to the understanding of risk-sharing in

rural Philippines, and De Weerdt (2002) provides similar analyses in Africa.
18Given that twenty to thirty percent is a healthy response rate on a survey, and that having a booklet reach

a destination required a chain of subjects to each respond, a twenty �ve percent rate of reaching the target is
impressive, especially in an unpaid experiment.
19This is clearly heuristic and a proper calculation is di¢ cult, as one needs to account for overlap in neighbor-

hoods, among other things. See Bollabás (2001) for some theorems bounding diameters in some classes of random
graphs.
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2.3.2 �High�Clustering

While it is interesting that social networks exhibit small diameter and average path length, the
same is also true of many other networks, including routing networks, power grids, and networks
of neurons (e.g., see Watts (1999) and Newman (2003)). What tends to be a more distinguishing
feature of social networks, is their clustering (recall the de�nition above). Clustering is a simple,
but powerful concept that has roots tracing back to work of Simmel (1908), who �rst explored
triads (relationships between triples of individuals). Social networks tend to have signi�cantly
higher clustering coe¢ cients than what would emerge if the links were generated by an inde-
pendent random process. For example, Adamic (1999) �nds a clustering coe¢ cient of .11 for a
portion of the www, which would compare with an expected clustering coe¢ cient of .0002 for
a (Bernoulli) randomly generated network with the same number of links. Figures for other
networks are reported in Table 2 below, where we also see relatively high numbers compared to
a benchmark random network. For example, if each link is formed with equal probability and
independently of each other link, then the probability of two of node i�s neighbors being con-
nected to each other is simply the probability with which links are formed. In the �rst column of
Table 2, this would be less than 5/325000, as each node has an average of fewer than 5 links out
of a potential number that is more than 325000. The observed clustering of .11 is substantially
higher.

2.3.3 Degree Distributions

Another easily identi�ed property of a social network is its degree distribution. This gives some
idea of the variation in the number of links across di¤erent nodes, and provides us with some
feeling for the shape of a network. Does it have �hub and spoke� like features where there
are some very highly connected nodes and others with very few connections, or are connections
more evenly distributed? Keeping track of the distribution of degrees in a network can be quite
useful. For example, the degrees of the nodes in the Medici marriage network in Figure 1 are
0,1,1,1,1,2,3,3,3,3,3,3,4,4,6. From this we see that the Medici had more than twice the average
degree (6 compared to 2.53) and twice the median degree.

One of the early studies documenting degree distributions was by Price (1965) who exam-
ined networks of citations among research articles. Price noticed that there were more highly
connected and lowly connected nodes than what would be expected if links were selected in-
dependently and uniformly at random. Much of the recent interest in networks by statistical
physicists was sparked by a similar study of Albert, Jeong and Barabasi (1999), which examined
the structure of a portion of the www (in the Notre Dame domain). They also found a degree
distribution that was distinctly di¤erent from what would have been generated by a random
process of link formation where all links were equally likely. If links were formed uniformly
at random with a link between any two nodes being formed independently of other links and
with a probability p, then the degree distribution would approximate a binomial distribution,
and would also be well-approximated by a Poisson distribution (see Section 3.1.1). Again, they
found that the degree distribution had �fat tails,�in that there were many more nodes with very
high and very low degree than would correspond to a binomial or Poisson distribution. In fact,
they estimated that the distribution was approximately �scale-free�and followed a �power-law,�
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where the relative frequency of nodes with a degree of k is proportional to k�
 for a parameter

 > 1.20 The term �power law�clearly refers to the fact that the frequency can be expressed as
the degree raised to a power. The term �scale-free� refers to the following property. Consider
degree k and some other degree ck, for some scalar c. Their relative frequencies are k�
=(ck�


or c
 . Now consider some other degree k0 and another degree ck0. Their relative frequencies are
also c
 . Thus, regardless of how we have rescaled things, relative frequencies depend only on
relative sizes and not on the absolute scale.

An important caution to the literature is in order here. While it is clear that the degree dis-
tributions of many observed networks di¤er signi�cantly from that of a purely random network;
it is not clear that they are �scale-free�. This is a point �rst made by Pennock et al (2002).21

A standard approach to outlining the degree distribution of many networks has been simply to
plot the log(frequency) versus the log(degree) and see whether this �looks� linear. Of course,
many things that are far from linear will appear linear on a log-log plot, as most of the data are
squeezed into a small portion of the scale on a log-log plot; and such a distribution can be very
di¢ cult to distinguish from others, such as a lognormal distribution which can also appear quite
linear. Simply �tting a line to the data on a log-log scale does not guarantee that the estimated
coe¢ cient means much of anything.

To get a better feeling for the shape of degree distributions, and whether most social networks
exhibit features that are close to scale-free, it is possible to consider families of distributions and
see which one best �ts a given social network. We can do this with a family of degree distributions
that have at one extreme networks whose links are generated uniformly at random, and at the
other extreme networks with scale-free distributions. Jackson and Rogers (2004) examine a
family of degree distributions where the probability that a given node has degree k is given by
P (k) = c(k+ rm)�(2+r), where c is a constant (ensuring a sum to 1 across k�s), m is the average
degree, and r is a parameter which varies between 0 and 1. More speci�cally, the model is one
where new nodes are born over time and can attach to existing nodes either by choosing one
uniformly at random or through a search process that makes the likelihood of meeting a given
node proportional to the number of links the node already has. r represents the ratio of how
many links are formed uniformly at random compared to how many are formed proportionally to
the number of links existing nodes already have. As r approaches 0, the distribution converges
to be scale-free, while as m tends to in�nity the distribution converges to a negative exponential
distribution, which corresponds to the degree distribution of a purely uniform and independent
link formation process on a network that grows over time.

Using this model, we can back out the relative randomness in the formation process. Fits to

20Such distributions date to Pareto (1896), after whom they are named, and have appeared in a wide variety of
settings ranging from income distributions, distribution of city populations, to the usage of words in a language.
For an informative overview, see Mitzenmacher [127].
21See Eeckhout (2004) for a similar point regarding Zipf�s law as applied to city sizes, and also Ioannides (2004)

for a similar point.
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a few networks22 give us an idea of the variation across applications.23

Table 2: Comparisons Across Applications

WWW Citations Co-author Ham Radio Prison High School
Romance

Number of Nodes 325729 396 81217 44 67 572
Randomness: r 0.5 0.62 3.5 5.0 590 1000
Avg. Degree: m 4.5 5 1.7 3.5 2.7 .84
Avg. Clustering .11 .07 .16 .06 .001 0

Thus, we see a marked di¤erence in the degree distributions, as well as clustering and average
degree, across di¤erent social networks. As these characteristics are the more easily measured
features of a social network, and carry a great deal of information about the shape of the network,
they are quite useful. As we shall see below, it is also important to note how di¤erent the degree
distributions are across di¤erent social networks, since we can relate the di¤erences in structure
to di¤erences in resulting behavior on the networks.

There are many other features of social networks that have been explored, but are beyond
our scope here, as some of the basic features discussed above shall already give us a good handle
on some of the models that I discuss below.

With a better feeling for social networks, let us now return to the two central issues: How
networks are formed and how network structure a¤ects the behavior of the individuals involved
in the network. I turn to these in order.

3 Modeling Network Formation

As mentioned in the introduction, the models of network formation have come primarily from
two sources: the random graph literature (and the subsequent statistical physics literature) and
the economics literature (building on game theoretic tools).

Let me emphasize from the outset how di¤erent these approaches have been. The random-
graph-based literature builds networks either through a purely stochastic process where links

22The www data are from an analysis of the links between web pages on the Notre Dame domain of the world
wide web from Albert, Jeong, and Barabási [2]. The co-authorship data are from the above cited study by Goyal,
van der Leij, and Moraga-González [78]. The citation network consists of the network of citations among all
papers that have cited Milgram�s (1967) paper or have the phrase �small worlds�in the title, and is from Gar�eld
[?]. The prison data record friendships among inmates in a study by MacRae [122], the ham radio data record
interactions between ham radio operators from Killworth and Bernard (1976), and the high school romance data
collected romantic relationships between high school students over a period of a year and a half in a US high school
and is from Bearman, Moody, and Stovel [12]. The number of nodes, average degree, and clustering numbers are
as reported by the studies. The estimates on randomness are from Jackson and Rogers (2004). The �ts on these
estimated r�s are high, with R2�s ranging between 93 and 99 percent.
23The clustering �gure for the co-author data is actually for total clustering, as the average number is not

available but is likely to be higher given that the clustering is decreasing in degree. The clustering for the
high school romance network is special because that network is mainly heterosexual in its relationships, and so
completed triads do not appear.
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appear at random according to some distribution, or else through some algorithm for building
links. What this allows one to do, is show how observed networks at some given point in
time might have resulted from some stochastic or mechanical process. Although this does not
quite answer the why behind network formation, it does give us a great deal of insight into
the how. That is, these sorts of models essentially match observed characteristics back to
speci�c processes. Why one process operates in one setting, and another in a di¤erent setting
is something essentially beyond the scope of the models.

The economic approach, in contrast, has tended to focus on equilibrium networks,24 where
links are formed at the discretion of self-interested agents who are or control the nodes. A
big advantage of this approach is that it naturally incorporates the costs and bene�ts into the
analysis, as the payo¤s to agents are part of the model. This enables one to answer questions
relating to whether or not the right networks form, in the sense of maximizing the total bene�t
to society. Such models also give us insight into the why behind network formation, as they trace
network form to the incentives of the agents and the costs and bene�ts of di¤erent links. The
main shortcoming of these models is that while they can tell us things about tensions between

incentives and e¢ ciency, and trace incentives to primitives relating to costs and bene�ts,
they generally stop short of giving predictions concerning things like which degree distribution
should emerge. In a sense, they have not been as well-suited for answering the how questions.

3.1 Random Models of Network Formation

3.1.1 Erdös-Rényi (Bernoulli) Random Graphs

The earliest and most extensively studied formal model of network formation is that of purely
random graphs, with the canonical example being that of a pure Bernoulli process of link for-
mation. That is, consider a set of nodes and then independently consider each possible link.
With probability p have this link be part of the graph, and with probability 1 � p have that
link be absent from the graph. This random graph formation process was explored in detail by
Erdös and Rényi (1959, 1960, 1961) and has been studied extensively since then (see Bollobás
(2001).25 There are a number of interesting properties that such Bernoulli networks have. These
properties are generally established for large networks; that is, as the number of nodes tends to
in�nity.

"XNPEU";
Consider the degree distribution. The probability that any given node i has exactly k links

is simply  
n� 1
k

!
pk(1� p)n�1�k: (1)

Even though links are formed independently, if we want to estimate the fraction of nodes in a
network that will have a given degree, there will be some correlation across nodes. For instance,

24 It has also provided some stochastic models of network formation, but mainly as a tool for selection among
equilibrium networks. For example, see Jackson and Watts (2002ab) and Goyal and Vega-Redondo (2005).
25Another closely related random graph model is one where all graphs with n nodes and exactly M edges are

considered, and one is randomly selected (where equal probability is placed on each such graph). If M = np and
n is large, then many of the properties of the resulting graph are similar to those of the Bernoulli graph process.
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if n = 2, then it must be that both nodes have the same degree. As n becomes large, however,
the correlation of degree between any two nodes vanishes, as the possible link between them is
only one out of the n� 1 that each might have. Thus, as n becomes large, the fraction of nodes
that have k links will approach the expression in (1). For large n and small enough p (relative
to n), this binomial expression is approximated by a Poisson distribution, so that the fraction
of nodes that have k links is approximately

e�(n�1)p((n� 1)p)k
k!

