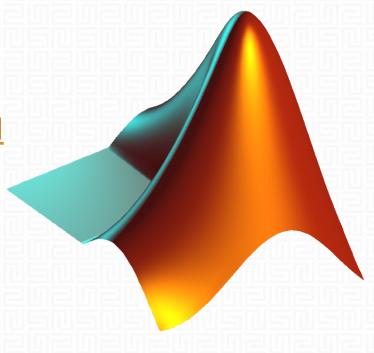
MATLAB PROGRAMMING

AIST2010 Lecture 3P


MATLAB — MATRIX LABORATORY

MATLAB allows easy analysis and visualization of huge numerical data

- CUHK has campus-wide licence since this year
- Including MATLAB Online for use in browser https://matlab.mathworks.com
- 5GB storage on MATLAB Drive https://www.mathworks.com/products/matlab-drive.html

MATLAB files

- MATLAB scripts *.m: a list of commands, or functions
- LiveScript *.mlx: scripts + published text + graphs
- Data file *.mat: variables in workspace

BASIC MATLAB OPERATIONS

The .m script file is an ordinary text file of programme code

- Syntax is like many common languages: C, python, ...
- If in path, typing the .m file name will execute it
- Semicolon at the end of a statement suppresses the output
- Comments start with %

You can execute commands by typing at the prompt:

Get started here:

https://www.mathworks.com/help/matlab/getting-started-with-matlab.html

ARRAYS, VECTORS AND MATRICES

MATLAB handles variables best as arrays

- Scalar, row vector, column vector, matrix
- MATLAB has dynamic typing
- Case sensitive and usual identifier rules
- Array can be assignment targets
 - -[M I] = max(y) % M = 6; I = 1

Finding the number of elements

- Vectors: length(y)
- Matrices: size(x, dim)

Transpose of vectors/matrices

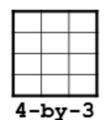
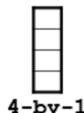

• Changing from row to column: xT = x'

Image from: https://matlabacademy.mathworks.com

Row vector

Values are stored in *m* rows and *n* columns. (*m*-by-*n*)

$$x = [1 2 3; 4 5 6]$$


row and *n* columns.

$$y = [6 \ 5 \ 4]^{(1-by-n)}$$

row and 1 columns. (n-by-1)

Values are stored in 1

$$z = [1; 2; 3]$$

Scalar A single value is stored. (1-by-1)

⊥ 1-by-1

ARRAY CREATION

Generating matrices with constant values

```
-a = zeros(3); % a = [0 0 0; 0 0 0; 0 0 0];
-b = ones(2, 4); % b = [1 1 1 1; 1 1 1 1];
-c = rand(3, 4); % random numbers in (0,1) of 3×4 matrix
```

Generating a range of numbers

```
-d = 5:2:15; % interval of 2: d = [5 7 9 11 13 15];
-e = linspace(10, 20, 4);
% 4 evenly distributed elements:
% e = [10.0000 13.3333 16.6667 20.0000];
```

ARRAY ELEMENTS

```
Indexing in array or matrix
-x = [1 \ 2 \ 3; \ 4 \ 5 \ 6]; \ x(4) \%  numbered down columns: output is 5
•x(1,:) % whole row: output is [1 2 3]
                                                       2:6
                                            y 10 9
Slicing: select part of matrix using colon
-y = 10:1; y(2:6) \% output is [9 8 7 6 5]
•y(5:end-1) % output is [6 5 4 3 2]
Logical indexing: select elements satisfying condition
-z = 1:3:20; z(mod(z,2)\sim=0) \%  output is [1 7 13 19] _{non-even\ number}
```

10 (13)

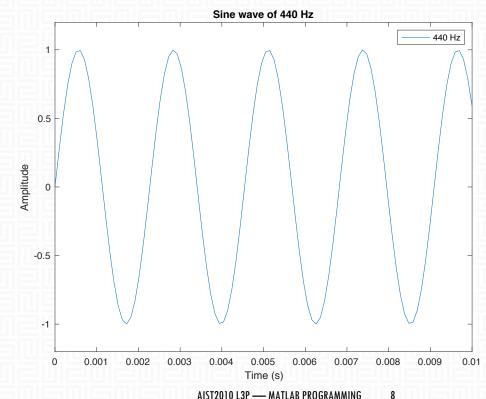
CONDITIONS AND LOOPS

```
if-elseif-else
if x > 0
     disp('positive');
 elseif x < 0
     disp('negative');
     x = abs(x);
 else
     disp('zero!');
 end
AND/OR/NOT
- && | | ~
```

```
for loop
for i = 1:10
    disp(i*2);
 end
while loop
while x > 1
     x = x-1
    % no x--, no x-=1
 end
Change of flow
break/continue are available
```

