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Abstract. We study the design of local algorithms for massive graphs. A local graph algorithm
is one that finds a solution containing or near a given vertex without looking at the whole graph. We
present a local clustering algorithm. Our algorithm finds a good cluster—a subset of vertices whose
internal connections are significantly richer than its external connections—near a given vertex. The
running time of our algorithm, when it finds a nonempty local cluster, is nearly linear in the size of
the cluster it outputs. The running time of our algorithm also depends polylogarithmically on the
size of the graph and polynomially on the conductance of the cluster it produces. Our clustering
algorithm could be a useful primitive for handling massive graphs, such as social networks and web-
graphs. As an application of this clustering algorithm, we present a partitioning algorithm that finds
an approximate sparsest cut with nearly optimal balance. Our algorithm takes time nearly linear in
the number edges of the graph. Using the partitioning algorithm of this paper, we have designed a
nearly linear time algorithm for constructing spectral sparsifiers of graphs, which we in turn use in a
nearly linear time algorithm for solving linear systems in symmetric, diagonally dominant matrices.
The linear system solver also leads to a nearly linear time algorithm for approximating the second-
smallest eigenvalue and corresponding eigenvector of the Laplacian matrix of a graph. These other
results are presented in two companion papers.
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1. Introduction. Given a vertex of interest in a massive graph, we would like to
find a small cluster around that vertex in time proportional to the size of the cluster.
The algorithm we introduce will solve this problem while examining only vertices near
an initial vertex, under some reasonable notion of nearness. We call such an algorithm
a local algorithm.

Our local clustering algorithm provides a powerful primitive for the design of
fast graph algorithms. In section 3 of this paper, we use it to design the first nearly
linear time algorithm for graph partitioning that produces a partition of nearly op-
timal balance among those partitions approximating a target conductance. In the
papers [ST11] and [ST08], we use this graph partitioning algorithm to design nearly
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2 DANIEL A. SPIELMAN AND SHANG-HUA TENG

linear time algorithms for sparsifying graphs and for solving symmetric, diagonally
dominant linear systems.

1.1. Local clustering. We say that a graph algorithm is a local algorithm if it
is given a particular vertex as input and at each step after the first examines only
vertices connected to those it has seen before. The use of a local algorithm naturally
leads to the question of in which order one should explore the vertices of a graph.
While it may be natural to explore vertices in order of shortest-path distance from
the input vertex, such an ordering is a poor choice in graphs of low diameter, such as
social network graphs [LH08]. We suggest first processing the vertices that are most
likely to occur in short random walks from the input vertex. That is, we consider a
vertex to be near the input vertex if it is likely to appear in a short random walk from
the input vertex.

In section 2, we use a local graph exploration process to find a cluster that is near
the input vertex. Following Kannan, Vempala, and Vetta [KVV04], we say that a set
of vertices is a good cluster if it has low conductance, that is, if it has many more
internal than external edges. We give an efficient local clustering algorithm, Nibble,
whose running time is proportional to the size of the cluster it outputs and depends
only mildly on the size of the whole graph.

Although our algorithm may not find a local cluster for some input vertices, we
will show that it is usually successful when started from a random vertex in a good
cluster. In particular, we prove the following statement, which provides a statistical
performance guarantee for Nibble: There exists a constant α > 0 such that for
any target conductance φ and any cluster C0 of conductance at most α · φ2/ log3 n,
when given a random vertex v sampled according to degree inside C0, Nibble will,
in time O(|C| log6 n/φ4), return a cluster C mostly inside C0 and with conductance
at most φ, with probability at least 1/2. The slightly unusual form of this statement
is dictated by the requirement that our algorithm be local. We discuss the nature of
the guarantees one can hope to achieve in section 2.1.5.

The local clustering algorithm Nibble makes a novel use of random walks. For
a positive integer t, suppose pt,v is the probability distribution of the t-step random
walk starting at v. As the support of pt,v—the set of nodes with positive probability—
could grow rapidly, Nibble maintains a truncated version qt,v of the distribution. At
each step of the truncated random walks, Nibble looks for a cluster among only nodes
with high probability. The truncation is critical to ensure that the running time of
the clustering algorithm is output sensitive. It guarantees that the size of the support
of the distribution that Nibble maintains is not too much larger than the size of the
cluster it produces. The cluster that Nibble produces is local to the starting vertex
v in the sense that it consists of nodes that are among the most favored destinations
of random walks starting from v.

By using the personal PageRank vector [PBMW98] to define nearness, Ander-
sen, Chung, and Lang [ACL06] have produced an improved version of our algorithm
Nibble, which they call PageRank-Nibble. Their algorithm is further improved by
Andersen and Peres [AP09], who base their algorithm on the volume-biased evolv-
ing set process. Following our work, other local algorithms have been designed by
Andersen et. al. [ABC+07] for approximately computing personal PageRank vectors,
by Andersen [And08] for finding dense subgraphs, and by Andersen, Chung, and
Lang [ACL07] for partitioning directed graphs.

1.2. Nearly linear time algorithms. Our local clustering algorithm provides a
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A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 3

powerful tool for designing fast graph algorithms. In this paper and its two companion
papers, we show how to use it to design randomized, nearly linear time algorithms for
several important graph-theoretic and numerical problems.

The need for algorithms whose running time is linear or nearly linear in their
input size has increased as algorithms handle larger inputs. For example, in circuit
design and simulation, an Intel Quad-Core Itanium Tukwila processor has more than
two billion transistors, which is more than 200 times the number of transistors that
the Pentium had in 2000 [Cor, Wik]; in scientific computing, one often solves linear
systems that involve trillions of variables [NSW+09]; in modern information infras-
tructure, the Web has grown into a graph of more than a trillion nodes [Goo08] and
Facebook has 30 billion content items shared each month [Fac10]. As a result of this
rapid growth in problem size, what used to be considered an efficient algorithm, such
as an O(n1.5)-time algorithm, may no longer be adequate for solving problems of these
scales. Space complexity poses an even greater problem.

Many basic graph-theoretic problems such as connectivity and topological sort-
ing can be solved in linear or nearly linear time. The efficient algorithms for these
problems are built on linear-time primitives such as Breadth-First-Search (BFS) and
Depth-First-Search (DFS). Minimum Spanning Trees (MST) and Shortest-Path Trees
are examples of other commonly used nearly linear time primitives. We hope to build
up the library of nearly linear time graph algorithms that may be used as primitives.
While the analyzable variants of the algorithms we present here, and even their im-
proved versions by Andersen, Chung, and Lang [ACL06] and Andersen and Peres
[AP09], may not be immediately useful in practice, we believe practical algorithms
may be derived from them by making less conservative choices of parameters [VTX09].

Our local clustering algorithm provides an exciting new primitive for developing
nearly linear time graph algorithms. Because its running time is proportional to the
size of the cluster it produces and depends only mildly on the size of the whole graph,
we can repeatedly apply it to remove many clusters from a graph, all within nearly
linear time.

In the second part of this paper, we use Nibble as a subroutine to construct
a randomized graph partitioning algorithm that runs in nearly linear time. To the
best of our knowledge, this is the first nearly linear time partitioning algorithm that
finds an approximate sparsest cut with approximately optimal balance. A faster
algorithm with better output guarantees has since been developed by Orecchia and
Vishnoi [OV11]. In our first companion paper [ST11], we apply this new partitioning
algorithm to develop a nearly linear time algorithm for producing spectral sparsifiers
of graphs. We begin that paper by extending the partitioning algorithm of this paper
to obtain a stronger guarantee on its output: if it outputs a small set, then the
complement must be contained in a subgraph whose conductance is higher than the
target.

2. Clusters, conductance, and local exploration of graphs. Let G =
(V,E) be an undirected graph with V = {1, . . . , n}. A cluster of G is a subset of
V that is richly intraconnected but sparsely connected with the rest of the graph.
The quality of a cluster can be measured by its conductance, the ratio of the number
of its external connections to the number of its total connections.

