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A B S T R A C T

In this survey we overview the definitions and methods for graph clustering, that is,

finding sets of “related” vertices in graphs. We review the many definitions for what is a

cluster in a graph and measures of cluster quality. Then we present global algorithms for

producing a clustering for the entire vertex set of an input graph, after which we discuss

the task of identifying a cluster for a specific seed vertex by local computation. Some ideas

on the application areas of graph clustering algorithms are given. We also address the

problematics of evaluating clusterings and benchmarking cluster algorithms.
c© 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Any nonuniform data contains underlying structure due to
the heterogeneity of the data. The process of identifying this
structure in terms of grouping the data elements is called
clustering, also called data classification [152]. The resulting
groups are called clusters. The grouping is usually based
on some similarity measure defined for the data elements.
Clustering is closely related to unsupervised learning in pattern
recognition systems [81]. A basic task in unsupervised
learning is to classify a data set into two ormore classes based
on a similarity measure over the data, without resorting to
any a priori information on how the classification should be
done.

Graphs are structures formed by a set of vertices (also called
nodes) and a set of edges that are connections between pairs of
vertices. Graph clustering is the task of grouping the vertices
of the graph into clusters taking into consideration the edge
structure of the graph in such a way that there should be
many edges within each cluster and relatively few between
the clusters. Graph clustering in the sense of grouping the
vertices of a given input graph into clusters, which is the topic
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of this survey, should not be confused with the clustering of
sets of graphs based on structural similarity; such clustering of
graphs as well as measures of graph similarity is addressed in
other literature [38,124,168,169,202,206], althoughmany of the
techniques involved are closely related to the task of finding
clusters within a given graph.

As the field of graph clustering has grown quite popular
and the number of published proposals for clustering
algorithms as well as reported applications is high, we do not
even pretend to be able to give an exhaustive survey of all
the methods, but rather an explanation of the methodologies
commonly applied and pointers to some of the essential
publications related to each research branch.

1.1. Outline of the survey

We begin by providing basic definitions in Section 2. In
Section 3 we proceed to defining the task of graph clustering
by discussing the different definitions of clusterings and
clusters. These definitions lead into definitions of similarity
measures discussed in Section 4, global clustering algorithms
summarized in Section 5, and local methods presented in
ltad de Ingeniería Mecánica y Eléctrica, Posgrado en Ingeniería de
rza, NL 66450, Mexico.
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Section 6. Section 7 discusses the difficulty of comparing,
evaluating and benchmarking graph-clustering methods.
Applications are reviewed in Section 8. In Section 9 we glance
at open problems and future directions, and in Section 10 we
conclude the survey.

2. Terminology and definitions

In this section we first review the necessary terminology to
facilitate discussion in the rest of the survey. We provide
some of the basic definitions of computational complexity,
approximation algorithms, graph theory, and Markov chains.
Readers familiar with these topics are encouraged to proceed
directly to Section 3 on page section.

2.1. Computational complexity

The worst-case running time of an algorithm for a problem
instance of size x is the number of computation steps needed
to execute the algorithm for the most difficult instance of size
x possible. The instance size is measured in some fixed units,
typically integers or bits — the effect of the unit selection will
vanish as we proceed to the definitions of complexity used in
the survey. Hence x is a positive integer, x ∈ Z+.

Equally, the worst-case memory consumption is the
number of memory units that the algorithm will need to
simultaneously occupy in the worst possible case for an
instance of size x. In computational complexity, the interest
is in characterizing how the running time and memory
consumption grow when x grows. Let f(x) be a function
of x that determines the number of computation steps (or
alternatively the units of memory) needed in the worst case,
given x ∈ Z+.

The worst-case complexity of an algorithm is denoted by
O(g(x)), where g(x) is a function of the input size x such that
f(x) grows no faster than g(x). This means that there exists a
positive constant c such that∣∣f(x)∣∣ ≤ c ·

∣∣g(x)∣∣ (1)

for all sufficiently large values of x. In general, g(x) is formed
by ignoring constant multipliers in f(x) and only keeping the
highest-order term.

Stating that an algorithm has run time or memory
consumption f(x) = Ω(h(x)) in turn means that there exists
a positive constant d such that∣∣f(x)∣∣ ≥ d ·

∣∣h(x)
∣∣ (2)

for all sufficiently large values of x. The difference is that
f(x) = O(g(x)) provides an upper bound, whereas f(x) =

Ω(h(x)) is a lower bound on how the complexity grows.
Furthermore, we write that f(x) = Θ(g(x)) if both f(x) = O(g(x))
and f(x) = Ω(g(x)) hold.

This kind of “rounding” of the functions and the study
of their behaviour for large values of x is called asymptotic
analysis. For more information on these notations for worst-
case and complexity and other related definitions, we
recommend the basic textbook on algorithms by Cormen
et al. [60].
Decision problems are characterized by a set of problem
instances and a set of solutions, together with a relation
associating a particular problem instance to a possibly empty
subset of solutions. Essentially, in a decision problem, we
ask whether the solution set mapped to a given instance is
nonempty. If a solution can be constructed to a given problem
instance in time that is polynomial to the length of the
representation of the problem instance, the corresponding
decision problem is said to be in class P. Formally, a problem
is in P if it has an algorithm with time complexity bounded by
some polynomial of the input size x.

For quite few important problems, there are no known
polynomial-time algorithms. However, such a problem may
still have a polynomial-time verification algorithm that can
check whether a given certificate y that has length polynomial
in x provides a feasible solution to a problem instance of size
x. Formally, NP is the class of all languages that are decided
by nondeterministic Turing machines in polynomial time [192].
Practically, this means that problems with polynomial-time
verification algorithms form the class NP. Note that P is a
subclass of NP.

Furthermore, a decision problem S is reducible to a decision
problem T if there exists a polynomial-time reduction f such
that for any x ∈ S, f(x) ∈ T. This is denoted by S≤

P
m T. A

problem T is said to be NP-hard if S≤
P
m T for all problems

S ∈ NP. An NP-hard problem T is said to be NP-complete
if additionally T ∈ NP. In this survey, many NP-complete
problems will be mentioned. For more information on NP-
completeness and the complexity classes, we recommend the
classical reference text of Garey and Johnson [103] and the
textbook of Papadimitriou [192].

2.2. Approximation algorithms

In some applications, it may not be worth the effort to
compute the best possible solution to the problem at hand,
but a not-too-bad solution will suffice. Whenever exact
computation is time-consuming, impossible, or simply not
justified by the needs of the application, heuristic and
approximatemethods are useful. Many suchmethods provide
a nondeterministic output, meaning that the method may
output a different solution on different executions. However,
onemay need to repeatedly execute a heuristic algorithm and
then filter the output with respect to some quality measure.

The goal of an approximation algorithm is to find efficiently
a solution that differs no more than a fixed factor from the
exact solution. By efficient, one usually means “in polynomial
time”. Approximation algorithms are the practical approach
for solving large instances of NP-complete problems and
problems harder than that. A good approximation algorithm
should have provably polynomial running time.

The problems for which approximation algorithms are
most commonly used are optimization problems. In an
optimization problem the task is to choose from a large set
of possible solutions the one that gives the best value for a
certain function. The goal may either be the minimization of
a cost function or the maximization of a fitness function.

When searching for an approximate solution to an
optimization problem, it is a matter of application to
define how much the approximate solution may differ from
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the exact solution to be acceptable. As the approximation
algorithm does not aim to find the best possible solution, but
rather one that is not very far from being the best, one should
present provable bounds on how far from the optimal solution
can the approximation solution be. Such a bound is called
the approximation factor and is less than one for maximization
problems and greater than one for minimization problems.

The extremal value of the factor over all problem instances
is (minimum for maximization problems and maximum
for minimization problems) called the approximation ratio.
A constant-factor approximation algorithm is one where the
value of the solution found is at most a constant-multiple of
the optimum solution. If there exists a systematic method to
approximate the solution to arbitrary factors, the method is
called a (polynomial-time) approximation scheme, abbreviated
PTAS. The complexity class of problems that have a PTAS is
also denoted by PTAS.

The complexity class NPO is a function problem class:
find an n-bit string x that maximizes a given cost function
C(x), where the function C is computable in polynomial
time by a deterministic Turing machine. The class NPO is
called NP-optimization. The complexity class APX is a subclass
of NPO such that each problem in APX allows constant-
factor polynomial-time approximation algorithms. There
exist problems that are in APX but not PTAS, unless P = NP.
APX-hard problems have a PTAS-reduction from every other
problem in APX. Assuming P 6= NP, no APX-hard problem
can have a PTAS. We recommend the book of Vazirani [226]
on approximation algorithms as well as the book of Ausiello
et al. [14] on the complexity of approximation algorithms.

2.3. Graph theory

A graph G is a pair of sets G = (V,E). V is the set of vertices and
the number of vertices n = |V| is the order of the graph. The
set E contains the edges of the graph. In an undirected graph,
each edge is an unordered pair {v,w}. In a directed graph (also
called a digraph in much literature), edges are ordered pairs.
The vertices v and w are called the endpoints of the edge. The
edge count |E| = m is the size of the graph. In a weighted graph,
a weight function ω : E → R is defined that assigns a weight
on each edge. A graph is planar if it can be drawn in a plane
without any of the edges crossing.

In this survey, we define the density of a graph G = (V,E)

as the ratio of the number of edges present to the maximum
possible,

δ (G) =
m( n
2
) . (3)

For n ∈ {0,1}, we set δ (G) = 0. A graph of density one is called
complete.

If {v,u} ∈ E, we say that v is a neighbour of u. The set of
neighbours for a given vertex v is called the neighbourhood
of v and is denoted by Γ (v). A vertex v is a member of its
own neighbourhood Γ (v) if and only if the graph contains a
reflexive edge {v,v}.

The adjacency matrix AG of a given graph G = (V,E) of order
n is an n × n matrix AG = (aGv,u) where

aGv,u =

{
1, if {v,u} ∈ E,

0, otherwise.
(4)
The number of edges incident on a given vertex v is the degree
of v and is denoted by deg (v). A graph is regular if all of the
vertices have the same degree; if ∀v ∈ V in G = (V,E) we have
deg (v) = k, the graph G is k-regular. The diagonal degree matrix
of a graph G = (V,E) is

D =



deg (v1) 0 0 . . . 0 0
0 deg (v2) 0 . . . 0 0
0 0 deg (v3) . . . 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 . . . deg (vn−1) 0
0 0 0 . . . 0 deg (vn)


. (5)

A partition of the vertices V of a graph G = (V,E) into two
nonempty sets S and V\S is called a cut and is denoted by
(S,V\S). A cut is uniquely identified by defining a set S; hence
any subset of V can be called a cut. As the sets S and V\S
define the same cut, it is often preferred to denote by S the
smaller set, hence requiring |S| ≤ b

n
2 c.

The cut size is the number of edges that connect vertices in
S to vertices in V\S:

c (S,V\S) = |{{v,u} ∈ E | u ∈ S,v ∈ V\S}| . (6)

We denote by

deg (S) =

∑
v∈S

deg (v) (7)

the sum of degrees in a cut S. Note that in the presence of
edge weights, the cut size is generally redefined as the sum
of the weights of the edges crossing the cut instead of using
simply the number of edges that cross it.

A path from v to u in a graph G = (V,E) is a sequence
of edges in E starting at vertex v0 = v and ending at vertex
vk+1 = u;

{v,v1}, {v1,v2}, . . . , {vk−1,vk}, {vk,u}. (8)

If such a path exists, v and u are connected. The path is simple if
no vertex is repeated, that is, for all i ∈ [0, k+1] and j ∈ [0, k+1],
vi 6= vj unless i = j.

The length of a path is the number of edges on it, and the
distance between v and u is the length of the shortest path
connecting them in G. The distance from a vertex to itself
is zero: the path from a vertex to itself is an empty edge
sequence. A graph is connected if there exist paths between all
pairs of vertices. If there are vertices that cannot be reached
from others, the graph is disconnected. The minimum number
of edges that would need to be removed from G in order to
make it disconnected is the edge-connectivity of the graph. A
cycle is a simple path that begins and ends at the same vertex.
A graph that contains no cycle is acyclic and is also called a
forest. A connected forest is called a tree.

A subgraph GS
= (S,ES) of G = (V,E) is composed of a set of

vertices S ⊆ V and a set of edges ES ⊆ E such that {v,u} ∈ ES
implies v,u ∈ S; the graph G is a supergraph of GS. A connected
acyclic subgraph that includes all vertices is called a spanning
tree of the graph. A spanning tree has necessarily exactly n−1
edges. If the edges are assigned weights, the spanning tree
with smallest total weight is called the minimum spanning tree.
Note that there may exist several minimum spanning trees
that may even be edge-disjoint.
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1 In general, the definition of the Rayleigh quotient works for
complex Hermitian matrices.
An induced subgraph of a graph G = (V,E) is the graph with
the vertex set S ⊆ Vwith an edge set E(S) that includes all such
edges {v,u} in E with both of the vertices v and u included in
the set S:

E(S) = {{v,u} | v ∈ S,u ∈ S, {v,u} ∈ E} . (9)

We denote the subgraph induced by the vertex subset S by
G(S) (or by GS where it is clear that the subgraph is an induced
subgraph). An induced subgraph that is a complete graph is
called a clique. An induced subgraph with an empty edge set
is called an independent set. We define the local density of an
induced subgraph in G = (V,E) to be simply

δ (G(S)) =
|E(S)|(

|S|

2

) (10)

in accordance to Eq. (3). An alternative definition of density
in the literature is the ratio of the edge count to the vertex
count,

δ′ (G(S)) =
|E(S)|

|S|
, (11)

which yields possible alternative definitions of global graph
density for G, such as the average density

δ′ (G) =
m
n

, (12)

or the maximum density

δ′max (G) = max
S⊂V

|E(S)|

|S|
. (13)

Two graphs Gi = (Vi,Ei) and Gj = (Vj,Ej) are isomorphic
if there exists a bijective (one-to-one) mapping f : Vi → Vj
(called an isomorphism) such that {v,w} ∈ Ei if and only if
{f(v), f(w)} ∈ Ej.

The spectrum of a graph G = (V,E) is defined as the
list of eigenvalues (together with their multiplicities) of its
adjacencymatrix AG. Spectral properties can be computed for
both undirected and directed graphs, as well as unweighted
and weighted, but by far the easiest case are undirected,
unweighted simple graphs, whichwill be the focus of the brief
treatment of spectral graph theory in this section.

It is often more convenient to study the eigenvalues of the
Laplacian matrix L = I − AG than those of AG itself [51]. The
normalized Laplacian is defined as

L = D−
1
2 LD−

1
2 = I − D−

1
2AGD

−
1
2 , (14)

where I is an n×n identity matrix (with ones on the diagonal,
other elements being zero). An element-wise definition for
the normalized Laplacian, which is easier to understand
intuitively than the matrix version, is the following:

Luv =


1, if u = v and deg (v) > 0,

−
1√

deg (u) · deg (v)
, if u ∈ Γ (v) ,

0, otherwise.

(15)

As these matrices are symmetrical, their eigenvalues are
real and nonnegative. Using the normalized Laplacian is
convenient as the eigenvalues of L all fall within the interval
[0,2]. The smallest eigenvalue is always zero, as the matrix is
singular, and the corresponding eigenvector is simply a vector
with each element being the square-root of the degree of the
corresponding vertex.

A pleasant consequence of having the spectra limited to
the interval [0,2] is that it makes comparing the spectra
of two graphs easier [229,51]. However, even nonisomorphic
graphs can share the same spectrum [229]. Graphs that have
the same spectrum are called cospectral (also isospectral) [63].
When the equality of the sets of pairwise distinct eigenvalues
holds, but the multiplicities do not coincide, the graphs are
weakly cospectral [215]. A survey on to which extent the
spectrum determines a graph is given by van Dam and
Haemers [223]. The spectra of real-world graphs is studied by
Farkas et al. [86].

For comparing spectra of two graphs, it has been found
better to compare the spectra of their line graphs [63]. A line
graph GL = (VL,EL) of a given graph G = (V,E) is a graph
where the vertex set VL corresponds to the set of edges E of
the original graph G and two vertices vij ∈ VL (corresponding
to the edge {vi,vj} ∈ E) and vk` ∈ VL (corresponding to the
edge {vk,v`} ∈ E) are connected by an edge {vij,vk`} ∈ EL if and
only if the vertex subsets {vi,vj} and {vk,v`} have a nonempty
intersection,

{vi,vj} ∩ {vk,v`} 6= ∅, (16)

meaning that the two original edges represented by the
vertices vij and vk` share one or both of their endpoints.

The (degree-adjusted) Rayleigh quotient [51] is the ratio∑
v∈V

g(v)Lg(v)∑
v∈V

g(v)2
, (17)

where g(v) : V → R is viewed as a column vector assigning
arbitrary real values to the vertices. Simplifying with an

assignment g(x) = D
1
2 f(v) and Eq. (14) we get∑

v∈V
g(v)Lg(v)∑

v∈V
g(v)2

=

∑
v∈V

f(v)(Lf(v))

∑
v∈V

(D
1
2 f(v))2

=

∑
v∈V

f(v)
∑
w∈V

Lv,wf(w)∑
v∈V

f(v)2 deg (v)

=

∑
v∈V

f(v)
∑

{v,u}∈E

(
f(v) − f(w)

)
∑
v∈V

f(v)2 deg (v)

=

∑
{v,u}∈E

(
f(v) − f(u)

)2
∑
v∈V

f(v)2 deg (v)
. (18)

It is easy to see that the minimum value of this ratio is zero,
obtained by any function f(v) that assigns the same value to
the vertices in each connected component of the graph. The
Rayleigh quotient in its basic form is written for any real and
symmetrical1 matrix B and a vector x as

xTBx
xTx

(19)

and is widely used as an approximation to the extreme
eigenvalues of B: the ratio is minimized when x is the
eigenvector corresponding to the smallest eigenvalue of B
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and this minimum value of the Rayleigh quotient is the
eigenvalue itself. Similarly, the maximum gives the largest
eigenvalue. These properties hold for the degree-adjusted
version as well, and hence zero is the smallest of the real,
positive eigenvalue of the normalized Laplacian. The accuracy
of iterative optimization of the Rayleigh quotient is studied by
Li [164].

