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Abstract

Modern Electronic Design Automation (EDA) is complex and computationally challenging. It con-

sists of a series of difficult optimization problems, accompanied by various analysis and verification

processes, which typically take days to weeks to complete. To tackle the efficiency issue in EDA, this

thesis proposes several algorithmic methodologies that involve machine learning, customized opti-

mization, and parallel acceleration. Targeted problems span multiple stages from logic synthesis,

physical design to physical verification.

Arithmetic block identification in gate-level netlist is an essential procedure for malicious logic

detection, functional verification, or macro-block optimization. However, existing methods suf-

fer either scalability or performance issues. To address the problem, this thesis proposes a graph

learning-based solution that promises to extract desired logic components from a complete design

netlist.

While conventional floorplan approaches rely on metaheuristics, automatic heuristic design through

reinforcement learning opens a promising direction for resolving such computationally difficult com-

binatorial problems. This thesis explores the possibility of acquiring local search heuristics through

massive search experience, in contrast to the majority of earlier research that focused on solution

construction.

Various neural network processors have been proposed to support the remarkable breakthroughs

in deep learning; yet, far fewer discussions have been made on the physical synthesis for such special-

ized processors, especially in advanced technology nodes. This thesis argues that datapath design

is a fundamental methodology in the above procedures due to the organized computational graph

of neural networks. As a case study, the thesis investigates a wafer-scale deep learning accelerator
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placement problem introduced in ISPD2020 contest in detail.

Design rule checking (DRC) is critical in physical verification to ensure high yield and reliability

for VLSI circuit designs. The ever-increasing complexity of contemporary VLSI circuits has neces-

sitated acceleration for computationally intensive DRC tasks in order to achieve reasonable design

cycle times. This thesis proposes X-Check, a GPU-accelerated design rule checker, which integrates

novel parallel sweepline algorithms that are both efficient in practice and with nontrivial theoretical

guarantees. On top of that, the thesis also proposes OpenDRC, which is an efficient open-source

DRC engine with hierarchical GPU acceleration.
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摘摘摘要要要

現代電子設計自動化 (EDA) 非常複雜且計算上具有挑戰性。 它由一系列困難的優化問題組成，伴

隨著各種分析和驗證過程，通常需要幾天到幾週的時間才能完成。 為了解決EDA的效率問題，本

文提出了幾種涉及機器學習、定制優化和並行加速的算法方法。 目標問題跨越從邏輯綜合、物理設

計到物理驗證的多個階段。

門級網表中的算術塊識別是惡意邏輯檢測、功能驗證或宏塊優化的重要過程。 然而，現有方法

面臨可擴展性或性能問題。 為了解決這個問題，本文提出了一種基於圖學習的解決方案，有望從完

整的設計網表中提取所需的邏輯組件。

雖然傳統的佈局規劃方法依賴於元啟發式方法，但通過強化學習的自動啟發式設計為解決此類

計算困難的組合問題開闢了一個有希望的方向。 與大多數專注於解決方案構建的早期研究相比，本

文探討了通過大量搜索經驗獲取本地搜索啟發式的可能性。

各種神經網絡處理器被提出來支持深度學習的顯著突破； 然而，對此類專用處理器的物理綜合

的討論卻少得多，特別是在先進技術節點中。 本文認為，由於神經網絡的有組織的計算圖，數據路

徑設計是上述過程中的基本方法。 作為案例研究，論文詳細研究了ISPD2020競賽中引入的晶圓級

深度學習加速器放置問題。

設計規則檢查 (DRC) 在物理驗證中至關重要，可確保 VLSI 電路設計的高產量和可靠性。 當代

VLSI 電路的複雜性不斷增加，需要加速計算密集型 DRC 任務，以實現合理的設計週期時間。 本

論文提出了 X-Check，一種 GPU 加速的設計規則檢查器，它集成了新穎的並行掃描線算法，該算

法在實踐中非常高效，並且具有重要的理論保證。 除此之外，論文還提出了OpenDRC，這是一個

高效的開源DRC引擎，具有分層GPU加速功能。
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Chapter 1

Introduction

Electronic Design Automation (EDA) refers to a collection of essential software tools for designing

very large scale integrated (VLSI) circuits. It has long been regarded as the crown jewel of the

semiconductor industry. EDA tools are usually arranged in a design flow, which chip designers use

to design, analyze, and verify the entire circuit in a stage-by-stage manner. In a typical design

flow, a circuit is first described with system-level specifications and architectural designs, which are

then implemented in hardware description languages. Then, logic synthesis implements the circuit

in terms of primitive logic gates; physical design places the cells on a layout and routes the wire

between them. To ensure the validity of the circuit design, various types of analysis and verification

along the design flow are required, such as timing analysis, logic simulation, functional verification,

and design rule checking. Technically speaking, the aforementioned procedures entail solving vari-

ous computationally challenging problems, including mathematical optimization, boolean function

simplification, graph isomorphism, longest/shortest paths, computational geometry, deconvolution,

and so on. In particular, many of these problems are known to be NP-complete, which are unlikely

to be solved optimally in a reasonable amount of time.

In recent decades, chips have undergone rapid evolution, growing in size, power, and effi-

ciency (Ma, 2020). But as technology nodes advance, EDA tools face scalability issues as they

deal with larger-scaled problems with more intricate constraints and objectives. At the same time,

improving tool/algorithm efficiency has been a key concern in the advancement of electronic design
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automation, which has received extensive attention and abundant efforts. New methodologies, which

we will introduce in the following section, are believed to provide promising directions to address

the efficiency issue in the modern computing era.

1.1 Challenges and Opportunities

As mentioned above, efficiency is a critical concern for electronic design automation. The challenges

we face include the following:

• Firstly, there are billions of transistors in today’s extremely large circuits. An algorithm

running in Ω(n2) time will be unacceptably slow given such input scale. Considering the hard

nature of EDA problems, we inevitably need new methodologies to address them.

• Secondly, existing algorithms often have limited scalability and parallelizability. Although

classic methods are proven effective in the circumstances at that time, how to orchestrate

them with modern, highly parallel compute substrates remains an open problem.

• Thirdly, typical EDA methods are for general circuit designs. Special considerations have to

be taken when adapting the current design flow to specific designs and targets.

Fortunately, the development of artificial intelligence and the relevant computing facilities have

given us new weapons to combat the above issues. Specifically, machine learning demonstrates

brand-new paradigms to cope with difficult and even hard-to-formalize problems by mimicking

solutions with black-box neural models. General-purpose graphics processing units (GPGPUs), the

primary booster behind the blossom of AI, offer enormous computational power for highly parallel

applications. On the other hand, as AI applications become more prevalent, customizing EDA

methodologies for neural network processors turns out to be an effective strategy to push circuit

performance to the limit.
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Figure 1.1: A typical design flow and the proposed methodologies in the corresponding design stages.

1.2 Thesis Overview

This thesis aims to tackle the efficiency issue in electronic design automation by proposing several

essential algorithmic methodologies in the new computing era, involving machine learning, parallel

computing, and customized optimization. Targeted problems span multiple design stages from logic

synthesis, physical design to physical verification. Figure 1.1 illustrates a typical design flow and

the proposed methodologies in the corresponding design stages.

In Chapter 2, we review existing solutions and approaches for relevant design stages, including

arithmetic block identification, floorplanning, placement, and design rule checking. In particular, we

focus on promising methodologies that help to improve efficiency, such as datapath driven placement,
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reinforcement learning driven methods, and parallel computing. These methodologies form the basis

of the presented research outcome in this thesis.

In Chapter 3, we propose a graph learning-based framework that promises to extract desired

logic components from a complete design netlist. We also customize graph neural network (GNN)

architecture dedicated for netlist representation learning, which outperforms standard GNN variants

in our tasks.

In Chapter 4, we explore the possibility of acquiring local search heuristics through massive

search experience. To demonstrate the applicability, we target the floorplan problem, and present

methodologies to train an agent that is able to automatically optimize floorplan solutions through

local search.

In Chapter 5, we investigate a wafer-scale deep learning accelerator placement problem in detail.

We especially argue that datapath design is an essential methodology in the above procedures due

to the organized computational graph of neural networks.

In Chapter 6, we present novel parallel algorithms and implementation details for efficient design

rule checking (DRC). We show that lots of DRC tasks can be solved with a general prefix computation

scheme, which can be parallelized with both nontrival theoretical guarantee and high efficiency in

practice. On top of the algorithms, we propose two GPU-accelerated design rule checkers, X-Check

and OpenDRC. As a side product, we further discuss the development of an STL-like programming

library for GPUs.

We summarize and conclude the thesis in Chapter 7.
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Chapter 2

Literature Review

2.1 Arithmetic Block Identification

Arithmetic block identification is to locate arithmetic macros (e.g., adders, multipliers) in a gate-

level netlist. Classic approaches to identify arithmetic components can be roughly categorized into

either structural methods (Doom et al., 1998; Rubanov, 2006; Li et al., 2013; Subramanyan et al.,

2013a; Meade et al., 2016) or functional methods (Subramanyan et al., 2013b; Gascón et al., 2014).

Structural methods concentrate on circuit topology while paying little attention to the func-

tionality of the circuit (Azriel et al., 2019). For instance, shape hashing is introduced by Li et al.

(2013) to group wires with the same local topology together to form candidate words. Specifically, a

k-step-bounded depth-first traversal of the graph is performed starting from each wire to produce its

serialization using the gate and wire types. Some other works consider the scenario where a library

of reference circuits is given, and the problem becomes mapping subcircuits with reference circuits.

Rubanov (2006) formulat the subcircuit matching problem as a regularized quadratic assignment

problem to minimize both graph distance and vertex label distance. A nonlinear version of the iter-

ative Kaczmarz Method (KM) is used to solve the obtained equations. Structural methods usually

promise to identify target blocks with customized algorithms efficiently. However, they are often

mathematically incomplete due to the heuristic methodology.

On the other hand, functional methods functionally analyze the circuit for potential arithmetic
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components. A typical example as by Subramanyan et al. (2013b) extends the above shape hashing

method by considering the functions implemented by a set of gates using cut enumeration. They

enumerate all 6-feasible cuts and group equivalent cuts using permutation-independent Boolean

matching. In this way, each equivalence class of cuts may match a known library function. It

is further proposed by Subramanyan et al. (2013b) to use functional verification tools for module

matching: suppose C is a potential arithmetic block with input word X and side inputs Y , C ′ is

a reference circuit, and Φ is an inserted comparator miter between the outputs of C and C ′, the

Quantified Boolean Formula (QBF) ∃Y ∀XΦ(X,Y ) exactly models the equivalence checking problem.

As can be seen, functional methods are accurate and solver-ready at the cost of ultra-long runtime.

The development of machine learning and deep neural networks has provided alternate solutions

to recognition and classification. To efficiently identify functional units, Silva et al. (2018) and

Fayyazi et al. (2019) recently propose deep learning-based solution to recognize arithmetic circuits.

Silva et al. (2018) develop a flow that converts conjunctive normal form (CNF) clauses into images,

which are later rescaled to the desired size and fed into deep learning classifiers. Fayyazi et al.

(2019) present a compact representation called existence vector (EV) that encodes a circuit node

with its all neighbors. A fixed number of EVs are selected to satisfy the fixed-input-size requirement

of convolutional neural networks. However, these solutions are dedicated to one given unknown

functional block. When dealing with large-scale netlist design, these solutions are facing significant

challenges.

2.2 Floorplan

Floorplanning is the first step in physical synthesis, which aims to roughly determine geometric

relationship among circuit modules and to estimate the cost of the design. Various data structures

are introduced for the representation of the geometric relation. A slicing floorplan, where the whole

design can be recursively divided horizontally or vertically until each part contains only one module,

is naturally encoded by a binary tree, whose internal nodes are for the horizontal or vertical cuts

and the leaves denote the modules. Equivalently, polish expression is used (Wong and Liu, 1986) to

encode the postfix of the same binary tree. As for general floorplans without a slicing structure (i.
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non-slicing), many other elegant representations are invented, e.g., O-tree (Guo et al., 1999), B*-

tree (Chang et al., 2000), Sequence Pair (Murata et al., 2003), and Twin Binary Sequences (Young

et al., 2003). With a flexible and effective representation, good floorplan results could be achieved

through constructing or perturbing a data structure in a systematic way (Guo et al., 1999), by

heuristics (Cong et al., 2005), or by some means of meta-heuristics like genetic algorithms (Lin

et al., 2002) or simulated annealing (Chen and Chang, 2005).

2.3 Datapath Driven Placement

We present in this section some useful techniques in datapath driven placement.

2.3.1 Placement with Datapath Constraints

The idea of datapath driven placement can date back to no later than the work by Cai et al.

(1991) published in the year of 1990, which considers automatic generation of bit-sliced datapaths

in high performance DSP circuits. The datapath consists of multi-bit operators called functional

building blocks (FBBs), such as adders or registers. The proposed linear placement tool generates

a linear ordering of the FBBs to minimize the layout area. In their work, the ordering solution

space is represented as an acyclic directed graph, so that the orderings can be searched with the

A∗ algorithm. The algorithm achieves good performance and runs much faster than metaheuristics

(e.g. simulated annealing), and the authors emphasized that the algorithm is flexible in adapting

various cost functions.

Later on, datapath driven standard cell placement was proposed (Tsay and Lin, 1995). In

this work, strongly connected subcircuits (i.e., cones) are extracted by a breadth-first algorithm

augmented with heuristic rules. These cones are treated as soft macro cells, and are placed by a

macro-cell placement algorithm to reduce the intercone wiring length. Macros are converted back

to cells by a mapping subsystem to preserve the topological relationship between them.

It is argued that if the datapath is generated separately and simply merged with netlists of

other parts, the placement tool has little control of the exact location where a cell might be placed

(Ye and De Micheli, 2000). In this way the regularity information will be lost. Given that, the
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Figure 2.1: Abstract physical model is a bit-sliced abstraction of a datapath circuit. The figure
illustrates the APM of a booth multiplier (Ye and De Micheli, 2000).

authors proposed an abstract physical model (APM), a bit-sliced abstraction of a datapath circuit.

Figure 2.1 demonstrates the APM of a booth multiplier (adopted from Ye and De Micheli (2000)).

The APM is compiled from HDL, and the blocks in APM are placed abutted to each other. Since

the linear placement problem is NP-hard, they proposed a two step heuristic that first determines

an initial ordering by a quadratic optimization procedure, and then a sliding window optimization

is performed to solve wirelength and congestion violations.

Datapath has been considered in detailed placement (Serdar and Sechen, 2001), where a modified

O-tree (Guo et al., 1999) based placer is able to place components on reflection lines while obeying

design rules. It is also considered in physical design inside SOC (Tong et al., 2002; Jing et al., 2002),

and for parallel multiplier design (Bae et al., 2015). A lot more works for datapath driven general

ASIC design have been presented. Ye et al. (2002) place datapath clusters with constraints that 1)

the relative locations of the clusters should follow the dataflow order and 2) the relative orientations

of the clusters should follow the bit order, and the same bit order should be preserved throughout
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the dataflow. The authors name it ‘1.5 dimensional placement’ and proposed to solve it by linear

placement heuristics similar to Ye and De Micheli (2000). A sigmoid-function-based density model is

proposed (Chou et al., 2012) for separate optimization in horizontal and vertical directions. Blocks

of each functional stage align vertically due to the regularity in datapaths, which reduces variables

in the optimization problem. Wang and Shin (2017) place datapath macros with other random

blocks by an analytical placement algorithm, while the relative location of bit-slices can be adjusted

inside the datapath macros to optimize total wirelength. Results have shown that these techniques

produce better results in wirelength (HPWL, StWL) and/or routability.

Systolic arrays are a popular choice to support neural network computations due to their regular

topology and simple interconnections. Despite the layout-friendly structures, it was reported that

current FPGA CAD tools are unable to synthesize systolic arrays in high quality (Zhang et al.,

2019c). One of the key reasons might be that DSPs are distributed into columns over the whole

FPGA chip. Meanwhile, there are around 15× more intra-PE nets than inter-PE nets, optimizing

the length of which result in a distorted layout. Given the above, the authors propose to per-

form floorplanning and set placement constraints to restrict fixed locations for PEs. To enable the

topology-aware floorplanning, the region in which the PEs are placed should provide sufficient hard-

ware resources, and should be as close as possible to the used I/O banks. Then the PEs are mapped

to the available DSP columns by enumeration. Figure 2.2 shows the placement result of PEs with

floorplan constraints (adopted from Zhang et al. (2019c)). The authors reported 1.29× frequency

improvement and 1.5TOP/S in deploying a VGG model onto the Xilinx KCU1500 platform.

Benchmarks are released (Ono and Madden, 2005; Ward et al., 2011) to evaluate the performance

of the placers.

2.3.2 Methods for Regularity Extraction

Along with the methodologies in datapath driven placement, various approaches for regularity ex-

traction have been proposed. We review some of the representative approaches in this section.

Intuitively, as described by Nijssen and Jess (1996), consider cells associated with the same bit-

slice are lined up horizontally, and the cells of the same type occurring at similar places are stacked

alongside forming stages. The circuit is thus fitted onto a matrix of rectangular buckets that yields
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(a) (b)

Figure 2.2: PE placement with floorplan constraints. Floorplanning re-organizes PEs more regu-
larly (Zhang et al., 2019c).

maximum density cell placement. In addition to the above geometric regularity, the interconnect

regularity indicates that almost all nets are contained either within one slice or within one stage.

Nijssen and Jess (1996) define a local regularity metric by interpreting the distribution of the number

of pins, and a regularity extraction algorithm is proposed by expanding search-waves through the

network, stage by stage according to the regularity metric.