We let d(i) denote the degree of vertex i. For S ⊆ V , we define μ (S) =
∑

i∈S d(i)
(often called the volume of S). So, μ (V ) = 2|E|. For S, T ⊆ V , let E(S, T ) be the
set of edges connecting a vertex in S with a vertex in T . We define the conductance
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4 DANIEL A. SPIELMAN AND SHANG-HUA TENG

of a set of vertices S, written Φ (S), by

Φ (S)
def
=

|E(S, V − S)|
min (μ (S) , μ (V − S))

.

The conductance of G is then given by

ΦG
def
= min

S⊂V
Φ (S) .

We sometime refer to a subset S of V as a cut of G and refer to (S, V − S) as a
partition of G. The balance of a cut S or a partition (S, V − S) is then equal to

bal (S) = min(μ (S) , μ (V − S))/μ (V ) .

We call S a sparsest cut of G if Φ (S) = ΦG and μ (S) /μ (V ) ≤ 1/2.
In the construction of a partition of G, we will be concerned with vertex-induced

subgraphs of G. However, when measuring the conductance and volumes of vertices
in these vertex-induced subgraphs, we will continue to measure the volume according
to the degrees of vertices in the original graph. For clarity, we define the conductance
of a set S in the subgraph induced by A ⊆ V by

ΦG
A (S)

def
=

|E(S,A− S)|
min (μ (S) , μ (A− S))

and

ΦG
A

def
= min

S⊂A
ΦG

A (S) .

For convenience, we define ΦG
A (∅) = 1 and, for |A| = 1, ΦG

A = 1.
For A ⊆ V , we let G(A) denote the subgraph of G induced by the vertices in A.

We introduce the notation G{A} to denote graph G(A) to which self-loops have been
added so that every vertex in G{A} has the same degree as in G. Each self-loop adds
1 to the degree. We remark that if G(A) is the subgraph of G induced on the vertices
in A, then

ΦG
A = ΦG{A} ≤ ΦG(A).

So, when we prove lower bounds on ΦG
A, we obtain lower bounds on ΦG(A).

The identification of clusters may be viewed as an optimization problem: Given
an undirected graph G and a parameter φ, find a cluster C such that Φ (C) ≤ φ or
determine that no such cluster exists. The problem is NP-complete (see, for exam-
ple, [LR99] or [SS06]). But, approximation algorithms exist. Leighton and Rao [LR99]
used linear programming to obtainO(log n)-approximations of the sparsest cut. Arora,
Rao, and Vazirani [ARV04] improved this to O(

√
logn) through semidefinite pro-

gramming. Faster algorithms obtaining similar guarantees have been constructed by
Arora, Hazan, and Kale [AHK04], Khandekar, Rao, and Vazirani [KRV06], Arora and
Kale [AK07], Orecchia et al. [OSVV08], and Sherman [She09].

2.1. The algorithm Nibble. The algorithm Nibble works by approximately
computing the distribution of a few steps of the random walk starting at a seed ver-
tex v. It is implicit in the analysis of the volume estimation algorithm of Lovász and
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A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 5

Simonovits [LS93] that one can find a cut with small conductance from the distribu-
tions of the steps of the random walk starting at any vertex from which the walk does
not mix rapidly. We will observe that a random vertex in a set of low conductance
is probably such a vertex. We then extend the analysis of Lovász and Simonovits to
show that one can find a cut with small conductance from approximations of these
distributions and that these approximations can be computed quickly. In particular,
we will truncate all small probabilities that appear in the distributions to 0. In this
way, we reduce the work required to compute our approximations.

2.1.1. Diffusion of probability mass: Distributions of random walks.
For the rest of this section, we will work with a graph G = (V,E) with n vertices
and m edges, so that μ (V ) = 2m. We will allow some of these edges to be self-loops.
Except for the self-loops, which we allow to occur with multiplicities, the graph is
assumed to be unweighted. We will let A be the adjacency matrix of this graph. That
is,

A(u, v) =

⎧⎪⎨⎪⎩
1 if (u, v) ∈ E and u �= v,

k if u = v and this vertex has k self-loops,

0 otherwise.

We define the following two vectors supported on a set of vertices S:

χS(u) =

{
1 for u ∈ S,

0 otherwise,

ψS(u) =

{
d(u)/μ (S) for u ∈ S,

0 otherwise.

We will consider the random walk that at each time step stays at the current
vertex with probability 1/2 and otherwise moves to the endpoint of a random edge
attached to the current vertex. Thus, self-loops increase the chance that the walk
stays at the current vertex. For example, if a vertex has four edges, one of which is a
self-loop, then when the walk is at this vertex it has a 5/8 chance of staying at that
vertex and a 1/8 chance of moving to each of its three neighbors.

In our local clustering algorithm Nibble, we care more about the probability
distribution induced by a random walk after a certain number of steps than the
vertex that the walk reaches. From this perspective, it might be more convenient to
think in terms of diffusion of probability mass: We start with some initial distribution
of probability mass, and at each step each node keeps half of its mass and equitably
distributes the other half of its mass to its neighbors.

The change in probability mass after one step of the random walk is a linear
operator that is realized by multiplying the column vector of probabilities by the
matrix

M
def
= (AD−1 + I)/2,

where d(i) is the degree of node i, and D is the diagonal matrix with diagonal entries
(d(1), . . . , d(n)). Typically, a random walk starts at a node v. In this case, the
distribution of the random walk at time t evolves according to pt =M tχv.

This diffusion process always converges on a connected graph. Moreover, upon
convergence the amount of mass at each vertex will be proportional to its degree,
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6 DANIEL A. SPIELMAN AND SHANG-HUA TENG

which is independent of the starting distribution of the probability mass. Thus, ψV

is the steady-state distribution of any random walk, and ψS is the restriction of that
walk to the set S.

2.1.2. Vector-based graph partitioning. Like the spectral partitioning algo-
rithm of Hagen and Kahng [HK92] and that implicit in the work of Cheeger [Che70]
(see also [Mih89, ST96]), and the probability-based algorithm implicit in the work
of Lovász and Simonovits [LS90], Nibble extracts a cluster from a vector by the
following algorithm:

1. Given an n-dimensional real vector x, with one entry x(u) for each vertex
u ∈ {1, . . . , n}, compute the permutation π that orders the entries of x from
largest to smallest, i.e., x(π(1)) ≥ x(π(2)) ≥ · · · ≥ x(π(n)).

2. Examine the n− 1 potential cuts, S1, . . . , Sn−1, where Si is either {π(1), . . . ,
π(i)} or {π(i + 1), . . . , π(n)} (e.g., whichever has the smaller volume), and
return the cut of best quality.

For example, in [Mih89, ST96], an approximate Fiedler vector of a graph is used
as x and the conductance of Si is used as the measure of its quality (we recall that
the Fiedler vector of a graph G is the eigenvector associated with the second-smallest
eigenvalue of the Laplacian matrix of G). Inspired by Lovász and Simonovits [LS90],
we will extract clusters from probability distributions of random walks. In the state-
ment of the algorithm and its analysis, we will use the following notation. For a
vector p with nonnegative entries, we let Sj(p) be the set of j vertices u maximizing
p(u)/d(u), breaking ties lexicographically. That is, Sj(p) = {π(1), . . . , π(j)}, where π
is the permutation such that

p(π(i))

d(π(i))
≥ p(π(i + 1))

d(π(i + 1))

for all i, and π(i) < π(i + 1) when these two ratios are equal. That is, Sj(p) is the
jth set induced by the degree-normalized vector of p:(

p(1)

d(1)
, . . . ,

p(n)

d(n)

)
.

We then set

λj(p) = μ (Sj(p)) =
∑

u∈Sj(p)

d(u).

Note that λn(p) always equals 2m.
In the stationary distribution of a random walk on a graph, the probability of

being at a node is proportional to its degree. So, in the limit p(i)/d(i) will ap-
proach 1/n. While this limiting distribution provides little information, Lovász and
Simonovits [LS90] show that the distributions from the early stages of random walks
can be used to find good clusters.