: (2)

This gives us a benchmark degree distribution for comparison.
Interestingly, the random graph generating process exhibits also a number of �phase�tran-

sitions as we vary the probability of forming links, p, relative to the number of nodes, n. When
p is small relative to n, so that p < 1=n (average degree is less than one), then the resulting
graph consists of a number of disjoint and relatively small components, each of which has a
tree-like structure. Once p is large enough relative to n, so that p > 1=n, then we see a �giant
component�emerge. That is, almost surely the graph consists of one large component, which
contains a nontrivial fraction of the nodes, and all other components are vanishingly small. To
get some impression as to the size of the giant component, and why it emerges at the juncture
where p = 1=n, let us do a simple (heuristic) calculation. Let q be the fraction of nodes in the
giant component. The probability that a node i is not in the giant component is the probability
that none of its neighbors are. If node i has degree ki, then this probability is (1� q)ki . Given
the approximation by a Poisson degree distribution, the fraction of nodes outside of the giant
component would satisfy the equation

1� q =
X
k

e�(n�1)p((n� 1)p)k
k!

(1� q)k:

Since
P
k
((n�1)p(1�q))k

k! = e(n�1)p(1�q), we end up with an approximation of

q = 1� e�q(n�1)p: (3)

There is always a solution of q = 0 to this equation. In the case where the average degree is
larger than 1 (i.e., (n� 1)p > 1), and only then, there is also a solution for q that lies between
0 and 1. This corresponds to the phase transition I mentioned above. If average degree exceeds
one, then there is a giant component which contains a non-trivial fraction of all nodes, and the
size of the giant component is approximately described by the nonzero solution to (3)). For
instance, in Figure 3 the giant component contains q = 24=25 = :96 of the total nodes. Solving
q = 1� eq(n�1)p when n� 1 = 24 and p = 1=6 leads to an approximate q of :98.

Why we see just one giant component and all other components are of a much smaller order is
fairly intuitive. In order to have two �large�components each having some nontrival fraction of n
nodes, there would have to be no links between any node in one of the components and any node
in the other. For large n, it becomes increasingly unlikely to have two large components but with
absolutely no links between them. Thus, nontrivial components mesh into a giant component,
and any other components must be of a much smaller order. Although not an entirely random
network (see Table 2), we get an impression of this from the economics co-authorship network
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of Goyal, van der Leij and Moraga-Gonzalez (2003): it has a total of 81217 nodes and a giant
component of 33027 nodes, and yet the second largest component only consists of 30 nodes.

As we continue to increase p, we see another phase transition when p is proportional to
log(n)=n. This is the threshold at which the network becomes �connected�so that all nodes are
path-connected to each other. We again get some impression of why this is happening from our
approximation of the size of the largest component in (3). When we plug in p = log(n)=(n� 1)
then q solves q = 1�n�q, which for large n gives q close to 1. The more formal analysis is quite
involved and is detailed in Bollobás (2001). Once we hit the threshold at which the network
becomes connected, we also see further changes in the diameter of the network as we continue
to increase p relative to n. Below the threshold, the diameter of giant component is of the order
of log(n), then at the threshold of connectedness it hits log(n)=loglog(n), and it continues to
shrink as p increases.

One interesting characteristic of Bernoulli random graphs, is that for large n and p that is
not too large, we see very little clustering. That is, if two links, say ij and jk, are both present
and then ask with what probability ik is present, the answer is simply p. So, if p is relatively
small, then so is clustering. In particular, if we examine large social networks, where p should
be close to 0, then the clustering of a network goes to 0. Having p be close to 0 when n is large
would be necessary if, for instance, there is some upper bound on the average degree. This is
something we expect in many social networks as there is some bound on the number of links an
individual can maintain. In fact, if p is small enough and n is large enough, it is not only that
we expect low clustering, but in fact we do not expect any loops or cycles in the network; that
is, with high probability all components of the network will be trees (see Bollobas (2001) for
details).

While this is just a quick look at some of what is known about Bernoulli (Erdös-Rényi)
random graphs, it gives us some feeling for some properties of purely random networks. This is
useful since such Bernoulli random graphs provide a relatively good match for some aspects of
some observed networks (e.g., the degree distributions of the prison friendships and high school
romance networks reported in Table 2), and also because some of the types of phase transitions
and features observed in these networks are also observed in other random network models.

Although the Bernoulli random graphs studied by Erdös and Rényi and others provide a
useful benchmark model for social networks and �t in a few cases, their lack of clustering,
among other things means that they lack some basic features exhibited by many observed social
networks. This has led researchers to explore other sorts of random network models. There are
various generalizations of Bernoulli random graphs that have been useful in statistical analysis
of observed networks. In particular, Frank and Strauss (1986) identi�ed a class of random
graphs that generalize Bernoulli random graphs, which they called �Markov graphs�. Such
random graph models were later introduced to the social networks literature by Wasserman and
Pattison (1996) under the name of p� networks, and further studied and extended in various
directions.26 The basic idea is to allow for speci�c dependencies in a network, and these have
proven to be useful in statistical estimation of some network properties, and in particular for
dependencies in link formation.

26For instance, see Pattison and Wasserman (1999) for an extension to multiple interdependent networks on a
common set of nodes.
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3.1.2 Rewired Lattices and Clustering

Watts and Strogatz (1998) looked at a speci�c variation on a Bernoulli network, with the follow-
ing issue in mind. They wanted to generate networks that exhibit both relatively low diameter
and nondegenerate clustering. They developed a model that mixes purely random link forma-
tion with a lattice structure. The structure of their model is easy to understand. I discuss
a particular example, and refer the reader to Watts (1999) for more detailed derivations and
simulations of the model.

Suppose we start with a very structured network that exhibits a high degree of clustering.
For instance, let us construct a large circle, but then connect a given node to the nearest four
nodes rather than just its nearest two neighbors.

Figure 2: A Ring Lattice with Randomly Added Links

In such a network, each node�s individual clustering coe¢ cient will be 1=2. To see this,
consider some set of consecutive nodes 1, 2, 3, 4, 5, that are part of such a network for a large
n. Consider node 3, which is connected to each of the other nodes. Out of all the pairs of
3�s neighbors (f1; 2g; f1; 4g; f1; 5g; f2; 4g; f2; 5g; f4; 5g), we see that half of them are connected
(f1; 2g; f2; 4g; f4; 5g)

Note, however, that the diameter of such a network is on the order of n=4, which is out of line
with what we observed in Table 1 and Section 2.3.1, where the diameter was on the order of 20
for networks with hundreds of thousands of nodes. The main point of Watts and Strogatz (1998)
is that by starting with such a highly clustered ring lattice, and then randomly rewiring enough
(but not too many) links, we can end up with a network that has a much smaller diameter
but still has substantial clustering. The rewiring can be done by randomly selecting some link
ij and disconnecting it and then randomly connecting i to another node k chosen uniformly
at random from those whom i is not already connected to. Of course, eventually if too much
rewiring is done, the clustering will vanish.27 The interesting region is where enough rewiring
has been done to substantially reduce (average and maximal) path length, but not so much that

27That is, the network will take on the features of a random network, which has vanishing clustering as the
number of nodes becomes large and the number of links per node is not growing too rapidly.
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clustering vanishes. The key to this process is that the short cuts introduced by relatively few
rewirings can dramatically decrease path lengths, and that this is a nonlinear relationship.

A slight variation of this original model proposed by Newman and Watts (1999) (see also
Monasson (1999)) is easier to analyze in terms of its properties. That model starts with the
same sort of ring lattice structure, but instead of rewiring links randomly, it simply adds links
randomly. While precise diameter and path length numbers have still not been obtained for
this model, we can easily derive upper bounds based on those for the corresponding random
graphs, and in terms of diameter these bounds should not be too far o¤ (at least when the
corresponding random graph, ignoring the ring lattice, would be connected by itself). For
instance if we introduce more than log(n)=n random links, then we can expect a diameter of no
more than log(n)=loglog(n) (given what is known about Bernoulli random graphs).

While the rewiring of a ring lattice provides the high clustering and low path lengths that we
observe in many social networks, the resulting degree distributions are far from what is observed.
In particular, in order to keep a reasonably high clustering coe¢ cient in such a model, the initial
ring lattice structure has to stay largely intact and has to represent a non-trivial fraction of an
average nodes links. This means that the resulting degree distribution has a great deal more
regularity and less variance than what is generally observed.

3.1.3 Preferential Attachment and Scale-Free Degree Distributions

As mentioned above, in order to match the degree distributions that are observed in many social
networks, one needs a process of link formation that di¤ers from the pure Bernoulli (Erdös-
Rényi) process, as observed distributions often exhibit fatter tails. The ideas behind generating
distributions with �fat tails�date to Pareto (1896), for which the standard power distribution
is named, and continued in Yule (1925) and were really crystallized and formalized by Simon
(1955). The underlying principle is what is often referred to as a �rich-get-richer� structure,
or essentially something akin to a lognormal growth system. If objects grow in size at a rate
proportional to their current size, then we should expect �fat tails�in the distribution of sizes.
In particular, Simon pointed out that in a system where objects are born at di¤erent times, and
then grow lognormally once they are born, the resulting distribution of object size will follow a
power-law or scale-free distribution.28 This can be applied to distributions of wealth and city
sizes, among many other things.29

Price (1965) �rst observed that some networks (in particular, citation networks) had degree
distributions with special features. In a later seminal paper, Price (1976) adapted Simon�s
(1955) ideas to the setting of a growing (citation) network in order to generate scale-free degree
distributions. The idea was that the number of citations that papers would gain over time
were proportional to the number of citations they already had.30 In the recent literature, such a

28Another explanation behind power laws is the idea of �HOT� (highly optimized tolerance) systems that
underlies Carlson and Doyle [32] and Fabrikant, Koutsoupias, and Papadimitriou [60]. That important idea
addresses systems that are centrally optimized, rather than self-organizing.
29See Mitzenmacher (2004) for a nice overview.
30One can explain such a system via a simple process. If researchers randomly �nd a paper (which these days

can be explained via a key-word search) and then search for additional papers via the references they �nd in the
�rst paper, then the chance of being found is roughly proportional to the number of citations that a paper already
has.
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process has been referred to by the name of �preferential attachment,�as coined by Barabasi and
Albert (2001), who developed a model similar to Price�s (1976) model except it is undirected,
while Price�s was directed.31

Let me brie�y describe such a model, as it is useful in illustrating some of the techniques
from that literature. Consider a system where a new node is born at each date. So let us index
nodes by their date of birth i 2 f0; 1; 2:::; t; :::g. Upon birth (and only then), each new node
forms m links with pre-existing nodes.32 The new node selects the nodes to link to in a random
manner, but with a probability that is proportional to the number of links that each given node
already has. For example, if an existing node i has twice as many links as some other node j,
then it is twice as likely to get a given link from the newborn node. So, roughly, the probability
that any given existing node i gets a new link at time t is m times its degree relative to the
overall degree of all existing nodes that time t, or m ki(t)Pt

j=1 kj(t)
, where ki(t) is node i�s degree at

time t and
Pt
j=1 kj(t) is the normalization by the total degree of all nodes. As there are tm

total links in the system at time t,
Pt
j=1 kj(t) = 2tm. Thus, the probability that any given

existing node i gets a new link in period t is ki(t)2t .
This results in a well-de�ned stochastic process (an in�nite Markov chain). As such the

steady state distribution of a Markov process can be hard to solve for explicitly, the system
is often approximated. For instance, if we approximate the random discrete time system by a
continuous time system, where the degree of each node grows deterministically at the expected
rate, then we can solve it explicitly. This is termed a �mean-�eld�approximation.