A signature-based regularity extraction algorithm is proposed later (Arikati and Varadarajan,

1997). The signature of a random instance is dictated by its master cell and its connectivity to

datapath instances. Then a connectivity cost function is defined based on some objective, such as

the vertical distance between two pins. The random instances are sorted based on the signatures

and are partitioned into blocks with the same signature. Finally, the regular functions are generated

taking the connectivity cost into consideration. The authors also propose a relaxed function-based

signature.

Covering a circuit by templates is another line of research. Besides assuming a library of provided

templates, Chowdhary et al. (1999) present an approach to automatically generate all possible

templates for the input circuit. Despite the inherent difficulty in template generation (which is

similar to enumerating isomorphic subgraphs), they propose to extract only maximum degree of

regularity (assumption 1 in their paper), and to assign incoming edges a unique index (assumption 2
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Figure 2.3: The problem of datapath main frame identification can be transformed to a network
flow problem (Xiang et al., 2013).

in their paper). With the two assumptions, the number of possible tree templates is reduced to within

V 2 from 2V . The template generation algorithm is then extended to generate multi-output function.

The authors also propose two heuristics to effectively cover the graph by templates, including largest-

fit-first that selects the template with the maximum area, and most-frequent-fit-first that selects the

template with the maximum number of subgraphs.

The regularity extraction problem can be converted to a network-flow problem. Xiang et al.

(2013) define datapath main frame (DMF) as a set of n disjoint paths from input to output such

that the number of datapath gates on these paths is maximized. To identify DMF, an optimal

network-flow based algorithm is presented. Basically, capacities U and costs C are assigned to the

network graph, where capacity is 1 for all the nodes and edges, and the cost for nodes is a constant

negative number, and 0 for the edges. The min-cost max-flow algorithm will be applied to the flow

network, which guarantees the optimality with polynomial runtime. Figure 2.3 demonstrates the

data main frame identification problem (adopted from Xiang et al. (2013)).

Properties of bit-slices include 1) small area variance (similar), 2) large area mean (long), and 3)

minimized overlaps (Huang et al., 2017). In the same paper (Huang et al., 2017), the authors propose
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a two-stage method that first optimize 1) and 2) with a balanced bipartite edge-cover algorithm,

and minimize 3) with simulated annealing. Since every bit-slice path is a bit line connecting I/O

vectors, a datapath is modeled as a bipartite graph, where the vertices correspond to either larger

I/O vector or narrow I/O vector, and the edges correspond to the bit lines. Therefore, the problem

of extracting feasible set of bit-slice paths is transformed to the problem of covering vertices in the

bipartite graph.

It is worth mentioning that these techniques have also been utilized in logic synthesis (Kutzschebauch

and Stok, 2000; Kutzschebauch, 2000; Rosiello et al., 2007). However, it was also pointed out (Ienne

and Grießing, 1998) that extraction of regularity from synthesized netlists is difficult and requires

counterproductive simplifications to the synthesis process.

2.3.3 Machine Learning Techniques

Recently, machine learning techniques are utilized for datapath extraction (Ward et al., 2012a).

Specifically, graph-based (e.g., automorphism) and physical features (e.g., cell area) are analyzed

and extracted from the netlist. These features are fed to support vector machine (SVM) and neural

networks (NNs) to classify and evaluate datapath patterns. Both SVM and NNs are to maximize the

evaluation accuracies of datapath and non-datapath patterns, which are defined as the rate of cor-

rectly detected datapath/non-datapath patterns over the total number of corresponding structures.

The proposed placer, PADE, has demonstrated reasonable improvement in wirelength. Figure 2.4

shows placement result by PADE that effectively handles the datapath (adopted from Ward et al.

(2012a)). The authors also proposed a unified placement flow (Ward et al., 2012b, 2013) that handles

both random logic and datapath standard cells on top of a force-directed placer. Several techniques

for structural-aware placement, such as skewed weighting for net alignment and bit-stack aligned

cell swapping, are proposed and discussed in the paper.

2.4 Efficient Design Rule Checking

The continuing and growing high computational costs of DRC drive us to pursue new computing

techniques to reduce the turn-around time for these tasks. From the methodology perspective,
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Figure 2.4: PADE effectively handles datapath in placement. Adopted from Ward et al. (2012a).

these attempts could be classified into three categories, namely 1) to design better algorithms, 2) to

parallelize computation workloads, and 3) to approximate desired results.

As for DRC algorithms, many theoretical results are obtained a few decades ago, such as rect-

angle intersection report (Bentley and Wood, 1980), line segment intersection report (Chazelle and

Edelsbrunner, 1992), orthogonal range query (Willard, 1985), and boolean mask operations (Lau-

ther, 1981). Proper data structures to cope with layout data are also discussed, including binary

space partitioning data structures like quad-tree (Finkel and Bentley, 1974) and kd-tree (Bentley,

1975), hierarchies of bounding volumes like r-tree (Guttman, 1984) and its variants, and other cus-

tomized data structures like corner stitching (Ousterhout, 1984). These historic milestones form the

algorithmic foundations of today’s design rule checkers.

Parallel computing carries out computation workloads in multiple processors simultaneously

to reduce turnaround time. One standard technique is to partition the layout into tiles and perform

DRC on the tiles in parallel, which has been investigated since the 1980s (Bier and Pleszkun, 1985).

Similarly, region-based methods (Nandy, 1994; Hsu et al., 2011) partition the circuit into subregions

for spatial parallelism; When the layout is equipped with hierarchical information, it is also possible

to exploit cell-level parallelism from the hierarchical representation, as illustrated by Gregoretti

and Segall (1984); Hsu et al. (2011). At the edge level, Carlson and Rutenbar (1988, 1991) have

proposed parallel algorithms for Manhattan geometry (Carlson and Rutenbar, 1988) and general
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(oblique) geometry (Carlson and Rutenbar, 1991). The above approaches can be considered as data

parallelism. For task parallelism, since design rule checking often involves more than one algorithm,

Marantz (Marantz, 1986) has developed a parallel checker that runs different checking algorithms

concurrently. A systematic approach that combines both data and task parallelism is presented

in (MacPherson, 1995). These works gain benefits from different hardware platforms, including

SIMD engines (Koranne, 2004), specialized hardware (Kane and Sahni, 1984; Luo et al., 2000), and

distributed systems (Nandy, 1994; Pais et al., 2001).

Approximation methods sacrifice result accuracy to trade for improved runtime efficiency,

among which machine learning (ML) algorithms are a popular subset. By predicting design rule

violation (DRV) types of clipped layout regions, ML-based design rule checkers have demonstrated

tens of times speedup compared with an accurate checker (Francisco et al., 2020). In the design stages

(e.g., in placement or routing), ML is widely used to predict DRC hotspots (Zeng et al., 2020) and

the number of DRVs (Xie et al., 2018), without locating and identifying exact violations (Francisco

et al., 2020). Although not directly accelerating the checking process, some ML-enhanced DRC

schemes are worth mentioning, such as design rule verification (Alam et al., 2023), design rule

augmentation (Dai et al., 2009), and DRC script generation (Zhu et al., 2022).

2.5 Reinforcement Learning for Combinatorial Optimization,

Local Search Algorithms, and Physical Design

Reinforcement learning interacts with the environment and trains an agent to survive, which can

in principle create new knowledge about the space which the agent live in. In addition to the

breakthroughs in game playing (Silver et al., 2017) and robotic control (Gu et al., 2017), the com-

munity also spent efforts in the discipline of combinatorial optimization, local search algorithms,

and physical design.

2.5.1 RL for Combinatorial Optimization

An end-to-end actor-critic training framework (Bello et al., 2016) based on the pointer network

architecture (a variant of recurrent neural network) is proposed to tackle the Travelling Salesman
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Problem (TSP). Later on, structure2vec (a graph embedding network) and the off-policy Q-learning

are utilized (Khalil et al., 2017) to solve TSP and other optimization problems over graph. Apart

from TSP, researchers have also achieved significant results on Vehicle Routing Problem (VRP) (Kool

et al., 2019), Job Scheduling (Chen and Tian, 2019), and Satisfiability Problem (SAT) (Yolcu and

Póczos, 2019).

2.5.2 RL for Local Search Algorithms

The idea of enhancing local search heuristics with reinforcement learning is not that new. Re-

searchers seek to boost the local search by selecting a good starting point (Boyan and Moore, 1998;

Zhou et al., 2016), by tuning search parameters (Benlic et al., 2017), by scaling a regularization

term (Beloborodov et al., 2020), or by switching between heuristics on the fly (Nareyek, 2003). Ba-

sically, all these work adopt an existing local search algorithm, and improve a few settings of that

algorithm with reinforcement learning.

2.5.3 RL for Physical Design

Placement

Macro Placement Reinforcement Learning has been used in chip macro placement (Mirhoseini

et al., 2020). In this work, the target is to place a netlist graph of macros (e.g. SRAMs) to a chip

canvas to optimize PPA. Overall, the method is to first sort the macros in descending size, which

are placed sequentially by the agent, and followed by force-directed standard cell clusters placement

and greedy legalization. Therefore, in their reinforcement learning settings, each state is a possible

partial placement, and each action is to place a macro onto the canvas. The reward is always 0

except the last action (that leads to the terminal state), where the reward is the negative weighted

sum of proxy wirelength and congestion of the placement.

Distilling useful features from state representation is essential for good decision making. In

the policy network, the netlist is encoded with a graph convolutional network (GCN) for macro

embedding and edge embedding, which are concatenated with other metadata. A key intuition

presented in the paper is that a policy network capable of transferring placement knowledge across
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chips should first be able to encode the features into a meaningful signal in inference time. Given

that, they proposed to first train the model for reward prediction in a supervised manner, with a

dataset of 10000 chip placements of 5 netlists. After the supervised training, the reward prediction

layers are removed, and the encoder component is used in the policy network.

To handle different grid size, they allow a maximum row/column number of 128, and the L-shaped

unused section are masked if the grid size is smaller. The decoder is composed of deconvolution layers

and batch normalization layers to generate a probability distribution for the actions. The RL agent

is trained with PPO (Schulman et al., 2017) with a clipped objective:

LCLIP(θ) = Êt[min (rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)], (2.1)

where Êt is the expected value at time step t, rt is the probabilistic ratio between new policy and

old policy, and Ât is the estimated advantage at time step t.

During the evaluation, the policy network without further tuning yields a placement result (which

they called zero-shot placement) in less than one second. They observed that a pre-trained model

with 2 hours fine-tuning performs even better than another model trained 24 hours from scratch,

which indicates the effectiveness of offline training. In comparison with baseline methods, the RL

method converges in 3 to 6 hours, which is much faster than simulated annealing (18 hours) and

slower than RePlAce (Cheng et al., 2019) (1 to 3.5 hours), one of the state-of-the-art placer. They

also compared with human experts (a chip design team) that involves many iterations over a few

weeks. When it comes to the placement quality, the RL method is able to consistently meet timing

and congestion constrains, and outperforms human experts in several metrics including WNS, area,

power, and wirelength.

Placement Heuristic Selection Another work worth mentioning on RL-enhanced placement

is (Murray and Betz, 2019). In this work, the RL agent is trained to select the move type in an SA

framework for Field-Programmable Gate Arrays (FPGA) placement. This is naturally modeled as

a multi-arm bandit problem with a Q table for each action (possible move type). Given that, the

agent selects the move type with the highest Q-value and samples a random move, which the SA

engine decides to accept or reject. The proposed technique was integrated into VTR 8 placer (Betz
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and Rose, 1997) and achieved improved quality-runtime tradeoff.

Routing

Global Routing Global routing partitions the routing region into tiles and decides tile-to-tile

paths for all nets while attempting to optimize some given objective function (e.g., total wirelength

and circuit timing) (Wang et al., 2009). In (Liao et al., 2020b), RL is used for sequential single net

routing. In their settings, the agent observes a vector representing current coordinate, target pin

coordinate, and the available resource of the neighbouring tracks, and picks a direction (out of the

6 possible) to move. The reward is +100 if the target pin is reached, otherwise −1 is given.

Since the action space is discrete and finite, they selected to use DQN (Mnih et al., 2013) for

training. Before the exploration by RL agent, they collect samples by running A* algorithm to fill

the experience replay buffer (which they called memory burn-in). The evaluation was conducted on

toy examples like 8 × 8 × 2 grid graphs with only a few nets. One interesting observation is that

A* performs much better in easy cases (i.e., no edge with positive capacity is fully utilized in A*),

while RL agent wins more in difficult cases.

Detailed Routing Given global routing paths, detailed routing determines the exact tracks and

vias for nets (Wang et al., 2009). In a track-assignment detailed router, a track assignment step is

performed before detailed routing to place the long routes onto tracks defined by the width space

pattering (WSP), which reduces the search space for the router as it only needs to connect the

components (i.e., instance terminal) of the same net together. In (Liao et al., 2020a), RL is used to

decide the track assignment order.

Specifically, the attention-based encoder-decoder framework (Kool et al., 2019) is adopted, where

greedy rollout is used as a baseline to train the agent with REINFORCE (Williams, 1992). The

observation of the agent includes an overlap graph of instance terminals, in which an edge indicates

two terminals overlap in x-range and hence cannot be assigned to the same track, and an assignment

graph, which is a bipartite graph of instance terminals and available tracks.

The evaluation was done on two artificial datasets of analog design problems. The small dataset

contains placement solutions for Comparators and OpAmp, which consists of 10-100 instance ter-
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minals, while the large dataset are designs for analog-to-digital converter (ADC) with 100–1000

instance terminals. In comparison with the genetic algorithm (GA), the RL solution runs 100× to

1000× faster, while GA outperforms in solution quality. The paper also shows that the performance

of RL agent could be further improved with more training samples.

Printed Circuit Boards Routing To target printed circuit boards (PCBs) routing, (He and Bao,

2020) proposed to use Monte-Carlo-tree-search (MCTS) to guide the agent training. Basically, a

search tree is constructed based on rollouts to obtain optimal solution, which is then back-propogated

to update the agent parameters. The input of the agent is the grid graph (a matrix) states, and the

output is one of the four actions representing the four directions to go.

In practice, they consider a single layer board of 30 × 30, so the model architecture is a convo-

lutional neural network (CNN). To train this model, a dataset of 2000 randomly generated circuits

(grid size 30-by-30) routed with maze routing and manual routing was created. Then each vertex

on the net of the circuit can be taken as the head of a training sample. With one sample taken from

each net, totally 9459 samples were obtained. Experiments then show that the agent is able to ob-

tain good solutions after thousands of training iterations, while some instances could be successfully

routed by A* or Lee’s algorithm (because of the routing order).

The authors have also emphasized to use maximal reward in MCTS expansion (Max-UCT), in-

stead of using average reward (Avg-UCT) as in vanilla MCTS. Experimental results show that using

Max-UCT indeed greatly outperforms Avg-UCT in terms of wire redundancy ratio and convergence

speed. One possible explanation, as pointed out by the authors, is that the routing search space is

very large and nice solutions are rarely seen, which makes average reward somehow useless in the

context.

Sizing

Transistor sizing can be modeled as a continuous parameter search problem. In (Wang et al.,

2018), a sequence to sequence model is used to encode observations (e.g. voltage at a node) and

to decide sizing solution (e.g. width and length of transistors, capacitance of capacitors). Reward

function was designed to include both hard constraints and optimization targets. To train the model,
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DDPG (Silver et al., 2014) was used, with truncated uniform distribution as noise for search space

exploration. Experiments on two transimpedance amplifiers circuits show that the proposed method

can achieve comparable performance with much higher (250×) sample efficiency compared with grid

search based human design. It also outperforms Bayesian Optimization under the same runtime

constraint.

Later on, GCN was involved (Wang et al., 2020) since the circuit topology can be naturally

represented by a graph, whose vertices are transistors and edges are wires. In this work, the agent

determines the action for each node (e.g., width, length, and multiplexer for an NMOS), and therefore

the action decoder is component-specific. The state for each node includes one-hot representation for

transistor index and component type, as well as a vector of selected features. Note that the action

space is continuous here, otherwise the action space will be too large to deal with. The reward is still

figure of merits (FoM), a weighted sum of normalized performance metrics. The effectiveness of RL

agent is demonstrated on a few real-world circuits, compared with black-box optimization tools and

human experts. Experiments on knowledge transfer between nodes and between topologies are also

conducted, which shows that transfer learning indeed helps, and using GCN for feature extraction

is critical.

2.6 Methodologies for GPU-enabled EDA

Recent years have seen GPU acceleration for various design automation stages to speed up design

closure. It is pointed out that many conventional parallel algorithms do not scale beyond a few

CPU cores (Guo et al., 2021a), and how to better utilize the massive computing resources in GPUs

needs special considerations. We detail two popular methodologies to develop efficient GPU-enabled

applications.

The first one is to cast a design automation problem into another problem solvable

by current tools/infrastructure. One of the most clever ideas is DreamPlace (Lin et al., 2020),

where the analytical placement problem is converted to neural network training and hence can

be implemented on top of the PyTorch framework. Similarly, GATSPI (Zhang et al., 2022) is a

GPU-enabled gate-level simulator developed with DGL/PyTorch and customized CUDA kernels; in

19



particular, netlists are transformed into graph objects for further operations. FastGR (Liu et al.,

2022) regards the batched net routing ordering problem as a task scheduling problem, which is

solved using the Taskflow (Huang et al., 2021) scheduler. By utilizing existing solvers or frameworks,

developers could focus more on problem formulation and algorithm customization, without needing

to build everything from scratch.