2.1.3. Curves as potential function values. We view the analysis of the
rate of convergence of random walks performed by Lovász and Simonovits [LS90] as
a potential function argument. Unlike traditional potential function arguments, their
potential function does not take on real values. Rather, the value of their potential
function is a concave function mapping [0, 2m] onto [0, 1]. By plotting this function,
we obtain a concave curve in R

2 from the point (0, 0) to the point (2m, 1). The curve
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A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 7

corresponding to the stationary distribution is the straight line between these points.
The curve corresponding to the distribution at any step of a random walk lies strictly
below the curve from the previous step. The amount by which one curve lies beneath
the previous depends on a factor related to the conductance of the graph, and one can
show that in graphs of high conductance the curve quickly approaches the straight
line.

Following Lovász and Simonovits [LS90], we set

(1) I(p, x) = max
w∈[0,1]n∑
w(u)d(u)=x

∑
u∈V

w(u)p(u).

This function I(p, ·) is essentially the same as the function h defined by Lovász and
Simonovits [LS90]—it differs only by a linear transformation. One can easily check
that I(p, 0) = 0 and that I(p, 2m) = 1. As the distribution p approaches the stationary
distribution, the curve I(p, ·) approaches the straight line.

We remark that for x = λj(p), I(p, x) = p(Sj(p)), and that I(p, x) is linear in x
between these points. Finally, we let Ix(p, x) denote the partial derivative of I(p, x)
with respect to x, with the convention that for x = λj(p),

Ix(p, x) = lim
δ→0

Ix(p, x− δ) =
p(π(j))

d(π(j))
,

where π is the permutation specified above so that π(j) = Sj(p)− Sj−1(p).
As p(π(i))/d(π(i)) is nonincreasing, Ix(p, x) is a nonincreasing function in x and

I(p, x) is a concave function in x. We discuss the function I(p, x) further in section
2.3.

2.1.4. Constants and parameters. During the course of our exposition, we
will need to set many constants, which we collect here for convenience. For each, we
provide a suitable value and indicate where it is first used in the paper.

constant value where first used
c1 200 (10)
c2 280 (13)
c3 1800 (16)
c4 140 Nibble, condition (C.4)
c5 20 Definition 2.11
c6 60 Definition 2.11

The following is an exhaustive list of the inequalities we require these constants to
satisfy:

c2 ≥ 2c4,(2)

c6 ≥ 2c5,(3)

c3 ≥ 8c5,(4)

c4 ≥ 4c5,(5)

1

2c6
− 1

c3
− 1

2c5c6
≥ 1

c4
,(6)

1

2c5
≥ 6

5c6
+

1

c1
,(7)

1

5
≥ 1

c5
+

4c6
3c3

+
1

2c1
+

1

2c2
.(8)
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8 DANIEL A. SPIELMAN AND SHANG-HUA TENG

Given a φ, we set constants that will play a prominent role in our analysis:

	
def
= 	log2 (μ (V ) /2)
 ,(9)

t1
def
=

⌈
2

φ2
ln
(
c1(	 + 2)

√
μ (V ) /2

)⌉
,(10)

th
def
= ht1 for 0 ≤ h ≤ 	+ 1,(11)

tlast
def
= (	+ 1)t1,(12)

f1(φ)
def
=

1

c2(	+ 2)tlast
.(13)

Note that

f1(φ) ≥ Ω

(
φ2

log3 μ (V )

)
.

2.1.5. Nibble and its statistical guarantee. The algorithm Nibble approxi-
mately computes the distributions of random walks, but restricts the probability mass
to a subset of vertices (near the starting vertex) that is not too much larger than the
size of cluster we are aiming for. To do this, it computes truncated probability distri-
butions in which all small probability values are rounded to zero.

We will use the truncation operation defined by

[p]ε (u) =

{
p(u) if p(u) ≥ d(u)ε,

0 otherwise.

Our algorithm Nibble will generate a sequence of vectors starting at χv by the
rules

qt =

{
χv if t = 0,

Mrt−1 otherwise,
(14)

rt = [qt]ε .(15)

That is, at each time step, we will evolve the random walk one step from the
current density and then round every qt(u) that is less than d(u)ε to 0. Note that qt
and rt are not necessarily probability vectors, as their components may sum to less
than 1.

In our analysis, we will extend the theory of Lovász and Simonovits [LS90] from
precise diffusions to these truncated diffusions.
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A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 9

C = Nibble(G, v, φ, b)
where v is a vertex
0 < φ < 1
b is a positive integer governing the size of the set returned and the running time.

1. Set

(16) ε = 1/(c3(	 + 2)tlast2
b).

2. Set q0 = χv and r0 = [q0]ε.
3. For t = 1 to tlast

(a) Set qt =Mrt−1.
(b) Set rt = [qt]ε.
(c) If there exists a j such that
(C.1) Φ(Sj(qt)) ≤ φ,
(C.2) λj(qt) ≤ (5/6)μ (V ),

(C.3) 2b ≤ λj(qt), and
(C.4) Ix(qt, 2

b) ≥ 1/c4(	+ 2)2b,
then return C = Sj(qt) and quit.

4. Return C = ∅.

Condition (C.1) in the pseudocode for Nibble guarantees that the set C has low
conductance. Condition (C.2) ensures that it does not contain too much volume,
while condition (C.3) ensures that it does not contain too little. Condition (C.4)
guarantees that many elements of C have large probability mass. While it would
be more natural to define condition (C.4) as a constraint on Ix(qt, λj(qt)) instead of
Ix(qt, 2

b), our proof of correctness requires the latter.
In the rest of this section, we will prove the following theorem on the performance

of Nibble.
Theorem 2.1 (Nibble). Nibble can be implemented so that on all inputs, it

runs in time O(2b(log6m)/φ4). Moreover, Nibble satisfies the following properties:
(N.1) When C = Nibble(G, v, φ, b) is nonempty,

Φ (C) ≤ φ and μ (C) ≤ (5/6)μ (V ) .

(N.2) Each set S satisfying

μ (S) ≤ (2/3)μ (V ) and Φ (S) ≤ f1(φ)

has a subset Sg such that
(N.2.a) μ (Sg) ≥ μ (S) /2, and
(N.2.b) v ∈ Sg and C = Nibble(G, v, φ, b) �= ∅ imply μ (C ∩ S) ≥ 2b−1.

(N.3) The set Sg may be partitioned into subsets Sg
0 , . . . , S

g
� such that if v ∈ Sg

b ,
then the set C output by Nibble(G, v, φ, b) will not be empty.

The assertions we prove about the algorithm Nibble may at first seem unusual.
This is mostly due to our requirements that Nibble behave locally and that it run in
a limited time budget.

We have designed Nibble so that it runs in time O(2b(log6m)/φ4) when looking
for a cluster of conductance at most φ. This is one reason that Nibble might fail to
return a cluster: if there is no such cluster of size less than this time bound, then
Nibble can certainly not return one. To ensure that the running time of Nibble is
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10 DANIEL A. SPIELMAN AND SHANG-HUA TENG

not too much greater than its output size, we require in condition (C.3) that the set
it outputs have volume at least 2b.

If there is a cluster S of conductance less than φ, then we must seed Nibble with
a vertex near this cluster to have any hope of finding it. Some vertices in the cluster
may be insufficient if they are more strongly attached to vertices outside the cluster
than inside it. This can happen because our definition of a cluster does not require
any sort of local optimality. To handle this problem, we define the diffusion core of
a cluster S to be the set Sg ⊆ S such that random walks started from vertices in Sg

probably stay inside S for a long time. Property (N.2.a) of Theorem 2.1 says that the
diffusion core is at least half of S, measured by degree. We view this as a statistical
guarantee: with probability at least 1/2 a vertex chosen from S according to degree
lies inside the diffusion core.