The right eigenvector associated to the second-smallest
eigenvalue of the Laplacian matrix is called a Fiedler vector,
named after Fiedler [92,93], for his contributions to algebraic
graph theory. If we instead use the normalized Laplacian, the
corresponding vector is a normalized Fiedler vector.

2.4. Markov chains

A Markov chain is a stochastic process in which future states
only depend on the current state, not the past, taking
values from some countable state space. The probabilities for
moving to another state from current state form the transition
matrix of the Markov chain.

In general, each Markov chain, independent of how the
transition probabilities are defined, can be represented by
a weighted directed graph where each state corresponds to
a vertex, each edge corresponds to a transition that has
nonzero probability and the edge weight is the probability
in question. For an unweighted graph, when one moves
from one vertex to another choosing a neighbouring vertex
uniformly at random, the transition matrix that results is
the normalized adjacency matrix D−1AG of the graph G. This
means that the probability for moving from vertex v to w is
simply

pv,w =


1

deg (v)
, if w ∈ Γ (v) ,

0, otherwise.

(20)

Such a walk is called random, blind, regular or simple, as it
is but one of many possible definitions of walks in graphs.
One may impose different kinds of weight functions on the
neighbouring vertices, which generalized to the definition
of a Markov chain with the state set being the vertex set
of the graph. For more insight to the mathematics and
interpretations of random walks on graphs, see for example
the survey by Lovász [167] or the textbook in preparation by
Aldous and Fill [6]. The latter emphasizes the Markov chain
connection.

The first passage time from state j to state i is the time step
when the chain first visits state i when started at state j. The
absorption time from state j to state i is the first passage time in
a modified chain, where state i is made into an absorbing state
by removing all of its outbound transitions.

The spectrum of the transition matrix can be used to
evaluate themixing time of the chain, which is the time it takes
for the chain to reach its stationary distribution. The stationary
distribution is a distribution that no longer changes over time
as more and more transitions are being performed. It defines
for each state the probability that the walk is at that state
if a single observation is made after the walk has been run
for a sufficiently long time. The stationary distribution can
be obtained by computing the left eigenvector corresponding
to the largest eigenvalue of the transition matrix. The primary
eigenvalue λ1 of any transition matrix is one, as is the case for
any stochastic matrix. The Perron–Frobenius theorem [113]
states that for the non-principal eigenvalues,

∣∣λi∣∣ ≤ λ1 = 1.
If there are more eigenvalues with the value one, the chain
has more stationary distributions.

The eigenvectors form a basis for a vector space. As any
vector, including the initial distribution, can be represented as
an eigenvalue decomposition in the vector space determined
by the eigenvectors, and all λi other than those corresponding
to stationary distributions have absolute value smaller than
one, the corresponding components get smaller and smaller
as the chain is ran. This implies that the smaller the
eigenvalues λi are, the faster the chain converges to the
stationary distribution [139]. For estimating the mixing time,
the second eigenvalue of the transition matrix is already
quite useful [211]. For more information on mixing times, we
recommend Behrends’ book [23].

3. Graph clustering

In this section, we begin the difficult work of defining what
constitutes a cluster in a graph and what a clustering should
be like; we also discuss some special classes of graphs. In
some of the clustering literature, a cluster in a graph is called
a community [186,107].

Formally, given a data set, the goal of clustering is to divide
the data set into clusters such that the elements assigned
to a particular cluster are similar or connected in some
predefined sense. However, not all graphs have a structure
with natural clusters. Nonetheless, a clustering algorithm
outputs a clustering for any input graph. If the structure
of the graph is completely uniform, with the edges evenly
distributed over the set of vertices, the clustering computed
by any algorithm will be rather arbitrary. Quality measures
– and if feasible, visualizations – will help to determine
whether there are significant clusters present in the graph
and whether a given clustering reveals them or not.

In order to give a more concrete idea of what clusters are,
we present here a small example. On the left in Fig. 1 we have
an adjacency matrix of a graph with n = 210 vertices and m =

1505 edges: the 2m black dots (two for each edge) represent
the ones of the matrix, whereas white areas correspond to
zero elements. When the vertices are ordered randomly, there
is no apparent structure in the adjacency matrix and one
can not trivially interpret the presence, number, or quality
of clusters inherent in the graph. However, once we run a
graph clustering algorithm (in this example, an algorithm of
Schaeffer [205]) and re-order the vertices according to their
respective clusters, we obtain a diagonalized version of the
adjacencymatrix, shown on the right in Fig. 1. Now the cluster
structure is evident: there are 17 dense clusters of varying
orders and some sparse connections between the clusters.

Matrix diagonalization in itself is an important application
of clustering algorithms, as there are efficient computational
methods available for processing diagonalized matrices, for
example, to solve linear systems. Such computations in turn
enable efficient algorithms for graph partitioning [214], as the
graph partitioning problem can be written in the form of a
set of linear equations. The goal in graph partitioning is to
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Fig. 1 – The adjacency matrix of a 210-vertex graph with 1505 edges composed of 17 dense clusters. On the left, the
vertices are ordered randomly and the graph structure can hardly be observed. On the right, the vertex ordering is by cluster
and the 17-cluster structure is evident. Each black dot corresponds to an element of the adjacency matrix that has the value
one, the white areas correspond to elements with the value zero.

Fig. 2 – Two graphs both of which have 84 vertices and 358 edges. The graph on the left is a uniform random graph of the
Gn,m model [84,85] and the graph on the right has a relaxed caveman structure [228]. Both graphs were drawn with
spring-force visualization [203].
minimize the number of edges that cross from one subgroup
of vertices to another, usually posing limits on the number of
groups as well as to the relative size of the groups.

3.1. Generation models for clustered graphs

Gilbert [106] presented in 1959 a process for generating
uniform random graphs with n vertices: each of the

( n
2
)

possible edges is included in the graph with probability
p, considering each pair of vertices independently. In such
uniform random graphs, the degree distribution is Poissonian.
Also, the presence of dense clusters is unlikely as the edges
are distributed by construction uniformly, and hence no
dense clusters can be expected.

A generalization of the Gilbert model, especially designed
to produce clusters, is the planted `-partition model [59]: a graph
is generated with n = ` · k vertices that are partitioned into
` groups each with k vertices. Two probability parameters
p and q < p are used to construct the edge set: each pair
of vertices that are in the same group share an edge with
the higher probability p, whereas each pair of vertices in
different groups shares an edge with the lower probability
r. The goal of the planted partition problem is to recover such
a planted partition into ` clusters of k vertices each, instead
of optimizing some measure on the partition. McSherry [173]
discusses also planted versions of other problems such as k-
clique and graph colouring.

Fig. 2 shows two graphs of the same order and size,
one of is a uniform random graph and the other has a
clearly clustered structure. The graph on the right is a
relaxed caveman graph. Caveman graphs were an early attempt
in social sciences to capture the clustering properties of
social networks, produced by linking together a ring of
small complete graphs called “caves” by moving one of the
edges in each cave to point to another cave [231]. Also the
graph represented in Fig. 1 was generated with the caveman
model. These graphs are also especially constructed to
contain a clear cluster structure, possibly with a hierarchical
structure where clusters can be further divided into natural
subclusters.

The procedure to create a relaxed caveman graph is the
following [228]: a connection probability p ∈ (0,1] of the
top level of the hierarchy is given as a parameter, together
with a scaling coefficient s that adjusts the density of the
lower-level caves. The minimum nmin and maximum nmax
for the numbers of subcomponents (subcaves at higher levels,
vertices at the bottom level) are given as parameters. The
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generation procedure is recursive. The graph on the right in
Fig. 2 is a first-level construction.

Planted partitionmodels and relaxed caveman graphs pro-
vide good and controllable artificial input data for evaluat-
ing and benchmarking clustering algorithms. The underlying
cluster structure is determined by the construction, but by
defining lower values for the intercluster densities, the struc-
ture can be blurred, which increases the difficulty of clus-
tering. The planted partition model is theoretically easier to
handle. However, the relaxed caveman model incorporates
the generation of a hierarchy and the possibility to generate
unequal-sized clusters — both often present in natural data.

3.2. Desirable cluster properties

Unfortunately, no single definition of a cluster in graphs is
universally accepted, and the variants used the literature
are numerous [82]. In the setting of graphs, each cluster
should intuitively be connected: there should be at least one,
preferably several paths connecting each pair of vertices
within a cluster. If a vertex u cannot be reached from a
vertex v, they should not be grouped in the same cluster.
Furthermore, the paths should be internal to the cluster:
in addition to the vertex set C being connected in G, the
subgraph induced by C should be connected in itself, meaning
that it is not sufficient for two vertices v and u in C to be
connected by a path that passes through vertices in V\C,
but they also need to be connected by a path that only visits
vertices included in C.

As a consequence, when clustering a disconnected graph
with known components, the clustering should usually be
conducted on each component separately, unless some global
restriction on the resulting clusters is imposed. In some
applications one may wish to obtain clusters of similar
order and/or density, in which case the clusters computed
in one component also influence the clusterings of other
components.

We classify the edges incident on v ∈ C into two groups:
internal edges that connect v to other vertices also in C, and
external edges that connect v to vertices that are not included
in the cluster C:

degint (v, C) = |Γ (v) ∩ C|

degext (v, C) = |Γ (v) ∩ (V\C)|

deg (v) = degint (v, C) + degext (v, C) .

(21)

Clearly, degext (v) = 0 implies that C containing v could be a
good cluster, as v has no connections outside of it. Similarly,
if degint (v) = 0, v should not be included in C as it is not
connected to any of the other vertices included.

It is generally agreed upon that a subset of vertices forms
a good cluster if the induced subgraph is dense, but there
are relatively few connections from the included vertices
to vertices in the rest of the graph [24,107,142,151,185]. For
examples, see Fig. 3.

One measure that helps to evaluate the sparsity of
connections from the cluster to the rest of the graph is the cut
size c (C,V\C). The smaller the cut size, the better “isolated”
the cluster. Determining when a cluster is dense is naturally
achieved by computing the graph density. We refer to the
Fig. 3 – An example graph with three clusters chosen; all
cluster members are drawn in black and their internal
edges are drawn thicker than other edges of the graph. The
cluster on the left is of good quality, dense and introvert.
The one in the middle has the same number of internal
edges, but many more to outside vertices, making it a
worse cluster. The cluster on the right has very few
connections outside, but lacks internal density and hence
is not a good cluster.

density of the subgraph induced by the cluster as the internal
or intra-cluster density:

δint(C) =
|{{v,u} | v ∈ C,u ∈ C}|

|C| (|C| − 1)
. (22)

The intercluster density of a given clustering of a graph G
into k clusters C1, C2, . . . ,Ck is the average of the intercluster
densities of the included clusters:

δint(G | C1, . . . ,Ck) =
1
k

k∑
i=1

δint(Ci). (23)

The external or inter-cluster density is of a clustering is defined
as the ratio of intercluster edges to the maximum number of
intercluster edges possible, which is effectively the sum of the
cut sizes of all the clusters, normalized to the range [0,1]:

δext(G | C1, . . . ,Ck) =

∣∣∣{{v,u} | v ∈ Ci,u ∈ Cj, i 6= j
}∣∣∣

n(n − 1) −

k∑
`=1

(|C`| (|C`| − 1))

. (24)

Globally speaking, the internal density of a good clustering
should be notably higher than the density of the graph δ (G)

(Eq. (3)) and the intercluster density of the clustering should
be lower than the graph density [184].

Considering the above requirements of connectivity and
density, the loosest possible definition of a graph cluster is
that of a connected component, and the strictest definition is
that each cluster should be a maximal clique (i.e. a subgraph
into which no vertex could be added without losing the clique
property). In most occasions, the semantically useful clusters
lie somewhere in between these two extremes. Connected
components are easily computed in O(n + m)-time with a
breadth-first search, whereas clique detection is NP-complete
[143,28]. Typically, interesting clustering measures tend to
correspond to NP-hard decision problems [210,1]. When the
input graph is very large, such as the Internet at router level or
the Web graph (see Section 3.3.2), it is highly infeasible to rely
on algorithms with exponential running time, as even linear-
time computation gets tedious.

It is not always clear whether each vertex should be
assigned fully to a cluster or could it instead have different
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“levels of membership” in several clusters? In document
clustering, such a situation is easily imaginable: a document
can be mainly about fishing, for example, but also address
sailing-related issues, and hence could be clustered into
“fishing” with 0.9 membership, for example, and to “sailing”
with a level of 0.3. Another solution would be creating a
supercluster to include all documents related to fishing and
sailing, but the downside is that there can be documents on
fishing that have no relation to sailing whatsoever.

For general clustering tasks, fuzzy clustering algorithms
have been proposed [129,105], as well as validity mea-
sures [239]. Within graph clustering, not much work can be
found on fuzzy clustering, and in general, the past decade has
been quiet on the area of fuzzy clustering. Yan and Hsiao [241]
present a fuzzy graph-clustering algorithm and apply it to cir-
cuit partitioning. A study on general clusteringmethods using
fuzzy set theory is presented by Dave and Krishnapuram [68].

A fuzzy graph GR = (V,R) is composed of a set of vertices
and a fuzzy edge-relation R that is reflexive and symmetrical
together with a membership function µR assigns to each
fuzzy edge a level of “presence” in the graph [75]. Different
nonfuzzy graphs can be obtained by thresholding µR such
that only those edges {v,u} for which µr(v,u) ≥ τ are included
as edges in Gτ . The graph Gτ is called a cut graph of GR.

Dong et al. [75] present a clustering method based on
a connectivity property of fuzzy graphs assuming that the
vertices represent a set of objects that is being clustered
based on a distancemeasure. Their algorithm first preclusters
the data into subclusters based on the distance measure,
after which a fuzzy graph if constructed for each subcluster
and a cut graph of the resulting graph is used to define
what constitutes a cluster. Dong et al. also discuss the
modifications needed in the current clustering upon updates
in the database that contains the objects to be clustered.

Fuzzy clustering has not been established as a widely
accepted approach for graph clustering, but it offers a more
relaxed alternative for applications where assigning each
vertex to just one cluster seems restricting while the vertex
does relate more strongly to some of the candidate clusters
than to others.

3.3. Representations of clusters for different classes of
graphs

It is common that in applications, the graphs are not just
simple, unweighted and undirected. If more than one edge is
allowed between two vertices, instead of a binary adjacency
matrix it is customary to use a matrix that determines for
each pair of vertices how many edges they share. Graphs with
such edge multiplicities are called multigraphs.

Also, should the graph be weighted, cutting an important
edge (with a large weight) when separating a cluster is to
be punished more heavily than cutting a few unimportant
edges (with very small weights). Edge multiplicities can in
essence be treated as edgeweights, but the situation naturally
gets more complicated if the multiple edges themselves have
weights.

Luckily, many measures extend rather fluently to incor-
porate weights or multiplicities. It is especially easy when
the possible values are confined to a known range, as this
range can be transformed into the interval [0,1] where one
corresponds to a “full” edge, intermediate values to “partial”
edges, and zero to there being no edge between two vertices.
With such a transformation, we may compute density not by
counting edges but summing over the edge weights in the unit
line: the internal density of a cluster C (Eq. (22)) on Section 3.2
is rewritten as

δint(C) =
1

|C| (|C| − 1)

∑
{v,u}∈E
v∈C,u∈C

ω (v,u) (25)

to account for the degree of “presence” of the edges.
Now a cluster of high density has either many edges or
important edges, and a low-density cluster has either few
or unimportant edges. It may be desirable to do a nonlinear
transformation from the original weight set to the unit line
to adjust the distribution of edge importance if the clustering
results obtained by the linear transformation appear noisy or
otherwise unsatisfactory.

3.3.1. Bipartite graphs
A bipartite graph is a graph where the vertex set V can be split
in two sets A and B such that all edges lie between those two
sets: if {v,w} ∈ E, either v ∈ A and w ∈ B or v ∈ B and w ∈ A.
Such graphs are natural for many application areas where
the vertices represent two distinct classes of objects, such as
customers and products; an edge could signify for example
that a certain customer has bought a certain product. Possible
clustering tasks could be grouping the customers by the types
of products they purchase or grouping products purchased
by the same people — the motivation could be targeted
marketing, for instance. Carrasco et al. [41] study a graph of
advertisers and keywords used in advertisements to identify
submarkets by clustering.

A bipartite graph G = (A ∪ B,E) with edges crossing only
between A and B and not within can be transformed into two
graphs GA and GB. Consider two vertices v and w in A. As the
graph is bipartite, Γ (v) ⊆ B as well as Γ (w) ⊆ B and these two
neighbourhoods may overlap. The more neighbours the two
vertices in A share, the more “similar” they are. Hence, we
create a graph GA = (A,EA) such that

{v,w} ∈ EA if and only if (Γ (v) ∩ Γ (w)) 6= ∅. (26)

Similarly a graph GB results from connecting vertices whose
neighbourhoods in A overlap. Weighted versions of GA and GB
can be obtained by setting

ω (v,w) = |Γ (v) ∩ Γ (w)|, (27)

possibly normalizing with the maximum degree of the graph.
Clusterings can be computed either for the original

bipartite graph G or for the derived graphs GA and GB [41]. An
intuition on how this works can be developed by thinking of
the set A as books in a bookstore and the set B the customers
of the store, the edges connecting a book to a customer if
the customer has bought that book. Two customers have
a similar taste in books if they have bought many of the
same books, and two books appeal to a similar audience if
several customers have purchased both. Hence the overlap
of the neighbourhoods the one side of the graph reflects the
similarity of the vertices of the other side and vice versa.
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Bipartite graphs often arise as representations of hyper-
graphs, that is, graphs where the edges are generalized to sub-
sets of V of arbitrary order instead of restricting to pairs of
vertices. An example is factor graphs. Direct clustering of such
hypergraphs is another problem of interest.