So, in this system, given that a node i is expected to gain roughly ki(t)
2t links in period t, the

mean �eld approximation is to solve the system where

dki(t)

dt
=
ki(t)

2t
:

This di¤erential equation with initial condition ki(i) = m leads to a solution of

ki(t) = m

�
t

i

�1=2
:

Thus, nodes are born over time and then grow. The system is now much simpler than the
random system, in that the degrees of nodes can be ordered by their ages. The oldest nodes are
the largest. To �nd out what the fraction of nodes is that exceeds some given level k at some
time t, we just need to identify which node is at exactly level k at time t, and then we know
that all nodes born before then are the nodes that are larger. Let it(k) be the node which has
degree k at time t, or such that kit(k)(t) = k. From our above equation, we know that

it(k)

t
=
�m
k

�2
:

31See Newman (2003) (and also Mitzenmacher (2004)) for more discussion of the various naming of such
processes and their development.
32There are some details to worry about in starting such a process. Early nodes may not end up being able to

form m links. If we count early nodes as having m links, regardless of how many they actually formed, then the
process is well-de�ned.
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The fraction of nodes that have degree smaller than k at time t are then the proportion born
after node it(k), or born after time t

�
m
k

�2. Thus, the distribution function is
Ft(k) = 1�m2k�2:

This has a corresponding density or frequency of33

f(k) = 2m2k�3:

Thus, we obtain a scale-free distribution with an exponent of -3.34

3.1.4 Hybrid Models

From the models we have discussed so far, we see that in each case there is some de�ciency.
The purely random graphs analyzed by Erdös and Rényi do not exhibit the clustering or degree
distributions that match many observed networks. The rewired ring lattices of Watts and
Strogatz (1998) do not exhibit degree distributions matching observed networks. Preferential
attachment generates scale-free degree distributions that help account for the fat-tailed degree
distributions observed in many applications. However, it turns out that preferential attachment
generates networks that do not exhibit any clustering. Moreover, as we saw from Table 2, degree
distributions di¤er substantially across applications and tend to lie somewhere between purely
random and purely scale-free.

Thus, in order to match observed networks, we need several characteristics: relatively low
diameter, nontrivial clustering, and a degree distribution that spans between purely random and
scale-free networks. Recent models have made progress in generating networks that are closer to
observed networks. Pennock et al (2002), show that by use of a mixed model where some links
are formed uniformly at random and others are formed via preferential attachment results in a
degree distribution that spans between random and scale-free degree distributions. There are
other models that are hybrids of random and preferential attachment (e.g., Kleinberg et al (1999),
Kumar et al (2000) , Dorogovtsev and Mendes (2001), Levene et al (2002), and Cooper and Frieze
(2003)). Interestingly, most of these ignore the fact that the resulting degree distributions are
not scale-free, but instead try to show that the distribution is at least approximately scale-free
for large degrees. Pennock et al (2002) were the �rst to recognize the fact that many observed
networks were not really scale-free, and thus that a hybrid model could better match observed
degree distributions. Unfortunately, that model does not provide any clustering.

In order to generate clustering, and still have some sort of scale-free aspect to a degree
distribution, Klemm and Eguíluz (2002, 2002b) have a variation of the preferential attachment
model where nodes are declared either active or inactive. A new node enters as �active�and then
some existing active node is randomly de-activated (with a probability inversely proportional to
its degree). New nodes attach to each active node. Then with a probability �, each of these links

33Note that the expression for Ft is in fact independent of t (which is an artifact of the continuous time
mean-�eld approximation). Thus, the subscript is dropped from the expression.
34The speci�cs of the exponent -3, comes from the -2 in the distribution function, which is traced back to the

fact that each link is shared by a new and old node. If these were in di¤erent proportions, the exponent would
change. See Simon (1955) for more discussion of this, and Jackson and Rogers (2004) for an alternative model
with additional variation in the exponent.
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is rewired to a random node in the population chosen according to preferential attachment. This
process thus has a �xed number of �active�nodes, and the fact that each entering node ends
up hooked up to a proportion 1� � of them, and that the list of active nodes only changes by
one each period, results in signi�cant clustering. The preferential attachment structure results
in the scale-free distribution and small diameter. However, this sort of model only generates
scale-free distributions.

Jackson and Rogers (2004) show that a hybrid model can result in all of the features of
high clustering, small diameter, and a degree distribution that spans between purely random
to scale-free. In that model, nodes are born over time and each node forms m links, just
as in the preferential attachment model described above. However, instead of forming links
randomly, the new nodes meet (and form links to) some existing nodes purely at random and
then also meet some neighbors of these nodes.35 Meeting neighbors introduces an element of
preferential attachment, as the chance of meeting a node in that manner is proportional to how
many neighbors it has. As the ratio of how many nodes are met at random compared to how
many of their neighbors are met is varied, this process spans between one of completely random
link formation to one of pure preferential attachment. However, it exhibits nontrivial clustering
between these extremes, since then a new nodes will often form a links both to an existing node
and one of its neighbors, thus forming a completed triangle. Jackson and Rogers show that such
a model can �t observed networks well on several dimensions at once (see Table 2).

3.2 Strategic Models of Network Formation

As I have provided extensive discussion of strategic models of network formation elsewhere
(Jackson (2003, 2004)), here I will present a few examples to illustrate some key points about
the literature on network formation that has emerged from economics and game theory.

There are two key aspects of an economic/game theoretic approach to modeling network
formation:

(i) agents derive some utility from the network, and thus there is an overall societal welfare
corresponding to any network that might arise, and

(ii) links are formed at the discretion of the agents who are (or control) the nodes, and resulting
networks can be predicted through notions of equilibrium or possibly stochastic dynamic
processes.

While economists are so used to looking at costs and bene�ts and using utility based models
that (i) would be taken for granted; it is important to note that this perspective on network
analysis is a key distinguishing feature from the �random�models discussed above. This is an
important feature that allows one to assess the implications of various networks or formation
processes, to deduce whether �good�networks are emerging from society�s perspective. Having
utilities assigned to networks is, of course, also a prerequisite for an equilibrium analysis, (ii),
which complements the �random�processes and provides di¤erent insights into network forma-
tion. Being able to evaluate the consequences of various network structures is necessary in order

35See Vazquez (2003) for a related process which also exhibits clustering, where links are formed by �rst entering
at a randomly selected node and then following a path emanating from the node.
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to move the study of social networks beyond a purely descriptive exercise, and having welfare
measures and outcomes associated with di¤erent networks is essential in this regard. Also when
integrated with an equilibrium analysis, we can analyze and understand the potential con�ict
that arises between the networks emerging through the choices of the parties involved and the
networks that are best from a societal perspective.

Another important point to emphasize, is that such a game theoretic perspective can help
answer the questions as to why certain network features might appear. I will discuss this a
bit more below, with respect to contrasting views of �small-worlds� phenomena. I will also
discuss the limitations of an economic/game theoretic approach, and the potential for hybrid
approaches, which combine some randomness and heterogeneity with economic motivations for
link formation.

3.2.1 An Economic Approach

Some of the �rst models bringing explicit utilities and choice to the formation of social links,
were in the context of modeling the tradeo¤s between �strong�and �weak�ties in labor contact
networks. These models were by Boorman (1975) and Montgomery (1991), and explored �ndings
and hypotheses about di¤erent strengths of ties and their role in �nding employment that were
originally due to in�uential work by Granovetter (1974). Granovetter had observed that when
individuals obtained jobs through their social contacts, while they sometimes did so through
strong ties (people whom they knew well and interacted with on a frequent basis), they also
quite often obtained jobs through weak ties (acquaintances whom they knew less well and/or
interacted with relatively infrequently). This led Granovetter to coin the phrase �the strength of
weak ties.� Boorman�s article and Montgomery�s articles provided explicit models where costs
and bene�ts could be assigned to strong and weak ties, and tradeo¤s between them could be
explored.

From a completely separate perspective, another use of utility functions in a network context
emerged in the work of Myerson (1977). Myerson was originally interested in characterizing a
cooperative game theoretic solution concept, the Shapley value, without directly imposing an
additivity axiom. This led him to analyze a class of cooperative games36 that were augmented
with a graph structure. In particular, in these games the only coalitions that could produce
value are those that are pathwise connected within the underlying graph. He thought of the
graphs as indicating the possible cooperation or communication structures. So, starting with
some given cooperative game and then augmenting it with such a graph, one ends up with a
new cooperative game where the worth of any coalition is determined by how it is partitioned
by the graph.37 In that framework, a natural analog of the Shapley value (now termed �The

36For those not familiar with cooperative games, a standard formulation speci�es a value or worth for every
possible set of players. A solution, such as the Shapley Value, then predicts or suggests how the total value of
the society as a whole (the �grand coalition�), should be split between its members and how that depends on
the values that are generated by all the possible subcoalitions. The reason that the information of the values of
subcoalitions is important, is that it provides information about how much di¤erent players contribute to society
as one can calculate, for instance, how much value would be lost if a given player were removed from the society
or from some given subcoalition.
37For example, considering a coalition 1,2,3 and a graph that just has a link between 1 and 2, means that the

coalition would generate value as if it were just 1,2 instead of 1,2,3 (normalizing isolated players to have value of
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Myerson Value�) emerges and can be characterized with some simple axioms. Aumann and
Myerson (1988) then recognized that di¤erent graph structures led to di¤erent allocations of
value to the agents in the society, and so they studied a speci�c extensive form game where
links are considered one-by-one according to some exogenous order, and formed if both agents
involved agree. While that game turns out to be hard to analyze even in three-person examples,
it was an important precursor to the more recent economic literature on network formation.38

In contrast to the cooperative game setting, Jackson and Wolinsky (1996) explicitly con-
sidered networks, rather than coalitions, as the primitive. Thus rather than deducing utilities
indirectly through a cooperative game on a graph, they posited that networks were the primitive
structure and agents derived utilities based on the network structure in place. Once we have
utility being derived from networks, we can take a game theoretic approach to modeling net-
work formation by modeling the formation of links via the decisions of self-interested maximizing
players.

As with any game theoretic setting, there are di¤erent approaches to modeling equilibrium.
A standard equilibrium concept such as Nash equilibrium is not well suited to modeling network
formation, as the consent of two players is generally needed to form a link or relationship.39 For
example, if we simply consider a game where each agent announces the links he wishes to form
and we form links that are jointly announced, it is always a Nash equilibrium to have no links
form. Each player announces an empty set of links since he or she (correctly) anticipates that
all other players will do the same. There are various ways around this, and a very simple one
is to de�ne a simple stability notion directly on networks. This was the approach followed by
Jackson and Wolinsky (1996) who de�ned the following notion of pairwise stability. A network
is pairwise stable if no player wants to sever a link and no two players both want to add a link.

More formally, let ui(g) denote the net utility that agent i receives under the network g,
inclusive of all costs and bene�ts. A network g is pairwise stable if

(i) for all ij 2 g, ui(g) � ui(g � ij) and uj(g) � uj(g � ij), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

The requirement that no player wishes to delete a link that he or she is involved in implies
that a player has the discretion to unilaterally terminate relationships that he or she is involved
in. The second part of the de�nition can be stated in various ways. In order for a network to
be pairwise stable, it is required that if some link is not in the network and one of the involved
players would bene�t from adding it, then it must be that the other player would su¤er from the
addition of the link. Another way to state this is that if we are at a network g where the creation
of some link would bene�t both players involved (with at least one of them strictly bene�ting),
then the network g is not stable, as it will be in the players�interests to add the link.