The second methodology is to design novel GPU-friendly computation kernels for some

critical tasks in the design flow. Guo et al. (2021b) decompose density accumulation, an

essential primitive in placement, into a density allocation phase, plus a 2D prefix sum phase, which

is easily parallelized. GAMER (Lin et al., 2021) solves the shortest path problem in routing by

iterative vertical and horizontal sweeping/relaxation, which is also conceptually a scan process.

Guo et al. (2020) analyze and implement GPU-friendly algorithms for timing analysis, including

a breadth-first search for RC delay computation, parallel levelization by advancing ‘frontier’, and

table lookup/interpolation.

We refer readers to Lin (2020) for a survey on GPU acceleration in VLSI back-end design.

Moreover, GPU acceleration is also a popular topic in conference contests (Zhang et al., 2020;

Pasandi et al., 2021).

2.7 Advanced Technologies for Neural Network Processors

Advanced technologies have shown great potential to address scaling challenges. Due to the page

limit, we mention a few of them and refer readers to (Ielmini and Ambrogio, 2019) for a more

comprehensive survey.

Processing-in-memory (PIM) provides massive parallelism with high energy efficiency (Wang

et al., 2019b), offering new solutions to address challenges in modern computer systems. Recent

work have demonstrated that neural network computation can be implemented in various emerging

non-volatile memories (NVM), such as RRAM (Chi et al., 2016; Sun et al., 2018), STT-MRAM (Yan

et al., 2018; Pan et al., 2018), PCM (Kim et al., 2020), and memristor (Yao et al., 2020). In-memory

analog simulation is another promising approach, for instance (Li et al., 2018) based on memristor

crossbar and (Li et al., 2020) based on FTJ. Without the need for moving data between memory and
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processor, these accelerators substantially improve the performance and efficiency of neural network

execution. However, lots of systems rely on an external control device that may reduce the benefit

of PIM.

The nanophotonic circuit is an alternative neuromorphic computing system due to its ultra-

high bandwidth, speed and ultra-low energy consumption. In nanophotonic, signals are encoded in

the amplitude of optical pulses propagating in the photonic integrated circuit, which implements a

multi-layer optical neural network (ONNs) (Shen et al., 2017) . Recent advances include exploring

nonlinear functions with ONNs (Zuo et al., 2019) and reducing area overhead of ONNs (Gu et al.,

2020).

Different 3D technologies are available to offer a wide spectrum of integration schemes. A neu-

ral network accelerator Tetris (Gao et al., 2017) implemented with through-silicon-via (TSV) 3D

memory achieves 4.1× and 1.5× performance and energy improvements. Specifically, the memory

substrate of Tetris is hybrid memory cube (HMC) (Jeddeloh and Keeth, 2012), one of the well-known

realizations of 3D memory (another is high bandwidth memory (HBM) (Lee et al., 2014)). ThruChip

Interface (TCI), an alternative to TSV, is a high-performance wireless vertical interconnect technol-

ogy used to transmit signals between multiple stacked dies. QUEST (Ueyoshi et al., 2018) is a DNN

inference engine stacked with multiple SRAMs using TCI, which enables large memory capacitance.

Monolithic 3D (M3D) IC technology has shown its potential to address the power, performance and

area (PPA) scaling challenges (Chang et al., 2017). The schematic in Figure 2.5 shows a gate-level

monolithic 3D (adopted from Chang et al. (2018)). It is also studied whether M3D can benefit deep

learning hardware design (Chang et al., 2017, 2018), where a Gaussian Mixture Model for acoustic

modeling (Su et al., 2010) is mapped to both 2D and M3D designs for comparison. To implement

two-tier full-chip M3D designs, the design flow proposed by Panth et al. (2014) is adopted. The

flow starts with scaling width and height of all standard cells and metal layers by 1/
√
2, so that an

overlap-free design can be implemented in half footprint of the corresponding 2D design. This shrunk

design is synthesized and the cell placement information (i.e., x-y location) is obtained. Then the

design is scaled back to the original size, and the overlapped cells are partitioned into two tiers. The

partitioning is based on an area-balanced min-cut algorithm, and the remaining overlapping (on the

same tier) are removed through legalization. The connections between both tiers are called mono-
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Figure 2.5: A schematic of monolithic 3D. Transistors are fabricated onto multiple tiers. Adopted
from Chang et al. (2018).

lithic inter-tier vias (MIVs). To determine the location of MIVs, the metal layers are duplicated,

and the top-tier cells are assigned to the duplicated layer. After routing, the connections between

two metal layers become MIVs. The authors compared the 2D and M3D designs in detail. The

M3D design achieved 50.1% footprint reduction, 14.6% cell area saving, and around 30% wirelength

reduction. When it comes to power consumption, M3D design shows 22.3% total power reduction in

a feed-forward classification workload and 8.6% in a pseudo-training task. The total power discussed

includes internal power, switching power, and leakage power. The dynamic power is computed as in

the following equation:

Pdyn = PINT + PSW

= αIN · ISC · VDD · fclk

+ αOUT · (Cpin + Cwire) · V 2
DD · fclk

(2.2)

where the first term PINT counts power consumption of standard cells and memory blocks, and

the second term PSW represents the switching power dissipated during charging or discharging of

output load capacitance of cells. The authors argue that the classification tasks rely mainly on

combinational logic gates and thus it is compute-intensive. In contrary, pseudo-training needs to

read/write weights and it becomes memory-intensive. Therefore, switching activity is much higher

and explains the larger power consumption. The experiments conclude that M3D is a good fit for

low-power DNN hardware implementation by offering performance improvement over 2D designs,

especially for architecture with complex combinational logics.
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Emerging beyond-CMOS devices give rise to new solutions for low-power designs. It is shown

that HyperFET, a MOSFET replacement, greatly lowers the power consumption of spiking neural

networks compared to the CMOS-based counterpart (Tsai et al., 2016). Similar attempts include

Cellular Neural Networks on TFET (Palit et al., 2013). Liu et al. (2020) review emerging materials

for next-generation computing technologies.
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Chapter 3

Graph Learning-Based Arithmetic

Block Identification

3.1 Motivation

Arithmetic block identification in gate-level netlists has emerged as the driving force for numerous

datapath optimization or functional verification methodologies. For example, Symbolic Computer

Algebra (SCA) based multiplier verification (Mahzoon et al., 2018, 2019) relies heavily on the detec-

tion of Half Adders in the multiplier netlist. It is also desired to replace a detected arithmetic block

with pre-optimized logic or even new macro blocks built with more advanced technologies (Wei et al.,

2015). Additionally, the demand for malicious logic detection is widely pointed out (Tehranipoor

and Koushanfar, 2010; Meade et al., 2016; Li et al., 2019) to ensure circuit security and function-

ality in the globalization of VLSI design, manufacturing, and distribution. Besides the applications

mentioned above, a technical reason behind the need for such a ‘reverse engineering’ approach is

that most high-level components, such as function declaration and modularization, are flattened

into netlists of Boolean gates by logic synthesis and technology mapping (Yu and Ciesielski, 2016).

Therefore, despite sounding like ‘finding a needle in a haystack ’ (or in a sea of bit-level gates (Li

et al., 2013)), arithmetic block identification is an essential procedure worthy of exploration.
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Netlist GNN Fuzzy Match

Figure 3.1: Graph learning enables netlist fuzzy matching.

As introduced in Section 2.1, classic approaches to arithmetic block identification include struc-

tural methods that focus on circuit topology and functional methods that focus on circuit function

analysis. Structural methods are efficient with customized algorithms, yet they are mathemati-

cally incomplete; on the contrary, functional methods are accurate and solver-ready at the cost of

ultra-long runtime. Moreover, existing machine learning driven methods are dedicated to one given

unknown functional block, and thus face significant challenges when dealing with large-scale netlist

design. To address the above concerns, we propose a graph learning-based arithmetic block identifi-

cation framework, as briefly illustrated in Figure 3.1, that can efficiently conduct fuzzy matching on

arithmetic blocks. The framework takes a large-scale netlist as input, and outputs fuzzy-matched

sub-graphs as target arithmetic components. Since a netlist is often represented as a directed acyclic

graph (DAG), it is motivated to utilize graph neural networks (GNNs) as the preferable fuzzy match-

ing solution. Intuitively, GNNs can aggregate information from neighbourhoods to generate mean-

ingful low-dimensional embeddings for each vertex for downstream tasks. However, most existing

popular GNN models, such as GraphSAGE (Hamilton et al., 2017) and GIN (Xu et al., 2019), are

designed for general graphs or undirected graphs. In other words, they are not well-optimized for

DAGs. Therefore, we come up with a variant of GNN, asynchronous bidirectional graph neural

network (ABGNN), which is customized for DAG embedding with supreme performance and high

efficiency.
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3.2 Problem Formulation

We first introduce the problem formulation. The gate-level netlist of an electric circuit consists of

a list of gate-level circuit components (e.g., AND gates) and their interconnects. Gate-level netlists

are usually generated by logic synthesis tools, which converts an abstract specification of circuit

behaviour (typically at register transfer level (RTL)) into design implementation in terms of logic

gates. Mathematically, a gate-level netlist can be naturally formulated as a directed acyclic graph,

whose vertices are the circuit components and edges represent wires between them. Sometimes we

emphasize a flattened gate-level netlist, where only primitive gates are instanced, while the design

hierarchy is unknown. Within a netlist, arithmetic blocks are the building blocks that perform

simple arithmetic operations, such as integer addition or subtraction. In general, our target is to

discover the arithmetic blocks located in a flattened netlist. For simplicity, in this paper, we focus

on identifying adders, which are one of the major arithmetic components. However, our proposed

graph learning-based framework can be easily extended to other desired arithmetic blocks.

Problem 1 (Adder Identification). Given the flattened gate-level netlist of a circuit design, identify

adders located in the netlist.

3.3 Flow Overview

Before introducing algorithmic details, we briefly overview our proposed arithmetic block identi-

fication flow. Given a design netlist, we first transform it into a directed acyclic graph (DAG)

representation. The DAG is fed to our designed ABGNN (introduced in Section 3.4) to generate

node embeddings. The node embeddings are further used to predict arithmetic block boundary (in-

troduced in Section 3.6.1). Then, we run a network flow-based algorithm (introduced in Section 3.5)

to match the predicted input wires with the predicted outputs wires. We illustrate the overall flow

in Figure 3.2.
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Figure 3.2: Our arithmetic block identification flow.

3.4 Designing Graph Neural Network for DAGs

Graph neural networks enable a powerful representation learning paradigm for graphs. In gen-

eral, GNNs follow a neighbor aggregation (or equivalently, message passing) scheme (Xu et al.,

2019): the representation vector of a node is computed by recursively aggregating and transforming

representation vectors of its neighboring nodes. The above message passing scheme has achieved

state-of-the-art performance on various tasks on graphs, such as node classification, link prediction,

and graph classification. Nevertheless, it is still critical to customize graph neural network archi-

tecture according to the actual task to earn the best result. In this section, we discuss how do we

design a novel graph neural network architecture dedicated to DAG representation learning in our

adder IO prediction task.

3.4.1 General Graph Neural Network

We start with a formal introduction to general graph neural networks, partly following the notations

in (Xu et al., 2019). A graph can be represented as G = (V, E), where V = {v1, v2, · · · , vn} is

the vertex set, and E ⊆ V × V is the edge set. Vertices are equipped with initial feature vectors

X = {xv|∀v ∈ V}. As introduced, GNNs follow a neighbor aggregation scheme. The k-th iteration
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of message passing, or say the k-th layer of a GNN, can be written as follows:

a(k)
v = AGGREGATE({h(k−1)

u : u ∈ N (v)}),

h(k)
v = COMBINE(a(k)

v ,h(k−1)
v ),

where h
(k)
v is the representation vector of vertex v after k iterations, h

(0)
v = xv, and N (v) denotes

the neighbouring nodes of v. Many GNN variants with different choices of the AGGREGATE function

and the COMBINE are proposed, which are crucial to the model performance. In practice, common

selection of the AGGREGATE function include mean aggregators, max aggregators, and sum aggregators,

usually followed by a multi-layer perceptron (MLP). As a concrete example, GraphSAGE (Hamilton

et al., 2017), one of the dominantly used architectures, aggregates neighborhood information in the

following way:

h(k)
v = σ(W · MEAN({h(k−1)

v } ∪ {hk−1
u : u ∈ N (v)})),

where σ is an activation function (e.g. sigmoid). This is also a rough, linear approximation of a

localized spectral convolution.

3.4.2 Bidirectional Graph Neural Network

We now come to the first keyword, ‘Directed ’, of ‘Directed Acyclic Graph’. Directed graphs assign

each edge a direction, which naturally captures various real-life relations. In our netlist, the edge

direction indicates the current flow direction, or say the execution order of the circuit. Therefore,

modeling a netlist with a directed graph is intrinsic and significant.

However, most existing GNN models assume to work for undirected graphs. One historical

reason is that, earlier spectral GNN models (Bruna et al., 2014; Defferrard et al., 2016; Kipf and

Welling, 2017), built upon the analogy to Convolutional Neural Networks (CNNs), define the graph

convolution as the multiplication of a signal x ∈ RN with a filter gθ = diag(θ) parameterized by

θ ∈ RN in the Fourier domain, namely:

gθ ⋆ x = UgθU
⊤x,

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN −D− 1
2AD− 1

2 =

28



a

b

v c

hP
v s hS

v

hv = COMBINE(hP
v ,hS

v )

a(0)

b(0)

c(0)

Figure 3.3: Bidirectional information aggregation for the vertex v. We train two GNNs to aggregate
information from the fanin cone (hP

v , in orange) and the fanout cone (hS
v , in blue) respectively. The

final embedding (hv, in purple) is given by the combination of both representation vectors.

UΛU⊤. In this definition, U⊤x is considered the graph Fourier transform of x, which relies on

the fact that the (real symmetric) normalized graph Laplacian L admits an eigendecomposition.

Unfortunately, we do not directly have this property for a directed graph. One straightforward way

is to relax the directed graph to an undirected graph by symmetrizing its adjacency matrix, but this

inevitably results in information loss.

Our designed bidirectional GNN is greatly motivated by the design of heterogeneous GNNs (Zhang

et al., 2019b; Wang et al., 2019a). As discussed in (Zhang et al., 2019b), one of the challenges in

designing heterogeneous GNN is ‘how to aggregate feature information of heterogeneous neighbors

by considering the impacts of different node types’. In arithmetic block identification, the role of

a gate depends on both its fanin cone and its fanout cone. It is therefore necessary to combine

information from both directions to generate representative node embeddings. Hereafter, we denote

the transpose graph as G⊤, which contains a directed edge (u, v) if and only if G contains the reversed

edge (v, u).

To encode the edge directions, each vertex only aggregates information from its predeces-

sors. In other words, information flows from x to y if there is an edge (x, y). We train two GNNs,

one for G and one for the transpose graph G⊤, to generate two embedding vectors hP
v and hS

v for

each vertex that aggregate information from the predecessors (i.e., fanin cone) and the successors

(i.e., fanout cone) respectively. Thus, the final embedding of each vertex is given by the combination

of both hP
v and hS

v :

hv = COMBINE(hP
v ,h

S
v ) (3.1)

The placeholder COMBINE can be any common reduction function such as mean, max, or sum. In
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practice, we simply concatenate the two vectors for the final embedding. Figure 3.3 demonstrates

the bidirectional information aggregation scheme for a vertex.

a

b

ci

p

s

a(0)

b(0)

p(1)

ci(0)

s(2)

(a) Distributed Logic Simulation

a

b

ci

p

s

a(0,1)

b(0,1)

c(0,1)

p(0,1)

s(0,1,2)

(b) Synchronous GNN

a

b

ci

p

s

a(0)

b(0)

p(1)

ci(1)

s(2)

(c) Asynchronous GNN

(a) Logic Simulation (b) Synchronous (c) Asynchronous

a b ci p s a b ci p s a b ci p s

T = 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T = 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T = 2 ✓ ✓ ✓

(d) Message passing comparison. A checkmark indicates that the node sends out message at the
timestamp.

Figure 3.4: A comparison between (a) distributed logic simulation, (b) synchronous GNN message
passing, and (c) asynchronous GNN message passing. The table in (d) lists messages sent out by
nodes at each timestamp. Asynchronous GNNs are more efficient than synchronous GNNs.

3.4.3 Asynchronous Graph Neural Network

We move to the second keyword, ‘Acyclic’, of ‘Directed Acyclic Graph’. Acyclic graphs contain

no cycles. That is, if we start from any vertex v, walking through the graph following the edge

directions, we will never come back to v. Although this property may sound irrelevant to GNN

design, we show that it is possible to improve the efficiency of GNN utilizing the acyclic property.

Let’s make an analogy to event-driven logic simulation, taking the Chandy-Misra-Bryant (CMB)

distributed-time algorithm (Chandy and Misra, 1981) as an example. To enable parallel logic simu-

lation with the CMB algorithm, circuit elements communicate with each other using timestamped

messages, and different elements may consume events at distinct simulation times concurrently. Con-

ceptually, each element consumes timestamped event messages on its inputs; whenever all inputs

are ready, it advances its local time and possibly sends out new time stamped event messages on its

output. Figure 3.4a illustrates the event message scheme assuming a unit delay for each gate. The
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original CMB algorithm is regarded as ‘an approach to carry out asynchronous, distributed simula-

tion on multiprocessor message-passing architectures’ (Chandy and Misra, 1981). On the contrary,

general GNNs work in a synchronous way. In synchronous message passing, all messages flow on

edges simultaneously in each iteration, such that every vertex receives messages and updates its

representation on every iteration, causing great computational demand, as shown in Figure 3.4b.