PLOT

```
Basic plot: two axes must share the same number of elements
```


```
•t = linspace(0, 1, 44100); % 44100 elements from 0 to 1
% x as function of t, 44100 elements
x = sin(2*pi*440*t);
plot(t, x)

Other plot settings
•title('Sine wave of 440 Hz')
```

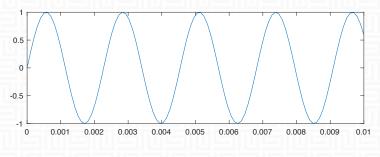
```
title('Sine wave of 440 Hz')
ylabel('Amplitude')
xlabel('Time (s)')
legend('440 Hz')
ylim([-1.2 1.2])
xlim([0 0.01])
```

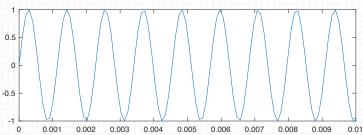
Other plots

HOLD ON AND SUBPLOTS

MATLAB by default opens a new figure for every plot command

To retain current plot and draw over it


```
plot(t, x);
hold on % overlap
plot(t, x2);
hold off % no overlap
```


To create the next plot in new figure window

```
plot(t, x);
figure; % new window
plot(t, x2);
```

To organize plots into the same figure in columns

```
*% index 1 in 2row1col
subplot(2, 1, 1)
plot(t, x)
% index 2 in 2row1col
subplot(2, 1, 2)
plot(t, x2)
```


SOUND AS ARRAY

pause(1);

```
You can output the sine array as a sound

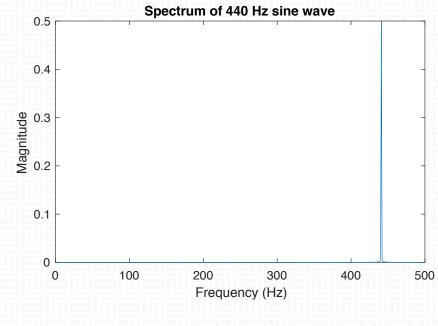
•t = linspace(0, 1, 44100); % 1 sec of time, 44100 samples
x = sin(2*pi*440*t); % sine wave of 440 Hz
sound(x, 44100); % play sound in Fs=44100Hz

Reading a sound file into array

•[y, Fs] = audioread(filename); % supporting .wav .mp3 .m4a ...

You may need to pause before playing the next sound
```

Other useful tools: audioplayer, audiowrite


FFT IN MATLAB

Default implementation of FFT: fft()

- https://www.mathworks.com/help/matlab/ref/fft.html
- y = fft(x, n) % n point FFT of x
 - If X is a vector (1 row/column), return FFT of vector
 - If **x** is a matrix, return FFT of each column in columns

Plotting the spectrum

- Magnitude m = abs(y);
- Plot m and adjust plotting parameters

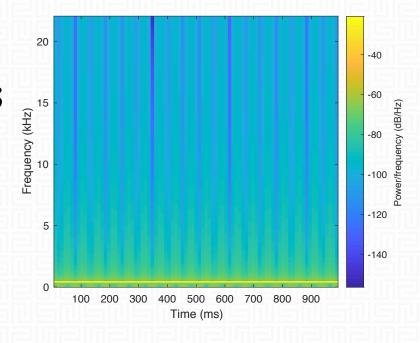
STFT IN MATLAB

To obtain spectrogram data of a 440 Hz sine wave of 1 second:

```
•t = linspace(0, 1, 44100);
```

x = sin(2*pi*440*t);

w = hamming(1024); % Hamming window of 1024


s = spectrogram(x, w, 512, 1024, 44100, 'yaxis');

Here S is a 513x85 matrix

- 85 FFT frames (window size=1024, overlap=512)
- 513 frequency bins (half of 1024-point FFT is mirrored)

To plot the spectrogram

•spectrogram(x, ...); % without output arguments, plot in current figure

GETTING HELP

Basic documentations

- -help mesh % show help text of function mesh
- -doc LogLog % show detailed documentation of function LogLog

Online tutorials available to subscribers only (including CUHK)

- <u>https://matlabacademy.mathworks.com</u>
- <u>https://matlabacademy.mathworks.com/artifacts/quick-reference.html?course=mlbe&language=en&release=R2019a</u>

READ FURTHER

Chapter 2, "Basic audio processing", Speech and Audio Processing—A MATLAB-based Approach

Chapter 7, "Audio analysis", Speech and Audio Processing—A MATLAB-based Approach