3.3.2. Directed graphs
Up to now, we have been dealing with undirected graphs. Let
us turn into directed graphs, which require special attention,
as the connections that are used in defining the clustering
are asymmetrical and so is the adjacency matrix. This causes
relevant changes in the structure of the Laplacian matrix and
hence makes spectral analysis more complex.

Web graphs [36] are directed graphs formed by web pages
as vertices and hyperlinks as edges. A clustering of a higher-
level web graph formed by all Chilean domains was presented
by Virtanen [227]. Clustering of web pages can help identify
topics and group similar pages. This opens applications
in search-engine technology; building artificial clusters is
known to be a popular trick among websites of adult content
to try to fool the PageRank algorithm [35] used by Google to
rate the quality of websites.

The basic PageRank algorithm assigns initially to each web
page the same importance value, which is then iteratively
distributed uniformly among all of its neighbours. The goal of
the PageRank algorithm is to reach a value distribution close
to a stationary converged state using relatively few iterations.
The amount of “importance” left at each vertex at the end
of the iteration becomes the PageRank of that vertex, the
higher the better. A large cluster formation of N � 0 vertices
can be constructed to “maintain” the initial values assigned
within the cluster without letting it drain out and eventually
accumulating it to a single target vertex that would hence
receive a value close to N times the initial value assigned for
each vertex when the iterative computation of PageRank is
stopped, even though the true value after global convergence
would be low. Identifying such clusters helps to overcome the
problem.

Another example of directed graphs are web logs (widely
known as blogs) that are web pages in which users can make
comments — identifying communities of users regularly
commenting on each other is not only a task of clustering
a directed graph, but also involves a temporal element: the
blogs evolve over time and hence the graph is under constant
change as new links between existing blogs appear and new
blogs are created [157]. The blog graph can be viewed directly
as the graph of the links between the blogs or as a bipartite
graph of blogs and users. Also the content of the online
shared-effort encyclopedia Wikipedia forms an interesting
directed graph.

4. Measures for identifying clusters

There are two main approaches for identifying a good cluster:
one may either compute some values for the vertices and
then classify the vertices into clusters based on the values
obtained, or compute a fitness measure over the set of
possible clusters and then choose among the set of cluster
candidates those that optimize the measure used. In this
section we first overview vertex similarity measures that
can be used in the former manner to identify the cluster
of a specific vertex or to group all of the vertices into a
set of clusters, and then present possible cluster fitness
measures that serve for methods that produce the clustering
by comparing different groupings and selecting one that
meets or optimizes a certain criterion.

4.1. Vertex similarity

There are many clustering algorithms based on similarities
between the vertices. Should the vertices represent docu-
ments, for example, one could compute content-based sim-
ilarity values for all pairs of documents and use the similarity
matrix as a basis for the clustering, attempting to group to-
gether vertices that are not only well connected but also sim-
ilar to each other. The higher the similarity, the stronger the
need to cluster the vertices together. Computing such simi-
larities is not necessarily simple, and in some cases evaluat-
ing the similarity of two vertices may turn out to be a task
even more complex than the clustering of the graph once the
similarities are known.

If a similarity measure has been defined for the vertices,
the cluster should contain vertices with close-by values and
exclude those for which the values differ significantly from
the values of the included vertices. If instead of similarity,
we use a distance measure, the cluster boundary should be
located in an area where including more of the outside
vertices would drastically increase the intracluster distances
(for example, the sum of squares of all-pairs distances).
Hence, with distance measures, it is desirable to cluster
together vertices that have small distances to each other.

4.1.1. Distance and similarity measures
Defining or selecting an appropriate similarity or distance
function depends on the task at hand. The number of
similarity measures used in the literature has been very high
for various decades [122,233]. Given a data set, a distance
measure dist (didj), should fulfil the following criteria:

1. The distance from a datum to itself is zero: dist (didi) = 0.
2. The distances are symmetrical: dist (didj) = dist (djdi).
3. The triangle inequality holds:

dist (didj) ≤ dist (didk) + dist (dkdj). (28)

For points in an n-dimensional Euclidean space, possible
distance measures for two data points di = (di,1,di,2, . . . ,di,n)

and dj = (dj,1,dj,2, . . . ,dj,n) include the Euclidean distance

dist (didj) =

n∑
k=1

√
(di,k − dj,k)2 (29)

which is the L2 norm, the Manhattan distance

dist (didj) =

n∑
k=1

|di,k − dj,k| (30)

which is the L1 norm, and the L∞ norm

dist (didj) = max
k∈[1,n]

|di,k − dj,k|. (31)
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A typical example of a nonEuclidean space is that formed
by vector representations of textual data: for a collection of m
text documents D1,D2, . . . ,Dm, each term ti that appears in at
least one of the documents is represented by a dimension.
Denote the number of terms by n — note that typically
non-informative words like articles and prepositions are
filtered out to reduce the dimensionality. Each document Dj
is then represented by a datum dj such that the element
at position i is the frequency at which term ti appears in
document Dj, i.e., how many times the term ti is included
in the document. Typically the frequencies are normalized to
eliminate the effect of variations in document length. Usually
these frequencies are then multiplied by a factor that is
inversely proportional to the number of documents in which
the term appears, to give more weight to terms that appear
in fewer documents. The product measure is called term-
frequency inverse-document-frequency (tf-idf) and is commonly
used in the field of data mining and also well studied [235].

Once the vectors are computed, a similarity measure
can be applied. Possibilities include variations of the
aforementioned three distances as well as the dot product
and/or the angle between the vectors. A common measure
that utilized the latter two is the cosine similarity, also known
as the Ochini coefficient: for two vectors di = (di,1,di,2, . . . ,di,n)

and dj = (dj,1,dj,2, . . . ,dj,n), their cosine similarity is the angle

ρ(di,dj) = arccos
di · dj√

n∑
k=1

(d2i,k)

√
n∑

k=1
(d2j,k)

. (32)

As the resulting measure is an angle in [0, π), the most
dissimilar value is π/2 and zero is the best possible similarity.
An example of using cosine similarity in clustering is the
work of Lakroum et al. [159].

Many similarity measures are based on the Jaccard index
[133], defined for sets A and B as

ρ(A,B) =
|A| ∩ |B|

|A| ∪ |B|
. (33)

This is easily transformed into a distance measure:
dist (A,B) = 1−ρ(A,B). This idea generalized to n-dimensional
binary vectors A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bn) as
follows: denote by Ci,j the number of positions k ∈ [1,n] in
which ak = i and bk = j. The Jaccard similarity coefficient for
such vectors A and B is

ρ(A,B) =
C1,1

C0,1 + C1,0 + C1,1
(34)

and their Jaccard distance is

dist (A,B) =
C1,0 + C0,1

C0,1 + C1,0 + C1,1
. (35)

An advantage of the Jaccard index and the derived measures
is that they can be applied on categorical data, where the data
attributes are not numerical but rather represent the presence
or absence of a property. An example of the application of the
Jaccard coefficient is the work of Dong et al. [75].

The cosine similarity was extended to the coincide
with the Jaccard similarity for n-dimensional binary vectors
A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bn); the extension is
called the Tanimoto coefficient [220], defined as

ρ(A,B) =
A · B√

n∑
k=1

a1 +

√
n∑

k=1
b1 − A · B

. (36)

There exists a distance measure based on the Tanimoto
coefficient that fulfils the triangle equality (Eq. 28) [166].

For string data, other typical distance measures in-
clude the edit distance (also known as the Levenshtein dis-
tance [118]), which is the number of character insertions
and/or deletions that need to bemade in order to transform di
into dj, possibly with different costs for different operations.
Cohen, Ravikumar, and Fienberg [57] give a survey on string-
similarity metrics, and a comprehensive survey to clustering
feature vectors (i.e. points in high-dimensional space) is given
by Jain et al. [79,134,135].

4.1.2. Adjacency-based measures
In some applications, the vertices lack additional properties
and there is nothing in the vertices themselves that would
allow the computation of a similarity matrix. The situation is
not desperate, however, as the edges incident to the vertices
can be used to derive similarity measures for the vertices
either using the adjacency information directly or through
some more sophisticated computation. In this section we
review vertex-similarity measures based on the structural
properties of the graph instead of some application-specific
properties imposed on the vertices.

Possibly the most straightforward manner of determining
whether two vertices are similar using only the adjacency
information is to study the overlap of their neighbourhoods
in G = (V,E): a straightforward way is to compute the
intersection and the union of the two sets,

ω (v,w) =
|Γ (v) ∩ Γ (w) |

|Γ (v) ∪ Γ (w) |
, (37)

arriving at the Jaccard similarity of Eq. (34) on Section 4.1.1.
The measure takes values in [0,1]: zero when there are
no common neighbours, one when the neighbourhoods are
identical.

Another measure is the so-called (Pearson) correlation of
the columns (or rows) in a modified adjacency matrix C =

AG + I (the modification simply forces all reflexive edges to be
present). The Pearson correlation is defined for two vertices vi
and vj corresponding to the columns i and j of C as

n

(
n∑

k=1
(ci,kcj,k)

)
− deg(vi)deg(vj)√

deg(vi)deg(vj)
(
n − deg(vi)

) (
n − deg(vj)

) . (38)

This value can then be used as an edge weight ω(vi,vj) to
construct a symmetrical similarity matrix. It reaches the
value one if and only if the two vertices have the same
neighbourhood, and for neighbourhoods with no overlap the
value is a negative number no less than −1, depending on
the degrees of the vertices. Correlations can also be applied
to other measures than the plain adjacency data to determine
cluster structure [40].
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4.1.3. Connectivity measures
Clusters in graphs can also be defined through connectivity
by calculating the number of (edge-distinct) paths that exist
between each pair of vertices. For some vertices to belong to
the same cluster, they should be highly connected to each
other [120].

Edachery et al. [82] proposed that in a good cluster, it is
not absolutely necessary that two included vertices v and u
are connected by a direct edge, if they are at least connected
by a short path. Hence a matrix containing the distance for
each vertex pair could serve as a similarity matrix, treating
two vertices as similar if they have a low distance. In their
work, Edachery et al. threshold the path length: they require that
all vertices in a cluster must be at distance at most k from
each other. They call such a subgraph a k-clique and present a
clustering algorithm based on finding induced subgraphs that
are k-cliques. Note that the requirement that the induced
subgraph is to be a k-clique implies that the k-paths (or
shortest paths) connecting the cluster members must only
resort to intracluster edges. The vertex set of a k-clique in a
graph does not necessarily form a k-clique induced subgraph
— counterexamples are easy to construct.

In order to be able to set the threshold k, one should
know (at least an estimate of) the diameter of the input graph,
which is the maximum distance over all pairs of nodes. Not
knowing the diameter, one can hardly set a good value for the
threshold, as values close to the diameter may already result
in clusters containing large portions of the input graph, and
small values of the threshold (with respect to the diameter)
may split some natural clusters into two or more k-clique
subgraphs.

4.2. Cluster fitness measures

In this section we survey possibilities of cluster fitness
measures, which are functions that rate the quality of a
given cluster or a clustering. Such functions can either be
utilized in the identification of clusters (by optimizing one or
more cluster fitness measures), choosing between alternative
clusterings (by comparing the values of one or more
cluster fitness measures), and comparing different clustering
algorithms (by studying the values that the clusterings
computed give for different cluster fitness measures).

Using cluster fitness functions to determine a clustering
for a given input graph is an option to the methods based
on classifying vertices by using vertex similarities. The idea
is to try to directly identify clusters that fulfil a certain
desirable property. Common criteria include several variants
of density, i.e. measures that are based on the fraction or
number of edges present in the induced subgraph, reaching
the maximum value for cliques. For example Hu et al. [132]
search for dense subgraphs in biological data by graph data
mining [230].

4.2.1. Density measures
Several algorithms that search for maximal subgraphs that
have a density higher than a preset threshold have been
proposed [147]. Any definition of a clusters simply as a
subgraph that is dense with respect to a given density
measure is fundamentally a special case of the following
decision problem [210]:
Density

Instance: An undirected graph G = (V,E), a density measure
δ (·) defined over vertex subsets S ⊆ V, a positive integer k ≤ n,
and a rational number ξ ∈ [0,1].

Question: Is there a subset S ⊆ V such that |S| = k and the
density δ (S) ≥ ξ?

Note that simple maximization of any density measure
without fixing kwould result in choosing any clique, including
K2 and K3, which are neither appealing as clusters; any edge
will produce a K2 subgraph whereas K3 is a simple triangle.
When the density measure used in the above decision
problem is that of Eq. (3), the density of the induced subgraph,
the problem is NP-complete since for ξ = 1 it coincides with
the NP-complete Clique problem [103,143].

The complexity of several variants of this problem are
known. Feige et al. [90] consider the problem of computing
the subgraph of order k with the most edges in a given
input graph, which is NP-hard as solving it would also
solve the maximum clique problem. Feige et al. present
an approximation algorithm with approximation ratio O(nd),
d < 1

3 .
Asahiro et al. [11] study the general question: Given a

graph G = (V,E), is there a k-subgraph in G with at least f(k)
edges. They find that the problem remains NP-complete for
f(k) = Ω(k1+ε), 0 < ε < 1, and for f(k) = mk2n2(1 + O(nε−1)),
as well as for Ω(nε1 )-regular graphs if f(k) = Ω(k1+ε2 ) for
0 < ε1, ε2 < 1.

Holzapfel et al. [127] pose the same question – whether
there is a k-subgraphwith average degree at least f(k) – for any
density function computable in polynomial time that satisfies
∀k the inequality f(k) ≤ k − 1. At one extreme they again
have the NP-complete clique problem, but for f(k) = 2 the
problem is solvable in polynomial time. They show that the
problem is NP-complete if f(k) = 2 + Ω(k−(1−ε)), ε > 0 and has
a polynomial-time algorithm for f(k) = 2 + O(k−1).

Another approach was proposed by Matsuda et al. [171],
which consider p-quasi complete subgraphs as clusters; a
graph G = (V,E) is p-quasi complete for p ∈ [0,1], if for all v ∈ V,

deg (v) ≥ p(n − 1). (39)

They show that it is NP-complete to determine whether a
given graph has a 1

2 -quasi complete subgraph of order at least
k.

In general, for large instances, approximation algorithms
are a justified and feasible approach for locating dense
subgraphs [171,206]. It is important to keep inmind that for all
the above density measures, it is easy to compute the measure
for a given subgraph: one simply needs the adjacency relation
for the included vertices and polynomial-time operations,
typically of order O(n2).

4.2.2. Cut-based measures
In addition to direct density measures, also measures of
connectivity with the rest of the graph are used to identify
high-quality clusters. Measures of the “independence” of a
subgraph of the rest of the graph have been defined based on
cut sizes. Possibly the most important such measure in the
context of clustering is conductance (see, for example [142]),



38 C O M P U T E R S C I E N C E R E V I E W 1 ( 2 0 0 7 ) 2 7 – 6 4
defined for any proper nonempty subset S ⊂ V in graph
G = (V,E) as follows:

Φ(S) =
c (S,V\C)

min
{
deg (S) ,deg (V\S)

} . (40)

Finding a cut with minimum conductance is NP-hard [210].
Variants of conductance include normalized cut [121,209] and
expansion [95,142], as well as the cut ratio. The problem of
optimizing the cut ratio is called the sparsest cut problem and
it is known to be NP-hard [172].

In order to arrive at more independence measures, we
define the internal degree of a cluster C to be the number of
edges connecting vertices in C to each other:

degint (C) = |{{v,u} ∈ E | v,u ∈ C}| (41)

and the external degree of a cluster to be the number of edges
that connect it to the rest of the graph:

degext (C) = |{{v,u} ∈ E | v ∈ C,u ∈ V\C}| . (42)

Note that the external degree is in fact the size of the
cut (C,V\C). Using these definitions, we arrive at another
“independence” measure used in clustering: the relative
density ρ (C) [178]. Relative density is the ratio of the internal
degree to the number of incident edges:

ρ (C) =
degint (C)

degint (C) + degext (C)

=

∑
v∈C

degint (v, C)∑
v∈C

degint (v, C) + 2degext (v, C)
. (43)

For cluster candidates with only one vertex (and any other
candidate that is an independent set), we set ρ (C) = 0.
Thresholding ρ (C) is NP-complete [210].

The computational challenge lies in identifying subgraphs
within the input graph that reach a certain value of a
measure, whether of density or independence, as the number
of possible subgraphs is exponential. Consequently, finding
the subgraph that optimizes the measure (i.e. a subgraph
of a given order k that reaches the maximum value of a
measure in the graph) is computationally hard. However, as
the computation of the measure for a known subgraph is
polynomial, we may use these measures to evaluate whether
or not a given subgraph is a good cluster. Wewill return to this
property of easy computation of the these quality measures
in Section 6.3.

5. Global methods for graph clustering

This section addresses methods that are designed to obtain
a global clustering for a given graph. The existing global
approaches are capable of dealing with up to a fewmillions of
vertices on sparse graphs [128,185,187]. In a global clustering,
each vertex of the input graph is assigned a cluster in the
output of themethod, whereas in a local clustering, the cluster
assignments are only done for a certain subset of vertices,
commonly only one vertex. Local clustering will be the topic
of Section 6. A brief survey on some global clusteringmethods
is given by Newman [184].

When applying graph clustering to a specific application,
one needs to choose or design the clustering algorithm to be
used within a certain “framework” of defining what is a global
clustering of a graph. One decision is whether the clusters
C1, . . . ,Ck should form a partition such that

Ci ∩ Cj = ∅ if i 6= j, (44)

or alternatively a cover of the data set — the latter option
allows for each datum to belong to more than one cluster,
but each datum needs to be assigned to at least one cluster. In
applications, both cases are, however, possible; we will return
to the application-specific nature of clustering in Section 8.