If the set S is big and Nibble is started from a random vertex in the diffusion
core of S, it is still possible that Nibble will succeed for a small value of b. The
reason is that the set S might contain small clusters inside it, and Nibble could
reasonably decide to return one of these. For this reason, we prove just that there is
some size parameter b for which Nibble succeeds. This provides a powerful guarantee
when randomization is used: If we sample the vertices of S according their degree
and sample b uniformly at random from {1, . . . , logm}, then Nibble(G, v, φ, b) will
be successful with probability at least 1/(2 logm).

In section 3, we will use this statistical property of Nibble to design the first
nearly linear time algorithm for computing graph partitions of nearly optimal balance.
The guarantee that the partitions are balanced is a result of the guarantee in property
(N.2.b) of Theorem 2.1 that v ∈ Sg and C = Nibble(G, v, φ, b) �= ∅ imply μ (C ∩ S) ≥
2b−1.

2.2. Basic inequalities about random walks. We first establish some basic
inequalities that will be useful in our analysis. Readers who are eager to see the
analysis of Nibble can first skip this subsection. Suppose G = (V,E) is an undirected
graph. Recall M = (AD−1 + I)/2, where A is the adjacency matrix of G.

Proposition 2.2 (monotonicity of multiplication by M). For all nonnegative
vectors p, ∥∥D−1(Mp)

∥∥
∞ ≤ ∥∥D−1p

∥∥
∞ .

Proof. Applying the transformation z = D−1p, we see that it is equivalent to
show that for all z, ∥∥D−1MDz

∥∥
∞ ≤ ‖z‖∞ .

To prove this, we note that D−1MD = D−1(AD−1 + I)D/2 =MT and that the sum
of the entries in each row of this matrix is 1.

Definition 2.3. For a set S ⊆ V , we define the matrix DS to be the diagonal
matrix such that DS(u, u) = 1 if u ∈ S and 0 otherwise.

Proposition 2.4. For every S ⊆ V , all nonnegative vectors p and q, and every
t ≥ 1,

pT (DSM)tq ≤ pTM tq.

Proof. For t = 1, we observe that

pT (M)q = pT ((DS +DS̄)M)q = pT (DSM)q + pT (DS̄M)q ≥ pT (DSM)q,
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A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 11

as p, q, DS̄ , and M are all nonnegative. The proposition follows by induction.

Proposition 2.5 (escaping mass). For all t ≥ 0 and for all S ⊂ V ,

Pr [t-step walk starting with ψS stays entirely in S] = 1T (DSM)tψS ≥ 1− tΦV (S)/2.

Proof. Note that MψS is the distribution after one step of a walk from a random
vertex in S and 1TDS(MψS) is the probability that this step stays inside S. Thus,
1T (DSM)tψS is the probability that a t-step walk starting from a random vertex in
S stays entirely in S.

We first prove by induction that for all t ≥ 0,

(17)
∥∥D−1(DSM)tψS

∥∥
∞ ≤ 1/μ (S) .

The base case, t = 0, follows from the fact that
∥∥D−1ψS

∥∥
∞ = 1/μ (S). To complete

the induction, observe that if x is a nonnegative vector such that
∥∥D−1x

∥∥
∞ ≤ 1/μ (S),

then∥∥D−1(DSM)x
∥∥
∞ =

∥∥DSD
−1Mx

∥∥
∞ ≤ ∥∥D−1Mx

∥∥
∞ ≤ ∥∥D−1x

∥∥
∞ ≤ 1/μ (S) ,

where the second-to-last inequality follows from Proposition 2.2.

We will now prove that for all t,

1T (DSM)tψS − 1T (DSM)t+1ψS ≤ ΦV (S)/2,

from which the proposition follows, as 1TψS = 1.

Observing that 1TM = 1T , we compute

1T (DSM)tψS − 1T (DSM)t+1ψS

= 1T (I −DSM)(DSM)tψS

= 1T (M −DSM)(DSM)tψS

= 1T (I −DS)M(DSM)tψS

= χT
S̄M(DSM)tψS

= (1/2)χT
S̄ (I +AD−1)(DSM)tψS

= (1/2)χT
S̄ (AD

−1)(DSM)tψS (as χT
S̄ IDS = 0)

≤ (1/2) |E(S, V − S)| ∥∥D−1(DSM)tψS

∥∥
∞

≤ (1/2) |E(S, V − S)| /μ (S) (by inequality (17))

≤ ΦV (S)/2.

2.3. The analysis of Nibble. Our analysis of Nibble consists of three main
steps. First, we define the diffusion core Sg of a cluster S mentioned in Theorem 2.1
and establish property (N.2). We then refine the structure of Sg to define sets Sg

b and
prove property (N.3). The sets Sg and Sg

b are defined in terms of the distributions of
random walks from a vertex in S, without reference to the truncation we perform in
the algorithm. We then analyze the impact of truncation used in Nibble and extend
the theory of Lovász and Simonovits [LS93] to truncated random walks.
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12 DANIEL A. SPIELMAN AND SHANG-HUA TENG

Step 1: The diffusion core of a cluster and its properties.
Definition 2.6 (Sg

). For each set S ⊆ V , we define Sg to be the set of nodes v
in S such that for all t ≤ tlast,

χT
S̄M

tχv ≤ tlastΦ(S).

Note that χT
S̄
M tχv denotes the probability that a t-step random walk starting

from v terminates outside S. Roughly speaking, Sg is the set of vertices v ∈ S such
that a random walk from v is reasonably likely to still be in S after tlast time steps.
We will prove the following bound on the volume of Sg.

Lemma 2.7 (volume of Sg
).

μ (Sg) ≥ μ (S) /2.

Proof. Let S ⊆ V , and let DS be the diagonal matrix such that DS(u, u) = 1 if
u ∈ S and 0 otherwise. For t ≥ 0,

χT
S̄M

tχv = (1− χS)
T
M tχv

= 1Tχv − χT
SM

tχv (by 1TM t = 1T )

= 1− χT
SM

tχv

≤ 1− 1T (DSM)tχv (by Proposition 2.4)

≤ 1− 1T (DSM)tlastχv,

as 1T (DSM)tχv is a nonincreasing function of t. Define

S′ =
{
v : 1− 1T (DSM)tlastχv ≤ tlastΦ(S)

}
.

So, S′ ⊆ Sg, and it suffices to prove that μ (S′) ≥ μ (S) /2.
Applying Proposition 2.5, we obtain

tlastΦ(S)

2
≥ 1− 1T (DSM)tlastψS

=
∑
v∈S

d(v)

μ (S)

(
1− 1T (DSM)tlastχv

)
>

∑
v∈S−S′

d(v)

μ (S)
tlastΦ(S) (by the definition of S′)

=
μ (S − S′)
μ (S)

tlastΦ(S).

So, we may conclude that

μ (S − S′)
μ (S)

<
1

2
,

from which the lemma follows.
We now prove the following lemma, which says that if Nibble is started from

any v ∈ Sg with parameter b and returns a nonempty set C, then μ (C ∩ S) ≥ 2b−1.
This lemma will be used in section 3 to ensure that our graph partitioning algorithm
produces a cut of nearly optimal balance.

D
ow

nl
oa

de
d 

03
/0

2/
14

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 13

Lemma 2.8 (property (N.2) of Theorem 2.1). Let S ⊆ V be a set of vertices such
that Φ(S) ≤ f1(φ). If Nibble is run with parameter b, is started at a v ∈ Sg, and
outputs a nonempty set C, then μ (C ∩ S) ≥ 2b−1.

Proof. For v ∈ Sg, let qt be given by (14) and (15). Then, for t ≤ tlast,

χT
S̄ qt ≤ χT

S̄M
tχv ≤ Φ(S)tlast ≤ f1(φ)tlast ≤ 1

c2(	 + 2)
,

where the second inequality follows from the definition of Sg.
Let t be the index of the step at which the set C is generated. Let j′ be the

least integer such that λj′ (qt) ≥ 2b. Condition (C.3) implies j′ ≤ j. As Ix is nonin-
creasing in its second argument and constant between 2b and λj′ (qt), condition (C.4)
guarantees that for all u ∈ Sj′(qt),

qt(u)/d(u) ≥ 1/c4(	+ 2)2b.