Motivated by the CMB algorithm and the acyclic nature of the netlist, we propose an asyn-

chronous GNN architecture, resembling the asynchronous message-passing scheme for logic simula-

tion. To embed a target vertex v, consider its fanin cone rooted at v. The message passing process

starts from the leaf nodes of the cone, through the cone, and all the way up to v. At each ‘times-

tamp’, only the vertices receive messages at the previous timestamp pass the message to their direct

successors. Figure 3.4c shows an example to embed node s using such an asynchronous GNN. In

iteration 0, only nodes a and b send out their messages to p, while in iteration 1, node p and node

ci send out their messages to s. The table in Figure 3.4d lists are the messages sent out by nodes

at each timestamp. We can see that asynchronous GNN executes as efficiently as logic simulation

while being much more efficient than synchronous message passing.

Formally, for a target vertex v, the aggregation scheme of the k-th iteration of a depth-∆ asyn-

chronous GNN can be described as follows:

a
(k)
{i:D(i,v)=∆−k} = AGGREGATE({h(k−1)

u : u ∈ N (i)}),

h
(k)
{i:D(i,v)=∆−k} = COMBINE(a

(k)
i ,h

(0)
i ),

(3.2)

where D(i, v) is the distance between vertices i and v in the graph, and h
(0)
i is the initial feature

of vertex i. The boldface indices emphasize the difference compared with a general GNN. In other

words, in the k-th iteration of a depth-∆ asynchronous GNN, only those vertices whose distance

to the root v is ∆− k aggregates information from its predecessors. Then, the aggregated em-

bedding is combined with their initial features as the representation vector. In this way, unlike

synchronous GNNs, messages are passed through each edge exactly only once (in the embedding of

each node), which saves lots of computational efforts.
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3.4.4 Putting It All Together

In previous subsections, we propose two special GNN architectural structures, namely bidirectional

and asynchronous, according to the directed and acyclic properties of the target graph (DAG),

respectively. The two structures are orthogonal, so that we can combine them in our final GNN

architecture, asynchronous bidirectional graph neural network (ABGNN). We evaluate the perfor-

mance of ABGNN in Section 3.7.5.

3.4.5 Related Works for DAG Embedding

There exist several works that aim to design graph learning models for DAGs. DAGNN (Thost

and Chen, 2021) constructs a multi-layer network to generate an embedding for the whole DAG.

The network is driven by the partial order induced by the DAG. However, their model is still

computationally expensive since they use an iterative message passing scheme. Moreover, they

use Gated Recurrent Units (GRUs) as the combine operator, further increasing the inference time.

D-VAE (Zhang et al., 2019a) proposes an asynchronous message passing scheme to encode the

computations on DAGs, which is the most similar work to ours. However, ABGNN differs from D-

VAE since we focus on local structures and thus the generation of node-level embeddings, whereas

D-VAE encodes information of the whole (computation) graph.

3.5 Input-output Matching

Our proposed graph learning framework identifies the boundary of arithmetic blocks. In particular,

the model predicts the input wires and the output wires of arithmetic blocks. What if we want further

to match the input bits with the corresponding output bits? In this section, we propose to use a

network-flow-based algorithm to extract the datapaths within an arithmetic block. The problem of

datapath extraction has gained great attention since it is believed datapath-aware physical synthesis

may achieve higher performance. Readers are referred to He et al. (2021) for a survey for datapath

extraction approaches and datapath-driven placement methodologies. For now, we illustrate the

feasibility of the network-flow approach for adder IO matching, and leave the other possible solutions

for future work, since it is beyond the main scope of this paper.
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The datapath extraction problem for an adder is defined as follows: given an (unordered) adder

input set S = A ∪ B where A = {a0, · · · , an−1}, B = {b0, · · · , bn−1} and an (unordered) adder

output set T = {t0, t1, · · · , tn−1} such that T [n − 1 : 0] = A[n − 1 : 0] + B[n − 1 : 0], identify 2n

datapaths from S and T such that 1) all wires in S and T are covered, and 2) each datapath starts

from ai or bi ends at ti. Inspired by Xiang et al. (2013), we formulate the problem as a maximum

flow problem. We add a pseudo source node S∗ and a pseudo sink node T ∗ in the graph, and edges

from S∗ to every node in S, as well as every node in T to T ∗. The newly added edges from S∗ to

nodes in S are assigned unit capacity, while the rest edges are assigned capacity of 2. Then we run

a maximum-flow algorithm to find the routes between S and T .

S∗

a0 b0 a1 b1 a2 b2 a3 b3

g0
p0 g1

p1 g2
p2

g3
p3

G0:1 P0:1 G2:3 P2:3

G0:3 P0:3G0:2 P0:2

s0 s1 s2 s3

T ∗

Figure 3.5: A Brent-Kung adder example to demonstrate that the unique maximum flow matches
inputs and outputs correctly. We analyze the flows in the order of orange, blue, yellow, to purple.
Solid lines are charged with flows, and dotted lines are banned due to flow capacity constraints.

We illustrate the feasibility of the maximum-flow algorithm by taking the Brent-Kung adder (Brent

and Kung, 1982) as an example. The maximal flow network is shown in Figure 3.5. We analyze

the flows in the order of orange, blue, yellow, to purple. The solid edges are charged with flows,

while the dotted edges are banned due to flow capacity constraints. In fact, this is the unique

maximum flow solution of the flow network. To charge the flow from s0 to T ∗ (with flow value
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2), the only possible route is to pass from p0 to s0, which occupies the edges from S∗ to a0, b0 and

up to p0. These edges are marked with solid orange lines, and meanwhile, the edges banned due to

capacity constraints are marked with dotted orange lines, such as other edges starting from a0 and

b0. Immediately, we observe that there is no route to charge the node g0, which further indicates

that there is no flow from g0 to s1, leaving (p1, s1) the only possible route to charge the flow from

s1 to T ∗. Then we can do the same analysis for s1 to T ∗ with blue lines, s2 to T ∗ with golden lines,

and s3 to T ∗ with purple lines. Finally we will see the uniqueness of the maximum flow, and the

matching is done.

How to better orchestra the network flow approach with a fuzzy matching framework deserves

more discussions. Although our theoretical analysis finds the maximum flow solution unique, there

is no such guarantee if we are given fuzzy, imperfect predictions of adder boundaries. However,

we observe that besides input-output matching, the network flow approach also acts as a filter to

remove some false alarms. In other words, if the maximum flow does not flow over some predicted

input/output node, then the node is actually unlikely to be a boundary node of an adder. Inspired by

so, we propose to run the maximum flow algorithm in both directions (inputs to outputs and outputs

to inputs), so that the maximum forward flow (inputs to outputs) filters out false alarms of predicted

outputs, and vice versa. To retain high sensitivity, we also add the siblings of predicted input

(output) nodes in the forward (backward) runs, so that we are confident enough in the filter. This

strategy indeed improves prediction precision with almost no sensitivity loss in our experiments.

3.6 Other Algorithm Details

This section describes other important algorithm details of our arithmetic block identification flow,

including discussions on the learning problem formulation, and the strategies to deal with the data

imbalance issue.

3.6.1 Machine Learning Problem Formulation

As we introduced, we utilize a customized GNN for netlist representation learning. However, how

to learn the parameters in the GNN model remains to be considered. Essentially, the arithmetic
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block identification problem is to ‘detect’ instances of target semantic objects in the graph, which

sounds like a graph version of the object detection task in computer vision. Despite the intuitive

descriptions, solving such problems is still very challenging for the community due to 1) the NP-

complete nature of the problem and 2) the requirement to consider graph topology, node features,

and/or edge features at once.

Given that, we propose to formulate a node classification problem to circumvent the hard-to-

solve graph detection problem. Specifically, the target of our neural model is to predict boundary

(input wires and output wires) of arithmetic blocks. Another possible problem formulation

is to predict the region of arithmetic blocks, which is abandoned after comparison. Note that a

wire can be both an input to one arithmetic block and an output from another arithmetic block

(consider the two expressions c = a + b and e = c + d, where c is the output of the first adder and

the input of the second adder). Therefore, we use input prediction and output prediction to refer

to the two independent binary classification tasks for boundary prediction. We use an MLP with

binary cross-entropy loss to consume the representation vectors generated by GNN and carry out

the prediction.

3.6.2 Dealing with Data Imbalance

The data imbalance issue refers to the phenomenon that some classes (majority) have a significantly

higher number of examples in the training set than other classes (minority). It is a common problem

in real-life applications from various domains, which has been established to have a significant

detrimental effect on training classifiers in terms of both training convergence and generalization

ability (Buda et al., 2018). For example, it is observed that the model would easily lean towards

majority classes (Kang et al., 2020), making some standard metrics like accuracy invalid (since they

may cause misinterpretation of data). We refer readers to (Ali et al., 2015) for a comprehensive

review. In our dataset, the ratio of negative nodes to positive nodes is around 100 : 1, which is

indeed highly imbalanced.

Methods to address data imbalance can be divided into two categories, namely data-level methods

and algorithm-level methods. Data-level methods aim to alter the distribution of the training dataset

so that standard algorithms for balanced data can work well. On the other hand, algorithm-level
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methods keep the training dataset unchanged and adjust the training/inference algorithm. We now

introduce three techniques we adopt in our training.

Oversampling

Oversampling is one of the most popular data-level methods used in machine learning. We adopt

the basic version of it, called random minority oversampling, which simply replicates randomly

selected samples from minority classes (Buda et al., 2018). Some more advanced oversampling

methods (e.g., SMOTE (Chawla et al., 2002)) have also been proposed, which we leave for possible

future work.

Cost Sensitive Learning

Cost sensitive learning (Elkan, 2001) assigns different penalties to different misclassification errors.

Mathematically, if Cij refers to the cost for predicting class j when the actual class is i, the optimal

prediction for an example x is given by

argmin
i

∑
j

p(j|x)Cij ,

where p(j|x) is the estimated probability of example x being in class j.

We encode cost sensitive learning into the loss function. Let the total loss L be decoupled into

two parts, namely the loss on the positive samples (Lpos) and the loss on the negative samples

(Lneg). Since negative samples are the majority, we assign a penalty weight α (α < 1) to the

negative loss, so that the contribution of negative nodes to the total loss function is reduced, which

compensates the imbalance between sample classes. The weighted loss function can be formulated

explicitly as:

L = (Lpos + αLneg)/N, (3.3)

where N is total number of samples.
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3.7 Experiments

3.7.1 Setup

We develop the graph object detection framework with DGL (Wang et al., 2019c), a graph learning

library, which is based on PyTorch (Paszke et al., 2017) for tensor manipulations. The network

flow algorithm (viz. Edmonds–Karp) is implemented with networkx (Hagberg et al., 2008). We also

refer to the EPFL logic synthesis libraries (Soeken et al., 2018) when we reimplement the baseline

methods. Graph neural networks are trained on a Linux machine with 48 Intel Xeon Silver 4212

cores (2.20GHz), 1 GeForce RTX 2080 Ti graphics card, and 32 GB main memory. Training details

are discussed in subsequent sections.

3.7.2 Dataset

The dataset we use comes from open-source RISC-V CPU designs (Amid et al., 2020), including

Rocket (Asanovic et al., 2016), a 5-stage in-order scalar core, and Berkeley Out-of-Order (BOOM )

Core (Asanovic et al., 2016), an out-of-order superscalar RV64G core. Since BOOM is more com-

plicated (around 5x larger than Rocket), we use it as the training set, while leaving Rocket as the

testing set.

The netlists are automatically generated from Chisel, which is further synthesized with Synopsys

Design Compiler targeting the SAED 32/28nm Digital Standard Cell Library. For each design, we

synthesize a set of netlists using various design constraints, so that different adder designs could be

generated by DC.

Statistics of the generated netlists are listed in Table 3.1. In fact, there are other related con-

straints that could be specified, such as the radix of the prefix structure in adders or some timing

constraints. In our experiments, we observe very similar outcomes as we adjust this set of constraints,

so we simply omit them for simplicity.

3.7.3 Baselines

We reimplemented several representative literature works (Subramanyan et al., 2013a; Wei et al.,

2015; Fayyazi et al., 2019) as the baseline methods for comparison. These works have covered
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Architecture
Rocket BOOM

#gates #wires #gates #wires

Brent-Kung 24340 58124 139526 366280

Cond-sum 24737 57708 138358 360455

Hybrid 25491 60287 141319 369622

Kogge-Stone 24540 57726 139005 361962

Ling 26179 62864 143903 378354

Sklansky 25208 59567 141093 369774

Table 3.1: Statistics of the dataset. We use BOOM as the training set as it is more complicated,
leaving Rocket as the testing set. We synthesize a set of netlists for each design by specifying different
adder architectures in Design Compiler.

structural methods, functional methods, as well as machine learning methods in their proposed

solutions. Subramanyan et al. (2013a) first enumerates all cuts1 and groups them into permutation-

independent equivalence classes, which are then aggregated into candidate words based on common

support or signal propagation. The candidate words are further propagated in the graph to form new

words based on neighboring gate types. We optimistically estimate the performance upper bound

of the algorithm without running symbolic simulation and equivalence checking, but simply include

all the potential words instead. Wei et al. (2015) builds xor trees, identifies carry-out signals, and

constructs xor-forests based on the connection hierarchy. Fayyazi et al. (2019) proposes to represent

circuit topology using level-dependent decaying sum (LDDS) existence vector (EV), which basically

marks the gate types that appeared in a local subgraph and assigns distance-based penalty weights.

We follow the LDDS-EV construction, expect that we clip all large values in the EV to 64, and

add a batch normalization layer in the neural network to stabilize training. We also apply the

oversampling technique by using a weighted random sampler during training. Since this method

was originally evaluated for circuit classification, we adapt the method to our problem formulation

and our proposed flow.

1Subramanyan et al. (2013a) suggested enumerating 6-feasible cuts, but our reported results are based on 5-feasible
cut enumeration because it yields almost the same performance with much shorter (0.01×) runtime.
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3.7.4 Overall Comparison

We first compare the performance between our proposed method and all baseline approaches (Sub-

ramanyan et al., 2013a; Wei et al., 2015; Fayyazi et al., 2019) as introduced in Section 3.7.3. The

results are listed in Table 3.5.

Our proposed arithmetic block identification method greatly outperforms prior works on all

the testcases, averaged 95.1% and 93.7% sensitivity in input and output boundary identification,

respectively. It is also the fastest method even though we run a maximum flow algorithm for input-

output matching. The other machine learning approach (Fayyazi et al., 2019) achieves the second-

best performance (83.4% and 76.1% sensitivity), but its precision (around 0.35 on average) is in fact

much lower than ours (over 0.94 on average). Nevertheless, it still confirms the good adaptability of

deep learning methods and the effectiveness of the oversampling strategy for imbalanced datasets.

Subramanyan et al. (2013a) is able to cover lots of words composed of replicated functional bitslices,

and therefore achieves acceptable sensitivity (81.9% and 56.5%), at the cost of much higher runtime

(37.5× over ours). Wei et al. (2015) is stable for the more regular architectures (Cond-sum, Kogge-

Stone), but does not perform well given complicated or highly optimized structures (Hybrid, Ling),

resulting in unsatisfactory average sensitivity (49.9% and 43.5%).

3.7.5 Evaluation of ABGNN

We conducted comprehensive experiments to evaluate our proposed graph neural network architec-

ture and demonstrate its outstanding capability in DAG representation learning. We set the fanin

depth and fanout depth of ABGNN to 1 and 5 respectively for input boundary prediction, and (2, 2)

for output boundary prediction.

Table 3.2: Comparison between asynchronous and synchronous GNNs. Asynchronous GNNs reduce
inference time without performance degradation.

Task Model Recall F1-score Runtime (ms)

Input
asynchronous 0.951±0.000 0.956±0.000 122.1

synchronous 0.943±0.003 0.951±0.002 152.2

Output
asynchronous 0.937±0.015 0.940±0.012 77.6

synchronous 0.933±0.012 0.937±0.009 94.6
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Comparison with State-of-the-Art GNNs We evaluate our proposed ABGNN with several

state-of-the-art Graph Neural Networks, including GAT (Velickovic et al., 2018), GIN (Xu et al.,

2019), and GraphSAGE (Hamilton et al., 2017), on the Rocket dataset. Our model achieves the

best performance on all the cases with much higher recall and F1 scores, showing its superiority

on DAG representation learning. In some complex cases (e.g., input prediction in the Brent-Kung

case), our model outperforms other models by 5%–9% for the F1 score. On average, our model

achieves 2.8%-5.0% recall gain and 3.3%-9.5% F1 score gain in input identification (Table 3.6), as

well as 1.9%–6.2% recall gain, and 2.6%–7.0% F1 score gain in output identification (Table 3.7).

Effect of asynchronous message passing We conducted experiments to verify the effect of

the asynchronous message passing scheme by comparing it with synchronous GNNs, while leaving

other hyper-parameters the same, including the number of layers, oversampling rate, etc. Table 3.2

shows that compared with synchronous GNNs, asynchronous GNNs reduce inference time by 19.8%

and 18.0% respectively for input and output boundary identification, without any performance

degradation. Here the runtime refers to the inference time of GNN, namely the time the model

takes to generate node representations. We want to emphasize that the efficiency will likely improve

as the model depth increases (confirmed by our preliminary experiments), and thus the asynchronous

GNN might work even better for more complicated tasks.

Effect of bidirectional information aggregation We also carry out experiments to see the

effects of bidirectional information aggregation. We build unidirectional models by reducing fanin

depth to 0 for input boundary identification and fanout depth to 0 for output identification. As

shown in Table 3.3, bidirectional information aggregation improves 4.6% recall and 11.1% F1-score

for the output model, as well as 1.8% recall and 2.1% F1-score for the input model. The performance

gain indicates that information from a single direction is not sufficient to identify thhe input/output

boundary of an adder, and therefore combining representations learned from both directions is indeed

necessary.
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Table 3.3: Comparison between bidirectional and unidirectional GNNs. Bidirectional GNNs outper-
form unidirectional GNNs, confirming the effectiveness of bidirectional informatrion aggregation.