5.1. Complexity of global clustering

In this section we discuss some related problems where a
dataset – which can be represented as a (weighted) complete
graph – is divided into clusters that optimize a certain criteria.
Understanding of the approximability and the algorithms
for these problems helps to understand how good global
clustering algorithms can be.

The minimum k-clustering problem is the combinatorial
optimization problem where a finite data set D is given
together with a distance function d : D × D → N, where
d satisfies the triangle inequality (Eq. (28)). The task is to
partition D into k clusters C1,C2, . . . ,Ck, where Ci ∩ Cj = ∅

for i 6= j, such that the maximum intercluster distance is
minimized (i.e. the maximum distance between two points
assigned to the same cluster). This problem is approximable
within a factor of two, but not approximable within (2− ε) for
any ε > 0 [112,125].

A related problem is the minimum k-centre problem, where a
complete graph is given with a distance function d : V×V → N
and the goal is to construct a set of centres C ⊆ V of fixed order
|C| = k such that the maximum distance from a vertex to the
nearest centre is minimized. Essentially, this is not a graph
problem as the data set is simply a set of datums and their
distances: the edges play no role.

If the distance function satisfies the triangle inequality,
theminimum k-centre problem can be approximatedwithin a
factor of two [125], but it is not approximable within (2− ε) for
any ε > 0 [131]. Without the triangle inequality, the problem
is not in APX [126]. A capacitated version, where the triangle
inequality does hold but the number of vertices “served” by
a single centre vertex is bounded from above by a constant,
is approximable within a factor of five [146]: a centre serves
a vertex if it is the closest centre to that vertex. Another
capacitated version where themaximum distance is bounded
by a constant and the task is to choose a minimum-order set
of centres [19] is approximable within a factor log c+ 1, where
c is the capacity of each centre [21]. Agarwal and Procopiuc [4]
present an exact and an approximation algorithm for the
k-centre problem with extensions to various distance metrics
as well as both exact and approximate algorithms for the
capacitated version of the problem.

A weighted version of the k-centre problem, where the
distance of a vertex to a centre is multiplied by the weight
of the vertex and the maximum of this product is to be
minimized, is approximable within a factor of two [195], but it
can not be approximated within (2−ε) for any ε > 0. If it is not
the maximum distance that is of interest, but the sum of the
distances to the nearest centre is minimized instead while
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keeping the order of the centre set fixed, the problem is called
the minimum k-median problem. Feder and Greene [88] show
that the problems of minimizing the maximum intracluster
distance in general and that of minimizing the distance
from each point to its cluster centre cannot be approximated
within a factor close to two for points in Rd if d ≥ 2, unless
P = NP.

A popular algorithm for clustering vector data with respect
to a distance function is the k-means algorithm [119]. The basic
idea of the k-means method is to cluster a set of points in
some metric space into k clusters by iteratively improving k
cluster centres and grouping each point to the cluster with
the closest centre; the centres are chosen to minimize the
sum-of-squares of the intracluster distances. Unfortunately,
k-means is NP-hard even for k = 2 [1].

For more variants of such problems and the related
complexity results, we refer the reader to the excellent online
resource of Crescenzi and Kann [62] with a brief definition,
summary of the results and bibliographical references for
numerous problems in combinatorial optimization.

5.2. Iterative or online computation of global clusterings

Clustering can either be performed to all of the data elements
at once, or iteratively, assigning one element at a time to
an appropriate cluster. Approaches that require the entire
graph to be accessible simultaneously do not scale well for
large data sets. In iterative clustering, the cluster assignments
made to elements upon their first processing may either be
considered immutable ormay be changed later on to optimize
some property of the clustering being computed.

If a clustering algorithm operates one datum at a time,
having only the knowledge of previously encountered data,
it is said to operate online. Also methods that process a group
of elements at a time are possible. Such online algorithms for
clustering provide a partial clustering for the data already
seen from an unknown data stream to be clustered. They can
be designed to dynamically determine the number of clusters
to use, often relying on some threshold value to determine
when a newly arriving datum needs to be assigned a new
cluster instead of merging it to an existing cluster.

In order to successfully cluster a large database, an online
clustering method should scan the database at most once. It
should also be able to provide some solution, at least a crude
approximate, at any time, while incrementally incorporating
newly added data into the existing clustering [32]. Such an
approach of incremental clustering is useful for clustering data
sets that undergo frequent modification, such as addition,
removal or editing of the data elements [43]. Incremental
clustering has been suggested for web page classification by
Wong and Fu [236].

Toussaint [222] studied iterative online clustering for
points in space by identifying the nearest neighbour of the point
being clustered among the set of already clustered points:
the new arrival is assigned to the same cluster than the
neighbour. For graph clustering, the distance measure used
should preferably incorporate some structural information on
connectivity among the vertices further than the immediate
neighbourhood.
It is noteworthy that in online clustering, the order in
which the data are processed may significantly affect the
resulting clusters: should the algorithm be attempting to
construct k clusters, and the data is presented one cluster at a
time, there is a risk that the algorithm initially divides the first
cluster into several subclusters. If the cluster assignments
made by the online algorithm are immutable, meaning that
once a datum has been assigned to a cluster, it will not be
moved to another cluster at any later time, the algorithm
can not recover from bad initial cluster assignments. To avoid
these problems, commonly the existing partial clustering is
constantly optimized with respect to some carefully selected
global measure as new data are processed, reassigning also
the old data as necessary.

Guha et al. [116] study clustering of points in space where
the data arrive one at a time and the goal is to maintain
a clustering of the data seen thus far. Additional concerns
to the quality of the clustering achieved are the time and
memory consumption of such a system — if a new datum
may arrive while the previous one is still being clustered, the
system needs to maintain a queue buffer for the incoming
data and may congest. The approach of Guha et al. [116] is a
constant-factor approximation for a k-means algorithm that
uses 2k medians during the observation phase that are used
compress information on the entire dataset. The algorithm
has multiple phases and relies on subroutines defined in
other work, such as an algorithm by Jain and Vazirani [136]
for finding k medians in a data set of order O(k).

Zanghi, Ambroise and Miele [247] present an online
clustering algorithm for graphs that clusters the graph into
k clusters, although they ran the algorithm in parallel for
various values of k = 2,3, . . . and choose the clustering that
maximizes the integrated classification likelihood (discussed
in Section 7.2). Their approach is based on assuming a certain,
relatively high probability for connections within clusters and
a smaller one for intercluster connections, similar to that of
the planted partition model.

5.3. Hierarchical clustering

A global clustering does not have to be a single partition or
cover, but it may also be defined as a hierarchical structure,
where each top-level cluster is composed of subclusters and
so forth. This is useful in situations where the graph structure
itself is hierarchical, and a single cluster can naturally be
composed further to obtain a more fine-grained clustering or
alternatively merged with another cluster to obtain a coarser
division into clusters.

It depends on the application and the input data whether
it makes sense to compute a hierarchy of clusterings or a flat
clustering. In a flat clustering, each cluster is defined by vertex
subset C ⊆ V as the subgraph induced by C, although often
the subset itself is called a cluster. In a hierarchical clustering,
each level of the clustering hierarchy defines a different
subset, and usually the clusters defined by the higher levels
contain the clusters of the lower levels as subgraphs.

For example, if the number of clusters in which to
group the data is known a priori, there is little use in
knowing an entire hierarchy and it may be better to resort to
flat clustering. However, in many contexts, the hierarchical
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Fig. 4 – A company is divided into three departments, each of which is formed by two or three 5–7 person teams. Each
person is represented by a vertex, and an edge is placed between two people if they interact on work-related matters on a
daily basis. The teams and the departments are encompassed by dotted lines.

Fig. 5 – An example dendrogram that groups 23 elements into clusters at four intermediate levels, the root cluster
containing the entire dataset and the leaf clusters each containing one data point. Any level of the dendrogram, indicated
by dotted lines in the picture, can be interpreted as a clustering, grouping together as a cluster those elements that remain
in the same branch of the dendrogram tree above the line. In the hierarchy, the cluster [1,2] is a subcluster of [1,5] which in
turn is a subcluster of [1,8], and so forth.
structure itself can be of interest. This is the case in the
field of social networks: within a city, a workplace will form
a cluster and so will a school, but within workplaces and
schools, a new level of clusters appears from work teams,
classes, etc. See Fig. 4 for a toy example with this kind
of a structure. Comparing the existing “official” hierarchy,
such as the one defined by department boundaries and team
memberships, with a hierarchical clustering of the current
person-to-person contact graph may give reorganizational
insight and reveal hidden self-organization among the
people. One of the seminal studies on social network theory
was that of Zachary [244], who predicted a split in a karate
club analysing the interactions between the members.

Clustering methods that produce multi-level clusterings
are called hierarchical clustering algorithms, as opposed to
flat clusterings that comprise a single partition or cover. A
hierarchical clustering is generally constructed by generating
a sequence of partitions, where each subcluster belongs to one
supercluster in its entity. The root cluster contains at most all
of the data, and each of the leaf clusters contains at least one
data element; semantically relevant clusters usually appear
on intermediate levels.

Such a tree is called a dendrogram; an example is shown
in Fig. 5. If at each iteration, each cluster is split into two,
a balanced binary tree of clusters of different levels will
result. If the graph has high structural variations, such as
large density differences, interpretation of the tree needs
some insight: at a certain level of the hierarchy, some natural
clusters may already have been split into two or more parts
while sets of other natural clusters are still to be identified
within the remaining subgraphs.

In practice, a good algorithm for clustering will not only
consider the clusterings at certain levels of the tree (drawn
in the figure), but also clusterings that result from cutting
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different branches of the dendrogram at different levels.
Determining where to cut the dendrogram usually involves
the optimization of some global qualitymeasure for the entire
clustering. Such measures are discussed in Section 7.

Hierarchical clustering algorithms can be further divided
into two classes, depending on whether the partition is
refined or coarsened during each iteration:

• top-down or divisive algorithms (addressed in Section 5.4)
that split the dataset iteratively or recursively into smaller
and smaller clusters [34,37,95,97,107,138,185,186,209], and

• bottom-up or agglomerative algorithms (addressed in
Section 5.5) that start with each data element in its own
singleton cluster or another set of small initial clusters,
iteratively merging these clusters into larger ones [41,74,
78,128].

At each step, the clustering algorithm selects the clusters
to merge or split by optimizing a certain criterion on the data
set. A stopping condition may be imposed on the algorithm to
select the best clustering with respect to a quality measure on
the current cluster set.

Křivánek and Morávek [158] present results on the
complexity of problems related to hierarchical clustering.
They formulate the problem as clustering a set of objects with
respect to a dissimilarity matrix into a dendrogram. The goal
is to find a k-level dendrogram that minimizes a measure that
combines the dissimilarity values and the grouping made at
each level of the dendrogram for the objects being clustered.
In their terminology, level one consists of the singleton sets
of the objects and level k consists of the entire set of objects.
They show that for k ≥ 3 the problem is NP-hard. If the goal
is to find the dendrogram of arbitrary height that minimizes
the measure, the problem is NP-hard.

5.4. Divisive global clustering

Divisive clustering algorithms are a class of hierarchical
methods that work top-down, recursively partitioning the
graph into clusters. The split at each iteration is typically into
two sets, but there is no reason why a clustering algorithm
could not divide a vertex set into more than two sets for the
next iteration. The various criteria for determining where to
split the graph are discussed in this section.

5.4.1. Cuts
One intuitive approach is to look for the small cuts (as defined
in Section 2.3 in the input graph. Note that the notion of a cut
can be naturally defined for directed and undirected graphs as
well as weighted or unweighted. The minimum cut in a given
(weighted) graph can be found efficiently with a maximum-
flow algorithm [60,83,96].

We wish to split the graph in two by removing a cut.
Remembering that we want the clusters to be dense subsets
with respect to the global density of the graph, a well-chosen
cut should separate two or more clusters, instead of breaking
into two the vertex set of any single cluster. There are two
complications with this idea, however. Firstly, we would like
to be able to make some statements regarding the relative
order of the subgraphs separated by the cut: just cutting out
single vertices does not help much in computing a clustering,
as removing vertices one by one results in singleton clusters
and does not reveal any higher-level structural properties.

However, posing restrictions on the orders of the resulting
subgraphs makes the complexity of the problem harder.
For example, requiring the two “sides” of the split in
the graph to have the same order, results in an NP-hard
problem: Minimum bisection is the problem of dividing a
2n-vertex graph into two n-vertex subgraphs such that the
cut size is minimized [104]. Deciding whether such a cut
exists remains NP-complete even for regular graphs [37]
and for graphs with bounded maximum degree [170], but
the problem is polynomial for trees [170] and graphs with
bounded treewidth [212]. Feige and Krauthgamer [89] provide
approximations for the minimum bisection problem. For a
survey on related problems, called graph layout problems, see
Díaz, Petit, and Serna [71].

As the graph bisection is NP-hard, also `-partition where
the graph is to be partitioned to ` equal-sized groups such that
the grouping minimizes the total number of edges crossing
from one group to another is alsoNP-hard. Johnson et al. [138]
discuss efficient strategies for solving min-cut clustering
problems from an integer programming viewpoint.

Condon and Karp [59] present an `-bisection algorithm
that finds in linear time the optimal partition with probability
1 − exp(−nΘ(ε)) under the planted `-partition model with
p ≥ r + n −

1
2 + ε for constant ε. Their algorithm greedily

classifies the vertices into two groups, L1 and R2, minimizing
the total number of edges crossing the various cuts. The
processing order of the vertices is based on randomly and
uniformly sampling vertex pairs among the unprocessed
vertices. This division is then recursively applied to the sets L1
and R1 to create a second-level division into four groups, and
further until the desired group-size ` has been reached. Note
that the algorithm will fail for some combinations of ` and
n. They also present a nonrecursive version. Dubhashi, Laura
and Panconesi [80] further develop the approach of Condon
and Karp to cluster categorical data rather than graphs.

The second complication with cut-based methods is
shared by most hierarchical divisive algorithms; one needs to
know when to stop splitting the graph. Setting limits on the
cluster order or the number of clusters can be feasible in the
presence of a priori information on how the clustering should
be like. Another approach is to optimize some cluster quality
index; such issues are discussed in Section 7.

Hartuv and Shamir [120] propose a divisive clustering
algorithm that uses a density-based stopping condition. Their
intuition is that for some vertices to belong to the same
cluster, they should be highly connected to each other,
whereas there should not be many paths connecting them
to vertices outside the cluster. The splitting of the graph is
done by removing from the graph at each iteration the edges
that cross the current minimum cut. For each connected
component, they check whether the component is highly
connected. If it is, it will not be divided further. If it is not
highly connected, the iteration continues with the removal of
the edges crossing the minimum cut. Their definition for a
highly connected graph is that the edge-connectivity of the
graph of order n is above n

2 .
Rather than simple cut size, a popular criterion for

partitioning is that of low conductance [41,209,210], believed
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to be in general superior to simple minimum cuts when used
in graph clustering [95,142]. One reason for such preference
is that conductance also takes into account the orders of
the sets that are being cut apart, yielding often in more
significant separations. Although finding a cut withminimum
conductance is NP-hard [210], several clustering algorithms
have been proposed based on variants of conductance [142,
121,95,34,48,108], generally iteratively finding a cut with low
conductance or normalized cut size and splitting the graph.

The general idea is that conductance and other similar
measures tend to reach optimal values at cluster boundaries
and not within clusters, as each cluster should be internally
dense while being sparsely connected to the rest of the graph.
Hence the division should not likely break a natural cluster
but rather separate clusters from other clusters. Care must be
taken to define the stopping condition in order to recognize
when the subgraph that is being cut contains only one
cluster and should not be cut further. Usually the minimum
conductance of a single-cluster graph is much higher than
the conductance of a multicluster one, but the magnitude
of the difference depends on the graph structure. No global
threshold or percentage for the relative increase can be given
that would correctly stop the clustering for all graphs at the
most natural cluster division.

The workarounds to solving an NP-complete problem
are various; Johnson et al. [138], for example, choose a cut
with conductance almost as low as the minimum over all
cuts (implementational details by Cheng et al. [47]), whereas
Carrasco et al. [41] use an exact, fast algorithm of Lang and
Rao [160] for finding a cut S′ that is better than S such that
S′

⊂ S (i.e. improving the cut only by removing vertices from
the selected subset). Matula and Shahrokhi [172] present an
efficient method for finding sparsest cuts for a broad class
of graphs. Arora et al. [10] give a O(

√
logn)-approximation

algorithm for sparsest cut and conductance.

Shi and Malik [209] obtain a clustering (which in their
application is actually a segmentation of an image) by
computing the eigenvector associated with the second-
smallest eigenvalue of a Laplacian matrix that incorporates
edge weights. Using the components of this eigenvector as
vertex weights, they search for the smallest normalized cut.
If the value of normalized cut is below a predetermined
threshold, the graph is partitioned in two using the cut set
that gives the minimum normalized cut. If a partitioning is
made, the above process is repeated for the two subgraphs
thus created.

He et al. [121] study the normalized-cut method of Shi
and Malik [209] and discuss its connections to the k-means
algorithm. He et al. restrict to the case of binary edge
weights in the case of the k-means method. Applying matrix
algebra, they are able to show that what is being optimized
in the normalized-cut method is actually the same that is
optimized the iteration of the k-means method, with slight
modifications on how neighbouring vertices are weighted.
Another method based on matrix algebra is that of Drineas
et al. [1] who present an clustering algorithm for large graphs
that is based on computing the singular value decomposition of
a suitably selected random submatrix.
5.4.2. Maximum flow
As the well-known connection with maximum-flow and
minimum-cut problems suggests (see for example [60,83,96]),
there exist clustering algorithms based on flow computations
[34,41,94,160]. The algorithms for computing maximum flows
in graphs (such as that of Goldberg and Tarjan [111]) are
efficient and hence such operations are not too costly to be
used as subroutines for clustering moderate-size instances.