Thus,

μ
(
Sj′(qt) ∩ S̄

)
=

∑
u∈Sj′ (qt)∩S̄

d(u) ≤
∑

u∈Sj′ (qt)∩S̄

c4(	 + 2)2bqt(u)

≤ c4(	+ 2)2b(χT
S̄ qt) ≤

c4(	+ 2)2b

c2(	+ 2)
≤ 2b−1

by (2). So, μ (Sj′(qt) ∩ S) ≥ 2b−1, and, as j′ ≤ j,

μ (Sj(qt) ∩ S) ≥ μ (Sj′(qt) ∩ S) ≥ 2b−1.

Step 2: Refining the diffusion core. Before defining the sets Sg
b , we first recall

some of the properties of the curves I(pt, .) established by Lovász and Simonovits
[LS90]. These facts will motivate our definitions and analysis.

In the first part of the proof of Lemma 1.3 of [LS90], Lovász and Simonovits prove
the following lemma.

Lemma 2.9. For every nonnegative vector p and every x,

(18) I(Mp, x) ≤ I(p, x).

For each pt, I(pt, x) is a concave function that starts at (0, 0) and goes to (μ (V ) , 1).
Lemma 2.9 says that for each t, the curve defined by I(pt+1, ·) lies below the curve
defined by I(pt, ·). In particular,

(19) ∀x, I(pt+1, x) ≤ I(pt, x).

If none of the sets Sj(pt+1) has conductance less than φ, then Lovász and Si-
monovits [LS90] prove a bound on how far below I(pt, ·) the curve of I(pt+1, ·) must
lie. The following lemma is a special case of Lemma 1.4 of [LS93], restricted to points
x of the form λj(Mp). Lovász and Simonovits [LS90] claim that the following is true
for all x, but they point out in the journal version of their paper [LS93] that this
claim was false. Fortunately, we do not need the stronger claim.

Lemma 2.10 (Lovász–Simonovits: potential drop in diffusion). For any nonneg-
ative vector p, if Φ(Sj(Mp)) ≥ φ, then for x = λj(Mp),

I(Mp, x) ≤ 1

2

(
I
(
p, x− 2φx̂

)
+ I

(
p, x+ 2φx̂

))
,
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14 DANIEL A. SPIELMAN AND SHANG-HUA TENG

where x̂ denotes min(x, 2m− x).
The mistake in [LS90] is the assertion in the beginning of the proof that the

inequality holds for all x if it holds for all x of form λj(Mp).
When this lemma applies, one may draw a chord across the curve of I(pt, ·) around

x of width proportional to φ and know that I(pt+1, x) lies below.

Proof overview. Before moving on to the more technical part of this paper, we
would like to outline our proof strategy.

Our proof extends the analysis of Lovász and Simonovits [LS90] to handle the
impact of truncation in the diffusion. We follow the basic strategy of Lovász and
Simonovits [LS90], who showed that if a random walk does not mix quickly, then one
of the sets Sj(pt) in the early steps of the random walk must have small conductance.
Their analysis uses proof by contradiction: assuming that none of the sets Sj(pt)
has conductance less than φ, Lemma 2.10 gives a lower bound on the rate at which
the curve I(pt, ·) approaches a straight line. On the other hand, Proposition 2.5
tells us that some point of I(ptlast

, ·) lies well above this line, establishing the needed
contradiction.

We analyze Nibble by examining the evolution of the curves I(qt, .). In Lemma
2.13, we bound the impact of the truncation on the curves I(qt, .). This bound will be
used in Lemma 2.16 to show that if the truncation parameter ε is small enough and
none of the sets Sj(qt) has conductance less than φ, then the curve corresponding to
the truncated diffusion also approaches a straight line at a good speed. On the other
hand, in Lemma 2.14 we show that if S satisfies the desired balance and conductance
condition, and if ε is properly chosen, then some point of the curve I(qt, .) must lie
well above the straight line. So, as long as the ε is small enough, the argument of
Lovász and Simonovits [LS90] can be extended to truncated diffusions.

However, the running time of Nibble increases as we decrease ε. Thus, the key
is to get ε just right. Equation (16) of Nibble ε is set to be inversely proportional to
2b, which is approximately the volume of the cluster we hope to return.

Refining Sg. We refine the diffusion core Sg by partitioning it into sets Sg
b

such that Nibble will return a cluster if it is started from a vertex v ∈ Sg
b and run

with parameter b. We define the sets Sg
b for b = 1, . . . , 	, simultaneously with two

quantities, hv and xh, so that Nibble will stop between iterations thv−1 and thv and
so that the point (xhv , qthv

(xhv )) is far above the straight line from (0, 0) to (2m, 1).
The existence of this point far above the straight line guarantees that at least one
of the sets considered by Nibble has sufficiently low conductance. Note that th is
defined in (11).

Definition 2.11 (xh, hv, and Sg
b ). Given a v ∈ Sg, let pt = M tχv. For

0 ≤ h ≤ 	+ 1, define xh(v) to be the real number such that

I(pth , xh(v)) =
h+ 1

c5(	+ 2)
.

We write xh instead of xh(v) when v is clear from the context. Define

hv =

{
	+ 1 if x�(v) ≥ 2m/c6(	+ 2),

min {h : xh ≤ 2xh−1} otherwise.

We define

Sg
0 = {v : xhv−1(v) < 2} ,
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A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 15

and for b = 1, . . . , 	, we define

Sg
b =

{
v : xhv−1(v) ∈ [2b, 2b+1)

}
.

Proposition 2.12 (basic soundness). The quantities hv are well defined, and
the sets Sg

b partition Sg. Moreover, xh−1 < xh for all h.
Proof. It follows from the definition of the curve I that for a probability vector p,

the slope of I(p, ·) is always less than 1; so, x0 ≥ 1/c5(	+2). If x� < μ (V ) /c6(	+2),
then

x�
x0

<
μ (V ) c5(	+ 2)

c6(	+ 2)
≤ μ (V )

2
(by inequality (3)),

so there is an integer h ≤ 	 such that xh ≤ 2xh−1, and so the quantities hv are well
defined.

To see that the sets Sg
b partition Sg, it now suffices to observe that xhv−1 <

μ (V ) ≤ 2�+1.
Finally, to show that xh−1 < xh, we apply Lemma 2.9 to show that

I(pth , xh−1) ≤ I(pth−1
, xh−1) =

h

c5(	 + 2)
.

As I(pth , ·) is nondecreasing and

I(pth , xh) >
h

c5(	+ 2)
,

we can conclude that xh > xh−1.

Step 3: Clustering with truncated random walks. We now establish that
vectors produced by the truncated random walk do not differ too much from those
produced by the standard random walk.

Lemma 2.13 (low-impact truncation). For all u ∈ V and t,

(20) pt(u) ≥ qt(u) ≥ rt(u) ≥ pt(u)− tεd(u),

where qt and rt are defined in (14) and (15). For all t and x,

(21) I(pt, x) ≥ I(qt, x) ≥ I(rt, x) ≥ I(pt, x) − εxt.

Proof. The left-hand inequalities of (20) are trivial. To prove the right-hand
inequality of (20), we consider pt − [pt]ε, observe that by definition∥∥D−1 (pt − [pt]ε)

∥∥
∞ ≤ ε,

and then apply Proposition 2.2. Inequality (21) then follows from (1).
Lemma 2.14 (lower bound on I). Let S ⊆ V be a set of vertices such that μ (S) ≤

(2/3)μ (V ) and Φ(S) ≤ f1(φ), and let v lie in Sg
b . Define qt by running Nibble from

v with parameter b.
1. If x�(v) ≥ 2m/c6(	+ 2), then

(22) I(qt�+1
, (2/3)(2m)) ≥ 1− 1

c2(	+ 2)
− 4c6

3c3
.
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16 DANIEL A. SPIELMAN AND SHANG-HUA TENG

2. Otherwise,

(23) I(qthv
, xhv ) ≥

hv + 1/2

c5(	 + 2)
.

