SOUND SYNTHESIS

AIST2010 Lecture 5

ADDITIVE SYNTHESIS

MODULATION SYNTHESIS

SUBTRACTIVE SYNTHESIS

SPECTRAL ALTERNATION

PHYSICAL MODELLING

SAMPLING

OUTLINE

FROM ANALOG SYNTHESIZERS TO VIRTUAL SYNTH

1874: the Musical Telegraph by Elisha Gray

 Audio was the first time generated using oscillations created by electromagnets

- Oscillators with frequency and amplitude controlled using capacitance from human hand to antennae
- Still available in market for specialized musicians today, with updated electronics

Read: https://120years.net

Image from: https://120years.net/the-musical-telegraphelisha-arevusa1876/

FROM ANALOG SYNTHESIZERS TO VIRTUAL SYNTH

1930s-40s: electronic instruments with oscillators, filters, effects, and envelope controllers

1957: the first programmable electronic synthesizer by RCA

Automatic playback using punch-tape score

1964: the Moog modular synthesizer by Robert Moog

 A big legacy, connections between modules made with patch cords

1974: the first digital synthesizer prototype by Yamaha

 Microprocessors were used to generate signals, instead of analog circuitry

Image from:

https://modularsynthesis.com/moog/moog1/moog1.htm

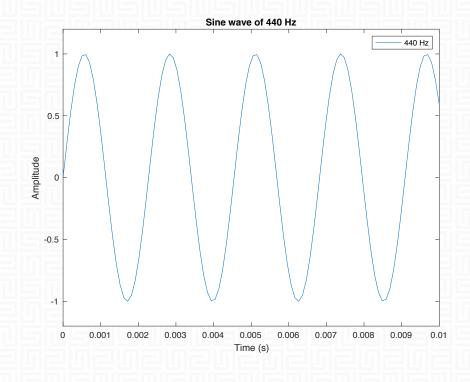
These analog synths are still in use! See: https://youtu.be/Q5hgQTEf0mg

FROM ANALOG SYNTHESIZERS TO VIRTUAL SYNTH

1983: MIDI 1.0 was standardized

1987: the Roland D-50 pioneered with sample playback heavily fused with digital synthesis

- Started the era of workstation synthesizers with sufficient computer memory
- 1996: Virtual Studio Technology (VST) was released by Steinberg
- VST is the current standard of most software synthesizers
- While some analog/digital synthesizers are still manufactured,
 software/virtual synthesizers becomes very common

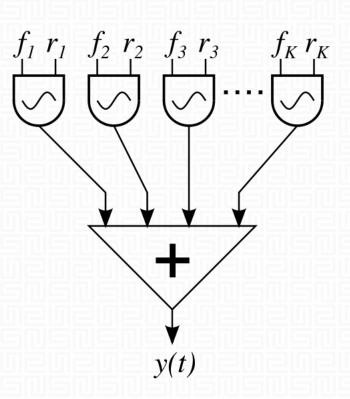

Read: https://www.juliusdobos.com/the-philosophy-behind/analog-vs-digital-synthesizers-debate

A PURE SOUND IN COMPUTER

Inheriting from analog synthesizers, most of the synthesis tools in computer has the base in sinusoids

$$g(t) \coloneqq A\sin(2\pi f t + \varphi)$$

One single sine wave in the audible range is called a pure sound

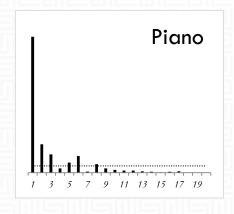

ADDITIVE SYNTHESIS

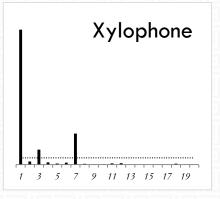
The most intuitive way to synthesize a sound: sum the sinusoids appropriately

Different amplitude ratios for the harmonic sequence affects the timbre

A discrete oscillator is required for each "voice"

- Huge computation requirements for real-time synthesis
- Flexible control of envelope of each harmonic



