AUDIO FILTERS AND EFFECTS

AIST2010 Lecture 6

Noises

Filters

Effects

Spatialization

OUTLINE

EFFECTS AND FILTERS

Subtractive synthesis

- From a sound of rich spectrum, obtain the target sound by pruning
- Sound processing
- Frequency domain
- Time domain

Removal of unwanted components

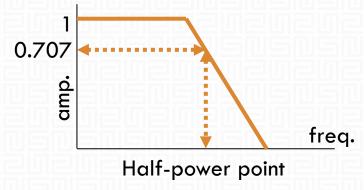
Enhancement of preferred components

NOISES AS A RICH SPECTRUM

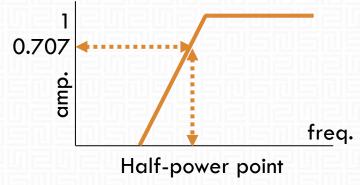
White noise: theoretical flat frequency response

- Random generator in CSound
 - *xr rand xamp [, iseed] [, isel] [, ioffset]
 - If iseed > 1, system clock will be used as the random seed

Pink noise: equal energy in each octave (i.e. log scale)


ar pinkish xamp [, ...]

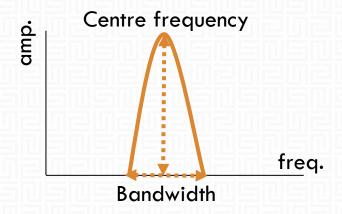
More CSound opcodes for noises


http://www.csounds.com/manual/html/SiggenNoise.html

FILTERS

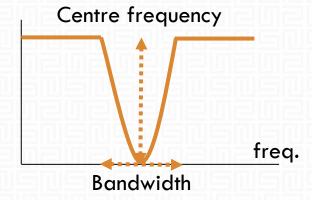
Filters are audio modifiers in the frequency domain

- Low-pass filter: removing high frequencies
 - ar tone asig, khp [, iskip]
 - khp half-power point, sometimes referred to as the cut-off frequency

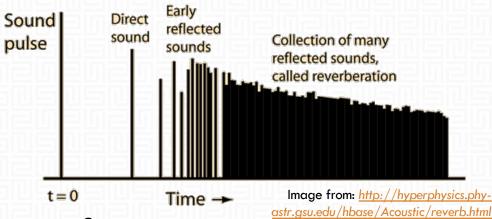


- High-pass filter: removing low frequencies
 - ar atone asig, khp [, iskip]

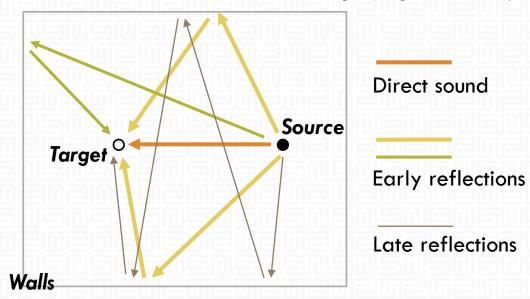
First-order filters only: to improve the roll-off, repeat the filter!


Bright sound vs. dark sound

FILTERS


- Band-pass (resonant) filter: suppress anything outside the centre frequency
 - ares **reson** asig, xcf, xbw [, iscl] [, iskip]
 - xcf centre frequency (peak response)
 - Xbw difference between upper and lower half-power points
 - iscl use 1 for scaling max amplitude

amp.


- Band-stop (notch) filter: suppress anything around the centre frequency
- ares areson asig, xcf, xbw
 [, iscl] [, iskip]
 - iscl use 1 for scaling max amplitude
- Useful for removing electricity hum at 50 Hz

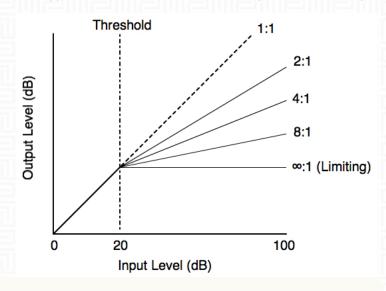
EFFECTS

Reverberation: the (psycho)acoustic effect of a room

- A set of echoes (reflected sound)
- Reverberation time RT_{60} = the time for the sound to fade away (by 60dB)
- Wet sound vs. dry sound
- CSound reverb opcodes
 - alpass
 - comb
 - freeverb