Task Model Recall F1-score

Input
bidirectional 0.951±0.000 0.956±0.000
unidirectional 0.933±0.002 0.935±0.002

Output
bidirectional 0.937±0.015 0.940±0.012
unidirectional 0.891±0.001 0.829±0.011

Table 3.4: Performance of ABGNN on region detection and boundary identification. The perfor-
mance of boundary identification is much better.

Formulation Task Recall F1-score

boundary
input 0.951 ± 0.000 0.956 ± 0.000

output 0.937 ± 0.015 0.940 ± 0.012

region internal 0.762 ± 0.022 0.737 ± 0.025

3.7.6 Other Analysis

Region Detection vs. Boundary Identification As mentioned in Section 3.6.1, there exist

two different problem formulations for adder identification, namely region detection and boundary

identification. Note that we adopt the latter one in our final solution. For region detection, the idea

is to assign a positive label to all the nodes within the adder (including I/O wires). Table 3.4 shows

the performance of ABGNN targeting region detection and boundary identification. It can be seen

that ABGNN performs far better on boundary identification than on region detection. The result is

actually within our expectations since internal nodes are not as distinguishable as boundary nodes.

Effect of Oversampling Recall that we utilize the oversampling strategy to deal with the data

imbalance issue. Figure 3.6 demonstrates the testing performance curves (recall, F1-score) during

the 100 training epochs using four different oversampling rates (1, 5, 10, 20). Without oversampling

(the orange curve), training is quite unstable and converges slower (and finally to a worse model),

confirming the effectiveness of oversampling. In our evaluation, we use an oversampling rate of 5.
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(a) Curves of recall values on the test set during training.
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(b) Curves of F1-scores on the test set during training.

Figure 3.6: Test performance curves during training using different oversampling rates. Curve 1×
implies no oversampling. Oversampling stabilizes training and improves model performance.
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3.8 Discussion: Fast Cut Enumeration

3.8.1 Motivation

Cut enumeration enumerates bounded size cuts of all vertices in a graph, which is an important

procedure in various algorithms. For example, in LUT-based FPGA technology mapping (Chen

and Cong, 2004; Mishchenko et al., 2007a), cut enumeration effectively finds all possible packing

strategies rooted at a node. In logic rewriting, cuts rooted at nodes are iteratively selected and

replaced by smaller pre-computed subgraphs (Mishchenko et al., 2006; Li and Dubrova, 2011). In

reverse engineering, cut enumeration is usually utilized to identify circuit components that match

the target functionality (Subramanyan et al., 2013c; Wei et al., 2015). In theory, the number of K-

bounded size cuts can be as large as O(nK), where n is the number of nodes in the circuit. Therefore,

it is pointed out in several work that cut enumeration might become the runtime bottleneck of their

applications (Ling et al., 2007; Possan et al., 2018).

Most existing cut enumeration algorithms follow a dynamic programming framework: the enu-

meration is performed from primary input nodes (PIs) to primary output nodes (POs), and the

cuts of a node is generated by manipulating the cuts of its fan-in nodes. Depending on the scheme

of cut generation, the manipulation can be either bottom-up or top-down. These methods usually

suffer from severe redundancy issue during computation. As an example, it is reported (Takata

and Matsunaga, 2009) that the number of cut products, most of which are invalid, can be about

5200 times larger than that of cuts. The above facts highlight the demand for new cut enumeration

algorithms that reduce redundancy for better runtime.

In this section, we propose a new cut enumeration algorithm that combines the strengths of both

bottom-up and top-down manners. Specifically, we store the cuts of a node in a tree structure, which

we called cut-tree in this paper. Unlike cut-sets in usual practice, cut-trees preserve the topological

relation between cuts, and this enables a few pruning strategies including subtree pruning and path

compression, as we will introduce in Section 3.8.3. The central intuition is that the bottom-up

scheme keeps more information about its fanin cuts, while the enforced expansion order in the top-

down flow gets rid of some redundant computation. Our key idea is thus to enable ‘order’ in cut

merge, so that the advantages of both schemes can be assembled. We prove in Section 3.8.3 that
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the workload of our proposed algorithm is lower than that of both the standard bottom-up and

top-down approaches for cut enumeration.

3.8.2 Preliminaries and Related Work

Logic Representation

A combinational circuit (interchangeably, boolean network) can be regarded as a Directed Acyclic

Graph (DAG), where each vertex v ∈ V represents a logic gate and the edges E represent the

connecting wires between the gates. Nodes driving a node are called the fanin of the node, and

nodes driven by a node are called the fanout of the node. A node with 0 fanin is called a Primary

Input (PI), and a node with 0 fanout is called a Primary Output (PO). If there is a path from ni to

nj , we say ni is a transitive fanin (TFI) of nj , and nj is a transitive fanout (TFO) of ni.

Every boolean network can be represented as a functional-equivalent And-Inverted Graph (AIG),

composed of 2-input AND gates and inverters. A common practice is to consider an inverter as a

complemented edge, which indicates the inversion of the incoming signal. Without loss of generality,

we assume the network to be an AIG in the following discussions.

Cut

A cut of a node n is a set of nodes C in its transitive fanin such that every path from a PI to n

includes a node in C. A cut is irredundant (undominated) if no subset of it is a cut. A K-cut is an

irredundant cut of size K, and a K-feasible cut is an irredundant cut whose size is no more than K.

A trivial cut is a cut of size 1.

Cut Enumeration Schemes

Cut-set Merging Cut-set merging is the standard bottom-up cut enumeration algorithm. Given

a node n and the two cut-sets A and B of its fanin nodes, the cut-merging operation A ▷◁k B is

defined as following (Cong et al., 1999):

A ▷◁k B = {u ∪ v|u ∈ A, v ∈ B, |u ∪ v| ≤ k} (3.4)
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Then, all the K-feasible cuts of each node can be enumerated in topological order from PI to PO:

ΦK(n) =


{{n}}, if n ∈ PI

{{n} ∪ ΦK(u) ▷◁K ΦK(v)}, otherwise

(3.5)

where u and v are the fanins of n, and ΦK(n) denote the K-feasible cuts of node n.

Cut Expansion Cut expansion is a top-down cut enumeration scheme (Takata and Matsunaga,

2009). An expansion is to generate a new cut by removing a node in the cut and adding its fanins:

EXP (n, C) = (C − {n}) ∪ {u, v} (3.6)

where u and v are the fanins of n. Any cut but the trivial cut {n} can be generated by some

expansion. Therefore, all the cuts rooted at n can be enumerated by expanding from {n} all the

way down to PIs. It is further proved that the expansion range can be compactly narrowed down

to the elements in the fanin cuts and this bound is tight (Takata and Matsunaga, 2009).

Related Work on Cut Enumeration

Due to the large number of K-feasible cuts when K is large, some works suggest to heuristically

select cuts that are potentially more desired. In area minimization of FPGA mapping (Cong et al.,

1999), cuts of a node are accordingly ranked by the mapped area to implement it. Similar idea

could be found in a depth-oriented technology mapping algorithm (Mishchenko et al., 2007b), where

only a small number (about 4 to 8) of cuts are stored for each node. These priority cuts are

sorted by different criteria in each mapping pass. Despite of an optimal algorithm (Cong and

Ding, 1994) that runs in polynomial time, enumerating only priority cuts enables linear runtime

w.r.t. number of nodes, greatly improving its scalability. However, incomplete cut enumeration

compromises optimality: although only a small fraction (say 1%) of those cuts is useful, but a priori

we do not know which 1% (Chatterjee et al., 2006). Therefore, in this paper we focus on exhaustive

cut enumeration algorithms.

Parallel cut enumeration has been discussed in a parallel AIG rewriting method (Possan et al.,

2018). Although the cut enumeration framework is not fully parallelizable, the authors design
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dedicated cut manager responsible for providing all necessary routines and data structures for cut

computation and storage. Specifically, a node becomes active and can be pushed to the worklist only

if its fanin nodes were already processed. Experiments show that parallel cut enumeration scales

well with up to 40 threads.

A symbolic cut enumeration method is proposed (Ling et al., 2007) based on binary decision

diagram (BDD). The scheme is similar to cut-set merging, but the cuts are represented as BDDs,

which enables effective subcut sharing and redundant cut pruning. However, a well-implemented

BDD package is required to support the algorithm.

It is worth mentioning that a few simple but useful implementation techniques are introduced (Mishchenko

et al., 2007a), which are orthogonal improvements to the cut enumeration algorithms themselves.

For example, using signature to test cut properties is usually much faster than directly comparing

sets, and the cuts of a node whose fanouts have been processed can be deallocated. These ‘lossless’

techniques reduce runtime and memory footprint of the algorithm without doing harm to the final

result.

3.8.3 Algorithm

Basic Definitions

Before illustrating our algorithm, we first present the definitions we use in the subsequent sections.

The core idea is to organize the cut-sets into a tree structure, so that the topological relationship

between cuts are preserved. To avoid confusion, we use italic lower case letters a, b, c, · · · to donote

nodes in the original graph, and calligraphic capital letters A,B, C, · · · to denote nodes and edges in

cut-trees (defined in Definition 1), as the latter in fact represent sets.

Definition 1 (Cut-tree). A cut-tree Tn is a tree where each tree node is associated with a cut of the

node n, and each edge stores the (set) difference between its parent node and itself. The cut-tree of a

primary input (PI) node consists of a single tree node, associated with the trivial cut. The cut-tree

for a non-PI node is rooted at the trivial cut with a single child, whose sub-tree is the product (see

Definition 2) of the cut-trees of its fanin nodes.

Remark. Every cut-tree Tn is rooted at the trivial cut {n}. A cut-tree associated with only K-
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feasible cuts is called a K-feasible cut-tree. The edge (set difference) can be interpreted as ‘expand

from’ since it depicts how to obtain the child node from the parent node.

The above definition of cut-tree is in a recursive manner. In analogy to cut-set merge, we need

to formally define the product of two cut-trees:

Definition 2 (Naive Cut-tree Product). The (naive) product of two cut-trees Tl and Tr is a new

cut-tree Tp defined as follows:

VTp = {U ∪ V|U ∈ VTl
,V ∈ VTr}

ETp = {(UV,U ′V ′, δ)|(U ,U ′, δ) ∈ ETl
or (V,V ′, δ) ∈ ETr}

where UV denotes the node generated from U ∪V, and an edge ⟨P, C, δ⟩ denotes that P is the parent

of C, with the difference δ.

Remark. The definition is abstract. From the implementation perspective, one can traverse the left

cut-tree Tl in arbitrary order, and merge (‘graft’) the right cut-tree to each node of the left cut-tree.

By merging I mean taking the union of the cut in the left tree (called left cut hereafter) and each cut

in the right cut-tree. Note that the product of two K-feasible cut-trees does not necessarily yield a

K-feasible cut-tree.

Cut Enumeration through Cut-tree Product

The naive cut-tree product procedure, as introduced in Definition 2, serves as the core scheme for

our cut enumeration algorithm. We further propose several pruning strategies during the product

of two cut-trees to skip unnecessary computations.

Proposition 1 (Subtree Pruning). When merging a left cut and the right cut-tree, if an edge E in

the right cut-tree contains a node that appears in the left cut, then the whole subtree rooted at the

destination (child node) of E can be pruned.

Proposition 2 (Path Compression). If the associated cut of a cut-tree node V is not K-feasible,

then the node can be pruned, and its children can be directly appended to the parent node of V.

Remark. Recall that an edge stores the difference between the parent node and the child node.

Specifically, if we compress a node V due to its infeasibility, and there were edges ⟨U ,V, δuv⟩ and
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⟨V,W, δvw⟩, then there will be a new edge ⟨U ,W, δuv ∪ δvw⟩ after path compression.

Theorem 1. Cut-tree Product with subtree pruning and path compression enumerates all K-feasible

cuts.

Proof. Correctness of the algorithm can be easily verified if no pruning is presented, as it is equivalent

to cut-set merge. We now prove that the algorithm still enumerates all K-feasible cuts with the two

pruning strategies.

Without loss of generality, we first suppose the edge E = ⟨P, C, {d}⟩ that stores a unit set causes

pruning. Due to the pruning condition, the left cut U also contains d. Suppose subtree pruning

prunes a right cut V that should actually be included. Consider the edge from V’s parent to V that

stores {p} (i.e., V can be generated from expanding p), there are two possibilities: p is a successor

of d, or p is not a successor of d. In both cases the cut set U ∪ V is redundant, as there must exist

a node Ud in the left cut-tree that expands d. In the former case, there also exists a node Up in the

left cut-tree (a successor of Ud), that also expands p, and we have Up ∪ V = U ∪ V. An exception

would be that Up is not K-feasible so that it is pruned, but in such case U ∪ V cannot be k-feasible

as well because |U ∪V| = |Up ∪V| ≥ |Up| > K. Similar argument holds for the latter case: if p is not

a successor of d, there must exist a node Vp that does not expand d but expands p. To be specific,

Vp locates in a sibling subtree of C.

We then argue that any cut pruned by path compression is unnecessary for further operation.

This is clear due to the monotonicity of set merge: if V is pruned because |V| > K, then merging V

with any set U yields an even larger (thus infeasible) set V ∪ U .

It remains to do a bit technical work to verify whether the two pruning strategies can be combined.

It turns out that all the key elements are already discussed in the above arguments and we will omit

the details due to the limited page length.

Comparisons with Other Cut Enumeration Schemes

In this section, we compare the efficiency of various cut enumeration schemes. We first define the

metric to measure the efficiency of a cut enumeration algorithm, and then prove that cut-tree product

is more efficient than cut-set merge and cut expansion.
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Definition 3 (Workload of Cut Enumeration). Workload of a cut enumeration scheme is the total

number of cuts (no matter valid or not) computed by the algorithm.

Remark. Workload is defined as the total number of cuts, rather than counting only feasible ones,

because the runtime is roughly proportional to the number of sets computed, even though some of

them will be pruned since they are dominated or infeasible.

Theorem 2. The workload of cut-tree product is less than cut-set merging.

Proof. The two schemes are exactly equivalent if no pruning is presented: they both compute the

merge-product of the cuts of the fanin nodes, the results of which are the same as shown in Theorem 1.

Cut-tree enables pruning whenever a reconvergence point exists, reducing its workload by subtree

pruning. Therefore the cuts generate by cut-tree product is a subset of cut-set merge, thus the lower

workload.

Theorem 3. The workload of cut-tree product is less than cut expansion.

Proof. We prove the theorem by showing that every cut generated by cut-tree product will be

generated by cut expansion. In the following two cases the above argument is violated:

1. Cut-tree product generates the same cut twice

2. Cut-tree product generates a cut that cut expansion does not

We first show that the first case does not happen. Consider the path from the root to a node

V, the union of all edges along the path shows how can the node V expanded from the root (as in

cut expansion). In fact, this union result for each node is distinct (as will be proved in Lemma 1).

Therefore cut-tree product will not generate a cut set twice.

The second case never happens as well. In cut expansion, the nodes are exhaustively expanded

until the ‘lowest’ supports of the fanin cuts are reached. In cut-tree product, the generated cuts

contain only the elements in the fanin cuts (expect the node itself), which naturally meets the

condition in Lemma 1 of (Takata and Matsunaga, 2009). Given that, all the sets generated by

cut-tree product will also be generated by cut expansion.
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By the above arguments, we conclude our claim. On top of that, if there are reconvergent points

in the original graph, it is likely that cut expansion has to enumerate infeasible cuts to generate

feasible cuts, while path compression enables cut-tree product to exclude those cuts without affecting

the generation of other cuts, reducing its workload.

Lemma 1 (Distinct Path Union). Path Union of a node V in cut-tree is the union of all the edges

along the path from the root to V. In cut-tree product the path union of each node is distinct.

Proof. We prove by induction. The claim trivially holds for the cut-trees of PIs. Suppose the claim

also holds for both fanin cut-trees Tl and Tr of a node n. Now suppose for contradiction that there

are two distinct nodes U and V in the cut-tree Tn, such that the path union of the two nodes are

identical. Consider the nearest common ancestor A of U and V, i.e., the ‘branching’ node that makes

U and V distinct. Consider the two (distinct) edges Eu and Ev coming out from A, connecting the

path to U and V respectively, at least one of the following two cases must happen:

1. Eu = ⟨A,Pu, p⟩, Ev = ⟨A,Pv, p⟩.

2. Eu = ⟨A,Pu, p⟩, Ev = ⟨A,Qv, q⟩, and there exists two other edges Fu = ⟨·, ·, q⟩, Fv = ⟨·, ·, p⟩,

on the path from C to U and from C′ to V, respectively.

Otherwise, the union results cannot be identical. Let U be generated from merging Ul and UR, V

generated from merging Vl and Vr. Let Rl and Rr be the root of Tl and Tr, respectively. According

to Definition 2, the edges in Tn must be inherited from Tl or Tr. All the cases discussed below are

shown in Figure 3.7.

The first case should not happen. (1.a) If Eu and Ev are inherited from the same cut-tree (no

matter Tl or Tr), then the inductive hypothesis on the fanin cut-trees is violated. (1.b) On the

contrary, if they are inherited from different trees, say Eu from Tl and Ev from Tr, since p is an

element in A, Ev should be pruned according to the rule of subtree pruning (Proposition 1).