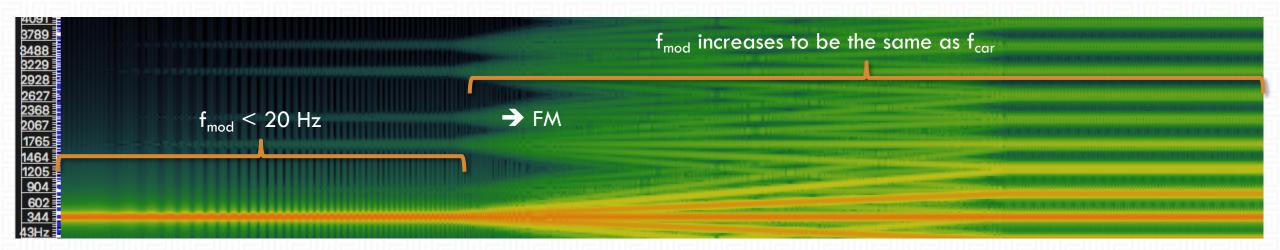

WAVETABLE SYNTHESIS

To generate musical instrument sounds, the frequency ratio of harmonics contributes a lot to the timbre

Wavetable synthesis maintains only lookup tables for (sampled) periodic waveforms or other kind of values

- By specifying the relative strength of harmonics, summation of sine waves can be generated mathematically without using a bunch of oscillators
- Shapes of individual harmonics may not be easily customizable

MODULATION SYNTHESIS


Two musical terms:

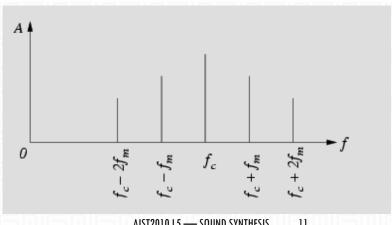
- Tremolo: a slight but continuous shake of amplitude
- Vibrato: a slight but continuous shake of frequency

When the vibrato/tremolo rate increases beyond 20 Hz, they go into the audible range and would affect the timbre

Sounds are generated using

- Original "carrier" signal at f_{car}
- Changing "modulating" signal at f_{mod}

AMPLITUDE MODULATION (AM) VS FREQUENCY MODULATION (FM)


AM is now more often used as an audio effect instead

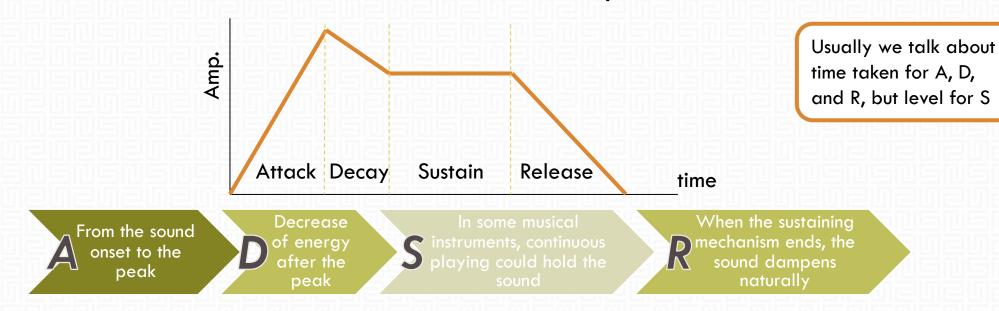
"Ring Modulation" is a simpler AM (good for alien voices!)

FM synthesis has been popular for its flexibility and lightweightedness

- •Fundamental frequency perceptual to human ear is the GCD of the carrier frequency and modulation frequency, e.g.
 - With a carrier frequency at 330 Hz and a modulation frequency at 220 Hz, the pitch would sound like 110 Hz
- •FM index controls the number of sidebands

Phase Modulation (PM) is also possible!

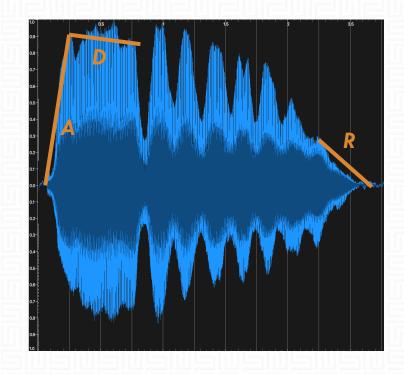
SUBTRACTIVE SYNTHESIS

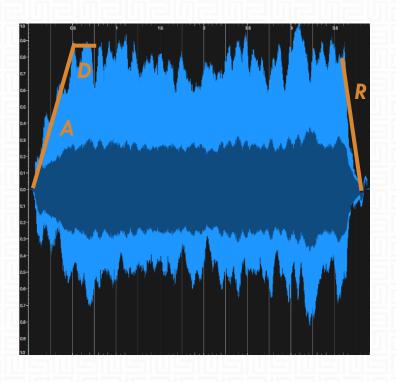

Starting with a complex sound, subtractive synthesis allows change in the sound in:

- Time domain: ADSR envelopes
 - This ensure the amplitude is not always maximum and can change through time
- •Frequency domain: filters
 - Low-pass, high-pass, or band-pass filters remove certain frequency components
 - To be discussed in the Filters lecture

To be discussed more in the Filters lecture

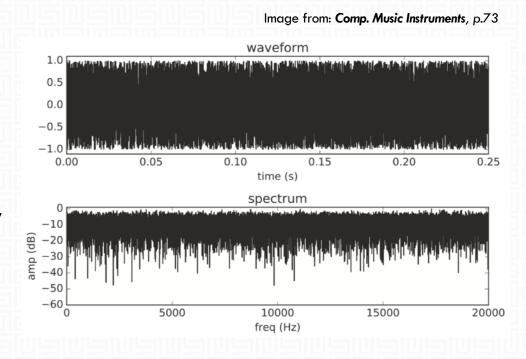
ADSR ENVELOPE CONTROLLERS


A natural sound from real musical instruments can be split into:


Some sophisticated synthesizer models can allow AHDSR

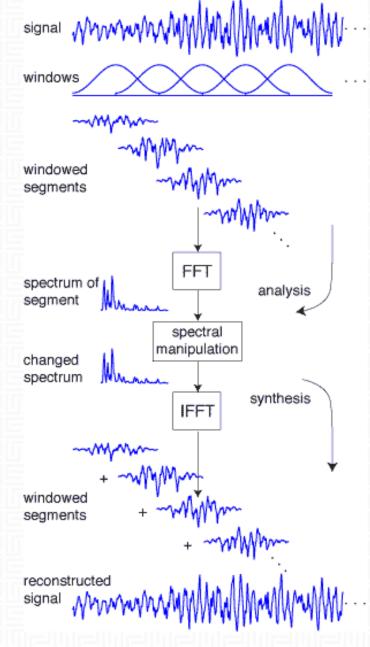
- Hold: the time after the first peak, before decay
- Multiple peaks are allowed

ADSR ENVELOPES



WHITE NOISE: THE FULLEST SPECTRUM

Broadband noises provide a good start for subtractive synthesis


- White noise: signal of random sequence of a flat spectrum of equal power in linear frequency dimension
 - Pink noise: flat spectrum of equal power in log frequency,
 i.e. more low-frequency components
 - Red (Brownian) noise: even more low frequencies
 - Blue noise: more high frequencies
 - Grey noise: A-weighted white noise
- Try this: https://mynoise.net/NoiseMachines/whiteNoiseGenerator.php

SPECTRAL ALTERNATION

The original "Phase Vocoder" involves analysis of the sound, alternation at the spectrum and resynthesis

- Converting time-domain wave into frequency and phase data
- 2. Editing frequency magnitude information to alter the spectrum
 - E.g., changing harmonic ratios
- Resynthesis using inverse FFT with frequency and phase data

PHYSICAL MODELLING

Using real-world physics, sound waves are generated by model simulation, sometimes termed "waveguide" synthesis

- Vibrating strings
- Acoustic tubes
- Wooden/metal bars
- Stochastic noises for percussion
- "Virtual acoustic musical instruments"
- Read: https://ccrma.stanford.edu/~jos/jnmr/

SAMPLE-BASED SYNTHESIS

The recorded sound of a musical instrument (or something else) is played back directly

 The sustain part in ADSR can be manipulated to fit the synthesis duration

Nowadays most synthesis is done this way for realism

- Computer storage is cheap: recordings of all pitches, dynamics, and articulations are available in a commercial sampler package
 - Recordings can be also made for selected intervals of pitches and morphed in between
 - Dynamics can be morphed for section instruments such as strings or brass