Most flow-based methods take edge weights readily into
account; flow computations extend even to cases where the
edge capacities are single-parameter functions instead of
constants [102]. Flake et al. [95] identify clusters by inserting
an artificial sink and calculating flows to that sink. The
minimum cuts that correspond to the maximum flows are
used to build a minimum-cut tree, as defined by Gomory and
Hu [8]. The minimum-cut tree is then used to define what is
the cluster of a given vertex vwith respect to the artificial sink
vertex. The algorithm is designed for undirected weighted
graphs, and the weight assigned to all of the edges of the
artificial sink vertex is a parameter of the method. It requires
some intuition to choose a good value for the parameter. The
basic version of the algorithm simply treats all connected
components of the min-cut tree after the artificial sink has
been removed as clusters, but the authors also present a
recursive version that incorporates adjusting the parameter
and imposing quality criteria such as desirable cluster order
and cluster count.

5.4.3. Spectral methods
When a graph is formed by a collection of k disjoint
cliques, the normalized Laplacian (Eq. (14)) is a block-diagonal
matrix that has eigenvalue zero with multiplicity k and the
corresponding eigenvectors serve as indicator functions of
membership in the corresponding cliques: the elements of
the clique have a different value (of larger magnitude) than
the other vertices. Any deviations caused by introducing
edges between the cliques causes k − 1 of the k eigenvalues
that were zero to become slightly larger than zero and also
the corresponding eigenvectors change. However, some of the
underlying structure can still be seen in the eigenvectors of
the Laplacian even when edges are added to connect the
cliques and when some edges are removed from within the
original cliques.

This phenomenon is the basis of spectral clustering, where
an eigenvector or a combination of several eigenvectors
is used a vertex similarity measure for computing the
clusters. For example clustering and other analysis of the
network of the Internet autonomous-system domains has
been done with spectral methods [109,178]. A comprehensive
introduction to the mathematics involved in spectral graph
theory is the textbook of Chung [51]; we also recommend
the textbook of Biggs [27]. The dissertation of McSherry [174]
provides an overview of the area, also applying it to graph
partitioning.

Also other matrices than the Laplacian can be used to
compute such spectral measures; if instead of the adjacency
matrix of a simple graph, the input is some kind of a similarity
matrix for a complete graph, similar computations still may
yield good results. The downside is that computing or even
approximating eigenvalues and eigenvectors is not fast for all
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graphs and hence such methods may face scalability issues
when applied to massive graphs.

Spectral clustering is typically based on computing the
eigenvectors corresponding to the second-smallest eigenvalue
of the normalized Laplacian or some eigenvector of some
other matrix representing the graph structure. Possible
matrices include modifications of the adjacency matrix such
as the transition matrix of a blind random walk on the graph.
The component values of the resulting eigenvector are used
as vertex-similarity values to determine the clustering. A
recent survey of properties of the second-smallest eigenvalue
is given by de Abreu [70].

Spectral methods are in general computationally demand-
ing, although a distributed algorithm for decentralizing the
computational load has been proposed by Kempe and McSh-
erry [144]. The idea of the decentralization is that the com-
putation of the eigenvector elements of each vertex for the
first k eigenvectors can be computed by a separate processor,
assuming that all processors are aware of the weights of the
incident edges and messages may be exchanged between the
processors that are in charge of neighbouring vertices. The
number of messages needed is O(k3) per round of computa-
tion and the number of rounds needed in order to obtain a
deviation ε > 0 from the exact eigenvectors is O(log2(nε−1)T),
where T is the mixing time of the random walk on the in-
put graph. The basis of the decentralized algorithm is the or-
thogonal iteration method, where random initial vectors are
iteratively first multiplied by the adjacency matrix and then
orthonormalized. The decentralization is in effect decentral-
izing the matrix multiplication and the orthonormalization.

How well spectral measures work as separators in
clustering is studied by Guattery and Miller [115]. They
concentrate on the problem of finding a separator that divides
the vertices of the graph into two sets such that the number
of edges crossing the boundary is small (if not minimal) using
the information contained in the Fiedler vector or possibly
combining information from several eigenvectors. Guattery
and Miller find that using the Fiedler vector to partition a
graph into two equal-sized vertex sets work poorly for a
family of bounded-degree planar graphs and in that there
exists a family of graphs for which spectral methods in
general work poorly.

Qiu and Hancock [198] present a spectral method for
clustering graphs based on the Fiedler vector of the graph.
Bach and Jordan [15] address the question of clustering
a complete weighted graph with a spectral method, also
discussing approximations for the eigenvectors. Ng et al. [188]
complain that there are several spectral clustering algorithms
that all work a little differently with respect to utilizing the
eigenvectors and that commonly no proofs are presented
regarding the quality of the produced clustering. Although
their work addresses the field of clustering points in space,
the situation is similar in spectral graph clustering — there is
no one canonical way to utilize spectral methods, and even
the matrix the spectrum of which is used is not always the
same.

A spectral clustering method for directed weighted graphs
is given by Capoccia et al. [40]. Their idea is to compute
eigenvectors and use the correlations between the elements
to determine the cluster structure. Kannan et al. [142] show
that in general, spectral methods (or actually, one common
variant) find good clusterings. Ding and He [72] propose
a spectral method that directly computes k clusters in a
complete weighted graph. The problem of determining what
value of k to choose – a requisite for the employment of
various clustering algorithms – is discussed in Section 7.2.

Goh, Kahng and Kim [110] have studied the spectrum
created by the Barabási–Albert generation method for scale-
free graphs with two outgoing edges per added vertex. For
their studies, they computed the exact spectrum for graphs
up to 5000 vertices and determined the first few of the
largest eigenvalues for graphs of order as high as 400,000,
which gives a hint on the scalability of spectral methods,
although the techniques they used were not the most
modern. Theoretical results on the spectra of graphs with
defined degree distributions are also available [53]. Saerens
et al. [204] discuss the relation between principal components
analysis of graphs and spectral clustering.

A graph partition into two sets with few edges between
the sets using the magnitudes (or signs) of the components of
an eigenvector (or a combination of eigenvectors) is called a
spectral bisection [115]. Spectral measures performwell on such
2-classification tasks [72]. When three clusters are present,
spectral information groups two of these together in the
sense that the separation between these two and the third
one is clear and easily interpreted from the second (and third)
eigenvector, but the other two are harder to distinguish [123].

Intuition on how the two-classification works is relatively
easy to gain through the behaviour of the Rayleigh quotient
(as in Eq. (18)) when the function f(v) is interpreted as an
indicator vector: a positive value indicates that the vertex
belongs to a cluster CA and a negative value that it belongs
to a cluster CB. As the edges should be mostly internal to
the clusters, almost all differences in the sum of the Rayleigh
quotient are zero. Only the edges connecting vertices in CA
with those of CB contribute to the sum.

If we normalize the vector represented by f() for example
to have norm n, and consider a vector other than the vector of
all ones that minimizes the Rayleigh quotient. If such a vector
has both positive and negative values, the positive ones get
assigned to one of the classes and the negative ones to the
other class in order to minimize the ratio. There will be only
one “gap” in the values of f() and that gap will show the class
boundary.

If we, however, wish to perform classification into more
than two classes, some number of classes get assigned
negative values and the rest positive ones, and the “gaps”
of the values assigned to each class will vary, making it
much harder to automatically determine the division. The
remedy for the multicluster problem is to perform the two-
classification iteratively, using the spectra of the resulting
induced subgraphs. This will yield a divisive hierarchical
clustering algorithm. Spielman and Teng [213] show that such
partitioning performs well on bounded-degree planar graphs
and finite element meshes. Their analysis is based on a
relation of the cut size with the second-smallest eigenvalue
of the Laplacian. By showing that for d-dimensional well-

shaped meshes, this eigenvalue is O(n−2d−1
), they can show

that spectral methods can be applied to identifying cuts

of size O(n(d−1)d−1
). Pothen et al. [196] present a heuristic
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algorithm for minimum bisection using the eigenvectors of
the Laplacian matrix.

Brandes et al. [34] propose a clustering algorithm that
first computes edge weights using k distinct eigenvectors of
the normalized adjacency matrix, associated with the largest
eigenvalues less than one. Using these weights, a minimum
spanning tree is computed. Partitioning the spanning tree
by removing all edges with weight below a certain threshold
and considering each connected component of the resulting
forest to be a cluster defines a clustering, and for different
values of the threshold, different clusterings are obtained. A
dendrogram can be constructed removing the edges one by
one starting from the weakest edge.

5.4.4. Betweenness
In order to cluster an unweighted graph G = (V,E), Newman
and Girvan [186] impose weights on the edges based on
structural properties of the graph G. The idea is based on
that of node-betweenness defined by Freeman [100] for use
in sociological studies. The weight used by Newman and
Girvan [186] is the betweenness of an edge {v,w}, which is
the number of shortest paths connecting any pair of vertices
that pass through the edge. Freeman in turn studied node-
betweenness, which is defined for each vertex as the number
of shortest paths in the graph that pass through that vertex.
As a computational detail, one should note that there may
exist multiple paths of the same length between a given pair
of vertices. Hence each of these shortest paths should be
accounted for in proportion to their number when computing
the betweenness values of the edges that these paths use. If
there are k shortest paths connecting v and u, each of them
will have weight 1

k in betweenness calculations of the edges
on those paths.

Girvan and Newman [107,186] assume edges with high
betweenness to be links between clusters instead of internal
links within a cluster: the several shortest paths passing
through these edges are the shortest paths connecting the
members of one cluster to those of another. Hence they split
the network into clusters by removing one by one edges with
high betweenness values. If more than one edge has the
highest betweenness value, one of them is chosen randomly
and removed. The removal is followed by recalculation of the
betweenness values, as the shortest paths have possibly been
altered. This gives a clustering algorithm polynomial in n and
m.

Straightforward algorithms compute the betweenness on
an edge operate in O(n · m) time. Brandes [33] proposes
algorithms for betweenness-centrality computations that
require O(n + m) space. The running time for his unweighted
version is O(nm) and the weighted version runs in O(nm +

n2 logn) time. He solves for each vertex once a single-source
shortest path problem, with small modifications to either
Dijkstra’s algorithm or the breadth-first search algorithm
(see for example [60] for shortest-path algorithms). Newman
proposes a method based on random walks rather than exact
betweenness-value computation [181]. Comellas and Gago
Álvarez [58] derive bounds on the betweenness values using
the spectrum of the graph.

Fortunato, Latora and Marchiori [97] propose a hierarchical
method closely related to the betweenness-method of
Newman and Girvan, but instead of the betweenness values,
they use information centrality [162] that is defined for each
edge as the relative decrease in the average efficiency of the
graph upon the removal of the edge. Latora and Marchiori
[161] define efficiency of a pair of distinct vertices v,u ∈ V
as the inverse of their distance in the graph, 1/dist(v,u), and
the average efficiency of the graph G is defined as the average
of the individual efficiencies over all n(n − 1) ordered pairs of
distinct vertices.

The trick with these hierarchical, edge-removal-based
clustering methods is that to decide when to stop the
partitioning, just as was the case with cut-removal methods.
Newman [185] proposes computing a quality measure called
modularity over the entire clustering at each iteration and
stopping when there is no improvement. Many formulations
of essentially the same measure exist, depending on
whether the graph is weighted and whether minimization
or maximization is used. Modularity is in general defined
for weighted graphs, where the weights represent some
application-specific attributes. For unweighted graphs, one
can simply set ω (v,w) = 1 for all edges to obtain a working
definition of modularity.

In terms of the edge weights, modularity M(C1, . . . ,Ck)

is defined over a specific clustering into k known clusters
C1, . . . ,Ck as

M(C1, . . . ,Ck) =

k∑
i=1

Ei,i −
∑
i 6=j

i,j∈{1,...,k}

Ei,j, (45)

where

Ei,j =

∑
{v,u}∈E

v∈Ci,u∈Cj

ω (v,u) , (46)

with each edge {v,u} ∈ E included at most once in the
computation. Defining the internal and external degrees in
terms of these modularity measures gives

degint
(
Ci
)

= Ei,i and

degext
(
Ci
)

= −Ei,i +
k∑

j=1

Ei,j. (47)

Newman [180] also presents a formulation of modularity in
matrix form, using the spectrum of the k × k modularity
matrix, where the elements are the values Ei,j. Newman also
uses the spectral information to derive centrality measures
for the vertices of the input graph.

Note that as modularity directly incorporates the number
of internal edges per cluster, the orders of the clusters
tend to have an effect: small clusters in simple graphs
may only contribute a few internal edges. Danon et al. [66]
provide a modification of a modularity-based algorithm of
Newman [185] to accommodate for clusters of varying orders
without slowing down the computation.

5.4.5. Voltage and potential
Electrical circuits provide reasonable intuition for graph
clustering: think of the graph as a circuit that has a unit
resistor on each edge. Calculate the potentials at all of the
vertices (i.e. the voltages for all the edges), and then cluster
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Fig. 6 – A graph transformed into an electric circuit: a unit
resistor has been placed on each edge, and a battery
connects the vertices labelled one and nine (battery
connection drawn in grey).

the vertices based on the potential differences [186,187,238].
However, in order to have a current in the circuit, one must
introduce a battery. The problem is the placement of the
battery: how to choose the source and the sink of the current?
In Fig. 6, there are two natural clusters, a clique of four
vertices and another clique of five vertices, the two being
connected by a single edge. If we connect the battery between
vertex number one in the 4-clique and vertex number nine
in the 5-clique, the resulting potentials are higher for the
4-clique than for the 5-clique and we can divide the graph
into clusters based on the vertex potentials only.

The potential vectors for graphs can be easily computed
with circuit analysis tools like SPICE [197,199]. If vertices with
labels 1 and 2 share an edge, one creates a corresponding unit
resistor for example by assigning a name to the resistor, such
as r12. Each edge corresponds to such a resistor-definition
line, and a voltage source (a one-volt battery) is placed
between a source vertex (in Fig. 6, the vertex labelled 1) and a
sink vertex (vertex labelled 9). The simulator then calculates
and reports the voltage for each resistor, among other things.
The input given to SPICE corresponding to Fig. 6 and the
output of the transient analysis yielding the vertex potentials
are shown in Fig. 7.

However, when the cluster structure is not known a priori,
we need to place the batter between random vertices, which
makes the interpretation of the voltage vector much harder,
as we might have chosen near-by vertices and the number of
natural clusters present in the graph is not known. Repeatedly
choosing random source and sink vertices and averaging over
the resulting voltages would give values of at least some use,
but in a highly nonuniform network, the battery placement
may have a significant effect and the variances could be
disturbingly large.

Wu and Huberman [238] streamline the procedure by
fixing the source vertex at a high potential, and choose a
random sink vertex to be at low potential. The voltages of the
vertices “close” to the seed vertex will be higher than the
voltages of those that are far and hence the voltage difference
of a vertex pair can be used as a similarity measure. Their
algorithm obtains an approximate solution to the Kirchhoff
equations by iterative computation, starting with all but the
seed and sink vertices at potential 1

2 , the seed at 1, and the
sink at 0.

A divisive global clustering algorithm based on voltage
computations would pick a seed vertex and a “far away”
sink vertex, classifying the remaining vertices into those that
have potentials closer to the sink potential and to those with
potentials closer to the source potential of the seed vertex.
Based on this classification, the graph could then be split.
Continuing such a procedure in an iterative fashion would
then yield the hierarchical clustering.

In order to visualize the cluster structure resulting from
such computations, we use gray-scale similarity colour maps.
We iterate over the entire vertex set, fixing the vertices one at
a time to be the source vertex s ∈ V, also called the seed vertex
of the computation. This way we obtain a n-element vector
(a) Input file. ( b) Vertex potentials computed by SPICE.

Fig. 7 – On the left, the definition of the circuit of Fig. 6 in SPICE syntax, given as input to the DMCS-SPICE Java Applet [218].
The transient analysis, tracing the voltages at each vertex, gives the figure on the right, where the two clusters are clearly
separated. The voltage vector is (−1.93, −2.06, −2.06, −2.19, −2.72, −2.82, −2.82, −2.82, −2.93).
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Fig. 8 – Visualization of the potential vectors used in the
clustering algorithm by Wu and Huberman [238] averaged
over 500 random sink–source pairs. The graph is a relaxed
caveman graph with 75 vertices and 900 edges forming a
six-cluster structure. In the matrix, the vertices are sorted
by clusters. Large values (white being the maximum)
indicate near-by vertices. The clusters are visible and easily
identifiable as the light squares on the diagonal.

that reflects the cluster structure viewed from the perspective
of the vertex s. (We return to the question of clustering with
respect to a seed vertex in Section 6.)

We then compose a matrix by combining the n vectors,
using each vector as a column of the matrix, thus obtaining
an n×n matrix. The crucial part is the ordering of the vertices,
both in the vectors and in the matrix, using the same order in
both. The order should be based on the clustering obtained,
such that first come all vertices in C1, followed by all vertices
in C2, and so forth.

In the case of the Wu–Huberman algorithm, the elements
of the vectors are voltages. Similar voltages should be
assigned to the members of a single cluster. As viewing
the numbers themselves can be tedious, we transform them
into grey-scale colours. We first scale the element values
to the unit line, with the maximum value at one and
the minimum at zero. Then we discretize it to 256 levels,
assigning the value zero to black and the value one to white.
We draw a rectangle, colouring the position corresponding
to the element at column i and row j with the colour that
corresponds to the value that the ith vector assigns to the jth
vertex.

For a successful clustering, a chain of visible blocks
appears on the diagonal of the colour map, assuming that the
matrix construction was ordered according to the clustering
suggested by its values. The less evident these diagonal blocks
are, the less obvious is the cluster structure that the similarity
vectors imply. An example similarity matrix obtained by the
Wu–Huberman algorithm is shown on the left in Fig. 8.