The second case never happens as well. Depending on where are the 4 edges inherited from,

there are 16 (24) cases. (2.a) Similar to the above argument, the four edges could not be inherited

from the same cut-tree, otherwise the inductive hypothesis on the fanin cut-trees is already violated.

(2.b) According the cut-tree product order (Definition 2), it is impossible that Eu (Ev) is inherited
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A

Pu Pv

Eu : {p} Ev : {p}

(a) Case (1.a) violates
the inductive hypothesis.

A

Pu Pv

Eu : {p} Ev : {p}

(b) Case (1.b) violates
Proposition 1.

A

Pu Qv

Qu Pv

Eu : {p} Ev : {q}

· · · · · ·

Fu : {q} Fv : {p}

(c) Case (2.a) violates the
inductive hypothbesis.

A

Pu Qv

Qu Pv

Eu : {p} Ev : {q}

· · · · · ·

Fu : {q} Fv : {p}

(d) Case (2.b) violates
Definition 2.

A

Pu Qv

Qu Pv

Eu : {p} Ev : {q}

· · · · · ·

Fu : {q} Fv : {p}

(e) Case (2.c) violates
Proposition 1.

A

Pu Qv

Qu Pv

Eu : {p} Ev : {q}

· · · · · ·

Fu : {q} Fv : {p}

(f) Case (2.d) violates
Proposition 1 or the definition of

DAG.

p

q

(g) The original
graph in case (2.d)

is cyclic.

Figure 3.7: All counterexamples that in fact never happen. A solid arrow denotes an edge inherited
from the left fanin cut-tree Tl, while a dashed edge is inherited from the right fanin cut-tree Tr. An
edge in orange violates the inductive hypothesis or some definition/proposition.

from Tr and Fu (Fv) from Tl. (2.c) Noticing that p, q ∈ A, if Eu (Ev) is inherited from TL and Fu

(Fv) from TR, the subtree pruning rule (Proposition 1) is violated. (2.d) If Eu and Fu are inherited

from TL (TR) and EV and Fv are from TR (TL), either p, q ∈ AL and p, q ∈ AR (the same as 2.c),

or q is a TFI of p and p is a TFI of q, which cannot be true in an acyclic graph. The above cases

2.a - 2.d cover all the possibilities, and thus we conclude our claim.
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3.9 Summary

Identifying arithmetic blocks is a vital procedure for various tasks like malicious logic detection and

logic optimization. In this chapter, we propose a graph learning-based arithmetic block identification

framework that efficiently recognizes the boundary of arithmetic blocks. To boost the performance

of the whole framework, we propose a specialized graph neural network architecture for DAG repre-

sentation learning, which outperforms existing dominantly used GNNs. We further come up with a

network flow approach to match input and output wires predicted by the GNN model. Experimental

results have confirmed the excellent performance of our framework: compared with state-of-the-art

functional, structural and machine learning-based block mapping schemes, our framework achieves

the highest sensitivity with the fastest runtime in adder identification from an open-source RISC-V

CPU design (the Rocket core). We also carried out a comprehensive ablation study to analyze the

effectiveness of the proposed techniques. Finally, we discussed a new cut enumeration scheme based

on cut-tree product.
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Chapter 4

Reinforcement Learning Driven

Floorplan Optimization

4.1 Motivation

Electronic Design Automation (EDA) lies at the heart of modern computer science technologies.

Various computationally challenging (viz. NP-hard) problems gave birth to the exciting progress

in solving techniques, most among which are hand-crafted heuristics that are carefully designed by

domain experts and scientists. Yet, the fantasy of automatic algorithm design for difficult problems

has never been shattered.

Reinforcement learning has recently offered a promising direction for such a dream. As introduced

in Section 2.2, typical floorplanning algorithms make use of various data structures to represent the

geometric relation between modules, and construct or perturb such data structures to obtain good

floorplan results. Despite of that, specialized knowledge is a must for a successful design, as well

as a considerable amount of trial-and-errors, prohibiting the development of new algorithms in

some sense. Besides, as the transistor technology node scaling down, modern circuit design has

become much more complicated, and the ever-increasing number of modules in a chip brings about

the scalability issue, emphasizing the demand for effective algorithms that work well on large-scale
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Figure 4.1: (a) The oblique grid (Tang and Wong, 2001) shows the relative position between blocks
for sequence pair (<4 3 1 6 2 5>, <6 3 5 4 1 2>); (b) The corresponding packing. The dimensions
for the 6 blocks are: 1(4×6), 2(3×7), 3(3×3), 4(2×3), 5(4×3), 6(6×4).

cases. All the above problems motivate us to utilize reinforcement learning for automatic algorithm

design. Unlike previous works that adopt an existing local search algorithm and improve a few

settings of that algorithm with RL, our work takes one step forward: we aim to acquire a local

search algorithm from the scratch, i.e., we avoid to introduce too much prior human knowledge

during the search that might mislead the learning.

4.2 Preliminaries

4.2.1 Floorplan

In general, floorplanning is to generate relative locations for modules. Given a set of n rectangular

blocks B = {b1, b2, · · · , bn} and a netlist N specifying their connections, a floorplan F seeks a planar

location assignment (x,y) of B, providing no module overlap, to minimize the total chip area and

to reduce the total wirelength.

Based on area function A(·) and wirelength functionW (·), the optimization problem is formulated

as follows

min
F

A(F ) + αW (F )

s.t. F is a legal solution.
(4.1)

Definition 4 (Sequence Pair Representation). A sequence pair (Γ+,Γ−) is a pair of sequences of

n elements that imposes the relationship between each pair of blocks as follows (Tang and Wong,
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2001):

(< ..bi..bj .. >,< ..bi..bj .. >) =⇒ bi is to the left of bj ;

(< ..bj ..bi.. >,< ..bi..bj .. >) =⇒ bi is below bj .

As an example, Figure 4.1 shows the imposed relationship by the sequence pair (<4 3 1 6 2 5>,<6

3 5 4 1 2>) in an oblique grid. It can be inferred from the figure that all the imposed relationship

constraints are satisfiable, see (Murata et al., 2003) for the prove.

In fact, given any sequence pair, one of the area-optimal packing subject to the constraints can be

obtained in O(n log log n) time (Tang and Wong, 2001) based on a fast longest common subsequence

computation.

4.2.2 Local Search

Local search is a popular heuristic method for solving combinatorial optimization problems. Roughly

speaking, a local search algorithm starts off with an initial solution and then continually tries to

find better solutions by searching neighbourhoods (Aarts et al., 2003).

Simulated annealing (SA) (Kirkpatrick et al., 1983) is a probabilistic technique inspired from

annealing in metallurgy. Formally, let S be the finite set of all complete solutions, E : S → R

be an energy function defined on S, and N : S → S be a neighbor function. Note that for each

s ∈ S,N (s) ⊂ S − {s}. SA starts at a state s ∈ S. At each step, SA considers some neighboring

state s′ ∈ N (s) of the current state s, and decides between moving the system to state s′ or staying

in state s based on the acceptance probability given as follows:

P (s′, s, T ) = exp [
1

T
max (0, E(s′)− E(s))], (4.2)

where T ∈ R is the temperature to control how ‘bad’ moves are accepted. These probabilities

ultimately lead the system to move to states of lower energy.

4.2.3 Basis of Reinforcement Learning

Reinforcement learning learns the mapping from states to actions, so as to maximize a numerical

reward signal (Sutton and Barto, 2018). We use the agent-environment interface (Sutton and Barto,

2018) to describe it specifically: at each time step t, the agent receives state st that represents the
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current state of the environment, and on that basis selects an action at. One time step later, the

agent receives a numerical reward Rt+1 ∈ R, and finds itself in a new state st+1. This framework is

a considerable abstraction of the goal-directed learning problem from interaction.

S is a set of states to describe the environment;

A is a set of actions that the agent can take;

P is the transition probability between states under actions;

R is the immediate reward signal.

MDP is a discrete-time stochastic control process: at timestamp t, the agent is at a state st; then

the agent selects an action at ∈ A, and finds itself in a new state st+1, with an immediate reward

rt+1. By concatenating states, actions, and rewards of all time steps together, we obtain a sequence

called an episode: s0, a0, r1, s1, a1, · · · , which fully describes the trajectory of the agent.

The objective in MDP is to find a good policy π(s) to maximize the accumulative reward (return)

Gt =

∞∑
t

γtrt, (4.3)

where γ ∈ [0, 1] is the discount factor to penalize future rewards. We define the value of a state s

under policy π (denoted as Vπ(s)) as the expected return starting from that state. According to

Bellman Equation, the state value can be stated recursively:

Vπ(s) = E[Gt|St = s]

= R(s, π(s)) + γ
∑
s′

P (s, π(s), s′)Vπ(s
′).

(4.4)

Similarly, we define the expected return from taking an action a in state s under policy π as the

action value:

Qπ(s, a) = E[Gt|St = s, at = a]

= R(s, a) + γ
∑
s′

P (s, a, s′)Vπ(s
′)

= R(s, a) + γ
∑
s′

P (s, a, s′)Ea′∼πQπ(s
′, a′).

(4.5)
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4.2.4 Common Reinforcement Learning Approaches

Dynamic Programming

If the model is fully known (i.e., P and R of the MDP is known), and both the state space and action

space are finite, solutions to the MDP can be obtained through iterative policy improvement following

bellman equation. The generalized policy iteration (GPI) algorithm refers to the optimization process

consisting of iterative policy evaluation (through Equation (4.4)) and policy improvement by greedily

selecting the action with highest action value:

π′(s) = argmax
a

{
R(s, a) + γ

∑
s′

P (s, a, s′)Vπ(s
′)

}
. (4.6)

Through alternating policy evaluation and policy improvement,

π0
evaluate−−−−−→ Vπ0

improve−−−−−→ π1
evaluate−−−−−→ · · · improve−−−−−→ π∗ evaluate−−−−−→ V ∗,

the policy is guaranteed to be better:

Qπ(s, π
′(s))

=Qπ(s, argmax
a

{
R(s, a) + γ

∑
s′

P (s, a, s′)Vπ(s
′)

}
)

=max
a

Qπ(s, a) ≥ Qπ(s, π(s)).

(4.7)

Monte Carlo Methods

Monte Carlo methods rely on large amount of repeated random sampling to obtain statistical prop-

erties, which are broadly used in various optimization and simulation problems. Following the GPI

framework, policy evaluation can be substituted by Monte Carlo simulations, while policy improve-

ment remains the greedy behaviour.

Recall from Equation (4.4) that Vπ(s) = E[Gt|St = s], we can empirically estimate Gt through

sampling instead of exactly computing the expectation:

vπ(s) =

∑T
t=1 1[st = s]Gt∑T
t=1 1[st = s]

, (4.8)
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where 1[·] is the indicator function. Similarly we can estimate Qπ(s, a) as well:

qπ(s, a) =

∑T
t=1 1[st = s, at = 1]Gt∑T
t=1 1[st = s, at = a]

. (4.9)

With sufficiently amount of samples, the procedure is able to precisely estimate the values due to

the law of large numbers.

In Monte Carlo methods, state values and action values are estimated through raw experience

without knowing the model dynamics, which is often the case in reality. However, it is important

to note that Monte Carlo methods only work in episodic problems (finite episode length), otherwise

the return may not be correctly computed. In practice, the method is often regarded as sample

inefficient, in that it requires complete episodes to update estimates.

Temporal Difference Learning

Similar to Monte Carlo methods, temporal difference (TD) Learning is another model-free learning

algorithm that learns from raw experiences. The key difference between the two methods is that

TD is based on bootstrapping: the values are estimated with regard to other estimates, rather than

exclusively relying on actual rewards.

From bellman equation, we know that R(st, π(st)) + Vπ(st+1) is an unbiased estimation of state

value Vπ(st). This motivates the following update rule:

vπ(st) = vπ(st) + α(R(st, π(st)) + γvπ(st+1)− vπ(st)), (4.10)

where α is the step size (a.k.a. learning rate), and R(st, π(st)) + γvπ(st+1) is refereed to as the TD

target. Similarly, we can estimate Qπ(st, at) as well:

qπ(st, at) = qπ(st, at)

+ α(R(st, at) + γqπ(st+1, at+1)− qπ(st, at)).

(4.11)

The algorithm that uses Equation (4.11) to estimate action value in GPI is known as SARSA in the

literature.

A popular algorithm, Q-learning (Watkins and Dayan, 1992), is an off-policy variant of TD learn-

ing. In an off-policy algorithm, the policy that the agent follows to interact with the environment
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Table 4.1: Comparisons of value-based reinforcement learning algorithms. Methods differ in whether
it samples and whether it boostraps.

Method Sampling? Bootstrapping?

Dynamic Programming No Yes
Monte Carlo Method Yes No

Temporal Difference Learning Yes Yes
Brute-force No No

(behavior policy) is independent of the optimal policy that the agent aims to learn (target policy).

To see the difference, in SARSA (or Equation (4.11)), at+1 is selected following the target policy

π, which the algorithm is going to estimate. In Q-learning, however, the action is greedily selected,

despite the fact that the target policy π is actually not greedy:

qπ(st, at) = qπ(st, at)

+ α(R(st, at) + γmax
a

qπ(st+1, a)− qπ(st, at)).

(4.12)

It is interesting to note that taking max over all actions may overestimate the action values. Please

refer to (Sutton and Barto, 2018) for more discussions.

So far, we have introduced three value-based reinforcement learning approaches. As shown

in Table 4.1, we compare the three algorithms, together with brute-force, in terms of whether it

samples and whether it boostraps.

Policy Gradient

Instead of estimating state or action values and deciding policy according to the values, an alternative

approach is to directly search in the policy space. Suppose the policy is parameterized by θ, the

objective is still to maximize the accumulative reward:

J(θ) = E[Vθ(s0)]. (4.13)

As by Policy Gradient Theorem (Sutton et al., 2000), we have:

∇θJ(θ) = Eπθ
[Qπ(s, a)∇ lnπ(a|s; θ)]. (4.14)

The algorithm REINFORCE (Williams, 1992) can be regarded as the Monte Carlo policy gradi-
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ent. Recalling that Qπ(st, at) = E[Gt|st, at], REINFORCE estimates ∇θJ(θ) by Gt∇ lnπ(at|st; θ)

and updates the policy parameters by

θ = θ + αγtGt∇ lnπ(at|st; θ), (4.15)

for each t = 1, · · · , T in the episode.

Actor Critic

In vanilla policy gradient algorithms, the variance of the gradient could be large. To stabilize

the training, one idea is to utilize the value model to guide the policy search, namely the actor-

critic (Konda and Tsitsiklis, 2000) framework. In short, the critic is trained to predict the state or

action values using TD learning, and the actor is trained to select actions by policy gradient using

the predicted values.

4.2.5 State-of-the-art Reinforcement Learning Algorithms

A great many variants of the above basic reinforcement learning approaches have been proposed in

recent years. Common techniques include experience replay (Lin, 1992) and prioritized experience

replay (Schaul et al., 2016) to both break sample correlations and to improve sample efficiency,

multi-step learning (Sutton, 1988) to accelerate training, trust region optimization (Schulman et al.,

2015) to constrain step direction, and maximum entropy reinforcement learning (Ziebart, 2010) to

encourage exploration.

There is no silver bullet in reinforcement learning algorithm selection. However, the first thing

to consider is often in the action space. For discrete action space, one may consider deep Q-learning

(DQN) (Mnih et al., 2013) and its variants(e.g. rainbow (Hessel et al., 2018) that combines lots of

useful techniques), or advantage actor-critic (A2C) (Mnih et al., 2016) and its variants (e.g. actor-

critic with experience replay (ACER) (Wang et al., 2017)). For continuous action space, one popular

choice is soft actor-critic (SAC) (Haarnoja et al., 2018), and other alternatives include proximal

policy optimization (PPO) (Schulman et al., 2017) and Twin-delayed DDPG (TD3) (Fujimoto et al.,

2018). Among the above, A2C and PPO are on-policy algorithms while the rests are off-policy. In

summary, lots of the newly proposed algorithms aim to reduce variance to stabilize training.
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4.3 Algorithm

The purpose of this work is to acquire an effective local search heuristic, with which good floorplans

could be obtained through local search. In this section, we will first formulate the above problem as

a reinforcement learning problem, and then we discuss how to select features to represent the states,

and how to construct an agent that makes decision.

4.3.1 Local Search as a Reinforcement Learning Problem

We first formally define the MDP for our local search problem.

State Space As introduced in Section 4.2.2, a state s is a complete solution. Here a complete

solution includes both sequences Γ+,Γ−, as well as the orientation of each block.

Action Space Several perturbations are defined on a solution s to generate N (s). At each step, a

subset of neighbours s′ ⊂ N (s) are sampled, and the agent decides to accept one of the neighbours

or reject to move. Therefore, the action space size is the number of sampled neighbours plus one

(for the reject). We allow 6 types of perturbation on a solution:

1. Exchange two blocks in Γ+.

2. Exchange two blocks in Γ−.

3. Exchange two blocks in both Γ+ and Γ−.

4. Delete one block and insert back to a random position in both Γ+ and Γ−.

5. Rotate one block by 90◦.

6. Flip one block.

Transition The transition model of our MDP is deterministic, viz., no randomness is involved once

the state and the action are given. For this reason, we reload the transition model with signature

T : S ×A→ S. Hereafter, we use s′ ← T (s, a) to denote a state transition.
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Reward Assigning rewards to the actions is critical in reinforcement learning. Since the agent

seeks to maximize the total reward, the action of maximizing total rewards should be consistent with

the target of the problem. Basically, the rewards are assigned whenever a global better solution is

found. We use the reduction of energy (i.e., ∆E) as the reward, so that maximizing the total reward∑
∆E is equivalent to minimizing the cost. The reward is normalized to [0, 1] by comparing with

the energy of the initial state:

R =
∆E

baseline
. (4.16)

Intuitively, the reward encourages the design with lower cost, which aligns with our target of reducing

area and wirelength.