"Zones" in Logic Pro EXS24 sampler

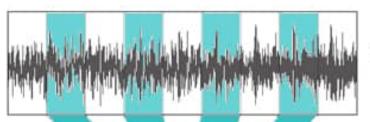
á	Audio File	Pitch			Mixer				Key Range		
Ц	Name		Key ^	Coarse	Fine	Vol	Pan	Scale	Output	Lo	Hi
3	Strs In 1 c.aif		C1	0	0	0	0	0	Group 🗘	C-2	C#1
	Strs In 1 d#.aif		D#1	0	0	0	0	0	Group 🗘	D1	E1
7	Strs In 1f#.aif		F#1	0	0	0	0	0	Group 🗘	F1	G1
i	Strs In 1a.aif		A1	0	0	0	0	0	Group 🗘	G#1	A#1
4	Strs In 2 c.aif		C2	0	0	0	0	0	Group 🗘	В1	C#2
4	Strs In 2 d#.aif		D#2	0	0	0	0	0	Group 🗘	D2	E2
Ц	Strs In 2 f#.aif		F#2	0	0	0	0	0	Group 🗘	F2	G2
3	Strs In 2a.aif		A2	0	0	0	0	0	Group 🗘	G#2	A#2
П	Strs In 3 c.aif		C3	0	0	0	0	0	Group 🗘	В2	C#3
	Strs In 3 d#.aif		D#3	0	0	0	0	0	Group 🗘	D3	E3
i	Strs In 3 f#.aif		F#3	0	0	0	0	0	Group 🗘	F3	G3
Ц	Strs In 3a.aif		А3	0	0	0	0	0	Group 🗘	G#3	A#3
4	Strs In 4 c.aif		C4	0	0	0	0	0	Group 🗘	В3	C#4
Ш	Strs In 4 d#.aif		D#4	0	0	0	0	0	Group 🗘	D4	E4
3	Strs In 4 f#.aif		F#4	0	0	0	0	0	Group 🗘	F4	G4
	Strs In 4a.aif	~	A4	0	0	0	0	0	Group 🗘	G#4	A#4
						001015	cours c	WITHECIC	10		

WAVELET/GRANULAR SYNTHESIS

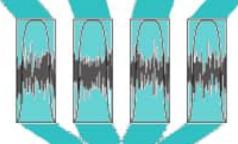
Samples are only used partially

Grains: tiny chunks of sound of 1 to 100 ms long

- Can be layered together
- Can be played reversed or at different speeds


Long grains (>50ms)

Original sound fragments still audible


Short grains (>30-50Hz)

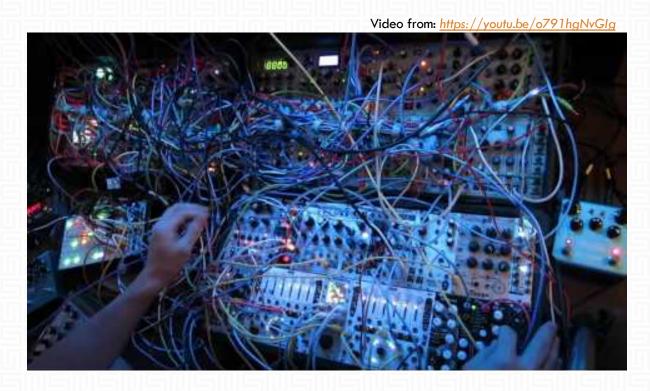
A pitch can be heard at repetition rate

Image from: https://www.subaqueousmusic.com/granular-synthesis-in-ableton-live/

Original Sample.

Granular Synthis then cuts it into "grains".

Grains are then blended together to make a new sound which can be repeated over and over,looped, or manipulated through the Granular Synthesizer.


OBJECTIVES OF SOUND SYNTHESIS

There are different goals of synthesis

- Realism: to emulate real-life musical instruments, as realistic as possible
 - Both acoustic and electronic instruments
- Creativity: to expand the gamut of musical possibilities

Considerations:

- Computation power
- Ease of use for users (HCI)

Computers? Synthesizers? Acoustic instruments?

- https://www.juliusdobos.com/the-philosophy-behind/analog-vs-digital-synthesizers-debate
- http://www.noiseaddicts.com/2014/07/electric-vs-acoustic-instruments/

THE SKY'S THE LIMIT...

Video from: https://youtu.be/Oym7B7YidKs

LECTURE REVIEW

We have discussed:

- Additive synthesis
- Modulation synthesis
- Subtractive synthesis
- Basics of spectral alternation, physical modeling, and sampling methods
- Basics the powerful synthesis programming language, CSound

READ FURTHER

Chapter 3, "Fundamentals", CSound.

Useful websites:

http://decoy.iki.fi/dsound/dsound-c-07