Proof. In the case x�(v) ≥ 2m/c6(	+ 2), we compute

I(pt�+1
, (2/3)(2m)) ≥ I(pt�+1

, μ (S))

≥
∑
u∈S

pt�+1
(u) (by (1))

= χT
Spt�+1

≥ 1− tlastf1(φ) (by the definition of Sg)

≥ 1− 1

c2(	 + 2)
(by (13)).

As 2b+1 > x� ≥ 2m/c6(	 + 2), we may use Lemma 2.13 to show that

I(qt�+1
, (2/3)(2m)) ≥ 1− 1

c2(	 + 2)
− ε(4m/3)tlast = 1− 1

c2(	+ 2)
− 4c6

3c3

by (16).
If x�(v) < 2m/c6(	+ 2), we compute

I(qthv
, xhv ) ≥ I(pthv

, xhv )− εtlastxhv (by Lemma 2.13)

=
hv + 1

c5(	+ 2)
− εtlastxhv

=
hv + 1

c5(	+ 2)
− xhv

c3(	 + 2)2b
(by (16))

≥ hv + 1

c5(	+ 2)
− 2xhv−1

c3(	 + 2)2b
(as xhv ≤ 2xhv−1)

>
hv + 1

c5(	+ 2)
− 2b+2

c3(	 + 2)2b
(as xhv−1 < 2b+1)

≥ hv + 1/2

c5(	+ 2)
(by (4)).

Lemma 2.15 (condition (C.4)). Let S ⊆ V be a set of vertices such that μ (S) ≤
(2/3)μ (V ) and Φ(S) ≤ f1(φ), and let v lie in Sg

b . If Nibble is run from v with
parameter b, then for all t ∈ (thv−1, thv ], condition (C.4) is satisfied.

Proof. We first consider the case in which x� < 2m/c6(	+2), which by definition
implies xhv ≤ 2xhv−1.

In this case, we have

I(qt, xhv−1) ≤ I(pt, xhv−1) ≤ I(pthv−1
, xhv−1) = hv/c5(	+ 2),

where the first inequality follows from Lemma 2.13 and the second follows from
Lemma 2.9.

As Ix(qt, x) is nonincreasing in x and xhv−1 < xhv ≤ 2xhv−1, we have

Ix(qt, xhv−1) ≥ I(qt, xhv )− I(qt, xhv−1)

xhv − xhv−1
≥ I(qthv

, xhv )− I(qt, xhv−1)

xhv − xhv−1

≥ 1/2

c5(	+ 2)xhv−1
,
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A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 17

where the second inequality follows from Lemma 2.9 and the definition of qt, and the
last one follows from (23).

If xhv−1 ≥ 2, then b ≥ 1 and we have 2b ≤ xhv−1 < 2b+1, and so

Ix(qt, 2
b) ≥ Ix(qt, xhv−1) ≥ 1

2c5(	 + 2)2b+1
,

and by (5) condition (C.4) is satisfied.
If xhv−1 < 2, then b = 0, and so Ix(qt, 2

b) = Ix(qt, x) for all x < 1, which implies

Ix(qt, 2
b) ≥ Ix(qt, xhv−1) ≥ 1

2c5(	 + 2)xhv−1
>

1

2c5(	+ 2)2b
,

and condition (C.4) is satisfied.
If x� ≥ 2m/c6(	+2), in which case hv = 	+1 and x� < 2b+1, we apply Lemma 2.13

to show that for all t ∈ (t�, t�+1],

I(qt, 2m) ≥ I(pt, 2m)− 2mεtlast = 1− 2m

c3(	+ 2)2b
≥ 1− 2m

c3(	 + 2)x�/2
≥ 1− 2c6

c3
.

On the other hand,

I(qt, x�) ≤ I(pt, x�) ≤ I(pt� , x�) < 1/c5.

As Ix(qt, ·) is nondecreasing and x� ≥ 2b, we have

Ix(qt, 2
b) ≥ Ix(qt, x�) ≥ I(qt, 2m)− I(qt, x�)

2m− x�

≥ 1

2m

(
1− 2c6

c3
− 1

c5

)
≥ 1

c6(	 + 2)2b+1

(
1− 2c6

c3
− 1

c5

)
,

as 2b+1 > x� ≥ 2m/c6(	+ 2), and so by (6), condition (C.4) is satisfied.
It remains to show that conditions (C.1)–(C.3) are met for some t ∈ (thv−1, thv ].

We will do this by showing that if at least one of these conditions fails for every j
and every t ∈ (thv−1, thv ], then the curve I(qth , ·) will be too low, in violation of
Lemma 2.14.

Lemma 2.16 (curve evolution in truncated diffusion). If there exist a β > 0 and
an h ∈ [1, 	+ 1] such that for all t ∈ (th−1, th] and for all j either

1. Φ(Sj(qt)) ≥ φ,
2. λj(qt) > (5/6)2m, or
3. I(qt, λj(qt)) < β,

then, for all x, letting x̂ = min(x, 2m− x),

I(qth , x) < β +
3x

5m
+
√
x̂

(
1− φ2

2

)t1

.

Proof. We will prove by induction that the conditions of the lemma imply that
for all t ∈ [th−1, th] and for all x,

(24) I(qt, x) < β +
3x

5m
+
√
x̂

(
1− φ2

2

)t−th−1

.

The base case is when t = th−1, in which case (24) is satisfied because of the following:
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18 DANIEL A. SPIELMAN AND SHANG-HUA TENG

• For 1 ≤ x ≤ 2m− 1, I(qt, x) ≤ I(qt, 2m) ≤ 1 ≤ √
x̂.

• For 0 ≤ x ≤ 1, we have I(qt, x) ≤
√
x̂, as both are 0 at x = 0, the right-hand

term dominates at x = 1, the left-hand term is linear in this region, and the
right-hand term is concave.

• For 2m− 1 ≤ x ≤ 2m, we note that at x = 2m, I(qt, x) = 1 < 3x/5m, and
that we already know the right-hand term dominates at x = 2m − 1. The
inequality then follows from the fact that the left-hand term is linear in this
region and the right-hand term is concave.

Let

f(x)
def
=

√
x̂.

Lovász and Simonovits [LS90] observe that

(25)
1

2
(f(x− 2φx̂) + f(x+ 2φx̂)) ≤ f(x)

(
1− φ2

2

)
.

We now prove that (24) holds for t, assuming it holds for t− 1, by considering three
cases. As the right-hand side is concave and the left-hand side is piecewise-linear
between points of the form λj(qt), it suffices to prove the inequality at the points
λj(qt). If x = λj(qt) and I(qt, x) ≤ β, then (24) holds trivially. Similarly, if x =
λj(qt) > (5/6)2m, then (24) holds trivially as well, as the left-hand side is at most 1,
and the right-hand side is at least 1. In the other cases, we have Φ(Sj(qt)) ≥ φ, in
which case we may apply Lemma 2.10 to show that for x = λj(qt),

I(qt, x) = 7I(Mrt−1, x) (by definition)

≤ 1

2

(
I
(
rt−1, x− 2φx̂

)
+ I

(
rt−1, x+ 2φx̂

))
(by Lemma 2.10)

≤ 1

2

(
I
(
qt−1, x− 2φx̂

)
+ I

(
qt−1, x+ 2φx̂

))
<

1

2

[
β +

3(x− 2φx̂)

5m
+
√
x− 2φx̂

(
1− φ2

2

)t−1−th−1

+ β +
3(x+ 2φx̂)

5m
+
√
x+ 2φx̂

(
1− φ2

2

)t−1−th−1
]

(by induction)

= β +
3x

5m
+

1

2

(√
x− 2φx̂+

√
x+ 2φx̂

)(
1− φ2

2

)t−1−th−1

≤ β +
3x

5m
+
√
x̂

(
1− φ2

2

)t−th−1

by (25).
We now observe that t1 has been chosen to ensure

(26)
√
x̂

(
1− φ2

2

)t1

<
1

c1(	+ 2)
.