The problem of choosing a random sink can be avoided
by considering diffusion in an unbounded medium instead
of a finite electrical circuit. Orponen and Schaeffer [191]
compute vertex-similarities as the solution to the discrete
Dirichlet problem [163,154]. The discrete Dirichlet problem, in
the context of graphs, is the problem of assigning values to
vertices such that the difference between the value of a vertex
and the average of the values of all its neighbours is zero,
requiring that a set of border vertices hold certain fixed values.
The assignment of these values corresponds to the unique
harmonic function of the graph. Orponen and Schaeffer [191]
fix only one boundary vertex: the seed vertex s. The value-
assignment vector needed is in fact equal to the Fiedler vector
of the graph with respect to the seed vertex [51].

The Fiedler vector can be computed by minimizing
the degree-adjusted Rayleigh quotient (see Eq. (17) on
Section 2.3) which in turn can be approximated iteratively
with local computation [191]. Fig. 9 shows similarity matrices
constructed by computing the Fiedler vectors for each vertex
in a small example graph; the same graph was used in
the examples of Fig. 8. A pleasant surprise is that by
approximating the vector, mainly “noise” gets eliminated and
the cluster structure is even more evident. A related method
for global clustering with similar computations is proposed by
Ding and He [72]. Also, a clustering method based on Fiedler
vectors for document clustering of the World-Wide Web is
reported by He et al. [121].

For more intuition on the relationship of electrical
networks to graph structure, we recommend the book of
Doyle and Snell [77] that studies the connection between
electrical networks and Markov chains.
Fig. 9 – Similarity matrices for a 75-vertex graph with 900 edges, composed of six clusters constructed by computing the
Fiedler vector for each vertex. On the left, exact vectors were used, and on the right, a locally computable approximation of
Orponen and Schaeffer [191] for the Fiedler vector was used.
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Fig. 10 – A two-cluster graph. If a blind random walk is
currently in the white thick-bordered vertex, it will remain
in the white cluster with probability 5

6 and switch over to

the grey cluster with probability 1
6 . Being at any other

white vertex, a random walk will necessarily stay within
the white cluster. Similarly, a blind random walk on the
grey thick-bordered vertex has probability 1

4 to switch over

to the white cluster, and probability 3
4 to remain in the grey

cluster.

5.4.6. Markov chains and random walks
The components of the eigenvector corresponding to the
second eigenvalue of the transition matrix of a random walk
on a graph (see Section 2.4) serve as “proximity” measures
for how long it takes for the walk to reach each vertex. Two
vertices in the same cluster should be “quickly reachable”
from each other, i.e. have small absorption time from one to
the other. Also, if a random walk visits a vertex of a certain
cluster, it should be likely to visit several of the other cluster
members before leaving the cluster [224]. For example, in
Fig. 10, if a randomwalk is currently in one of the two clusters,
it is more likely to remain in that cluster than to move over to
the other cluster.

We can also obtain another similarity matrix for the
vertices by computing n absorption-time vectors, one for each
vertex vi, appending the zero element at position i of the
resulting vector, and then using these vectors as the columns
of a matrix, ordering vertices v1,v2, . . . ,vn both inside the
vectors and when arranging them into a matrix. Such a
similarity matrix can be used to cluster the graph: Fig. 11
shows an example of a similarity matrix of absorption times
for the same graph that was used in Figs. 8 and 9. Note that
the notion of absorption times directly extends to directed
graphs.

Again, absorption times to a seed vertex can be used
to classify the vertex set of the graph to “nearby” vertices
and to “far-away” vertices and the classification can then
be used to split the graph. Iterating this one obtains
a cluster hierarchy. An algorithm for approximate graph
partitioning based on approximating the distributions of
several randomwalks on the input graph is given by Spielman
and Teng [214]. The thesis of van Dongen [224] discusses
graph clustering using Markov chains. His approach is to
apply a sequence algebraic matrix operations on the Markov
chain corresponding to the input graph such that performing
the operations will eliminate intercluster interactions and
only leave the intracluster parts. The “filtered” information
can then be used to identify the clusters by permuting the
matrix to diagonal form to reveal the structure.

Meilă and Shi [175,176] show that the normalized cut of
a graph, one of the variants of graph conductance, can be
Fig. 11 – Visualizations of the absorption-time matrix for a
75-vertex graph with 900 edges and a clear six-cluster
structure, vertices sorted by clusters. The transition matrix
is that of a blind random walk and small values (black is
zero) indicate nearby vertices. The clusters are visible and
easily identifiable as the black squares on the diagonal.

expressed in terms of the transition probabilities and the
stationary distribution of a random walk in the graph, thus
linking the mathematics of random walks to those of cut-
based clustering. Orponen and Schaeffer [190] in turn express
the absorption times of a random walk in a graph in terms
of the eigenvectors of the graph’s Laplacian and use their
locally computable approximation of the Fiedler vector [191]
to obtain an approximation of the absorption times. This links
the random walks to spectral clustering, which relates to cut-
based methods.

5.4.7. Other divisive methods

Auber et al. [12] provide a rather mathematical approach for
graph clustering. They assume that some similarity metric
has been defined over the vertex set of the graph. They
define a discrete density function for this metric to “group”
the similarity values into a discrete set. The histogram
of the density function is then filtered by convolution
with a carefully chosen kernel function. The output of the
filtering is used to split the graph in two. This is then
continued iteratively to obtain a cluster hierarchy. There
are some parameters the selection of which affects the
resulting cluster hierarchy. The mathematics involved are not
quite recommendable for novice practitioners. Auber et al.,
however, offer a publicly available implementation of the
method in a visualization tool.

A graph-clustering algorithm based on random walks,
specifically k-step transition probabilities between a sink
vertex and other vertices, is presented by Yang and Liu [242].
They sort the adjacency matrix with respect to the ordered
k-step transition probabilities and then find a cut position
in the matrix such that the resulting division yields a good
diagonal matrix. This cut is used to split the graph into two
clusters, and the procedure is then repeated for the diagonal
submatrices of the adjacency matrix.
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5.5. Agglomerative global clustering

Naturally, in addition to dividing the graph top-down into
clusters, one may also work bottom-up merging singleton
sets of vertices iteratively into clusters. Such methods
are called agglomerative clustering algorithms. Typically a
similarity measure is used to the vertices to be merged
into a cluster. The similarity measure could be based, for
example, on the relative overlap of the vertex neighbourhoods
or some semantic-based value. Possible similarity measures
are addressed in Section 4.1. Sometimes merges are limited
to assigning a singleton vertex into a cluster, sometimes
also larger clusters may be merged — the former case
aims to a single flat clustering, the latter to a hierarchy
of clusterings. As with divisive methods, iterative merging
typically continues until some threshold or a desired number
of clusters is reached.

An approach that roots in the clustering of point sets is
to begin grouping the vertices into clusters by forming a two-
vertex cluster from the two most similar vertices. This is very
similar to what is often done in the case of clustering points
in space [135]. The intuition is that at least the two closest
points should be placed in the same cluster with each other.
Such merging then continues until only a desired number
of clusters remains or another stopping condition is met. At
each iteration, one picks the two clusters (singletons or larger)
that have the highest similarity value to be merged. Note that
a function must be defined for determining the similarity of
vertex subsets of different orders.

This approach is generally known as the pairwise nearest
neighbours method and the merging criterion in general is
based on greedy optimization of an objective function. The
method is studied in the dissertation of Virmajoki [99].

Agglomerative clustering algorithms include that of
Carrasco et al. [41] for bipartite graphs and that of Hopcroft
et al. [128] for general graphs. Du [78] first clusters the graph
into initial clusters using information on vertex degrees and
then agglomeratively combines the initial clusters until an
agreeable clustering is achieved. Clauset et al. [56] present
a betweenness-based method that runs in O(n log2 n) time
in practice for sparse natural graphs. The method performs
greedy optimization of modularity (Eq. (45)) similarly to the
method of Newman [185]: Clauset et al. greedily maximize the
ratio of internal edges for cluster members that have nonzero
external degree.

Another modularity-optimizing approach is presented
by Donetti and Muñoz [74] who perform agglomerative
clustering using spectral properties to construct the full
cluster hierarchy and then select a clustering from the
resulting tree maximizing modularity. The idea is to first
let the hierarchical clustering algorithm create the entire
dendrogram for the data and then optimize modularity over
all possible sets of dendrogram “nodes”. As nodes chosen
represent vertex sets, candidate sets of chosen nodes must
form a cover of the vertex set. The set of nodes that
gives the highest modularity is chosen to be the final, flat
clustering.
6. Local clustering in graphs

For large graphs, global clustering becomes computationally
demanding. For massive data sets, the running time of a
clustering algorithm should not grow faster than O(n) in order
to be scalable; sublinearity is strongly preferable.

What comes to memory consumption, storing the
complete edge set that for dense graphs has size O(n2) is
also often infeasible. There are applications where the input
cannot possibly be read into the main memory at once and
the computational cost of swapping the memory contents
may prove critical. For large enough graphs, even sparsity
does not help much: for example, the World Wide Web has
billions of vertices and many more edges, setting it out of
reach of the global algorithms.

However, if the graph is stored in a format that allows
access to connected subgraphs or adjacency lists of nearby
vertices, ideas similar to agglomerative clustering can be
applied: clusters can be computed one at a time based on
only partial views of the graph topology. This is called local
clustering. An example of a data structure allowing local
access to adjacency information is a search tree of adjacency
lists with vertex identifiers as seeds.

Additional motivation for local clustering methods come
from large networks that are not explicitly available, but
rather require on-demand generation or exploration with a
crawler, such as the programs that are used to index theWorld
Wide Web for search-engine construction [50,221].

Computing the desired answer by a clustering algorithm
for many applications only requires a small subset of vertices
to be clustered instead of the whole graph. Such tasks
include locating documents or genes closely related to a
given “seed” data set. The scalability problem of global
clustering is avoided, as the graph as a whole does not
need to be processed unless a single cluster contains nearly
the entire graph. Also, clusters for different seeds may be
simultaneously obtained by parallel computation.

In this section we study local approaches for finding a good
cluster containing a specified seed vertex or a set of vertices
by examining only a limited number of vertices at a time,
proceeding in the “vicinity” of the seed vertex. We denote by
C (v) the cluster of vertex v, that is, the resulting cluster when
using v as the seed vertex.

An application-specific detail that arises in local clustering
is whether the clustering should be symmetrical: that is, if
vertex v belongs to the cluster C (u), should u necessarily
belong to the cluster C (v)? For example networks of
social contacts tend to be asymmetrical: you may consider
someone to be your acquaintance while that person does
not remember having met you before. Similarly you may be
considered a friend by someone you would think a mere
acquaintance. Directed input graphs can be expected to allow
more natural clusterings when symmetry is not required.

It is noteworthy that local clustering algorithms may be
used to obtain a global clustering of the entire input graph
[17,54,205]: the options include, for example, initiating the
procedure n times using each vertex as the seed vertex once
and applying some majority-vote rule or a quality measure
to combine the local clusters into a global clustering. Also
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computing a fuzzy global clustering from a set of locally
determined clusters is an option.

Another approach for deriving a global clustering through
a local method is to select seed vertices according to some
preference rule and excluding the local clusters found from
further clustering, hence limiting the number of times the
local procedure is executed. The computation for clusters
with different seeds may in some cases be near-trivially
parallelized, as the clusters are formed independently, as
in the case of the Fiedler-vector method of Orponen and
Schaeffer [191].

6.1. Definition of locality in graphs

In order to distinguish local computation from global
computation, we must define what information about an
input graph we consider to be locally available. For a single
seed vertex s, we assume that at least the adjacency list
containing the identifiers of vertices in Γ (s) are known and
that the algorithm may “crawl” into any of the neighbouring
vertices. A wider definition would also allow direct access
from a vertex v to its second neighbours:⋃
v∈Γ(s)

Γ (v) . (48)

Optionally we can allow knowledge of the degrees of the
vertices in Γ (s). However, such information could also be
obtained by on-demand local crawling from s.

We also allow a local algorithm to remember any
adjacency information that has already been seen, although
in practice restrictions are posed on the amount of memory
available. Therefore, once a local algorithm has computed
a candidate cluster C for s, it knows the list of vertices
included in C, any edge internal to C, as well as a list of
border vertices directly adjacent to the cluster (i.e. vertices
that are neighbours of at least one included vertex but are
not themselves included in C).

For edge weights, the weight of each edge that has at least
one endpoint in the subgraph is considered locally available.
For vertex weights, the weights of the included vertices and
their immediate neighbours are considered locally available.

6.2. Local search

Local search methods are heuristic and/or probabilistic
algorithms designed to find near-optimal solutions among
large, complex sets of solution candidates. These methods
aim not explore the entire solution space but rather, possibly
with probabilistic decision-making, study a limited region
that contains at least good if not the best solutions. The
extent in which the input graph is traversed depends on the
local search method applied.

Each solution candidate is represented by a state and
the set of states is called the state space. A neighbourhood
relation over the space of possible solutions, with the goal of
examining solution candidates one by one and then moving
to a neighbouring candidate. The neighbourhood relation
should be such that the search may navigate from one state
to another with light computation. One also needs to define
a fitness function that measures the quality of the solution
represented by a state. The computational cost of evaluating
the function should be small or at least moderate, as during
the course of a search it will be repeatedly evaluated for
different solution candidates.

The rule for choosing the next state to proceed to may
be heuristic, which means that a fitness function is evaluated
for all neighbours and the outcome is used to choose to
which neighbour the search will proceed. Always moving
to the neighbour with best fitness is a greedy strategy.
The selection may also involve a probabilistic element, for
example proceeding to each neighbour with a probability
proportional to the value of the fitness function. While
proceeding through the search space, the search algorithm
always remembers at least the best state visited and the
associated fitness.

Typically a limit is imposed on the number of steps
the search may take. The search terminates either when
it encounters a solution that has the best theoretically
possible fitness (ideally corresponding to having found an
exact optimum) when it reaches the step-count limit. The
solution candidate yielding the best fitness value is the output
of the local search procedure. The search may be iterated
several times in order to cover more of the state space.
For deterministic heuristics, one should use random initial
states to explore different parts of the search space, but for
probabilistic heuristics, also fixed initial states work.

Some common local search procedures are hill-climbing,
deterministic and probabilistic versions of tabu search, and
simulated annealing. Care must be taken in guiding the search
in the neighbourhood: the presence of local optima is likely
and the search must be guided in such a manner that it is
possible to “escape” a local optimum with reasonable effort.

For this purpose, simulated annealing allows the search to
proceed to a lower-fitness neighbour in the search space with
probability that decreases over time as the search proceeds.
The speed at which the probability decreases is controlled
by two parameters: the initial temperature and a cool-down
coefficient— the aim is to mimic cooling in metals. In addition,
one fixes the number of iterations to be computed and the
number of steps taken per each iteration. The parameters
are usually chosen by running some initial experiments and
choosing a parameter set that gives promising results [155].

Graph partitioning by simulated annealing has been
studied by Johnson et al. [137], comparing it to the
Kernighan–Lin algorithm [145] that is a well-known method
for partitioning weighted graphs with respect to the edge
weights. A similar approach for points in space has been
suggested by Klein and Dubes [149], who compared the
clusterings achieved with simulated annealing to those of a k-
means algorithm. Booth et al. [29] study data partitioningwith
another stochastic search method, namely the Metropolis-
Hastings algorithm [6]. Felner [91] uses heuristic search to
solve the graph partitioning problem using heuristics for
estimating the size of the optimal partition based on graph
structure.

Schaeffer [205] computes with simulated annealing the
cluster C (s) of a single, given seed vertex s, only considering
all possible clusters in which s can be assigned. This reduces
the size of the search space significantly: instead of having to
construct a global clustering of all the vertices in the input
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graph, one only needs to determine for each vertex whether
it is included in C (s) or not. For such a procedure to be local,
the fitness function used should be locally computable in
the sense that the fitness of a cluster candidate should not
depend on global properties of the graph.

In initiating the local search procedure, Schaeffer [205]
uses a fixed initial state where the cluster candidate is formed
by the seed vertex v itself along with its neighbourhood Γ (v).
The neighbourhood relation is formed by allowing two kinds
of operations: the addition of an adjacent vertex and the
removal of an included vertex. Upon the removal of u ∈ C (v),
u 6= v, she ensures connectivity by setting the connected
component containing v to be the next cluster candidate.
The approach generalizes to a variety of initial states, fitness
functions, and heuristics.

For a good review on local searchmethods, we recommend
the book by Michalewicz and Fogel [177] and also the book by
Aarts and Lenstra [2]. Stochastic search is by nomeans limited
to local computation. For moderate-size instances, one may
define as the search space the set of all possible clusterings
and locally optimize a clustering quality measure by moving
in the space of all possible clusterings.

6.3. Fitness functions

Possible fitness functions for such local clustering are
numerous. Orponen and Schaeffer [191] use local search to
optimize the a weighted version of the Cheeger ratio. The
Cheeger ratio [45] is defined in the unweighted case as

|{{v,w} | v ∈ C,w ∈ V\C}|

min

{ ∑
v∈C

deg (v) ,
∑

w∈V\C
deg (w)

} , (49)

which is the ratio of the cut size of the cluster to theminimum
of the sums of degrees either inside the cluster or outside
it. Orponen and Schaeffer use Fiedler vectors to compute
edge weights (as described in Section 5.4.5) and use weighted
version of degrees and cuts, where instead of counting
edges their weights are summed. Optimizing the Cheeger
ratio is equivalent to a graph partitioning problem [121].
An approach for computing local cuts using the Cheeger
ratio is presented by Chung [52]. Andersen, Chung and
Lang [9] in turn utilize PageRank-like computations for local
graph partitioning. Practically all of the cut-related measures
presented in Section 5.4.1 yield good fitness functions for
local search.