0).
38See Slikker and van den Nouweland (2001) for an overview of much of the cooperative game theoretic literature

that has followed on communication and cooperation structures.
39There are some exceptions. In some purely directed settings, it is possible to form a link without the

destination node�s consent - such as forming a link to a web page or citing a paper. In such cases, the issue of
mutual consent does not arise and a solutions such as Nash equilibrium and its re�nements can be used. See
Jackson (2004) for more discussion and references on such equilibrium modeling issues.
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While pairwise stability is natural and quite easy to work with, there are limitations of the
concept. For instance, it only considers deviations one link at a time, and by at most two players
at a time. This is a current area of research (see Section 5), but nonetheless pairwise stability
serves as a sensible starting point.

Given that we have well-de�ned payo¤s to players as a function of the network, there are
two obvious and standard notions of welfare that we can apply. The �rst is simply a utilitarian
principle, which is to say the �best�network is the one which maximizes the total utility of the
society. This notion was referred to as �strong e¢ ciency�by Jackson and Wolinsky (1996), but
I will simply refer to it as e¢ ciency. Let v(g) =

P
i ui(g) be the total value that accrues to

society as a function of a network g. A network g is e¢ cient relative to v if v(g) � v(g0) for all
g0 2 G(N). It is clear that there will always exist at least one e¢ cient network, given that there
are only a �nite set of networks.

The other natural notion of e¢ ciency is that of Pareto e¢ ciency. A network g is Pareto
e¢ cient relative to (u1; : : : ; un) if there does not exist any g0 2 G such that ui(g0) � ui(g) for all
i with strict inequality for some i. To understand the relationship between the two de�nitions,
note that if g is e¢ cient relative to v =

P
i ui then it is clearly Pareto e¢ cient relative to

(u1; : : : ; un). The converse is not true. What is true is that g is e¢ cient relative to v if and
only if is Pareto e¢ cient relative to all (bu1; : : : ; bun) such that Pi bui = v. Thus, e¢ ciency is
a stronger notion and is the more natural notion in situations where there is some freedom to
reallocate value through transfers. Pareto e¢ ciency is a less decisive notion, often admitting
many networks, but it might be more reasonable in contexts where the payo¤ functions are �xed,
and no transfers are possible.

3.2.2 The Connections Model

A simple model of social connections, from Jackson and Wolinsky (1996), is useful for illustrating
the relationship between e¢ cient and pairwise stable networks.

In the connections model, links represent social relationships between players (nodes); for
instance friendships. These relationships o¤er bene�ts in terms of favors, information, etc., and
also involve some costs. Moreover, players also bene�t from indirect relationships. A �friend of
a friend�also results in some indirect bene�ts, although of a lesser value than the direct bene�ts
that come from a �friend.� The same is true of �friends of a friend of a friend,�and so forth.
The bene�t deteriorates in the �distance�of the relationship. This is represented by a factor �ij
that lies between 0 and 1, which indicates the bene�t from a direct relationship between i and j
and is raised to higher powers for more distant relationships. For instance, in the network where
player 1 is linked to 2, 2 is linked to 3, and 3 is linked to 4; player 1 gets a bene�t of �12 from
the direct connection with player 2, an indirect bene�t of (�13)2 from the indirect connection
with player 3, and an indirect bene�t of (�14)3 from the indirect connection with player 4. For
�ij < 1 this leads to a lower bene�t from an indirect connection than a direct one. Players only
pay costs, however, for maintaining their direct relationships.

We can write the net utility or payo¤ ui(g) that player i receives from a network g as

ui(g) =
X

j 6=i: i and j are path�connected in g
(�ij)

pij(g) �
X

j 6=i: ij2g
cij ;
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where pij(g) is the number of links in the shortest path between i and j and cij > 0 is the cost
for player i of maintaining a link with j.

To see how this works, let us consider the special case, termed the �symmetric connections
model,�where the cost and bene�t parameters are identical for all agents, so there exist 1 � � � 0
and c � 0 such that �ij = � and cij = c for all ij. Then, for instance, we can easily deduce
utilities in the network pictured in Figure 6.

Figure 3: An Example of Payo¤s in the (Symmetric) Connections Model

The highly stylized nature of the connections model allows us to begin to answer questions
regarding which networks are e¢ cient, or �best� from society�s point of view, as well as which
networks are likely to form when self-interested players choose their own links as modeled through
pairwise stability.

The e¢ cient networks are characterized as follows in the symmetric connections model:

(i) the complete network if c < � � �2,

(ii) a star encompassing all nodes if � � �2 < c < � + (n�2)
2 �2, and

(iii) the empty network if � + (n�2)
2 �2 < c.

The intuition behind this is very clear. If costs are very low, (i), it will be e¢ cient to include
all links in the network. In particular, if c < � � �2, then adding a link between any two agents
i and j will always increase total welfare. This follows because they are each getting at most �2

of value from any indirect connection between them, and since �2 < � � c the value of a direct
connection between them increases their utilities (and might also increase the utilities of other
agents). When the cost rises above this level, so that c > ���2 but c is not too high, it turns out
that the unique e¢ cient network structure is to have all players arranged in a �star�network.
This can be seen from several observations, and a careful proof is not much more complicated.
The �rst observation is that a star network involves the minimal number of links (n� 1) needed
to connect all individuals. The second is that in a star network all nodes are within at most
two links from one another. The third observation is that when c > � � �2, then a path of
length two between two nodes generates more utility than a path of length one. A star has the
minimal number of links, and has all nodes at distances of two or less, and the most possible
at a distance of two out of all networks that connect all individuals. It is also easy to check by
direct calculations, that if a small star generates positive total utility then a larger star generates
more, and that a single star outperforms separate stars. Thus, if it is e¢ cient to connect agents
at all when c > �� �2, then we should do it through a single star. The calculation in (iii) comes
from checking whether or not the utility of a star including all nodes is positive.
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Thus, in the connections model the set of e¢ cient networks have a remarkably simple char-
acterization: either costs are so low that it makes sense to add all links, or are so high that no
links make sense, or costs are in a middle range and the unique e¢ cient architecture is a star
network.40

We can now compare the e¢ cient networks with those that arise if agents form links in a
self-interested manner. The pairwise stable networks are as follows.

(i) If c < � � �2, then the complete network is the unique pairwise stable network.

(ii) If �� �2 < c < �, then a star encompassing all nodes is pairwise stable, and there are also
other pairwise stable networks.

(iii) If � < c < � + (n�2)
2 �2, then all pairwise stable networks are ine¢ cient, and are such that

each agent has either no links or at least two links.

(iv) If � + (n�2)
2 �2 < c, then the empty network is the unique pairwise stable network.

In the case where costs are very low c < �� �2, the direct bene�t to the agents from adding
or maintaining a link is positive, even if they are already indirectly connected. Thus, in that
case the unique pairwise stable network will be the e¢ cient or complete network. When costs
are very high, then no links form and again we have an e¢ cient outcome. The more interesting
cases in the middle ranges of (ii) and (iii), so that the star is the e¢ cient network, but is only
sometimes pairwise stable and even then not uniquely so. It is easy to see why if c > �, then the
e¢ cient (star) network will not be pairwise stable. This follows since the center player gets only
a marginal bene�t of � � c < 0 from any of the links. This tells us that in this cost range there
cannot exist any pairwise stable networks where there is some player who just has one link, as
the other player involved in that link would bene�t by severing it. For various values of c > �
there will exist nonempty pairwise stable networks, but they will not be star networks: as just
argued, they must be such that each connected player has at least two links.

This simple model makes it obvious that there will be situations where individual incentives
are not aligned with overall societal bene�ts. While this connections model is highly stylized, it
still captures some basic insights about the payo¤s from networked relationships and it shows
that we can begin to understand the incentives that underlie network formation and see when
resulting networks are e¢ cient.

To get a broader feeling for the ideas of e¢ ciency and stability, let us examine another simple
example.

3.2.3 Networks Between Firms: an Industrial Organization Perspective

There are various ways in which �rms form relationships that a¤ect market outcomes. They
can collaborate in research and development, they can merge, they can produce joint products
and ventures, they can contract on speci�c supplier relationships, they can collude, etc. As the
costs of production to various �rms and resulting prices and quantities produced and demanded

40This characterization of e¢ cient networks actually holds for a much broader set of environments, as long as
utility depends on minimal distances between nodes and there is some sort of decay of value with distance and
there are symmetries across agents, as shown by Bloch and Jackson (2003).
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can all vary based on the di¤erent relationships between �rms, this is a natural setting to apply
network formation.41

Let us consider an example due to Goyal and Joshi (2003), which allows for easy character-
izations of e¢ cient and pairwise stable networks. When two �rms form a link it lowers their
respective costs of production. This is

the only direct e¤ect of a link. There are also indirect e¤ects, as �rms eventually compete
in the market. The cost structure, and thus the full network structure, a¤ects how much each
�rm eventually sells on the market and the resulting pro�ts.

In this model the marginal cost of production of �rm i is given by ci(g) = a� bni(g), where
ni(g) = jNi(g)j is the number of neighbors that �rm i has in the network g. (Set a > (n�1)b > 0
so that costs are always positive.) Thus, each additional alliance that a �rm undertakes lowers
its marginal cost of production by an amount b.

The eventual pro�ts to �rms can be considered under various assumptions about how they
compete, with the two canonical ones being pure Cournot and pure Bertrand competition.42

Let us �rst consider Cournot competition, where the market demand is given by the inverse
demand function with the price p = � �

P
i qi, where � > 0 is a given constant and qi is the

quantity of the good produced and o¤ered for sale by �rm i.
Under the assumption that � is large enough, it is easy to check that each �rm�s Cournot

equilibrium pro�ts are (qi(g))2, where43

qi(g) =
�� a+ nbni(g)� b

P
j 6=i nj(g)

n+ 1
:

From this, as Goyal and Joshi point out, it is very easy to derive the pairwise stable networks.
Note that the pro�ts of a �rm are increasing in qi(g). Note also that the network enters qi(g)
in proportion to nni(g) �

P
j 6=i nj(g). Thus, if links have a negligible cost, �rm i gains with

each link that it adds. If link costs are small enough, then the complete network is the unique
pairwise stable network under Cournot competition.

In measuring e¢ ciency here, one might also want to include consumer welfare as well as
the payo¤s to the �rms. The consumer welfare (consumer surplus) is strictly increasing in the
total quantity produced, and so they would like to see the complete network formed. As it
turns out, the �rms�total pro�ts are also increasing in the total number of links formed. Thus,
the complete network is e¢ cient whether or not the consumers are accounted for. While the
full calculations take a few steps,44 it is easy to compare the empty network to the complete

network. If there are no links formed, then each �rm�s pro�ts are
�
��a
n+1

�2
, while if all links form,

41 see Bloch (2004) for a recent survey.
42For non-economists, Cournot competition refers to a situation where producers choose an amount to produce

or a capacity and then the price that clears the market is determined by demand, while (pure) Bertrand com-
petition refers to a situation where �rms choose prices and then the lowest priced �rm(s) produce to service the
entire demand at that price. I will not try to describe these approaches to modeling oligopoly here, as they can
be found in most any �principles�textbook.
43A �rm�s pro�ts are (p�ci(g))qi. The �rst order conditions lead to @p

@qi
qi+p�ci(g) = 0. Noting that @p

@qi
= �1,

this implies that in equilibrium qi = p�ci(g), and so pro�ts are thus (qi)2. Solving qi = p�ci(g) = ��
P

j qj�ci(g)
simultaneously across i, gives the explicit expressions for the quantities. A su¢ cient condition for all quantities
to be positive is that � is large, or that �� a� (n� 1)(n� 2)b > 0.
44Consult Goyal and Joshi (2003, 2004).
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then each �rm�s pro�ts are
�
��a+bn(n�1)�b(n�1)2

n+1

�2
. Clearly, the total pro�ts are higher when

all links form.
Next, let us consider the other textbook form of oligopoly: pure Bertrand competition where

the �rms charging the lowest price split the market. In this setting, if there are at least two
�rms who have the lowest cost level, then they will end up bidding their prices down to that cost
and splitting the market, but making no pro�ts as the price will equal their cost of production.
In contrast, if there is one �rm who has a lower cost than the other �rms, then that �rm will
end up capturing the entire market at a price of the second lowest cost level.45

This makes it quite easy to deduce pairwise stable networks. If there is any positive cost to
forming a link, then the only �rms willing to form links must be earning a pro�t. However, the
only time any �rm earns a pro�t under pure Bertrand competition is when a single �rm has a
lower cost than all others, and then only that �rm earns a positive pro�t. This means that at
most one �rm would ever be willing to bear the cost of a link. Thus, no links will form, and the
unique pairwise stable network is the empty network.