Lemma 2.17 (conditions (C.1)–(C.3)). Let S be a set of vertices such that μ (S) ≤
(2/3)(2m) and Φ(S) ≤ f1(φ), and let v lie in Sg

b . If Nibble is run from v with
parameter b, then there exist a t ∈ (thv−1, thv ] and a j for which conditions (C.1)–
(C.3) are satisfied.
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Proof. We first show that for t ∈ (thv−1, thv ], (C.3) is implied by I(qt, λj(qt)) ≥
hv/c5(	+ 2). To see this, note that for b > 0,

I(qt, 2
b) ≤ I(qt, xhv−1) (as xhv−1 ≥ 2b)

≤ I(pt, xhv−1) (by Lemma 2.13)

≤ I(pthv−1
, xhv−1) (by Lemma 2.9)

=
hv

c5(	+ 2)
.

So, I(qt, λj(qt)) ≥ hv/c5(	 + 2) implies λj(qt) ≥ 2b, and we may prove the lemma by
exhibiting a t and j for which (C.1), (C.2), and I(qt, λj(qt)) ≥ hv/c5(	+ 2) hold. On
the other hand, if b = 0, then λj(qt) ≥ 1 = 2b for all j ≥ 1, and so I(qt, λj(qt)) ≥
hv/c5(	+ 2) trivially implies j ≥ 1 and therefore (C.3).

We will now finish the proof by contradiction: we show that if no such t and j
exist, then the curve I(qthv

, ·) would be too low. If for all t ∈ (thv−1, thv ] and for all
j one of (C.1), (C.2), or I(qt, λj(qt)) ≥ hv/c5(	 + 2) fails, then Lemma 2.16 tells us
that for all x,

I(qthv
, x) ≤ hv

c5(	+ 2)
+

3x

5m
+
√
x̂

(
1− φ2

2

)t1

≤ hv
c5(	+ 2)

+
3x

5m
+

1

c1(	 + 2)

by inequality (26).
In the case x� < 2m/c6(	 + 2), we obtain a contradiction by plugging in x = xhv

to find

I(qthv
, xhv ) <

1

	+ 2

(
hv
c5

+
6

5c6
+

1

c1

)
,

which by (7) contradicts (23).
In the case in which x� ≥ 2m/c6(	 + 2), and so hv = 	 + 1, we substitute x =

(2/3)2m to obtain

I(qt�+1
, (2/3)(2m)) <

4

5
+

1

c5
+

1

c1(	+ 2)
,

which by (8) contradicts (22).

2.4. Proof of Theorem 2.1. Property (N.1) of Theorem 2.1 follows from condi-
tions (C.1) and (C.2) in the algorithm. Given a set S satisfying μ (S) ≤ (2/3)μ (V ), the
lower bound on the volume of the set Sg is established in Lemma 2.7. If Φ(S) ≤ f1(φ)
and v ∈ Sg

b , then Lemmas 2.17 and 2.15 show that the algorithm will output a
nonempty set. Finally, Lemma 2.8 tells us that if Φ(S) ≤ f1(φ), v ∈ Sg, and the
algorithm outputs a nonempty set C, then it satisfies μ (C ∩ S) ≥ 2b−1.

It remains to bound the running time of Nibble. The algorithm will run for tlast
iterations. We will now show that with the correct implementation, each iteration
takes time O((log n)/ε). Instead of performing a dense vector multiplication in step
3(a), the algorithm should keep track of the set of vertices u at which rt(u) > 0. Call
this set Vt. The set Vt can be computed in time O(|Vt|) in step 3(b). Given knowledge
of Vt−1, the multiplication in step 3(a) can be performed in time proportional to

μ (Vt−1) =
∑

u∈Vt−1

d(u) ≤
∑

u∈Vt−1

rt(u)/ε ≤ 1/ε.
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20 DANIEL A. SPIELMAN AND SHANG-HUA TENG

Finally, the computation in step 3(c) might require sorting the vectors in Vt according
to rt, which could take time at most O(|Vt| logn). Thus, the runtime of Nibble is
bounded by

O

(
tlast

logn

ε

)
= O

(
t2last2

b log2m
)
= O

(
2b log6m

φ4

)
.

3. Nearly linear time graph partitioning. In this section, we apply Nibble

to design a partitioning algorithm Partition. This new algorithm runs in nearly
linear time. It computes an approximate sparsest cut with approximately optimal
balance. In particular, we prove that there exists a constant α > 0 such that for any
graph G = (V,E) that has a cut S of sparsity α · θ2/ log3 n and balance b ≤ 1/2,
with high probability, Partition finds a cut D with ΦV (D) ≤ θ and bal (D) ≥ b/2.
Actually, Partition satisfies an even stronger guarantee: with high probability either
the cut it outputs is well balanced,

1

4
μ (V ) ≤ μ (D) ≤ 3

4
μ (V ) ,

or touches most of the edges touching S,

μ (D ∩ S) ≥ 1

2
μ (S) .

The expected running time of Partition is O(m log7 n/φ4). Thus, it can be used to
quickly find crude cuts.

Partition calls Nibble via a routine called Random Nibble that calls Nibble

with carefully chosen random parameters. Random Nibble has a very small expected
running time and is expected to remove a similarly small fraction of any set with
small conductance.

3.1. Procedure Random Nibble.

C = RandomNibble(G,φ)
(1) Choose a vertex v according to ψV .
(2) Choose a b in 1, . . . , 	logm
 according to

Pr [b = i] = 2−i/(1− 2−
logm�).

(3) C = Nibble(G, v, φ, b).

Lemma 3.1 (Random Nibble). Let m be the number of edges in G. The ex-
pected running time of Random Nibble is O

(
log7m/φ4

)
. If the set C output by

Random Nibble is nonempty, it satisfies

(R.1) ΦV (C) ≤ φ, and
(R.2) μ (C) ≤ (5/6)μ (V ) .

Moreover, for every set S satisfying

μ (S) ≤ (2/3)μ (V ) and ΦV (S) ≤ f1(φ),

(R.3) E [μ (C ∩ S)] ≥ μ (S) /4μ (V ).

D
ow

nl
oa

de
d 

03
/0

2/
14

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A LOCAL CLUSTERING ALGORITHM FOR MASSIVE GRAPHS 21

Proof. The expected running time of Random Nibble may be upper bounded by

O

⎛⎝
logm�∑
i=1

(
2−i/(1− 2
logm�)

) (
2i log6(m)/φ4

)⎞⎠ = O
(
log7(m)/φ4

)
.

Properties (R.1) and (R.2) follow directly from property (N.1) of Theorem 2.1. To
prove part (R.3), define αb by

αb =
μ (Sg

b )

μ (Sg)
.

So,
∑

b αb = 1. For each i, the chance that v lands in Sg
i is αiμ (S

g) /μ (V ).
Moreover, the chance that b = i is at least 2−i. If v lands in Sg

i , then by property
(N.3) of Theorem 2.1, C satisfies

μ (C ∩ S) ≥ 2i−1.

So,

E [μ (C ∩ S)] ≥
∑
i

2−iαi (μ (S
g) /μ (V )) 2i−1

=
∑
i

(1/2)αi (μ (S
g) /μ (V ))

= μ (Sg) /2μ (V )

≥ μ (S) /4μ (V ) . (by property (N.2.a) of Theorem 2.1).

3.2. Partition. Our graph partitioning algorithm will exploit two properties of
Random Nibble in addition to the fact that it outputs clusters of low conductance.
The first is that Random Nibble is very fast—its expected running time is polyloga-
rithmic. The second is that the set returned by Random Nibble is expected to touch
at least a 1/8m fraction of every set S of sufficiently low conductance. While this
fraction is very small, Random Nibble is so fast that we can call it O(m) times, and
this is what we do. The algorithm Partition simply calls Random Nibble O(m)
times, each time removing the set returned from the graph. The union of the sets
removed forms the output of Partition.