The naïve definition of a cluster as a subgraph with
maximum density fails in many ways, as discussed in
Section 4.1.2: one easily ends upwith picking single-edge two-
cliques or solving an NP-complete problem. Nevertheless,
for many optimization problems, good fitness measures
inevitably correspond to NP-complete or NP-hard decision
problems. As density is a natural clustering measure, variants
of edge-count related measures are useful components in
defining well-behaving fitness measures for clustering.

In general, the higher the internal degree degint (v) Eq. (21),
the better v fits into the given cluster. In order to compare
the suitability over different cluster candidates with varying
order, we need to scale this by the maximum number of
neighbours that a vertex could have in C, namely |C| − 1, to
obtain a measure in [0,1]:

δ (v, C) =
degint (v, C)

|C| − 1
. (50)

This measure indicates how densely v is connected to C and
it should give a high value if C is a good cluster for v. We also
want to make sure that the vertex is not densely connected to
other parts of the graph, and hence define a measure in [0,1]

for vertex introversion, namely the ratio of internal edges to all
edges incident on v:

ρ (v, C) =
degint (v, C)

deg (v)
. (51)

If both of the above measures have a high value, we can
assume v to be correctly classified into C. If either one is low,
it would be worthwhile to try reassigning v to some other
cluster.

The quality of a given cluster can be evaluated on the basis
of the suitability of the included vertices; a possible measure
for cluster density would be a scaled sum of vertex densities
Eq. (50):

δs (C) =
1

|C|

∑
v∈C

δ (v, C) =
1

|C| (|C| − 1)

∑
v∈C

degint (v, C) . (52)

The sum of the internal degrees of vertices in C is twice the
internal degree of the cluster, as each internal edge is counted
independently by both of its endpoints. This simplifies Eq. (52)
into

δs (C) =
1

|C| (|C| − 1)
· 2degint (C) =

degint (C)(
|C|

2

) = δ (C) (53)

obtaining exactly the local density of the subgraph induced
by the vertex set C (Eq. (10)).

The natural cluster of a vertex is not necessarily a
complete subgraph, but rather just a “surprisingly” dense
subgraph considering the global density of the graph. Note
that the local density can also be interpreted as the
probability that two included vertices are connected, and
the higher the probability, the more tightly connected the
cluster. Optimizing δ (C) ∈ [0,1] alone makes small cliques
superior to larger but slightly sparser subgraphs, which is
often undesired. Hence it is essential to find a fitness function
that avoids getting “stuck” at small cliques containing v. The
cluster of v should intuitively contain at least the largest clique
that contains v.

The introversion of a cluster C can be similarly character-
ized by summing the suitability measures of Eq. (51) and scal-
ing with the cluster order to obtain a measure in [0,1]:

ρs (C) =
1

|C|

∑
v∈C

ρ (v, C) =
1

|C|

∑
v∈C

degint (v, C)

deg (v)
. (54)

If we calculate the capacity of the cut (C,V\C) for a blind
random walk, we obtain

Q (C,V\C) =

∑
v∈C,u∈V\C

{v,u}∈E

1
deg (v)

=

∑
v∈C

degext (v, C)

deg (v)
. (55)

As degext (v, C) = deg (v) − degint (v, C) by definition (Eq. (21)),
there is an obvious relation between the capacity of the cut
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and Eq. (54) above. A cluster is properly introvert if Eq. (54)
has a high value and the capacity of the cut is low.

Relative density favours introvert clusters, i.e. subgraphs
with few connections to other parts of the graph. Introversion
measures are, however, optimized for any connected
component in which all edges are by definition internal,
yielding zero for cut capacity and one for relative density as
well as the summation of Eq. (54). This imposes restrictions
on their usage as fitness functions, as a local search method
would prefer any connected component as a cluster selection
even if it would allow intuitively pleasing divisions into
smaller clusters.

Bagrow and Bollt [17] grow a cluster candidate by breadth-
first search level by level (always adding all the neighbours
of presently included vertices at once) and optimizing the
emerging degree of the cluster candidate, which is effectively
the external degree. A threshold is used to determine when
to stop growing the cluster further, in order to avoid including
the entire connected component of the start vertex. Also
Clauset [54] uses a measure similar to relative density.
The local clustering algorithm of Clauset greedily optimises
the fraction of the internal edges of boundary vertices only,
i.e. vertices v ∈ C such that degext (v, C) > 0.

One possible interpretation of the relative density is as
follows: consider a global, partitional clustering of G = (V,E)

into clusters C1, . . . ,Ck. Evidently

k∑
i=1

(
degint

(
Ci
)
+ degext

(
Ci
))

= m +

k∑
i=1

degext
(
Ci
)
, (56)

as every external edge has endpoints in exactly two clusters.
Now for a clustering to be of high quality in terms of
introversion, asm is a constant, we are interested tominimize∑k

i=1 degext
(
Ci
)
, which means that out of all clusterings into

k clusters, one clustering is better than another if any two
clusters have a smaller external degree whereas the external
degrees of the others remain unaltered. Note that modifying
just a single cluster is not possible, as a removed vertex must
be included into another cluster. The computation is even
more tedious if the number of clusters is allowed to vary.

Hence, to approximate this global optimum, each cluster
may locally attempt to minimize its own degext

(
Ci
)
; as

the cluster should also attempt to be the maximal-order
cluster with the minimal external degree, it should favour
higher values of degint

(
Ci
)

over lower ones, meaning
that it attempts to maximize degint

(
Ci
)
while minimizing

degext
(
Ci
)
, which can be directly achieved by maximizing the

ratio degint
(
Ci
)
/degext

(
Ci
)
. This measure, however, can take

arbitrary positive values over connected cluster candidates
and may result in division by zero in the absence of external
edges. In order to scale it to values in [0,1] and avoid
division by zero, we add to the denominator the value of the
numerator, which yields exactly Eq. (43).

The relative density is the probability that a randomly
chosen edge incident on the cluster is an internal edge,
whereas the local density can be interpreted as the
probability that two randomly chosen cluster members are
connected by an edge. In a good global clustering, when
picking an edge uniformly at random, we would like the
probability that it is internal to a cluster to be high. Also, we
would like the probability that two vertices that are in the
same cluster are connected to be high, interpreting strong
connectivity as an indicator of vertex similarity.

The cluster fitness function used by Schaeffer [205,206]
is the product of the local (Eq. (53)) and relative (Eq. (43))
densities

F (C) = δ (C) · ρ (C) =
2degint (C)2

|C| (|C| − 1)(degint (C) + degext (C))
. (57)

It is but one of the many possible combinations of the local
and relative density measures.

7. Comparison, evaluation and benchmarking

For traditional methods of clustering points in space,
clusters that are of different orders or shapes often produce
difficulties, as well as clusters that overlap each other [98].
Similarly in graph clustering, when the clusters are of
different orders and have varying densities, global methods
tend to run into difficulties in correctly classifying them.

Properties of good clusterings are discussed by Kleinberg
[150]. He defines an axiomatic framework for clustering a data
set S = {1,2, . . . ,n} of “abstract points” using the notion of
a clustering function f that takes as a parameter a distance
function d : S × S → R and returns a partition of the data set
into clusters based on the distance function d. The distance
functionmust be such that all reflexive distances are zero and
all other distances are positive and symmetrical. The triangle
equation is left as an option instead of requiring it. Kleinberg
lists three desirable properties of a clustering function:

1. Scale-invariance: given any distance function d and a
constant α > 0, it should hold that multiplying all
distances by α does not change the clustering,

2. Richness: the range of f is the set of all partitions of S,
meaning that the function is capable of producing any
of the possible partitions of the data set S given the
appropriate distance function d,

3. Consistency: let P = (C1, C2, . . . ,Ck) be a partition of S given
a distance function d and d′ be another distance function
such that ∀i, j ∈ S
• if i and j belong to the same cluster C` of the partition P,

it applies that d′(i, j) ≤ d(i, j), and
• if i and j belong to different clusters of P, it applied that

d′(i, j) ≥ d(i, j),
then f(d) = P, meaning that nomodification to the distance
function that never lengthens an intracluster distance and
never shrinks an intercluster distance should cause the
clustering to change.

The theorem of Kleinberg [150] is that for n ≥ 2 no
clustering function f exists that satisfies all the above
properties 1, 2, 3. Unfortunately to the case of graph
clustering, these properties do not translate directly into
graph clustering in general. We may apply them all to the
scenario of clustering a complete weighted graph where
the weights are assigned by the distance function d and
the vertex set is S, but when not all edges are present or
when the graph is unweighted, it is not straightforward to
fill the role of the distance function in the definitions of
Kleinberg [150]. In a sense, the edge relation E would be a
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candidate: richness could be interpreted as the capability
of producing all clusterings while choosing an appropriate
edge set E, consistency in the sense that adding intra-cluster
edges and/or removing intercluster edges should not change
the clustering, but scale-invariance in the absence of edge
weights is more challenging without modifying the vertex set
as well. For a general weighted graph, scale-invariance is the
easiest property to check: the clustering should not change if
all weights are multiplied by a positive constant.

In practise, a question easier than “is this a good
clustering” is “which of these two clusterings is better”. With
flat clusterings, we may define comparison measures such
as overlaps or agreements between two clustering. Such
measures are straightforward to define iterating over the
vertices; for example, if clustering Ci(1), Ci(2), . . . ,Ci(n) and
clustering Cj(1), Cj(2), . . . ,Cj(n) have a value close to one for

1
n

∑
v∈V

∣∣∣Ci(v) ∩ Cj(v)

∣∣∣∣∣∣Ci(v) ∪ Cj(v)

∣∣∣ , (58)

in a sense the clusterings agree well. However, the measure
does not behave well if the clusters of one clustering are in
fact subclusters of the clusters of the other clustering. For
moderate-size graphs, visualization again helps, for example,
by colouring the vertices according to the clusterings. When
comparing two hierarchical clusterings, more complicated
schemes are needed to evaluate to which extent the two
divisions agree, especially if the dendrograms are of different
heights.

Two flat clusterings can also be compared or the quality
of a single clustering evaluated by examining the adjacency
matrix of the graph ordered by clusters — an example of
an adjacency-matrix visualization was given in Fig. 1. For
comparison, first order the matrix by placing the vertices in
order that follows the first clustering and see if the second
clustering also produces a near block-diagonal structure,
and then repeat ordering by the second clustering. For
evaluating the cluster quality, such visualization helps reveal
the presence of dense clusters. Mathematically this could
be achieved, for example, by calculating the distance of
each element that has the value one to the diagonal in the
adjacency matrix — the smaller the value the better the
clustering. Block-diagonalization has been utilized in relation
to clustering by Schaeffer [206] and Carrasco et al. [41].

Another option is to compute vertex similarity measures
(such as those of Section 4.1) within and across clusters —
a clustering is good if the intracluster similarities are high
and the inter-cluster similarities low. Similarly one could use
cluster quality measures (such as those of Section 4.2) and
prefer a clustering that has higher overall quality. The vertex
similarities can be also be used to construct a minimum
spanning tree to the graph using the inverse of the similarity
as a distance measure. A good clustering is such that each
cluster corresponds to a connected subtree of the minimal
spanning tree [245]. Alternative uses of this observation, other
than using it to evaluate the quality of a given clustering, is
to cluster the spanning tree instead of the graph as a whole,
as this usually leaves a large portion of the edges out of the
consideration and eases the computation.
In many cases, the graph that was clustered was based on
some data set, all information of which was not completely
utilized in the construction of the graph. Carrasco et al. [41]
also use that additional information to evaluate the quality of
clusterings obtained by different methods.

Determining whether one clustering algorithm is better
than another would be simplified were there a canonical
set of benchmark cases, i.e. graphs for which a “correct”
clustering is known. Typically used graphs include the
karate club social network of Zachary [244] and other social
networks for which a semantic division into clusters is known
beforehand (such as known research groups in scientific
collaboration networks). However, as clustering tends to be
rather application specific, comparing any two algorithms
not always makes sense, as the motivation and intended
application areas differ.

Problems arise in the evaluation task especially when
a global clustering needs to be compared with a local
clustering, as global clusterings as often partitions or at least
symmetrical whereas the question posed by local clustering
allows for covers and asymmetrical cluster-membership
relations.

7.1. The parameter jungle

Typically, clustering algorithms have at least a few param-
eters. In comparing the output of different algorithms, one
needs to choose the parameters of the two algorithms under
comparison fairly. This is not always trivial, as the resulting
clustering may heavily depend on the parameter values cho-
sen. Therefore, before defining quality indices, we address the
problem of parameter selection.

The purpose of the parameters is to attempt to overcome
difficulties caused by structural properties inherent in the
data set, such as varying densities. Determining the optimal
values for the parameters is usually nontrivial or even
impossible, and the methods may be highly sensitive to
the choice of parameter values. A common parameter is
the number of clusters to compute. When clustering data
such as speech or handwritten characters, aiming to identify
which sound in the speech correspond to the same phoneme
or which characters of the writing correspond to the same
letter, the number of clusters is determined by the number
of phonemes or the size of the alphabet. In many cases,
however, the user will not have any a priori information on
the number of clusters. For example, when clustering a social
network based on phone call data, knowing the number of
callers and calls made does not give any concrete information
on how many clusters the graph could be expected to form.
The use of methods requiring the number of clusters as a
parameter is more straightforward when the user has at least
some information on the range of possible cluster counts.

A problem related to choosing the number of clusters is
that many algorithms implicitly assume that the clusters
should be of similar orders, even though this is not
necessarily the case in real-world data. The problem may be
avoided either by local clustering methods where the size of
the other clusters present plays no role, or by resorting to
methods that have been designed to find clusters of different
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Fig. 12 – Visualization of a 160-vertex relaxed caveman
graph [228] with m = 1415 edges computed by starting with
random initial positions for each vertex and using a
spring-force algorithm to iteratively move them to the final
locations [203]. The graph was generated with a model that
introduced a clear eight-cluster structure, but no
information on the clustering was given to the spring-force
algorithm. However, the natural grouping by balancing the
“springs” of the edges matches the inherent cluster
structure.

orders. We return to the problem of choosing the number of
clusters in the next section.

With small instances, one may experiment with the
parameter values and compare the resulting clusterings with
respect to some quality measure. We will address the issue on
how to evaluate the quality of a given clustering in Section 7.
It is not computationally feasible to try out clusterings with
different parameter values if the input graph is large.

In hierarchical clustering methods, one typically needs to
define a threshold for the stopping condition. The measure
used to determine when the algorithm should stop may
either be a global measure of the current clustering or a
difference of the measures of the current and previous levels
in the cluster hierarchy. It is advisable to try different values
of the threshold. It is useful to apply some other quality
measure than the one built in the stopping condition to
determine which value yields the best clustering. Again such
experimentation is costly if not impossible in the case of
massive instances.

When nothing is known of the structure of the graph, for
small instances it may prove useful to attempt visualizations.
For example a simple spring-force algorithm already suffices
to reveal dense clusters in a nonuniform graph [228].
Fig. 12 shows a small graph composed of dense clusters
visualized with a spring-force method. For larger graphs,
sampling subgraphs and visualizing them may be helpful,
although the problem of sampling massive graphs is in itself
problematic [206].

Another option to explore the graph structure is to
compute or estimate characteristic measures such as the
density, clustering coefficient and average path length of
the graph to learn more of the graph structure. Such
structural information may greatly ease choosing between
different clustering algorithms as well as in determining
the required parameter values. Comprehensive surveys on
structural properties of natural graphs include those of da
F. Costa et al. [64], Newman [183], Dorogovtsev and Mendes
[76], and Chakrabarti and Faloutsos [42]. Approximations and
sampling may again be useful for massive instances when
estimating such measures.

A practical clustering algorithm should require few if any
parameters. It should also be insensitive to small changes
in the parameter values and the ranges in which the
parameter are to be chosen should be clearly stated. Also, any
information on what the parameter actually does and how
it should be chosen is of great assistance to users outside
the core of the scientific community of graph clustering
researchers.

7.2. Quality indices

In this section we review some useful measures to evaluate
whether a given cluster or clustering is of high quality
which generally is a hard task, or which of two or more
clusters (or clusterings) is the best. A brief review on some
quality indices is given by Brandes et al. [34]. Cluster fitness
functions, especially ones that are not used in the clustering
algorithm itself, can be used to evaluate the clusterings
produced and especially to choose between two alternative
clusterings, preferring those clusterings that yield high-
fitness clusters. Similarly, the measures discussed as possible
split-criteria for hierarchical clustering (see Section 5.4) can
be used as quality indices, such as conductance and the
many variants [142]. Although optimizing such measures is
computationally demanding, evaluating the value of each
measure for a given clustering of a given graph is a
lightweight operation.

Taking a global view on what a good clustering would be
like, the best case would be that the graph were a collection of
vertex-disjoint cliques, preferably even disconnected cliques.
It would be easy to choose each clique to be a cluster without
any room for further discussion. This motivates a method of
evaluating the quality of a given clustering: how many edges
would need to be added in total into all of the clusters to
make them cliques and also, how many edges would need
to be removed to disconnect each pair of clusters. One may
sum or multiply these quantities andminimize the result: the
fewer modifications to the graph are needed to turn it into a
collection of cliques that are not connected to each other, the
better the clustering.

Shamir et al. [208] study the complexity of determining the
fewest changes to the edge set of an input graph to transform
it into a set of vertex-disjoint cliques such that there are
no intercluster edges. When edges can only be added, the
problem is polynomial. However, when edges are added and
removed, which is the more interesting general case, the
problem is NP-complete. If edges can only be deleted, it is
NP-hard to even approximate the problem within a constant
factor. They also study variants in which the number of
clusters is fixed to k.
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Modularity M(C1, . . . ,Ck) of a clustering, as defined in Eq.
(45), evaluates a related property for weighted graphs. The
higher the modularity, the better the clustering, as for a high-
modularity clustering the total weight of intracluster edges
is large and the total weight of intercluster edges is small.
Modularity is in essence the graph-theoretical equivalent of
minimizing the sum-of-squares of distances within clusters
and maximizing it between the clusters for a clustering
of a set of points in space [135], closely related to the
Davies–Bouldin index [69].