Here, we see that the resulting network will not be e¢ cient either from the �rms�or the
consumers�standpoints. From the industry pro�t standpoint, it would be better if some links
were formed so that some �rm earned positive pro�ts (supposing small enough link costs), and
in most cases the highest industry pro�ts would actually involve a star network where the center
�rm would enjoy a very low cost and also see much higher costs and thus high prices from its
competitors. This would be the e¢ cient network structure if link costs are small and only �rms�
pro�ts are considered. From the consumers�perspective, it would be best to see a low price.
When the consumers�welfare is also accounted for (and again, link costs are negligible), the
e¢ cient network would be one of what Goyal and Joshi (2003) call �interlocking stars�. That
is where there are two �rms, i and j, that are each linked to every other �rm, and �rms other
than i and j are only linked to i and j. This leads to the lowest price and no pro�ts for the
�rms, but leads to a maximum of consumer surplus (as well as consumer surplus plus pro�ts).

While the networks in these examples again turn out to be stark in their structure, we again
see that there are some circumstances where incentives to form links are congruent with overall
welfare, and other cases where they are not. In the connections model this depended on the
link formation costs. In the above oligopoly models, it is the market structure that determines
whether or not there is a tension between stability and e¢ ciency.

3.2.4 A General Tension between Stability and E¢ ciency

In situations where individual payo¤s and welfare are determined by the entire structure of a
network, there are naturally externalities present. The decision of some agents to form or sever
links can have important consequences for other individuals, who are not directly involved in
those links but may be indirectly a¤ected by them. In the connections model, a decision of the
center agent in a star to maintain a link with some agent gives indirect bene�ts to all of the

45Working out equilibria in asymmetric Bertrand games has some subtle points
if a continuum of prices is allowed. This is because the lowest cost �rm would like to underbid the other �rms

by as small an amount as possible, which means that there are no pure strategy equilibria. However there are
equilibria where the higher cost �rms mix (with support in a small interval with its min at the second lowest
cost), that will lead to the claimed outcome, as described by Blume (2003).
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other agents. In the oligopoly model, the decision of one �rm to link to another lowers both of
their costs, which can be detrimental to the other �rms.

Given that there are externalities present, it is expected that the networks that are stable
do not correspond to those that are e¢ cient. However, what is less expected, is that we cannot
always correct this ine¢ ciency by taxing and subsidizing agents for the links they form (even
in a complete information setting). The fact that no �reasonable� set of transfers can help
rectify the disparity between the equilibrium and the e¢ cient networks is easily seen through
the following simple example from Jackson and Wolinsky (1996). Consider the utilities pictured
in the following �gure. The utility of each agent in the complete network is 4. The utility of
each connected agent in a linked pair is 6 (with the disconnected agent having utility 0). The
e¢ cient network is one with two links, where a total utility of 13 is generated, with the central
agent getting a utility of 4.5 and the other two agents getting a utility of 4.25 each.
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It is obvious in this example that in the absence of any transfers, the pairwise stable networks
all fail to be e¢ cient. The pairwise stable networks are only those involving a single link. In any
other network some agent(s) have an incentive to sever a link (every agent has such an incentive
in the complete network, and the center agent has an incentive to do so in each of the two link
networks).

25



So, let us consider some possible transfers to try to support an e¢ cient network as being
pairwise stable. Given the symmetry of the example, it is enough to consider any of the two-link
networks. Let us consider the middle one. We see that the payo¤s with potential transfers are
4:25 + t1, 4:5 + t2 and 4:25 + t3. In order to have the transfers be feasible, it must be that
t1 + t2 + t3 � 0. Given the complete symmetry between the �rst and third agents, let us set
their transfers to be equal so that t1 = t3.

Given that we want to adjust the transfers so as to ensure that the middle two-link network
is pairwise stable, we need to make sure that the �rst and third agents would not gain from
adding the missing link. Thus, we need t1 = t3 � �:25. However, in order to have the network
be pairwise stable we also need the second agent, or center agent, to be willing to keep both
of the links that are in place. As that agent gets a payo¤ of 6 if either link is deleted, it must
be that t2 � 1:5. However, now we have violated the feasibility condition as the total sum of
transfers needs to be greater than one to ensure pairwise stability.46

There are ways around this, but they require treating agents unequally (e.g., setting t1 and
t3 di¤erently even though the agents are identical in the problem), or else making transfers at
some of the other networks in ways

that violate some other conditions.47 For instance, suppose that we set transfers so that we
completely equalize utilities for all agents in each network. While this would require allocating
utility to agents who may not even be connected to the network, it does provide all agents
incentives that coincide with the overall societal value.

3.2.5 Bargaining and Link Formation

Another important point is made by Currarini and Morelli (2000) who show that incorporating
the allocation of utilities as part of the bargaining process that accompanies link formation can
also lead to more e¢ cient network formation.48 They describe a speci�c extensive form game
where players announce both the links they wish to form and the payo¤s they demand. Players
move in some order. The basic idea is that players realize that they can maximize the payo¤
they can demand if they maximize the value of the overall network. In a setting where players
move in turn, each one extracts a variation on their marginal contribution to the value of the
e¢ cient network (see Mutuswami and Winter (2002) for details). Although these results hinge on
the structure of the link-formation-bargaining game, and in particular on its �xed ending point
which provides for the asymmetry in bargaining power across the agents (where, for instance,
the last player to move is at a real disadvantage),49 Nevertheless, these results show that whether
or not agents have the ability to bargain over their payo¤s at the time of link formation can be

46This example extends for weaker notions of e¢ ciency and a variety of notions of stability. See Jackson and
Wolinsky (1996) to see extensions to other stability notions, and Jackson (2003) for details on weakening the
e¢ ciency criterion.
47See Dutta and Mutuswami (1997) for an analysis of ways of reallocating utility so that that some e¢ cient

network is strongly stable for a wide variety of settings, when this equal treatment property is dropped.
48Mutuswami and Winter (2000) also discuss a similar network formation game and also show that such positive

results hold in a broad range of settings, but under a slightly di¤erent formulation.
49See Bloch and Jackson (2003) for an analysis of endogenous transfers in settings that treat players more

symmetrically (simultaneous move games). They relate the types of transfers that are needed to reach e¢ cient
networks to the types of network externalities that are present in the setting.
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important in determining the type of network that forms.

3.2.6 The Economics of Small Worlds

The results from the previous section illustrate some central lessons that have come out of the
game theoretic literature, namely that:

� equilibrium networks can di¤er from e¢ cient networks,

� whether or not e¢ cient and stable networks coincide is context-dependent,

� discrepancies between stability and e¢ ciency can only sometimes be recti�ed through
bargaining or transfers, and

� the networks that emerge in equilibrium, and the resulting allocation of costs and bene�ts,
depend on various features of the formation process and equilibrium notion.

We also see that the game theoretic analysis has a very di¤erent �avor than the random graph
models. In particular, the predicted equilibrium networks are often quite stark in the nature
(stars, complete networks, interlinked stars, etc.). This is partly due to the fact that most of the
models that have been solved have strong symmetries in the assumed payo¤ functions. Without
any natural heterogeneity in the problem, it is not surprising that very simple network structures
emerge as predictions.

This does not mean that equilibrium models are only suited for deducing broad conclusions
about tensions between incentives and e¢ ciency, or other such questions. These models still have
the possibility to provide lessons that are more descriptive in nature. For example, economic
forces actually tell us a great deal about why we should expect to see �small-worlds�. That is,
why should we see high clustering on a local level, and short average path length overall? Ideas
related to this have been explored in a series of papers (Johnson and Gilles (2000), Carayol and
Roux (2003), Galeotti, Goyal, and Kamphorst (2004), Hojman and Szeidl (2004b), and Jackson
and Rogers (2005)).

The basic ideas are as follows. Consider a situation where the cost of maintaining a relation-
ship between two agents depends on their proximity. Proximity need not be geographic, but can
refer to any sort of nearness according to some traits. It is relatively easier to form friendships
when two people attend the same school, have the same profession, or have other things in
common. Such low costs on a �local� level help explain why high clustering will be present in
a network. The explanation for low average path length in a social network is (slightly) more
subtle. Consider a network where costs are related to proximity. Suppose we ended up with a
network that exhibited small clusters of individuals who were tightly connected in small groups
(those close to each other), and yet the average path length in the overall network was high,
due to an absence of links across groups. We might imagine that forming a link that was not
�local�in nature was fairly costly. However, with an absence of links across groups, by forming
a link that was not �local� in nature one would gain substantial access to a number of agents.
The fact that a single link can substantially shorten the distance to a large number of agents at
once, is precisely what makes that link valuable. While one will not see as many links that are
very costly, the large potential bene�t that they bring will mean that they will be present, and
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that overall distances in the network will have some upper bound.50 These ideas are illustrated
in the following �gure.

Figure 4: A Pairwise Stable Network in the Islands Model

This is a variation on the connections model called the �islands model� by Jackson and
Rogers (2005). In that model, agents are located on separate islands (which might be geographic,
professional, or relate to some other characteristics). There is a relatively low cost to linking to
an agent on one�s own island c > 0, while the cost of linking to an agent on a di¤erent island
is much higher, C >> c. The bene�ts accrue just as in the connections model. Even though
the cost is much higher to linking across islands, we still see some links across islands, as if
such links were not present, then the gain from linking would be quite substantial as adding
one link would provide access to a large number of agents at path lengths of only one or two.
In the �gure above, it is easy to verify that the given network is pairwise stable when c < :04,
1 < C < 4:5, � = :95, and where the �ve agents who are completely connected to each other lie
on the same island. While this example is suggestive, it is easy to see that these properties hold
more broadly (e.g., see Jackson and Rogers (2005)).

This economic analysis of small worlds gives complementary insights to those of Watts and
Strogatz (1998) discussed above, which gives more of an explanation of how it is possible to
have both high clustering and short path length at the same time, whereas the above model
gives more insight into why we should expect this to be what we see in most social networks.
Also, a distinguishing feature between an economic modeling and a random modeling of these
features concerns �shortcut� links (i.e., those which link distant parts of the network and if
deleted would substantially alter the distance between the connected nodes). In a random
model, while unlikely, shortcut links may occur in close proximity to each other. Under the
economic approach, the cost of building a second shortcut link next to an existing one would
outweigh the bene�t.51

50This is reminiscent of Burt�s (e.g., Burt (1992)) idea of structural holes. One will not see too many �structural
holes�, where the operational de�nition of a structural hole in this context would be that the addition of a link
could substantially shorten distances among two otherwise disconnected or distantly connected groups of nodes.
51 I thank Yann Bramoullé for pointing this out.
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3.3 Discussion of Models of Network Formation

Let me now discuss some of the strengths and weaknesses of the two approaches to modeling
network formation.