To accelerate training, we empirically add two adversarial rewards to discourage useless explo-

rations. First, if the agent decides to reject, while one of the sampled neighbour has lower energy

than the current state, a negative reward of −0.01 is given. In other words, the agent is always

encouraged to move to a neighbor state with lower energy. Second, if the agent accepts a state,

whose energy is higher than 1.2 times of the lowest energy neighbor, a negative reward of −0.01 is

given. This is to discourage the agent to search a high energy region that can hardly contain a good

solution.

4.3.2 Features

As mentioned above, neighbour solutions are sampled from all the 6 types of perturbation. To help

the agent make better decisions, providing helpful features to guide the local search is critical. Here

three sets of features are included:

• Energy: The central goal of the local search is to find a state with minimal energy, which is

defined as the negative cost given by Equation (4.1) after packing all the blocks. In simulated

annealing, accepting or rejecting a move is based on current state energy E(s) and the neighbor

state energy E(s′). Besides that, we provide a set of other energy-related statistical information,

including the lowest and average energy through the search path (E(s∗) and E), the average

energy on the search path since the lowest energy state (E∗), and the lowest energy among the

sampled neighbors (E ′∗).
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Table 4.2: Features for decision making. All the items are normalized to [−1, 1] or [0, 1].

Index Item Range Description

0 E(s) [-1, 1] Current energy
1 E(s′) [-1, 1] Neighbor energy
2 E(s∗) [-1, 1] Lowest energy so far
3 E [-1, 1] Average energy
4 E∗ [-1, 1] Average energy since s∗

5 E ′∗ [-1, 1] Lowest energy of sampled neighbours
6 Area(bi) [0, 1] Size of the perturbed block
7 aff [0, 1] Number of effected blocks
8 t [0, 1] Search progress

• Effect: How does a move affect the whole floorplan solution? We identify the effect by both

the size of the perturbed block(s), as well as the number of blocks that are affected. A block is

considered affected if and only if the location of the block is related to the perturbed block(s).

For example, if we rotate one block, those blocks above or on the right of this block will be

affected. Other situations are also analyzed according to the packing of sequence pair.

• Progress: Intuitively, the search progress has a similar role to the temperature scheduling.

Therefore we included the search progress as a feature. Although we also included an early-stop

mechanism, the progress of early-stopping is not visible to the agent because it is considered

irrelevant to the local search.

We list in Table 4.2 the detailed features, which we concatenate into a vector to feed the agent. Note

that all the features are normalized for easier training. For this purpose, we denote the energy of

the initial state as e0, and normalize all the energy related entries by min (1, E/e0 − 1).

In practice, we realize that including noisy features does harm to, or at least slows down training.

For example, we tried to include an indicator to tag the perturbation type, which turns out to be a

noise as an input feature.

4.3.3 Neural Network as the Agent

Recall that the policy π of an agent is a mapping from the state space to the action space. A

straightforward way to construct such a policy is to store the best action of each possible state.

However, a quick estimation shows that for n blocks, there are totally (n!)2×8n different states (two
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permutation and rotation/flip of the blocks), which makes the tabular method infeasible. Therefore,

we utilize a neural network as the policy approximator. Since the input features are concatenated

into an 1D vector, a simple multi-layer perceptron (MLP) should be good in our case, where the

input dimension equals to the feature dimension, and the output dimension is always 1 for the value

prediction. A ReLU layer is inserted after all but the last layers as the activation. The neural

network is trained with back-propagation, as will be illustrated in detail in Section 4.4.

4.4 Training

4.4.1 Dealing with Large Action Spaces

Reasoning in an environment with a large number of possible discrete actions is always challenging,

as exploring a large action space will be unstable and inefficient, and thus requires much more

training efforts. As concrete examples, there will be totally 16575 possible actions in each state

for a floorplan problem on 25 blocks, and 1015050 actions for 100 blocks. Prior work proposed

several strategies to improve learning in large action spaces. Factorizing the action space into binary

subspaces (Pazis and Parr, 2011) is natural for the cases with many action variables or with a finely

discretized continuous action space. However the method requires a fixed size action space, while

our action space size is a polynomial of the size of the problem. Other paper suggested embedding

the discrete actions into a continuous space (Dulac-Arnold et al., 2015) and eliminating actions with

an extra training signal (Zahavy et al., 2018), both of which aim to prune irrelevant solutions to

improve the speed and the quality of training. Despite of that, evaluating an action is extremely

costly in our local search formulation, since both the energy of a state and the estimated value of

the action need to be calculated, making the above solutions still intractable. Inevitably, we have

to sample actions during both training and testing.

4.4.2 Deep Q-Learning

We use deep Q-learning (Mnih et al., 2013) (DQN) to estimate the value of each move. Following the

common practice, we define the value q of taking action a at state s under policy π as the expected
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return starting from that state:

qπ(s, a) := Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣St = s,At = a

]
, (4.17)

where t is the timestamp and γ is the discounting factor. The optimal action value is therefore given

by q∗(s, a) := maxπ q(s, a). As discussed in 4.3.3, we use a neural network to approximate the action

value, Q(s, a; θ) ≈ q∗(s, a). The loss function is defined according to the bellman equation:

L(θi) = Es,a∼ρ(·)
[
(yi −Q(s, a; θi))

2
]

= E(·)

[(
r + γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

)2
]
,

(4.18)

where ρ(·) is the behaviour distribution over s and a, and yi is called the target of the update. Then

we can update the model through back-propogating the loss with respect to the weights (∇θiL(θi)).

DQN is considered as off-policy because it estimates the greedy policy (maxa(Q(s, a; θ)), while

samples the state space following a behaviour policy. The overall algorithm is listed as Algorithm 1.

We select to use an off-policy algorithm for the following reasons:

1. A local search episode is typically very long (e.g. 10k steps). The consecutive moves are

highly correlated, which does harm to training. Instead, in an off-policy algorithm we sample

experiences from the replay memory to break the strong correlations and thus reduce the

variance.

2. Sampling is not free. Packing and calculating wirelength is somehow time-consuming compared

to running a model. With the replay memory, each data sample is potentially used many times

in training, which increase data efficiency.

3. Exploration is necessary. If we learn online a greedy policy that picks the action with the

largest expected return, then we always select the same action during training. An off-policy

algorithm naturally decouples sampling behaviour and the learnt policy, allowing more random

exploration in training while still being greedy in testing.
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Algorithm 1 DQN for Floorplan Local Search

1: function Train()
2: Initialize replay memory D;
3: Initialize Q with random weights;
4: Initialize ϵ;
5: for episode ← 1, . . . ,M do
6: Reset s← s1;
7: for t← 1, . . . , T do
8: if ϵ > u ∼ U(0, 1) then
9: Sample a random action at;

10: else
11: Select at ← maxa Q(st, at; θ);
12: end if
13: st+1 ← T (at, st);
14: Save experience (st, at, rt+1, st+1) to D;
15: UpdateModel();
16: Update ϵ;
17: end for
18: end for
19: end function

20: procedure UpdateModel()
21: Sample a batch of (sj , aj , rj+1, sj+1) from D;
22: if sj+1 is a terminal state then
23: yj ← rj+1;
24: else
25: yj ← rj+1 + γmaxa′ Q(sj+1, a

′; θ);
26: end if
27: Calculate L← (yj −Q(sj , aj ; θ))

2
;

28: Update θ with back-propagation;
29: end procedure
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4.4.3 Convergence Analysis

With the MDP defined (S,A, T,R) in Section 4.3, the Q-learning algorithm is given by the iteration

rule

Qt+1(st, at)←− Qt(st, at)

+ α(st, at)

[
rt + γmax

b∈At

Qt(st+1, b)−Qt(st, at)

]
,

(4.19)

where At is a subset of the original action space A after random sampling, γ < 1. Considering that

the action space A is extremely large and intractable for efficient training, intuitively we randomly

sample the action space in each iteration.

Obviously, maxb∈At
Qt(st+1, b) ≤ maxb∈A Qt(st+1, b), and thus iteration rule (4.19) will not

return us the same Q-function if the action space differs, even if it converges. We will prove that

the random iterative process (4.19) converges to a Q-function which is different from the optimal

one Q∗.

Theorem 4. Given the MDP defined (S,A, T,R) in Section 4.3, the iteration rule (4.19) converges

with probability 1, as long as constraints

∑
t

αt(s, a) =∞
∑
t

α2
t (s, a) <∞ (4.20)

are satisfied for all (s, a) ∈ S ×A.

To establish this theorem some mathematical results from stochastic approximation are required.

The following theorem is much more powerful and general than Theorem 4. We present it as a lemma

and the proof can be found in (Jaakkola et al., 1994).

Theorem 5. The random process ∆t+1(x) = (1− αt(x))∆t(x) + βt(x)Ft(x) converges to zero with

probability 1 (w.p.1) under the following assumptions:

1. The state space is finite.

2. The following constraints are satisfied.∑
t

αt(x) =∞
∑
t

α2
t (x) <∞∑

t

βt(x) =∞
∑
t

β2
t (x) <∞

(4.21)

70



and E[βt(x)|Pt] ≤ E[αt(x)|Pt] uniformly w.p.1.

3. ∥E[Ft(x)|Pt]∥W < γ ∥∆t∥W , where γ ∈ (0, 1).

4. Var[Ft(x)|Pt] ≤ C(1 + ∥∆t∥W )2, where C is a constant.

Here Pt = {∆t,∆t−1, · · · , Ft−1, · · · , αt−1, · · · , βt−1, · · · } stands for the past at step t. Ft(x), αt(x)

and β(x) are allowed to depend on the past insofar as the above conditions remain valid. The notation

∥·∥W refers to some weighted maximum norm.

The full proof of Theorem 5 is complicated and out of the scope of this thesis. With the help of

Theorem 5, we are able to prove Theorem 4.

4.5 Experimental Results and Discussions

4.5.1 Setup

We implemented the proposed solution in python, while trained the neural model with PyTorch (Paszke

et al., 2017). We use Adam (Kingma and Ba, 2015) as the optimizer with an initial learning rate of

5 ∗ 10−4.

To encourage exploration, the exploration factor ϵ is initially set to be 1. Then it is linearly

annealed to 0.1 in the first 15000 steps and fixed afterwards. We use a replay memory of size 20000

that stores the most recent experiences. During training, a batch of 128 experiences are sampled

from the replay memory. The discount factor is set to be 0.995. To stabilize training, we fix the

target network and synchronize the trained policy network to it every 10 episodes.

4.5.2 Data Generation

Random netlists are generated as training samples. Due to the great difference in problem sizes,

we train two models, one of which (the lite one) is for MCNC and the other (the large one) is for

GSRC benchmarks. Each netlist for training the lite model consists of 50 blocks with integer width

and height in the range of [10, 100]. Each block has 3 pins at random locations, and 50 signals are

randomly generated, each of which connects 3 random pins. The large network is trained with netist

consisting of 250 blocks, 10 pins for each block, and 250 signals. The rest settings are the same.
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Table 4.3: Area Minimization on MCNC Benchmark. Our results are directly from minimizing area
and wirelength together, while the two other columns are area minimization only. Better results are
emphasized in bold.

Circuit # modules
Area (×105)

Ours SA FAST-SP (Tang and Wong, 2001)

apte 9 47.08 47.08 46.92

xerox 10 20.42 20.31 19.80

hp 11 9.21 9.26 8.95

ami33 33 1.24 1.22 1.21

ami49 49 38.65 38.10 36.50

4.5.3 Baseline Tuning

Parameters of simulated annealing greatly affect the performance of the algorithm. For example,

a low initial temperature may have the search stuck at a poor local minima, while an over-high

temperature just accepts all the moves, walking in the search space in vain. Therefore, we first ran

a batch of experiments to tune the parameters of simulated annealing, as listed in Table 4.4. Best

obtained result for each case appears in different settings, while in general higher initial temperature

and higher number of inner loops yield better results, which is intuitively very reasonable. To this

regard, we will use setting 8 in subsequent experiments, where the initial temperature is set to be

107, end temperature to be 10−10, inner loop of 200, and an exponential cooling factor of 0.97.

4.5.4 MCNC Benchmark

We tested our agent on the MCNC netlist (Yang, 1991) benchmark.

Area Minimization

We first investigate the problem of area minimization. Since we trained our model on area and

wirelength minimization, we directly use the area of the resulted solution to compare. We compare

the results of our agent and Simulated Annealing (SA). The results are listed in Table 4.3.
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Table 4.4: Tuning Simulated Annealing parameters, including initial temperature, end temperature,
number of inner loop, and cooling schedule. Best result (in bold) for each case is obtained in different
settings.

Setting
Parameters Area (mm2)

Init T End T Inner loop Cooling apte xerox hp ami33 ami49

1 106 10−10 50 0.97 48.28 21.77 9.72 1.24 38.87

2 107 10−10 25 0.97 47.08 20.54 9.38 1.31 39.65

3 107 10−10 50 0.95 47.56 20.40 9.63 1.30 39.29

4 107 10−9 50 0.97 47.56 20.36 9.33 1.26 40.84

5 107 10−10 50 0.97 47.56 20.36 9.33 1.25 40.84

6 107 10−11 50 0.97 47.56 20.36 9.33 1.25 40.70

7 107 10−10 100 0.97 48.71 21.10 9.21 1.20 38.38

8 107 10−10 200 0.97 47.08 20.31 9.26 1.22 38.10

9 108 10−10 50 0.97 47.52 21.23 9.17 1.28 38.72

Area and Wirelength Minimization

Then we switch to the problem of minimizing both area and wirelength. The multi-objectives

actually make the problem much more difficult. In area minimization, it is often the case that

we switch two internal blocks and the area does not change at all. With wirelength minimization,

however, a bad swap may greatly increase the wirelength, and thus the overall cost. To verify this

idea, we invested a random state in ami33 and the distribution of the neighbor solution are shown

in Figure 4.2.
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Figure 4.2: Neighbor solution distribution for (a) area minimization; (b) wirelength minimization;
(c) area and wirelength minimization.

Table 4.5 shows the results for area and wirelength minimization. Our agent outperforms the

73



Table 4.5: Area and Wirelength Minimization on MCNC Benchmark. Better results are emphasized
in bold.

Circuit
Statistics Area (×106) Wirelength (×105) Cost (×106) Runtime (s)

module # net # Ours SA Ours SA Ours SA Ours SA

apte 9 97 47.08 47.31 4.03 3.43 28.41 28.53 15.9 38.1

xerox 10 203 20.42 20.64 6.33 6.62 12.51 12.65 17.2 98.8

hp 11 83 9.21 9.40 1.95 2.62 5.60 5.74 11.6 44.3

ami33 33 123 1.24 1.25 0.69 0.46 0.77 0.77 43.1 82.2

ami49 49 408 38.65 39.47 17.24 12.31 23.88 24.18 66.8 165.0

simulated annealing algorithm in all the 5 cases.

Table 4.6: Area and Wirelength Minimization on GSRC Benchmark. Better results are emphasized
in bold.

Circuit
Statistics Area (×105) Wirelength (×105) Cost (×105) Runtime (s)

module # net # Ours SA Ours SA Ours SA Ours SA

n100 100 576 1.95 1.97 1.55 1.54 1.79 1.80 389.4 396.2

n200 200 1274 2.15 2.01 3.48 3.34 2.68 2.54 784.9 1101.9

n300 300 1632 3.40 3.29 5.25 5.44 4.14 4.15 3766.9 2062.3

4.5.5 GSRC Benchmark

We further conducted experiments on the GSRC benchmark (Caldwell et al., 2002) with larger

instances of hundreds of blocks. We tested area and interconnect optimization and listed the results

in Table 4.6. Due to the long runtime of the instances, we carefully tune the early-stop criteria on

both simulated annealing and our agent. In simulated annealing, the search will finish if no move

was accepted in the last 20 temperatures. In our agent, the search will finish if no better solution

was found in the last 100 steps.
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4.5.6 Result Visualizations and Discussions

Search Progress Visualization

We recorded the search progress of Simulate Annealing and our agent, and visualized them in

Figure 4.3. From the figure, we observe that Simulated Annealing explores the action space during

searching while our agent searches much smoother. We believe this is because our agent acquires a

rather greedy and deterministic heuristic.
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Figure 4.3: Search progress visualizations on the n300 netlist of GSRC benchmark: (a) Simulated
Annealing; (b) Our Agent. Our agent searches in a smoother way, indicating a more greedy and
deterministic heuristic.

Floorplan Visualization

We visualized the floorplans generated by Simulated Annealing and our agent on the n100 netlist of

GSRC Benchmark in Figure 4.4. The dead space of floorplan by our agent is only 7.95% compared

to 8.88% dead space by Simulated Annealing.
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(a) (b)

Figure 4.4: Floorplan visualizations of the n100 netlist of GSRC benchmark: (a) n100 floorplan by
simulated annealing; (b) n100 floorplan by our agent. The dead space of the floorplan by our agent
is lower (7.95%) compared to that (8.88%) by Simulated Annealing.

Runtime Profiling

Where is the runtime spent? Instead of roughly showing a total runtime, we profiled both our

agent and the simulated annealing algorithm to make better comparisons. Profiling results are in

Figure 4.5. According to the profiling, more than half of the runtime (63.1% and 52.3%, respectively)

63.1%

26.1%
2.1%

8.7%

WL Calculation

Packing

Random Sampling

The rest

52.3%

23.0%

1.2%6.9%

9.7%

6.9%

WL Calculation

Packing

Random Sampling

Data Transfer

Action Generation

GPU and the Rest

Figure 4.5: Runtime profiling of the Simulated Annealing algorithm (left) and our agent (right).
Most of the runtime (89.2% and 75.3%, respectively) is spent on solution evaluation (wirelength
calculation and packing).

are spent on wirelength calculation. Packing is the second largest consumer (26.1% and 23.0%),

and in other words solution evaluation takes most (89.2% and 75.3%, respectively) of the runtime.