EFFECTS

Compressor/Limiter: Dynamic range reduction


Sometimes we prefer to avoid too much difference in dynamic range, so that both soft and loud parts of the music can be easily enjoyed

Compressor in CSound for compressing, limiting, expanding, ducking, or gating a signal

- ar compress aasig, acsig, kthresh, \ kloknee, khiknee, kratio, katt, krel, ilook
 - Measured in decibels

Read more:

https://www.gysnoizerecordings.com/musicproduction/audio-compression-basics/

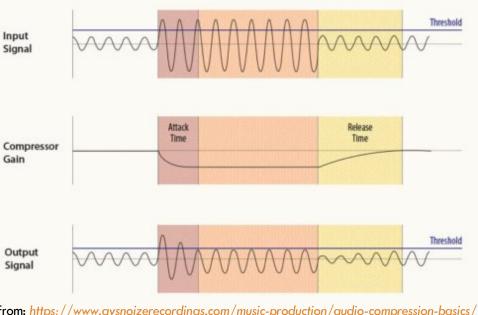


Image from: https://www.gysnoizerecordings.com/music-production/audio-compression-basics/

MORE EFFECTS

Distort: waveshaping and optional clipping

- ar distort asig, kdist, ifn \
 [, ihp, istor]
 - kdist amount of distortion between 0 and 1
 - ifn waveshaping function to modify shape and spectrum

Flanger: "chorus" and "flanger"

- ar flanger asig, adel, kfeedback
 [, imaxd]
 - ade1 delay in seconds

More special effects in CSound:

http://www.csounds.com/manual/html/SigmodSpeciale.html

Effects may also be applied to:

- file input (diskin)
- microphone input (in)

EFFECT INSTRUMENTS IN CSOUND

Reverb or other acoustic effects are typically applied using an extra CSound instrument

- Allowing polyphony
- Similar to a conventional studio

```
garvb init 0 ; global audio-rate var, init to 0
instr 1 ;sound generation
  kfreq cpsmidib 2 ; use midi for sounds
  iamp ampmidi 0dbfs
  aout oscili iamp, kfreq
  ;out aout ;; not direct output
  garvb = garvb + aout ; add to global variable
endin
instr 99 ; freeverb instrument
  kroomsize init 0.85 ; room size
  kHFDamp init 0.5; high freq. damping
  arvbL,arvbR freeverb garvb, garvb, \
                      kroomsize, kHFDamp
   outs arvbL, arvbR; output freeverb results
   clear garvb ; reset the global signal
endin
```

SPATIALIZATION

A sound source can be put at different positions of the stereo field

- Or even more channels easily supported by CSound
- Amplitude difference, phase difference

Distribute to two channels

- -a1,a2 pan2 asig, xp [, imode]
 - xp 0=hard left, 1=hard right

Output to two channels: outs

MORE FUN BY EXPERIMENTS

There are too many interesting opcodes in CSound for effects and filters

More are added in every new version

Have fun by reading these examples

http://floss.booktype.pro/csound/signal-processing-i/

QUICK HISTORY OF AUDIO EFFECTS...

Some more videos:

https://www.w aves.com/tag/ sound-basicswith-stella

LECTURE REVIEW

We have discussed:

- Generating noises in CSound
- •Filters in the frequency domain
- Effects in the time domain
- Spatialization

READ FURTHER

Chapter 12.1, "Source-Modifier Methods", CSound.

Chapter 13, "Time-Domain Processing", CSound.

Useful websites:

- <u>http://blog.dubspot.com/understanding-audio-effects-an-overview/</u>
- http://write.flossmanuals.net/csound/signal-processing-i/
- http://write.flossmanuals.net/csound/signal-processing-ii/