An unavoidable challenge in modeling networks is dealing with the complex combinatorial
nature of the setting. The number of networks that can form is exponentially large in the
number of nodes, which makes tractability a major issue. This has produced substantial hurdles
for both the random and strategic approaches to network formation, and yet they have each
made remarkable progress in advancing our understanding of what types of networks are likely
to emerge.

The random graph based models have a strength of producing speci�c networks, or distri-
butions over possible networks, which exhibit signi�cant heterogeneity that comes largely from
chance and/or through birth dates. The models have provided some insight into how speci�c
features of networks (e.g., fatter tails in the degree distribution) might be traced to certain
aspects of a formation process (e.g., some form of preferential attachment). While these models
are able to match increasingly long lists of features of observed networks, the processes end up
being ad hoc: structured to match those features, and generally we need new processes each
time we add a new feature. Another limitation is that the models are descriptions of processes,
essentially algorithms, for generating networks. This has two implications. First, as discussed
above, this helps answer the �how�of formation, but does not provide much insight as to the
�why�.52 And second, a process does not provide us with methods to evaluate whether the
emerging networks are good or bad, that is, whether the resulting networks are e¢ cient.

These last weaknesses are the primary strengths of the game theoretic models. The game
theoretic structure provides both a framework for evaluating networks and for understanding why
(rather than how) certain networks are likely to emerge. This has resulted in some understanding
of the relationship and tension between stable networks and e¢ cient networks. The weakness of
the game theoretic approach is that most of the explicit characterizations of equilibrium networks
are often so stark that the predicted networks have overly simple structures. Thus, while such
models can say something about whether the networks will end up being e¢ cient or not, it has
had a hard time predicting things like what sort of degree distribution the network might have.
One can push the models to derive some general features, such as those of the �small-worlds�
properties discussed in the last section, but deriving very clear pictures of emerging large

social networks is still beyond the state of the art.
Interestingly, these two approaches are very complementary. This suggests that some com-

bination of the two approaches might be very fruitful. Incorporating some random elements in
terms of which links might be considered at a given time, and then some explicit payo¤s and
insight into why that link might or might not be added, should end up producing important
new insights into the types of networks that we should expect to emerge in di¤erent settings,
and the how and why behind them.53

52Another way to phrase this how versus why distinction is to distinguish between reduced form models versus
structural models.
53There are some random dynamic models of network formation that are based on incentives to form links, such

as Watts (2001), Jackson and Watts (2002a), Tercieux and Vannetelbosch (2004). However, those models use the
random process to select from the set of pairwise stable networks, and are thus really more squarely in the game
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4 Behavior on Networks

Let me now turn to the second main issue, and discuss a few examples of models of networks
that relate social network structure to behavior.

As with any scienti�c study one can be interested directly in the phenomenon itself, or one
can be interested in its broader implications. That is, one might simply be interested in (social)
networks, and understanding their characteristics, without any broader perspective. As networks
are rich and complex by their very nature, they hold much intellectual interest. Nevertheless, we
should also be interested in understanding how the networked patterns of social interactions are
important in determining (human) behavior and social outcomes. It is this aspect that allows
the science and modeling of networks to have relevance outside of itself.

Let me emphasize here, that understanding how network structure impacts behavior and
outcomes is also very important as a building block for the �economic approach�in the following
sense. The discussion above takes as given that each player can be assigned a payo¤as a function
of a network. In many contexts those payo¤s will be the result of some interaction. For instance,
if agents are connected in a network and the network represents trading opportunities, then we
must predict as a function of the endowments, preferences, and network structure, which trades
will be made, at which prices and how that will determine agents�payo¤s. Thus, from primitives
and a network structure we can derive induced payo¤s and understand how changes in network
structure will change the overall e¢ ciency or societal welfare, as well as individual incentives to
form or maintain links. We will see more of this below, and it is an essential part of modeling
and understanding the impact of social networks.

There is one other aspect of understanding how network structure impacts behavior that also
bears discussion. As di¤erent structures have di¤erent impacts on behavior, understanding them
and having an associated cost/bene�t or welfare analysis can lead to speci�c policy prescriptions.
For instance, understanding how the centrality of criminals a¤ects their neighbors� criminal
behavior has important implications for government policy (e.g., see Ballester, Calvo-Armengol,
and Zenou (2003)). Understanding how social networks impact employment opportunities, social
mobility, and human capital investments has implications for the subsidization of education (e.g.,
see Calvo-Armengol and Jackson (2003,2004,2005)).

4.1 Markets and Networks

There is a rich set of studies of markets and networks from an economics perspective (Kirman
(1997), Ioannides (1997), Tesfatsion (1997), Weisbuch and Kirman and Herreiner (2000), Kran-
ton and Minehart (2001), Corominas-Bosch (2005), Wang and Watts (2002), Galeotti (2005)),
as well as from the sociology literature (e.g., the exchange networks literature following Cook
and Emerson (1978)). This is one of the most important and obvious applications of networks
to economics as so many markets are not centralized, but rather consist of a complex structure
of bilateral trades and relationships.

A recent paper by Kakade, Kearns, Ortiz, Pemantle, and Suri (2004) provides an example

theoretic literature. While these might serve as a starting point, a truer hybrid would involve randomness that
really limited the set of potential opportunities to form links in a much stronger way so that some potentially
valuable links never even have the chance of being formed.
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of a model that relates market outcomes to random graph-based network structures.54 They
examine a general equilibrium in a market, where the set of trades that can occur are governed
by a social network. Their aim is to tie price dispersion to the statistical properties of the
underlying network. This is done in the context of a simple buyer-seller model.55 Buyers
have cash endowments and a constant marginal value for a consumption good. Sellers have unit
endowments of the consumption good (which they do not value) and desire cash. Buyers thus buy
from the least expensive seller(s) with whom they are connected until they have exhausted their
cash budget. Prices are seller-speci�c and determined to clear markets.56 The full con�guration
of prices can be quite complex, but the basic intuition is that agents who have more connections
should expect better prices and so the price that an agent pays or receives should be related to
his or her degree and position in the network. The authors then examine a stochastic process
for generating networks of links between buyers and sellers, which is similar to some discussed
above (see Section 3.1.4) in that it is a combination of forming links completely at random and
forming them in a manner based on preferential attachment. While the model is di¢ cult to solve
analytically, the authors do obtain some bounds in the extremes. For instance, they show that
in the extreme where links are formed completely at random, and the probability of forming
a link is high enough then there is no price dispersion. In contrast, in the other extreme of
pure preferential attachment there will generally be greater asymmetries in the degrees of nodes
and there will be price dispersion. Through simulations, the authors then estimate the price
dispersion that would result from observed trading patterns based on a United Nations data set
of trade volumes.

Given the importance of understanding trade and market structure, this is still an area that
deserves much more study. The model discussed above is speci�c both in its assumptions about
transactions and the types of networks it considers, and yet this still proves to be di¢ cult to
handle analytically. Moreover, it seems clear that the network structure underlying such trading
relationships has a substantial strategic component to it and so the random graph models might
not be such good approximations of trading networks, although there is no empirical research to
really work from on this question. Previous models based on strategic formation (e.g., Kranton
and Minehart (2001) and Corominas-Bosch (2005)) are more tractable analytically, but only
represent �rst-steps in modeling, as they fall short of including the heterogeneity needed (e.g.,
in endowments, preferences, and production technologies) to match most markets.

4.2 Labor Markets

As discussed in Section 2, it is well-documented that networks of social contacts play an impor-
tant role in employment. Recent work now brings network structures to the study of employment
and wages over time. Calvó-Armengol and Jackson (2004) examine a model where agents only

54Another important example is found in Kirman (1983) and Kirman, Oddou and Weber (1986), who, in the
context of core convergence in exchange economies, analyze the impact of limiting blocking coalitions to connected
groups, where connection is de�ned relative to a Bernoulli random graph.
55See also Kakade, Kearns and Ortiz (2004).
56This assumption embodies price-taking, which might be the weakest aspect of the model, given that much

of the trading is done bilaterally. Corominas-Bosch (2004) presents an alternative buyer-seller formulation where
prices are determined through an explicit bargaining game, and Kranton and Minehart (2001) provide a model
where prices are determined through simultaneous auctions.
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obtain information about jobs through a network of connections.57 Jobs arrive exogenously to
the network and agents occasionally lose a job according to some exogenous process. If an agent
is already employed and hears about a job, then he or she passes the information on to his
or her unemployed neighbors.58 This passing of information to social ties means that agents�
employment and wages over time will depend on their position in the social network, how many
social ties they have, and how well-employed those social ties are. They show that this results
in correlation patterns in wages and employment of connected agents, and that these patterns
depend on the network structure. Also, through simulations, they show that the correlation
varies with the distance and location of agents in the network, as well as the structure of the
network. They also show that the condition of an agent�s social ties has an impact on their
decision of whether to stay in the work force or drop out. This results in a contagion e¤ect
where if the neighbors of an agent drop out of the labor force, then that increases the likelihood
that the agent will drop out, and so forth. This can lead to pockets of drop-outs and persistent
unemployment, and among other things, can also help explain persistent di¤erences in wages
and drop-out rates across races.59

While these results show that incorporating social networks into models of labor markets
is important for our understanding of employment and wage patterns, there is still much to
be learned about how network structure matters. The empirical and theoretical work to date
makes it clear that networks play a key role in labor markets. However, it would be very useful
to have a richer understanding of how di¤erences in the structures of agents�social networks
impact their wage and employment over time, as well as how the network co-evolves with their
career and job choices.

4.3 Learning and networks

Another application of obvious importance in understanding how network structure impacts
behavior, is to understand how information propagates through a network, and in particular how
people in a social network learn from each other. Taking a Bayesian perspective is a standard
approach in economic modeling, and an obvious starting point. The model of Bala-Goyal (1998)
builds from this perspective (see also Allen (1982) and Ellison and Fudenberg (1993, 1995)).

Bala and Goyal (1998) make a very simple but important point. Consider a series of agents
connected in a social network who all face the same stationary, but random, environment. The
network is �xed and time progresses in discrete dates where agents each choose one of a �nite set
of actions at each date. The payo¤s to the actions are random and their distribution depends on
an unknown state of nature. The agents are all faced with the same set of possible actions and
the same unknown state of nature. They all have identical tastes and face the same uncertainty
about the actions. Over time, each agent observes his or her neighbors�choices and outcomes.
The main conclusion is that eventually the agents will converge to choosing the same action,
based on the observation that over time players who observe each others�actions and payo¤s
57See also Calvó-Armengol (2004) and Jackson and Lopez-Pintado (2005).
58See Calvó-Armengol and Jackson (2005) for a richer model where jobs are heterogeneous, the arrival rate may

be state dependent, and job information may circulate indirectly through the network.
59Calvo-Armengol and Jackson (2005) study how investments in education based on social network status can

also help us to understand the prevalence of social immobility, which has been found without exception in countries
around the world.
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should eventually come to choose the same action.60 The intuition is as follows. We need only
reason that any two neighbors earn the same long run utility, as this implies the same must
be true network-wide. If one neighbor is doing better than another, then the neighbor with
the poorer payo¤ will learn from observing the other agent, and eventually change behavior to
obtain a similar payo¤.61 Note that the fact that all agents end up with the same long run utility
does not mean that all agents converge to choosing the �right�action. However, Bala and Goyal
show that if the network is large enough, and there are enough agents who are optimistic about
each possible action spread throughout the network, then the probability that the society will
converge to the best overall action can be made arbitrarily close to 1. The idea is that there will
be su¢ ciently many experiments by the optimistic agents so that the true payo¤ of each action
will be learned and then the society will converge to the right action.