We now define Partition and analyze its performance. First, define

(27) f2(θ)
def
= f1(θ/7)/2,

and note that

f2(θ) ≥ Ω

(
θ2

log3m

)
.

D = Partition(G, θ, p), where G is a graph, θ, p ∈ (0, 1).
(0) Set W0 = V , j = 0, and φ = θ/7.
(1) While j < 12m 	lg(1/p)
 and μ (Wj) ≥ (3/4)μ (V ),

(a) Set j = j + 1.
(b) Set Dj = RandomNibble(G[Wj−1], φ).
(c) Set Wj =Wj−1 −Dj .

(2) Set D = D1 ∪ · · · ∪Dj .
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22 DANIEL A. SPIELMAN AND SHANG-HUA TENG

Theorem 3.2 (Partition). The expected running time of Partition on a graph
with m edges is O

(
m lg(1/p) log7m/θ4

)
. Let D be the output of Partition(G, θ, p),

where G is a graph and θ, p ∈ (0, 1). Then the following hold:
(P.1) μ (D) ≤ (7/8)μ (V ).
(P.2) If D �= ∅, then ΦV (D) ≤ θ.
(P.3) If S is any set satisfying

(28) μ (S) ≤ μ (V ) /2 and ΦV (S) ≤ f2(θ),

then with probability at least 1− p, μ (D) ≥ μ (S) /2.
In particular, with probability at least 1− p either
(P.3.a) μ (D) ≥ (1/4)μ (V ), or
(P.3.b) μ (S ∩D) ≥ μ (S) /2.

Property (P.3) is a little unusual and deserves some explanation. It says that for
every set S of low conductance, with high probability either D is a large fraction of
S, or it is a large fraction of the entire graph. While we would like to pick just one
of these properties and guarantee that it holds with high probability, this would be
unreasonable: on one hand, there might be no big set D of small conductance; and,
on the other hand, even if S is small, the algorithm might cut out a large set D that
completely avoids S.

Proof of Theorem 3.2. The bound on the expected running time of Partition is
immediate from the bound on the running time of Random Nibble.

Let jout be the iteration at which Partition stops, so that D = D1 ∪ · · · ∪Djout .
To prove (P.1), note that μ (Wjout−1) ≥ (3/4)μ (V ), and so μ (D1 ∪ · · · ∪Djout−1) ≤
(1/4)μ (V ). By property (R.2) of Lemma 3.1, μ (Djout) ≤ (5/6)μ (Wjout−1). So,

μ (D1 ∪ · · · ∪Djout) ≤ μ (V )− μ (Wjout−1) +
5

6
μ (Wjout−1)

= μ (V )− 1

6
μ (Wjout−1) ≤ 7

8
μ (V ) .

To establish (P.2), we first compute

|E(D,V −D)| =
jout∑
i=1

|E(Di, V −D)|

≤
jout∑
i=1

|E(Di,Wi−1 −Di)|

≤
jout∑
i=1

φμ (Di) (by (R.1))

= φμ (D) .

So, if μ (D) ≤ μ (V ) /2, then ΦV (D) ≤ φ. On the other hand, we established above
that μ (D) ≤ (7/8)μ (V ), from which it follows that

μ (V −D) ≥ (1/8)μ (V ) ≥ (8/7)(1/8)μ (D) = (1/7)μ (D) .

So,

ΦV (D) =
|E(D,V −D)|

min (μ (D) , μ (V −D))
≤ 7

|E(D,V −D)|
μ (D)

≤ 7φ = θ.
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Let jmax = 12m 	lg(1/p)
. To prove property (P.3), let S satisfy (28), and
consider what happens if we ignore the second condition in the while loop and run
Partition for all potential jmax iterations, obtaining cuts D1, . . . , D12m
lg(1/p)�. Let

D≤j =
⋃
i≤j

Di.

We will prove that if neither

μ
(
D≤k

) ≥ μ (V )

4
nor μ

(
S ∩D≤k

) ≥ μ (S)

2

holds at iteration k, then with probability at least 1/2, one of these conditions will
be satisfied by iteration k + 12m. Thus, after all jmax iterations, one of properties
(P.3.a) or (P.3.b) will be satisfied with probability at least 1 − p. If the algorithm
runs for fewer iterations, then condition (P.3.a) is satisfied.

To simplify notation, let Ci = Dk+i and Ui = Wk+i for 0 ≤ i ≤ 12m. Assume
that

μ (U0) ≥ 3

4
μ (V ) and μ (S ∩ U0) <

1

2
μ (S) .

For 1 ≤ i ≤ 12m, define the random variable

Xi =
μ (Ci ∩ S)
μ (U0 ∩ S) .

As each set Ci is a subset of U0, and the Ci are mutually disjoint, we will always have

12m∑
i=1

Xi ≤ 1.

Define β to satisfy

(1 − β)μ (S ∩ U0) =
1

2
μ (S) ,

and note that this ensures that 0 < β ≤ 1/2. Moreover, if
∑
Xi ≥ β, then

μ
(
S ∩D≤k+12m

) ≥ μ (S) /2 will hold.
Let Ej be the event

μ (Uj) <
3

4
μ (V ) .

We need to show that, with probability at least 1/2, either an event Ej holds, or∑
Xi ≥ β. To this end, we now show that if neither Ej nor

∑
i≤j Xi ≥ β holds, then

E [Xj+1] ≥ 1/8m. If
∑

i≤j Xi < β, then

μ (S ∩ Uj) = μ (S ∩ U0)−
∑
i≤j

μ (S ∩ Ci) = μ (S ∩ U0)

⎛⎝1−
∑
i≤j

Xi

⎞⎠
> μ (S ∩ U0) (1− β) =

1

2
μ (S) .
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If Ej does not hold, then

μ (Uj − S ∩ Uj) = μ (Uj)− μ (S ∩ Uj) ≥ 3

4
μ (V )− μ (S) ≥ 1

4
μ (V ) ≥ 1

2
μ (S) .

So,

ΦG
Uj

(S ∩ Uj) =
|E(S ∩ Uj , Uj − S ∩ Uj)|

min (μ (S ∩ Uj) , μ (Uj − S ∩ Uj))

≤ |E(S, V − S)|
(1/2)μ (S)

≤ 2ΦG (S) ≤ 2f2(θ) = f1(φ).

We also have μ (S ∩ Uj) ≤ μ (S) ≤ (2/3)μ (Uj), so the conditions of property (R.3) of
Lemma 3.1 are satisfied and

E [Xj+1] ≥ 1/4μ (Uj) ≥ 1/8m.

Now, set

Yj =

{
1/8m if

∑
i<j Xi ≥ β, or if Ej−1,

Xj otherwise.

So, for all j, we have E [Yj ] ≥ 1/8m, and so E[
∑

j≤12m Yj ] ≥ 3/2. On the other hand,∑
i≤12m

Yj ≤
∑

Xi +
12m

8m
≤ 5/2.

So, with probability at least 1/2, ∑
j≤12m

Yj ≥ 1/2 ≥ β.

This implies that with probability at least 1/2 either
∑

iXi ≥ β, or some event Ej

holds, which is what we needed to show.

4. Final remarks.

4.1. An open question. The main technical question left open by this work
is how quickly one can find a cluster of low conductance given a random vertex in
such a cluster. Andersen, Chung, and Lang [ACL06] and Andersen and Peres [AP09]
have greatly reduced the polylogarithmic dependence on the size of the graph and
the dependence on the conductance of the cluster. We ask whether these factors
can be eliminated entirely. That is, does there exist an algorithm that when given a
random node in a cluster of low conductance probably finds a cluster of similarly low
conductance in time that depends only on the volume of the cluster it discovers?
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