Danon et al. [67] compare several graph clustering
methods in terms of their sensitivity to changes in the
input data and the running time, using modularity as a
quality measure. They conclude that the most accurate
methods are computationally expensive, but that it depends
on the application whether speed or accuracy is more crucial.
Intuition of intercluster sparsity combined with intra-cluster
density has also been used by Brandes et al. [34] both
with modularity-like formulations and conductance-based
notions to evaluate the performance of clustering algorithms.

Other measures for evaluating a single cluster are distance
measures such the average or maximum distance (i.e. length
of the shortest path) within the included vertices, which
should be small for a good cluster. These measures are useful
if a method returns two candidate clusters and only one is to
be chosen. A clustering fitnessmeasure used byWu et al. [237]
compares the differences in average path lengths of the
original graph and a graph where each cluster is contracted
into a single vertex with distances calculated by having
that single vertex represent all of its member vertices. This
measure is called the distortion of the graph geodesics. An idea
applied to clustering points in space that also gives insight to
graph clustering is to use the sum of cluster diameters as a
quality measure and preferring clusterings that yield smaller
sums [44]. The motivation behind diameter-based clustering
is that cluster members should be structurally close to each
other, and hence connected by short paths. Also, it would be
desirable that the diameters of the individual clusters were
clearly smaller than the diameter of the graph as a whole.

Boutin and Hascoet [30] discuss and compare different
cluster quality indices with respect to different instances
and different clustering methods. They find that many of
the quality indices are difficult to interpret and compare.
One problem is that one should know what measures the
algorithms under comparison are directly optimizing, as
using the same measures as quality indices is not too
informative: if method A optimizes measure f and method
B optimizes measure g, one needs some intuition on what
combinations of the values of f and g are desirable for good
clusters. Preferably one should also assess the clusterings
with quality measures other than f and g. This effectively
brings us back to posing the question “what is a good cluster”
that already served as a starting point for designing or
choosing a clustering algorithm!

The integrated classification likelihood is a measure that can
be used to choose the number of cluster [25,26]. It is based
on assuming the data to follow a finite mixture model. Mixture
models are statistical models for classification that deal with
the probability that a given element belongs to a certain class.
Model-based clustering aims to “recover” the classification in
the data assuming the data to follow a finite mixture model,
similarly to planted partition problem [248]. Also Fraley and
Raftery [98] discuss likelihood methods for determining the
number of clusters.

Such definitions rely on the notion of likelihood, which
is the hypothetical probability that the observation made
would have been generated in a certain way and not any
of the other possibilities within a finite set. In the context
of clustering, the goal is to estimate the likelihood that a
given sample belongs to a certain cluster. Several likelihood-
based formulations exist for evaluating the quality of a given
clustering assuming that the input data was generated under
a specific probabilistic model.

For points in space, the aforementioned Davies–Bouldin
index [69] is commonly used to choose the number of clusters:
one repeats the same algorithm varying the parameter that
determines the cluster count and chooses the clustering
that optimizes the Davies–Bouldin index. For graphs in
general, modularity (Eq. (45)) could be optimized. In the
presence of a priori information on the generation model,
the aforementioned optimization of a likelihood measure will
work.

When optimizing a quality index, it would be useful to
know what is the best possible value that can be reached for a
given input graph, i.e. how many intercluster edges will there
be at least and how many intra-cluster edges will be missing
at least. Knowing this allows to determine whether a given
clustering is actually globally good, whereas not knowing the
optimum only justifies comparisons between two clusterings
to determine if one is better than the other.

Considering the application-specific nature of clustering
problems, there seems to be no answer that would satisfy
all. Often the only sensible way to evaluate the quality of a
clustering is to see how well it performs for the application
at hand, i.e. how costly is the computation and what are the
benefits of utilizing the obtained clustering.

7.3. Scalability and stability under perturbations

The amount of digitally available information grows rapidly
and hence scalability of computational methods is becoming
an increasingly critical issue. By scalability we mean that
a great increase in the size of the problem instance
should only cause moderate effects in the amount of
computational resources needed. With global methods, often
both computation time and memory requirements pose
problems — in addition to designing novel scalable methods,
parallel and distributed versions of known clustering
algorithms help to achieve at least some scalability, as the
cost of additional hardware is no longer tremendous. Another
option is to resort to approximations of qualitatively good but
computationally demanding methods. Another idea, applied
by Milenova and Campos [179] to cluster high-dimensional
feature-vector data, is to use sampling. Combinations of
sampling techniques and local clustering algorithms could
well yield easily scalable methods that produce high-quality
global clusterings; one idea would be to choose a set of
seed vertices with a carefully designed sampling method
that gives preference to vertices that structurally make good
cluster seeds and iteratively combine information of the local
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clusters of the seed vertices to obtain a global clustering. For
more information on sampling vertices of massive graphs,
see for example the Markov-chain constructions discussed
by Schaeffer [206] or the path-sampling method of Clauset
and Moore [55] further discussed by Achlioptas et al. [3] and
Dall’Asta et al. [65].

On the field of feature-vector data clustering, scalability
issues are more thoroughly addressed. Zaïane et al. [246]
present an experimental study of different clustering
methods and also discuss the difficulty of cluster validation.
Farnstrom et al. [87] present a highly scalable variation of
the k-means algorithm that scans a large data set once and
produces a clustering using a small memory buffer — a buffer
that accommodates just one per cent of the input data already
serves to produce good clusterings.

Another potentially critical issue is that in clustering
applications, one may wish to maintain a clustering for a
graph that undergoes frequent modifications. It is however
application-dependent whether the changes in the clustering
should be limited to the area of the modification or whether
the change should propagate and alter the cluster structure
in general, and if so, to what extent.

Raghavan and Yu [200] study the stability of clustering
methods when the input data is perturbed. Examples of
possible perturbations are the introduction or removal of
a few edges and/or vertices. They measure the stability
of a clustering algorithm by computing a clustering for
the original data and again for the perturbed data, then
calculating how many operations it would take to transform
the latter set of clusters to the former. Raghavan and
Yu compare different graph-theoretical clustering methods
and cluster definitions. Also Hopcroft et al. [128] evaluate
their agglomerative clustering algorithm with respect to
perturbations.

8. Applications of graph clustering

As has been emphasized repeatedly throughout the survey,
the task of clustering is highly application-specific. In this
section we review some of the key application areas of
graph clustering, although it is not to be forgotten that many
problems allow the utilization of other representations as well
and hence clustering algorithms for feature vectors or others
kinds of classification systems, for example, may equally
be applied. We begin by viewing how data sets composed
of points in n-dimensional space can be transformed into
graphs.

8.1. Data transformations

The range of interesting clustering applications is wide, as
many if not practically all systems of interacting (or simply
coexisting) entities can be modelled in some way as graphs.
For data that are not readily in graph, several transformations
into graph representations are possible. In this section we
discuss some of the various possibilities to convert feature-
vector data into graph format. Transformations vice versa
exist as well [234], but as the focus of this survey are graph-
theoretical clustering algorithms, we do not address those.
One option on how to convert feature-vector data into
graph format is the Delaunay graph. The Delaunay graph of a
set of points on a plane can be constructed by representing
each point by a vertex and placing an edge between each
pair of points that are Voronoi neighbours [135]. The approach
naturally generalizes to higher dimensions. Two points are
Voronoi neighbours if their Voronoi cells are adjacent [13]. A
Voronoi cell of a datum is formed by those points in the data
space that are closer to that data point than any other. The
boundaries of the Voronoi cells are hyperplanes that partition
the space in which the data lie.

More often than relying to Delaunay graphs, when
transforming feature-vector data into graph format, the data
elements d ∈ D are represented by the vertices, and an edge
is placed between two elements depending on their similarity
under some measure, selected according to the application.
Vertex similarity measures are addressed in Section 4.1.

Any data for which a similarity measure has been defined
can be transformed into a complete weighted graph using its
connectivity matrix [M]i,j, where the element mi,j contains the
similarity measure ρ(di,dj) for data elements di and dj. If the
similarity values are symmetrical, i.e. ρ(di,dj) = ρ(dj,di), an
undirected graph can be formed by representing each datum
di by vi ∈ V and using

ω
(
vi,vj

)
= ρ(di,dj). (59)

For asymmetrical similarities, the resulting graph is directed
and hence the number of edges is doubled. In both cases,
the a number of edges is O(n2); for large data sets, this is
computationally infeasible. The number of edges in the graph
can be controlled by setting a threshold value ξ such that

{vi,vj} ∈ E if and only if ρ(di,dj) ≥ ξ, (60)

although choosing the value of the threshold is application-
specific and not always easily justified. Such edge-elimination
is referred to as sparsification [219].

An example of other methods simplify the connectivity
graph is that of Bansal et al. [18], who reduce the possible
set of edge weights into a binary set by placing an edge with
weight +1 between all vertex pairs that are similar (e.g. above
a threshold) and an edge with weight −1 between those that
are dissimilar. Optimal clustering of such graphs is NP-hard,
but polynomial-time approximation schemes exist [18].

A similarity measure defined on the data set can usually
be fluently converted into a distance measure: similarity
measures assign large values for similar data elements,
whereas distance measures assign smaller values for similar
elements — often just taking the inverse of the similarity
value works as a distance measure. A simple distance-based
graph construction is assigning each point to be represented
by a vertex and connecting each vertex by an edge with the
vertices representing the k nearest points with respect to
the distance measure [232]. The resulting graph is a k-nearest
neighbour graph. Clustering of point sets by searching for cuts
in such graphs was already studied in the 1970s by Zahn [245].
As an alternative to a fixed neighbour count, one may also
set a distance range within which the neighbours are selected
[135].

Of course one may also work the other way around,
and convert a graph into a set of feature vectors, then
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utilizing some clustering algorithm for general data sets. The
task of constructing the feature vectors for the vertices is
addressed by Wilson et al. [234] who use a spectral matrix
and construct symmetric, permutation invariant polynomials
from the matrix elements, then using the coefficients of the
polynomials as feature vectors. In practice these vectors allow
for a locally linear embedding in a low-dimensional space.

8.2. Information networks and usage information

In any communication network, graph clustering serves as a
tool for analysis, modelling and prediction of the function,
usage and evolution of the network. Applications include
business analysis, marketing, improving the infrastructure,
and identifying anomalous use.

In computer networks, clustering may be used to identify
relevant substructures and to analyse the connectivity
for purposes of modelling or structural optimization; the
canonical example is the Internet and the structure of
the Autonomous Domains [178]. One example of topology
design through clustering is the work of Grout and
Cunningham [114]. In the World Wide Web, clustering of
hypertext documents – representing each web page by a
vertex and each hyperlink by an edge – helps to identify
topics and other entities formed by several interconnected
documents [227,236].

What comes to Internet telephony and chat services like
Yahoo Messenger, Microsoft’s Messenger Live, and Skype,
interesting usage statistics for optimizing related software
and hardware configurations can be obtained by representing
each user as a vertex and placing (weighted) edges between
two users as they communicate over the system. For example,
in a multiserver environment, savings could be obtained by
grouping a dense cluster of users on the same server as it
would reduce the interserver traffic.

Similar analysis can help traditional teleoperators identify
“frequent call clusters”, i.e. groups of people that all mainly
call each other (such as families, coworkers, or groups
of teenage friends) and hence better design and target
the widely-spread offers on special rates for calling to a
limited number of prespecified phone numbers. Clustering
the caller information can also help to identify changes in
the communication pattern of a certain client: when long
calls are repeatedly being made outside the cluster, the
phone may have been stolen or the client may simply have
decided not to pay the bill anymore. For fraud detection,
call durations and a geographical embedding would be most
helpful in determining what forms the cluster of “normal call
destinations” for a specific client and which calls are “out of
the ordinary”.

Clustering algorithms are also used in the structural
design and operation of ad hoc [130,165,194] and sensor
networks [101]. For networks with a dynamic topology, with
frequent changes in the edge structure, local clustering
methods prove useful, as the network nodes can make local
decisions on how to modify the clustering to better reflect the
current network topology [207]. Imposing a cluster structure
on a dynamic network eases the routing task [156,216].
8.3. Database systems

When storing a large set of data, a key question is how to
group the data onto pages in physical memory. A single page is
typically large enough to contain multiple elements but only
a small fraction of the entire data set. Therefore, a desirable
grouping would be such than when a datum is retrieved,
along would come relevant data so that possible related
future queries might benefit from the already retrieved page.
Also traditional concerns such as the complexity of searching,
inserting, deleting, and modifying the data stored must be
attended in addition to the relevancy concern in the paging
design.

Diwan et al. [73] propose paging by clustering for tree-
like data. Wu et al. [237] address the database organization
issue for graphs, providing a solution where the data storage
format itself supports quick, approximate computation of
shortest paths and distances for a special class of nonuniform
networks called scale-free networks [22]. A similar idea is
presented by Agrawal and Jagadish [5], implicitly assuming
an underlying cluster structure in the input graph. Their
method was modified to explicitly use clustering algorithms
by Schaeffer [206]. Bradley et al. [32] use a k-means like
iterative algorithm to determine a clustering for a large
database in one scan using a limited memory buffer.

8.4. Biological and sociological networks

In the field of bioinformatics, graph clustering tasks typically
deal with classification of gene expression data (specifically
gene-activation dependencies) [240,31] and protein interac-
tions [16,193,148,243,7,141]. Another biological application of
clustering is epidemic spreading. Newman [182] studies SIR-
type epidemic processes in a special class of graphs and find
that graphs with a cluster structure have smaller epidemics,
but a lower epidemic threshold, making it easier for diseases
to spread. Applications of local clustering in social networks
include identifying groups of individuals “exposed” to the in-
fluence of a certain individual of interest, such as identify-
ing terrorist networks when a member is known or locating
potentially infected people when an infected and contagious
individual is encountered.

Cluster analysis of a social network also helps to identify
mechanisms underlying, for example, the formation of trends
(relevant to market studies) and voter behaviour. In the
current information society, the study of social networks
tends to overlap the study of information networks, as
the popularity and significance of electronic messaging has
become overwhelming. However, traditional studies where
the daily contacts of individuals are mapped and classified
do coexist with the studies of chats and web logs.

8.5. Other applications

In the business world, other than market analysis based on
social or communication networks, also stock market data
can be clustered: represent each stock by a vertex and place
weighted edges to represent the correlations of the valuations
of the stocks in the stock market. Such a representation
allows for the identification of clusters of stocks that
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either all gain or lose value together, or alternatively –
varying the cluster definition – stocks that appear to behave
independently of each other. Such knowledge is useful in
portfolio management when one wishes to distribute and/or
concentrate investments.

A clustering analysis of the global air transportation
network is given by Guimerà et al. [117]. In logistics,
the hub-location problem [20,39] and other kinds of facility-
location problems [61] are of interest. Several clustering-
based heuristic solutions have been proposed to the hub-
location problem [153,189] and heuristics and approximation
algorithms that rely on a graph representation and a
clustering computation exist for the facility-location problem
as well [49,217]. A related problem of sales territory design [249,
140] also has proposed solutions building on the use of
clustering methods [201,225].

Clustering also serves in manufacturing, where identi-
fication of clusters of similar parts helps to smoothe the
production line (called group technology). Chen et al. [46] clus-
ter transaction databases in hope of profit-increasing patterns
using a noise-insensitive similarity measure between items
based on cooccurrence relationship of items.

9. Open problems and future directions

In the previous sections we reviewed three major open
problems of graph clustering:

• Parameter selection: how is the user to determine the
parameter values to give as input to the clustering
algorithm,

• Scalability: how does the runtime and memory consump-
tion of the algorithm behave for massive input graphs, and

• Evaluation: how to decide which of several clusterings is
the best.

For a non-expert user, ideally there would be few if any
parameters and the output of the method would at least not
be highly sensitive to the parameter values. The scalability
issue can be resolved either by resorting to approximation
algorithms to the existing methods or by novel approaches.
Parallelization of local methods could also offer a solution.
Especially the field of data mining frequently needs to
evaluate cluster structures in very large datasets.

The problematics of evaluation could be eased by the
creation of a benchmark set that allows comparison between
different clustering methods at design phase. For the end
user, it would be helpful in evaluating the output of
different algorithms (or of the same method with different
parameter values) if the clustering measures and/or the
quality indices were intuitively pleasant even to users that are
neither mathematicians nor computer scientist — should the
measure be easily explained in lay person’s terms, the user
could analyse whether the vertices considered to be similar
were actually grouped as similar.

More extensions of the existing graph clustering algo-
rithms to weighted graphs would be of great interest, as well
as novel methods for clustering directed graphs. In applica-
tion areas, there is certainly need to cluster also multigraphs
and hypergraphs.
The theoretical foundations of graph clustering are not
yet fully explored; we believe that there may well be
several supposedly distinct graph clustering algorithms that
fundamentally compute the same exact thing. However, we
do not expect there to be a single universal answer to the
questions what is a good cluster in a graph and how to find it,
as the field is highly application-specific.

10. Concluding remarks

In this survey we have given an overview of some of the
essential definitions and techniques of graph clustering.
In general, it seems that many of the good measures of
clustering are intertwined: cut-based methods are in a sense
spectral methods that in turn are related to random walks
that model the behaviour of electrical networks and also
serve to do betweenness-like computations, and so forth.
These theoretical connections between many of the methods
gives a reason to believe we are on the right track: the field of
graph clustering seems to be revolving around fundamentally
similar definitions, although some of the starting points for
the algorithms are quite far apart.

We reviewed both global and local approaches and
discussed the delicate issues of selecting an appropriate
method for the task at hand, selecting good parameter
values, and evaluating the quality of the resulting clustering.
The tools available are already almost as various as the
applications of graph clustering, although much work still
remains to be done.
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