While the above lessons show the potential for the long-run conductance of information
through a network, they do not give us much impression of what happens in the shorter run,
which might often be quite relevant. Nor does the analysis deal with worlds that are not
stationary, or where actions are not taken repeatedly. Most critically, network structure does
not enter the above discussion in any meaningful way. There are papers that have made more
progress on understanding how network structure impacts beliefs. Gale and Kariv (2003) (see
also Choi, Gale and Kariv (2004) and Celen, Kariv, and Schotter (2004)) explore the interaction
between network structure and beliefs under a variety of learning assumptions. Due to the
complexity of some of the inference problems, they are able to provides a detailed understanding
for long run beliefs in small networks (e.g., three nodes) but leave open questions regarding more
complex networks. DeMarzo, Vayanos, and Zwiebel (2003) are able to deal with more general
network structures by assuming that agents follow a speci�c belief updating rule, where agents
(erroneously) treat new iterations of information as independent of previous iterations. They
document an intuitive relationship between the position of an agent in the network and their
resulting impact on beliefs and opinions. These studies are important steps in developing a
fuller understanding of how interaction structure a¤ects information dissemination and belief
formation.

4.4 Spread of Information, Viruses, Disease

Related to studies of learning through a network, which have focused on belief updating and
action choice, there are also studies of the physical spread or transmission of infections and
behavior that are transmitted directly or by chance, and not through some updating or opti-
mization procedures. Examples include the spread of diseases, computer viruses, and also the
spread of some types of behaviors, beliefs, and information. Standard models of such spreading
come from the epidemiology literature, which has focussed on the spread of contagious disease.
One model that is useful to discuss a bit is the SIS model (�susceptible, infected, susceptible�

60See Morris (2000) for another analysis of the spread and convergence of behavior through a network, but in
a di¤erent context where uncertainty regards strategic choices of others and players care about their neighbors�
choices.
61Bala and Goyal work with a boundedly rational model. See Gale and Kariv (2003) for a Bayesian analysis.

DeMarzo, Vayanos, and Zwiebel (2003) exaimine a di¤erent setting where beliefs are updated over time in a
boundedly rational way, andwhere they need not converge across agents, as actions are only taken once and it is
only information that is repeatedly passed.
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model, see Bailey (1975)), which is a variation on the seminal model in the literature, the SIR
model (�susceptible, infected, removed�(SIR) model, which dates to Kermack and McKendrick
(1927)). Such models were originally based on random meetings of individuals. However, net-
worked interactions were discussed as early as Rapoport (1953, 1953b), and eventually models
that allow for network structure were studied by Anderson and May (1988) and Sattenspiel and
Simon (1988). How infection rates depended on speci�c aspects of the network structure has
more recently been studied by Kretschmar and Morris (1996), Pastor-Satorras and Vespignani
(2000, 2001), Lopez-Pintado (2004), and Jackson and Rogers (2004), among others. In particu-
lar, these studies allow one to estimate infection rates based on degree distributions. I describe
this setting in a bit more detail, as it o¤ers one of the clearest understandings of how network
structure can be related to outcomes, and the tools and methods used in such analyses look to
be useful in other contexts.

Consider a network where a given healthy (also called �susceptible�) node catches a disease
in a given period with a probability �kifi, where � 2 (0; 1) is a parameter describing a rate
of transmission of infection in a given period, ki is the (in-)degree of node i, and fi is the
fraction of i�s neighbors who are infected.62 Also suppose that any �infected�node recovers in
a given period with a probability � 2 (0; 1). Thus, nodes are either susceptible or infected, and
can alternate between these states depending on the state of their neighbors. This results in a
Markov chain. We can then ask a series of questions. First, how high does the infection rate
� have to be relative to the recovery rate � in order to have the infection reach some nonzero
steady state in the population? Second, can we estimate the long-run steady-state proportion of
infected nodes? Third, can we relate the answer to these questions to the network structure?63

The heuristic (mean-�eld-based) approach that has been used in this literature to estimate
infection patterns is as follows. Consider a large network whose degree distribution is described
by P , where P (k) is the proportion of nodes that have degree k. Moreover, let us make the
(restrictive) assumption that there is no correlation in degree between linked nodes. Let �(k)
denote the steady-state infection rate of a node with degree k, and � be the average across
nodes: � =

P
k �(k)P (k). The probability that a given link points to a node of degree k is

kP (k)
<k>

(where < k > is the average degree under P , < k >= EP [k]). Note that this is di¤erent from
the distribution of degrees across nodes, as nodes with higher degree are proportionally more
likely to be reached via any given link. Using this we estimate the probability that a given link
points to an infected node in any given period in a steady state distribution under the mean-�eld
hypothesis. This is represented by the parameter

� =

P
�(k)kP (k)

< k >
: (4)

To estimate the steady-state value of �(k), we set the change in the proportion of nodes of degree
k that are infected to 0. That is,

0 =
d�(k)

dt
= �k�(1� �(k))� ��(k):

62This is obviously a fairly speci�c infection mechanism, but for small infection rates o¤ers a reasonable approx-
imation of the probability of getting infected if infection rates are independent across neighbors (a questionable
assumption if there is clustering). See Lopez-Pintado (2004) for the analysis of other infection mechanisms.
63See Jackson and Yariv (2005) for an analysis of such di¤usion issues in a model where agents are faced with

a choice of adopting a new behavior or technology and are best responding to their environment.

34



Here, �k�(1 � �(k)) represents the number of healthy nodes that become infected, and ��(k)
represents the number of sick nodes that become healthy. These must be equal in a steady
state.64 Letting � = �=�, we derive

�(k) =
k��

k�� + 1
: (5)

Equations 4 and 5 can the be solved simultaneously to derive the steady state distributions.
It is easy to solve this when the network is completely regular so that all nodes have degree

< k >. In that case, � = � and (5) becomes

� =
< k > ��

< k > ��+ 1
:

There is always a solution of � = 0, and then also another solution of � = 1 � 1
�<k> which is

greater than 0 only if � > 1
<k> . Thus, in order for infection to spread in the network, the relative

infection/recovery rate has to exceed a threshold. This is another example of a phase transition,
of which we saw examples earlier in the discussion of the properties of random graphs.

Pastor-Satorras and Vespignani (2000) solve this system in the case where the degree distri-
bution is scale free (using P (k) = 2 < k > k�3). They �nd an approximation of � = 2e�1=<k>�

(for small �). Thus, they deduce that even with tiny values for �, there will be some non-zero
infection rate in a scale-free network. This contrasts with the fact that � has to exceed a positive
threshold in a regular network in order to reach a non-zero infection rate.

Lopez-Pintado (2004) uses the following approach to characterize situations where the solu-
tion for the steady state � (and thus the steady state infection rates �(k) and �) will be nonzero.65

Let

H(�) =
X kP (k)

< k >

�
�k�

�k� + 1

�
: (6)

So �xed points of H correspond to steady-state distributions. Note that H(0) = 0, and that H
is increasing and strictly concave in �. Thus, in order for H to have another �xed point above
� = 0, it must be that H 0(0) > 1.66 Let us check when this is true. Note that

H 0(�) =
X kP (k)

< k >

�
�k

(�k� + 1)2

�
:

That is, H 0(0) = �EP [k
2]= < k >. Thus, in order to have � > 0 (and thus a steady-state

infection rate � > 0), we must have � > <k>
<k2>

(where < k2 >= EP [k2]). In the regular network,
this is the claimed threshold of 1= < k >, while in a scale-free network < k2 > is in�nite and
so the threshold is 0. For a Poisson degree distribution it falls somewhere between the two
extremes.
64The system here is clearly heuristic, as if we ran a Markov process on this system, all nodes would eventually

converge to being susceptible and this is an absorbing state. To be careful, one needs to have some exogenous
probability that the nodes become infected even when none of their neighbors are.
65See also Pastor-Satorras and Vespignani, (2001). Moreno, Pastor-Satorras and Vespignani (2003) also allow

for correlation among degrees in a family of distributions.
66Noting that H is continuous and increasing in �, H(0) = 0, and H(1) < 1 (from equation (6), as this is

the expectation of an expression that is always less than 1), it follows that there will be a �xed point above 0
whenever H 0(0) > 1.
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The basic idea is that nodes with high degree can serve as a conduit for infection. Even very
low infection rates can lead them to become infected as they have so many neighbors. They then
can pass the infection on to a large number of nodes. The degree distribution then determines
the relative makeup of the network in terms of nodes of di¤erent degrees. In a regular network,
every node has the average degree. As we move to a Poisson distribution, we begin to see more
of a spread in the distribution and some higher degree nodes and others of lesser degrees. This
leads to a lower threshold at which infection can be sustained, as the higher degree nodes can
begin to serve as the conduits as discussed above. As we continue to increase the spread in the
degree distribution and move to a scale-free network, we have extremely high degree nodes, and
very low degree nodes, and infections can be sustained at arbitrarily low net rates of contagion.
Building on this methodology, Jackson and Rogers (2004) show one can completely order both
the threshold rates of contagion needed to sustain an infection and the resulting infection rates
in terms of the networks degree distribution, by ordering the distributions in the sense of second
order stochastic dominance.67 In terms of the thresholds for infection, it is clear from the above
that as we change a network in the sense of second order stochastic dominance, then we increase
< k2 > and so we decrease the threshold � needed for an infection to be sustained ( <k>

<k2>
).

What is a bit more subtle is that the behavior of the steady state distributions as it relates
to network structure exhibits very di¤erent features at low levels of � than it does at high levels.
Jackson and Rogers (2004) for a detailed analysis, but the intuition can be expressed as follows.
The change in infection rate due to a change in network structure (and in particular, a change
in the degree distribution) comes from countervailing sources, as more extreme distributions
have relatively more very high degree nodes and very low degree nodes. Very high degree nodes
have high infection rates and serve as conduits for infection, thus putting upward pressure on
average infection. Very low degree nodes have fewer neighbors to become infected by and thus
tend to have lower infection rates than other nodes. As we make a mean-preserving spread in
the degree distribution, the overall impact depends on how the (direct and indirect) increase in
infection in changing some nodes to have higher degree compared to the decrease in infection due
to changing some nodes to have lower degree. When infection rates are already high, infection
rates tend to increase less than linearly in the degree of a node (if simply due to the fact that
they cannot increase above one). While if infection rates are low, then there is a more than
o¤setting increase in infection due to an increase of some nodes� degrees, as their increased
degree not only increases their infection rates, but also leads to an increase in transmission.

Beyond the understanding of infection rates, the statistical characteristics of networks (e.g.,
comparing them in terms of stochastic dominance of degree distributions) can be used to deduce
the impact that they have on behavior more generally (e.g., see Galeotti, Goyal, Jackson, Vega
and Yariv (2005)).

4.5 Public Goods

Another setting where we can see how network structure in�uences outcomes is the provision of
local public goods.

67One can also order things in terms of �rst order stochastic dominance, but that relationship is quite obvious.
If we simply increase the overall number of links then we will increase infection rates and decrease the threshold
needed to sustain infection.
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For instance, consider a model analyzed by Bramoullé and Kranton (2005). Agents each
choose an e¤ort level ei 2 [0;1). The agents are connected in a network, and they derive bene�ts
not only from their own e¤ort level but also from their neighbors - that is, the other agents to
whom they are directly linked. For instance, think of agents each collecting information and then
sharing that information with their direct neighbors. This includes a variety of applications, from
consumers sharing information with their friends about products they have tried, to companies
sharing information about production processes, to researchers sharing ideas and methods. For
simplicity, the model only considers the bene�ts �owing to direct connections.

Agent i�s utility in a network g when e¤orts (e1; : : : ; en) are exerted is

ui(g; e) = b(ei +
X

j2Ni(g)
ej)� cei;

where b is a continuously di¤erentiable strictly concave function and c > 0 is a cost parameter.
Supposing that the solution b0(e�) = c is well-de�ned and has e� > 0, a great deal can be

deduced about the structure of the equilibria. Given the payo¤ structure, it is clear that each
neighborhood will have a total of at least e� produced. Normalizing e� = 1, this could happen
in various ways. For instance, consider two agents connected to each other. Either one of them
could exert e¤ort 1 and the other 0, or they could each put in part of the e¤ort. There is a sense
in which the equilibria where some agents specialize and provide e¤ort of 1 and others provide
an e¤ort of 0 are more robust than the others.68 Bramoullé and Kranton (2005) refer to these
as specialized equilibria.

There is a complex structure to specialized equilibria, and there is a multiplicity of them. For
instance, consider any maximal independent set of nodes.69 Then have each node in the maximal
independent set choose action e� and all nodes outside of the set choose 0. As Bramoullé and
Kranton point out, this is clearly an equilibrium, and moreover, all specialized equilibria must
be of this form.

As this sort of public good model captures the substitutability of actions of neighbors that
would apply to many settings, it provides a particularly interesting one for further study. The
multiplicity of equilibria that Bramoullé and Kranton (2005) note, provides a hurdle in terms
of making predictions about how network structure a¤ects behavior, but there are well-de�ned
ways in which some equilibria appear to be more natural or robust than others, and there is
much that can be said about how behavior relates to structure in the context of large networks.
70

4.6 Other Topics

There are many other areas that have been studied that relate network structure to outcomes,
and ones that are of obvious social and economic relevance. For instance, Ballester, Calvo-

68See Bramoullé and Kranton (2005) for details. They examine a perturbation where each agents actions can
be perturbed by a small amount and then must have a best response process converge back to equilibrium.
69An independent set of nodes is a set such that no two nodes in the set are connected. A maximal independent

set is an independent set which is not a strict subset of any other independent set. It is then easy to see that a
maximal independent set is a set such that no two nodes inside the set are connected to each other and any node
outside of the set is connected to at least one node inside the set.
70See Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2005).
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Armengol, and Zenou (2004) examine how network structure in�uences criminal and other be-
havior in a model where there are local positive externalities (for instance learning or receiving
help from friends that are also criminals) and global negative externalities (for instance overall
competition). Within a class of such models they are able to completely characterize equilibrium
outcomes and relate these to a measure of path-centrality in a network. This provides interest-
ing new insights relating behavior to centrality in a network. Activity by players who are more
central has more impact on other players�level of activity and leads to greater feedback e¤ects.

There are also recent studies of risk-sharing on networks, which build on evidence from recent
studies (e.g., Fafchamps and Lund (2003) and De Weerdt (2002)) that indicate that network
structure plays a major role in determining how well risk is shared in rural societies. Theoretical
studies have looked at two issues: how the network structure can be modi�ed over time as an
endogenous part of the risk sharing (e.g., see Bloch, Genicot, and Ray (2005)) as well as how the
network structure a¤ects the equilibrium incentives (e.g., see Bramoullé and Kranton (2005b)).

There are also studies of play in games with complementarities in neighbors�actions, such as
in the context of coordination games (e.g. Ellison (1993), Young (1998), Morris (2000), Jackson
and Watts (2002b), Droste, Gilles, and Johnson (2000), Goyal and Vega- Redondo (2005), Feri
(2003), Lopez-Pintado (2005)) as well as other structures with complementarities (e.g., Galeotti
and Vega-Redondo (2005)). These studies have looked at both the change in play and co-
evolution of the network itself. However, to date, most of the work has focussed on very simple
games (e.g., two-by-two coordination games), and there is much that is unknown beyond these
special cases.

The wide variety of settings where network structure is an important determinant of behavior
makes it clear that this is one of most wide open and important areas for further study.

5 Whither Now?

As we have seen, there is much that we know about the structure and use of social networks,
and a growing set of models to describe their emergence, roles, and importance in determining
social outcomes. At the same time, as alluded to at many points in the discussion so far, there
is so much that we have yet to understand or model. Let me provide a partial list of some of
what I see to be the most obvious and pressing issues for study.

� The above discussion of how network structure a¤ects behavior illustrates that despite the
di¢ cult combinatorics faced in many applications, there is still much that we can deduce,
at least by some approximation techniques. Given the wide variety of settings where social
networks play a role, this continues to be a promising area and should also prove to be
one of the main interfaces between theoretical and empirical work.

� One of the main points I made in the discussion of modeling of network formation is that
there is a great potential to combine ideas from random graph models of network formation
with those strategic formation models. These are largely complementary models and there
look to be substantial gains in producing hybrids, both in terms of providing better �ts of

observed networks and leading to a better understanding of the tension between stability
and e¢ ciency.
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� This also leads us to another aspect of network formation models that could be improved
upon. Existing models generally deal with network formation at the link level. That is,
either links are being randomly determined, or agents are deciding which links they would
like to form. However, in many social settings, basic decisions are made that determine
large sets of links all at once. For instance, the decision of which university to attend
determines one�s classmates and the decision of where to work determines one�s colleagues,
en masse. Models that deal with how such larger decisions impact social network structure
are virtually nonexistent, and yet this is an essential part of what is often implied by the
term �networking,�as used in the vernacular regarding building social relationships.71

� There are also many facets of existing network formation models within the existing sep-
arate strands of random graph and game theoretic models that deserve further study.

�With regards to models of strategic formation, there are questions of how to appro-
priately model equilibrium, given that the consent of parties might be needed to form
links. Are social relationships considered one at a time, or many at once, and how
does this depend on the setting? How coordinated are the decisions among groups
of agents? To what extent are bargaining and/or transfers part of the process? Do
agents take into account the impact their decisions will have on the further evolution
of the network? These questions have led to some recent research on the founda-
tions of modeling strategic network formation72, of which a deeper understanding is
needed.

�With regards to random networks, two things come to mind. First, there is great need
for more detailed structural �tting of the models. For instance, as discussed above,
�scale-free�networks are at best an idealization and benchmark and that only some
observed degree distributions exhibit such features, and even then only approximately
and in one tail. Second, social networks exhibit much richer heterogeneity in the types
of interactions and have correlation structures that are not adequately captured by
existing models. In particular, things such as ethnicity, profession, and geography,
produce neighborhood structures that are di¤erent from those predicted in existing
models. Existing models have not really captured such features, and it is clear that
such features should be very important in in�uencing opinion.73

� Another area that is crying out for attention, and just beginning to receive it, is the
modeling of the strength of ties. The idea that social relationships are not 0-1 in their
nature is quite clear, and was the center piece of one of the most in�uential social net-
works papers - Granovetter�s (1973) article on the �strength of weak ties.� Granovetter
pointed out the importance of weaker social relationships (according to various measures

71See Ioannides and Soetevent (2005) for a �rst step in this direction. The rich literature on coalition formation
(e.g., see the book by Demange and Wooders (2004) and references therein), could end up playing a role in these
developments.
72See, for instance, Calvo-Armengol and Ilkilic (2004), Bloch and Jackson (2004), Tercieux and Vannetelbosch

(2004), Ilkilic (2005), Slikker and van den Nouweland (2005), Chakrabarti (2005), and Dutta, Ghosal and Ray
(2005).
73See Watts, Dodds and Newman (2002) for a model in this direction.
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of the level and/or frequency of interaction) in providing critical information. This work
has produced volumes of empirical studies (e.g., see Granovetter (1995) and some of the
references therein). Yet, until recently there were only a few models (Boorman (1975) and
Montgomery (1991, 1992, 1994)) of how networks might form when both weak and strong
ties are possible, and both of these models were specialized to the context of job contact
networks. Recent interest in this subject has resulted in more general studies (e.g., Rogers
(2005) and Bloch and Dutta (2005)) that investigate models where agents decide on how
much e¤ort or time to devote to their di¤erent relationships. A related issue is that rela-
tionships vary not only in their intensity, but also in their patterns over time. Interaction
patterns tend to be sporadic. Understanding some of the timing of interactions, and more
basically what is entailed in a relationship, might help shed better light on the di¤erences
between things such as strong and weak ties and how they di¤er across applications.

� The early models of how the allocation of total value or bene�t among players depends on
a network structure emerged from the cooperative game theory literature. The perspective
that cooperative game theory (even with graph-restricted games) gives to this problem is
not always rich enough to address the issues that arise in a social network context (e.g., see
Jackson (2005) for a discussion of this point). It is also clear, that the formation of social
relationships often involves some bargaining. For instance, dowries are an obvious example.
We have seen above how such bargaining can be instrumental in determining how e¢ cient
the resulting network structure is. Yet, the models that we have, both from a cooperative
and a non-cooperative approach, are still far from giving us a full understanding of how
value is shared among members of a social group, how this is determined by the network
structure, and how this a¤ects network formation.

� As the investigations in network analysis continue to multiply, so does the need for well-
understood tools and methodology. For example, there are numerous measures of how
�central�a node is in a network, ranging

from simple comparisons of node degrees to detailed analyses of the eigenvalue structure
of modi�ed adjacency matrices. Such di¤erent measures are clearly identifying di¤erent
facets of a node�s role in a network. However, our current understanding of which (if any)
existing measure is appropriate in which context comes almost entirely from seeing how
measures operate on various examples and then judging which seems to be capturing what
we are after.7475 Similarly, there are numerous other concepts in social network analysis
that are associated with a variety of de�nitions and measures, and little to guide us in

74See Borgatti (2003) for one study which tries to sort through some centrality measures.
75The same is true of identifying community structures in networks. A community structure is a partitioning

of the nodes of a network into groups or �communities�, with the idea that the nodes in the same community
are somehow similar or equivalent according to some criterion. This can be useful in terms of simplifying a
complex network into a simpler smaller network of relationships between communities. Many algorithms have
been developed to identify community structures in networks, and yet most of what we know about the relative
merits or de�ciencies of various approaches and algorithms comes simply from examining whether they seem to
give the �right�community structuring in various examples. An overview of some of this literature can be found
in Newman (2004b) and a discussion of the importance of identifying the properties for identifying community
structures can be found in Copic, Jackson and Kirman (2005).
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terms of understanding of the various properties that they possess. I am only aware of a
few studies that examine the properties of di¤erent measures and de�nitions used in social
network analysis,76 while the extent of social network science clearly requires more.

� It is clear that the links that people maintain are di¤erent in nature. For example, they
might relate to friends, relatives, co-workers, neighbors, or casual acquaintances. Each
type of link might be active or useful under di¤erent circumstances, and might involve dif-
ferent costs and bene�ts. Modeling the interaction between di¤erent overlapping network
structures could potentially lead to new insights into things such as the dissemination of
information throughout a population. For example, as Granovetter (1974) notes: �... much
of the information about jobs that one receives through contact networks is a byproduct
of other activities, and thus not appropriately costed out in a rational calculation of the
costs and bene�ts of getting information.�77

� As predictions from models continue to proliferate, experiments will provide an increasingly
important testbed.78 This is especially true of things like the dissemination of information,
which can be very di¢ cult to pinpoint outside of the controlled environment of a laboratory.

� The rich collection of case-studies from the sociology literature is quite remarkable partly
because of the level of di¢ culty that researchers have historically faced in identifying
network structures. This often involved interviews of subjects, or careful observation of
some group over time, and limited both the scope and quality of the data that could
be collected. Advances in both telephony and internet communication (including email),
as well as computing technology, has recently made readily available large, detailed, and
precise interaction patterns; which in some cases are less prone to measurement error and
easier to work with. Moreover, such data sets give new dimensions to network structures
as they have detailed time-stamps with which to study the dynamics of interaction. This
greatly enhances the potential for empirical testing of increasingly complicated network
models, and should also enrich the stable of questions for models to address.
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