Random sampling only takes a little portion of time (2.1% and 1.2%).
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4.6 Summary

In this chapter, we investigated the possibility of leveraging reinforcement learning to acquire a

floorplanner. The key motivation of our work is to ‘learn’ new algorithms for difficult combinatorial

problems without human expert knowledge. Specifically, we explored the possibility of acquiring

local search heuristics through numerous search experiments. To illustrate the applicability, an

agent has been trained to perform a walk in the search space by selecting a candidate neighbor

solution at each step. We trained the agent using a novel deep Q-learning algorithm with action

sampling, and the experimental results have demonstrated the effectiveness of our proposed methods.

This work represents the first systematic attempt on leveraging the idea of reinforcement learning

to floorplanning.
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Chapter 5

Physical Design Optimization for

Neural Network Processors

5.1 Introduction

Deep learning has emerged as one of the most important workloads due to its extraordinary per-

formance gains in a number of disciplines. Despite of that, how to efficiently execute deep neural

network (DNN) models remains a crucial concern since the beginning of deep learning resurgence.

Exacerbating the problem is the progressively sophisticated network architectures, as well as the

irregularity due to network pruning and compression, which unarguably impedes the deployment

of modern DNNs onto devices. The above challenge intrinsically highlights the demand for cus-

tomized physical synthesis methodologies, since the quality of physical synthesis directly determine

the performance of neural network processors.

As neural network processors getting increasingly hierarchical and structural, dataflow optimiza-

tion becomes essential to boost the system capabilities. Dataflow optimization schedules operation

by data availability, which exposes opportunity for parallelism and data reuse. To illustrate some

achievements in dataflow optimization, Zhang et al. (2015) quantitatively analyze the computing

throughput and required memory bandwidth using various conventional optimization techniques,
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such as loop tiling and transformation, and then apply roofline model to balance the resource; Al-

wani et al. (2016) fuse the processing of adjacent convolutional layers with the data on-chip and use

a pyramid-shaped multi-layer sliding window to minimize off-chip transfer; Ma et al. (2017) present

an in-depth analysis of convolution loop acceleration strategy by numerically characterizing the loop

optimization techniques and then use multiple optimization algorithms to optimize the loop opera-

tion and the dataflow. Zhang et al. (2018) propose a fine-grained layer-based pipeline architecture

and a column-based cache scheme for higher throughput, lower pipeline latency, and smaller on-chip

memory consumption; Wei et al. (2017) provide an analytical model for performance and resource

utilization and develop an automatic design space exploration framework to generate a convolutional

neural network (CNN) implementation using systolic arrays. Sun et al. (2019) improve the power

performance by combining layer fusion and dataflow optimization techniques.

In addition to optimizing the dataflow itself, dataflow regularity also give rise to new method-

ologies in physical synthesis, the critical stage in modern very-large-scale integrated (VLSI) circuit

design flow. In VLSI design, datapaths are characterised by high degree of bit-wise parallelism,

which are placed with high regularity and compactness to achieve high performance (Wang and

Shin, 2017). In this sense, datapath-driven placement approaches have been attracting researchers’

attention.

5.2 Preliminaries

5.2.1 Neural Network Processor

In deep neural networks, executing inference such as convolution performs a very large amount of

multiply-accumulate (MAC) operations, since a single convolution comprises of iterating over every

channel and every pixel for each given input, typically with billions or even trillions of iterations.

Besides, the model itself must be executed once for each new input.

While central processing units (CPUs) are effective at processing highly serialized instruction

streams, machine learning workloads tend to be highly parallelizable, which is a good fit for graphics

processing units (GPUs). Moreover, neural processing units (NPUs) benefit from vastly simpler logic

because their workloads tend to exhibit high regularity in the computational patterns of deep neural
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networks. For the above reasons, many customized dedicated neural processors have been developed.

An NPU is a well-partitioned circuit that includes all the control and arithmetic logic components

necessary to execute machine learning algorithms. NPUs are designed to accelerate the performance

of common machine learning tasks such as image classification, machine translation, object detection,

and various other predictive models. NPUs might be parts of a large SoC, a plurality of NPUs may

be instantiated on a single chip, or they may be part of a dedicated neural-network accelerator.

5.2.2 Physical Design Flow

Physical design is based on a netlist synthesized from an RTL design to a gate-level description.

Generally, the physical design flow is divided into several steps: floorplanning, partitioning, place-

ment, clock-tree synthesis, routing, physical verification, and layout post-processing with mask data

generation. Floorplanning, placement, and routing are the most essential steps in physical design.

Floorplanning determines geometric relations between modules to optimize some objectives such

as area, wirelength, and some desired performance. A bad floorplan leads to wastage of die area

and routing congestion. As for the circuit performance, lower area is usually desired, as it indicates

shorter interconnect distances, fewer routing resources used, faster end-to-end signal paths, and

even faster and more consistent place and route time. However, routing may be more difficult with

fewer assigned routing resources. In general, floorplanning benefits from hierarchy information like

datapaths.

Placement is another crucial stage in physical design. A poor placement not only affects the chip

performance but also makes it non-manufacturable with an excessive wirelength beyond available

routing resources. Therefore, placement always processes with several objectives to ensure that

a circuit meets its performance demands. Routing builds on placement and it assigns wires to

properly connect the placed components under all design rules for the integrated circuits. Together,

the placement and routing steps of integrated circuits design are known as place and route (PnR).
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5.3 Problem Formulation

In the rest of the chapter, we focus on a wafer-scale deep learning accelerator placement problem

introduced in ISPD2020 contest (James et al., 2020) as a case study. We argue that the problem is

more like a typical floorplanning problem, in which there are tens or hundreds of macro blocks, and

the block shapes are flexible (we actually need to determine the shapes in the solution). Therefore,

the contest has put forward a floorplanning problem for neural network optimization on a wafer-

scale computing engine. Considering that neural networks are a stack of single layers where each

performs a single function, naturally an AI compiler decomposes such neural network computation

into a stack of single units called kernels. To solve this floorplanning problem, we are required to

assign each compute kernel a two-dimensional position on the wafer without overlap and utilize

computing resources as much as possible.

5.3.1 Kernel Description

Formally, a kernel is a parametric program that performs specific tensor operations. For instance, a

convolution kernel performs several kinds of convolution operations. To better describe how a kernel

is customized on the wafer, its arguments are classified into two main groups. Formal arguments

specify the exact shapes of tensor operations to be performed. They are uniquely determined by the

network architecture, so we consider them to be fixed in our optimization. Execution arguments de-

scribe how the operation is parallelized across tiles. We are required to find the optimal combination

of execution arguments to obtain a maximum utilization of computation resources.

Still, we take a convolution kernel as an example. A normal convolution kernel contains 8 formal

arguments, represented by a tuple (H,W,R, S,C,K, T, U). In detail, (H,W ) specify the height and

width of input image respectively; (C,K) represent the number of channels of input and output

image; (R,S) describe the kernel size in two dimensions; and (T,U), similarly, are strides in two

dimensions, respectively. They are fixed arguments or intrinsic attributes of a convolution kernel.

On the other hand, four execution arguments (h′, w′, c′, k′) are free to be specified to maximize

resource utilization.
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5.3.2 Evaluation

Since we are provided with different types of kernels, each type of kernels have a function to evaluate

performance. The performance of a convolution kernel is evaluated by a 4-tuple (h,w, t,m) called

performance cuboid, where h,w, t,m represent height, width, time and memory this kernel requires,

respectively.

The ISPD2020 contest benchmarks provide two main categories of kernels, convolution kernels

and block kernels. The performance evaluator of a convolution kernel K (denoted type conv here-

after) with formal arguments µK = (H,W,R, S,C,K, T, U) is defined as a function convperf that

maps execution arguments xK = (h′, w′, c′, k′) to a resource cuboid rK = (h,w, t,m), where

h = h′w′(c′ + 1), w = 3k′,

t =

⌈
H

h′

⌉
·
⌈
W

w′

⌉
·
⌈
C

c′

⌉
·
⌈
K

k′

⌉
· RS

T 2
,

m = RS
C

c′
K

k′
+

W + S − 1

w′
H +R− 1

h′
K

k′
.

(5.1)

Notation ⌈·⌉ represents math ceil function. Each of block kernel consists of several conv kernels.

For example, a block kernel K, with formal arguments µK = (H,W,F ) and execution arguments

xK = (h′, w′, c′1, · · · , c′n, k′1, · · · , k′n), comprises of n conv kernels Ki(i = 1, · · · , n). Specifically, a

convolution kernelKi contains xKi = (h′, w′, c′i, k
′
i) as its execution arguments. The formal argument

tuple µKi
of conv kernel Ki is determined by µK = (H,W,F ) and specific attributes of the current

block type in detail. The ISPD2020 contest benchmarks provide us with two types of block kernels,

dblock and cblock.

• dblock. A dblock kernel consists of 3 different conv kernelsK1,K2,K3. Corresponding formal

arguments are

µK1 = (H,W, 1, 1, F, F/4, 1, 1),

µK2 = (H,W, 3, 3, F/4, F/4, 1, 1),

µK3 = (H,W, 1, 1, F/4, F, 1, 1).

• cblock. A cblock kernel consists of 4 different conv kernels K1,K2,K3,K4. Similarly the
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corresponding formal arguments are

µK1
= ( H, W, 1, 1, F/2, F/4, 1, 1),

µK2
= ( H, W, 3, 3, F/4, F/4, 2, 2),

µK3 = (H/2,W/2, 1, 1, F/4, F, 1, 1),

µK4 = ( H, W, 1, 1, F/2, F, 2, 2).

Formal arguments of each component conv kernel are uniquely determined by µK = (H,W,F ).

Similar to the performance evaluator of conv kernels, the performance of a block kernel K consisting

of n different conv kernels Ki(i = 1, · · · , n) can be evaluated by

blockperf(µK ;xK) = rK = (h,w, t,m), (5.2)

where components of 4-tuple rK is formulated as

h = max
1≤i≤n

hi, w =

n∑
i=1

wi,

t = max
1≤i≤n

ti, m = max
1≤i≤n

mi;

(5.3)

(hi, wi, ti,mi) := convperf(µKi
;xKi

). (5.4)

To formulate the optimization problem, objective and constraints must be reasonably specified.

Suppose that we are provided with kernel library K = {K1,K2, · · · ,Kn}, where Ki is a kernel of

type conv, dblock or cblock. A floorplan solution assigns location vectors x,y to these kernels.

Then our final objective function contains three parts:

• Maximum execution time of any placed kernel. Since any kernel K in the kernel library K

will be evaluated and return a resource cuboid rK containing execution time tK , this term is

normally formulated as max1≤i≤n tKi .

• Total L1 wirelength. It is determined by a floorplan x,y of kernels K. We formulate total

wirelength as such a function W (x,y) of location vectors.

• Protocol differences P between connected kernels.

Suppose that there is a directed edge from kernel K1 to kernel K2, whose execution arguments are
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represented by

xK1 = (h′(1), w′(1), c′(1)1 , · · · , c′(1)m , k
′(1)
1 , · · · , k′(1)m ),

xK2
= (h′(2), w′(2), c′(2)1 , · · · , c′(2)n , k

′(2)
1 , · · · , k′(2)n ).

Note that when m or n is exactly 1, the kernel type is conv. Then the protocol number of this edge

is defined as

P = 3− δh′(1),h′(2) − δw′(1),w′(2) − δp(1),p(2) , (5.5)

where p1 = min{c′(1)m , k
′(1)
m }, p2 = min{c′(2)1 , k

′(2)
1 } are split numbers in two dimensions, and δij is

Kronecker delta which takes value 1 if the two subscripts are equal and 0 otherwise. The protocol

number is uniquely determined by the kernel graph G.

The objective we are about to optimize is the weighted sum of the three parts mentioned above.

J = max
1≤i≤n

tKi
+ λ1W (x,y) + λ2P (G), (5.6)

where λ1 and λ2 are hyper-parameters provided by benchmarks. J should be optimized under

specific constraints, 1) all kernels must fit within the fabric area; and 2) kernels must not overlap.

The constraints are straight-forward for industrial practitioners to follow. They are discrete enough

to make our optimization problem difficult to solve.

5.4 Algorithm

Considering that a neural network usually is a stack of layers, we can extract a clear datapath to

describe how data is processed during a forward pass. That inspires us that it is possible to arrange

the floorplan according to the datapath, since we have great flexibility to control the shape of each

module.

5.4.1 One-Row Floorplan

Many cases in ISPD2020 contest benchmarks are a chain-like connection of kernels. Intuitively, if

the total number of kernels is not very large, we can always place them horizontally one by one

following the dataflow order, shown in Figure 5.1a.

Take a look at the performance function of a conv kernel. If we ignore the math ceil function,
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(a) (b)

Figure 5.1: (a) One-row floorplan; (b) Multi-row Mamba floorplan.

it can be easily derived that execution time t is inversely proportional to kernel area, approximately.

However, three unroll factors h′, w′, k′ are capable of affecting the value of height h, while w is only

affected by c′. Therefore, it is more reasonable to pinch each module to a thin and tall one, so that

the height can shoulder more unrolling burden.

This one-row strategy should work pretty fine especially when the weight of wirelength λ1 is

significantly considerable, since the total Manhattan distance between connected kernels could be

tremendously optimized to an observable value.

5.4.2 Mamba Floorplan

Unfortunately, the one-row floorplan described in the subsection 5.4.1 does not always work. In fact,

in most of large cases it will definitely fail, considering that the width allowed for floorplan is at

most 633 while the minimum width of a block is at least 3. Then it is natural to extend our solution

to multi-row floorplan. Specifically, to reduce the total wirelength, it should be better to connect

the rows head-to-head and tail-to-tail, and thus we call such floorplan strategy Mamba floorplan,

illustrated in Figure 5.1b.

5.4.3 Floorplan Compacting

From Figure 5.1b we observe that our mamba floorplan strategy can be further compressed. Once

the total width of kernels placed in a row is not strictly equal to the maximum wirelength, we can
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(a) (b)

Figure 5.2: (a) Mamba floorplan; (b) Horizontally compacted Mamba floorplan.

always slide them horizontally preserving the kernel order. Figure 5.2 illustrates our compacting

strategy. In Figure 5.2a, the blue and orange colored regions are the first and second row respectively,

and the black lines connecting five kernels indicate the datapath.

We observe that neither the two kernels in the first row nor the three kernels in the second row

are able to fill the width of corresponding row without any gap. Therefore we can horizontally

move kernels preserving order to further reduce the total wirelength, shown in Figure 5.2b. The

abstracted wire connecting the two rightmost kernels are strictly vertical so that the total wirelength

is guaranteed to be less than that in Figure 5.2a.

In general cases where we apply multi-row mamba floorplan, the total number of rows might be

larger. Therefore our row-shift will be much more complicated. Assume that we have n rows in

total. For the i-th row, we have three variables ai, bi, ri determining its characteristics, where ai is

the center horizontal coordinates of the leftmost kernel, bi is the center horizontal coordinates of the

rightmost kernel, and ri is the total width of all consecutive kernels placed in this row. The goal of

compacting is to find x1, · · · , xn where xi represents the distance between the left boundary of region
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and the leftmost kernel of the i-th row. This problem can be formulated as a linear programming.

min

n−1∑
i=1

|xi − xi+1 + ti|

s.t. xi + ri ≤ w, i = 1, · · · , n,

xi ≥ 0, i = 1, · · · , n,

t2i = a2i − a2i+1, i = 1, · · · ,
⌊
n− 1

2

⌋
,

t2i−1 = b2i−1 − b2i, i = 1, · · · ,
⌊n
2

⌋
,

(5.7)

where w represents the total width of the floorplan region. Any solver aiming at solving linear

programming can be applied to Problem (5.7). Empirically the total number of rows is always a

small number (less than 6) to make the solving efficient.

5.4.4 Execution Arguments Selection

We have already determined the floorplan strategy, so the only thing left is to decide the execution

arguments of the kernels. Generally, execution arguments of kernels are not independent to each

other, however, we tend to consider them separately to reduce the computational complexity.

For a conv kernel, we simply perform a grid search in all possible combinations of h′, w′, c′, k′.

Note that lots of solutions can be trivially pruned. For example, c′ = ⌈C/2⌉ and c′ = C − 1 yield

the same unroll strategy on C because
⌈

C
⌈C/2⌉

⌉
=

⌈
C

C−1

⌉
, while the latter one consumes far more

processing tiles when C is large. Specifically, we have the following results.

Lemma 2. For a positive integer N , there are
⌊√

N
⌋
different integer pairs (x,

⌈
N
x

⌉
) such that

1 ≤ x ≤
⌈
N
x

⌉
and

⌈
N
x

⌉
≥ 1.

Theorem 6. For any positive integer N , there are at most 2
⌊√

N
⌋
different integer pairs (x,

⌈
N
x

⌉
)

such that x ≥ 1 and
⌈
N
x

⌉
≥ 1.

Proof. From Lemma 2 we know that (1, ⌈N⌉), (2, ⌈N/2⌉), · · · ,
(⌈√

N
⌉
,
⌈
N/

⌈√
N
⌉⌉)

are legal

pairs. Take arbitrary positive x ≤ N , and let y = ⌈N/x⌉. It is obvious that x = ⌈N/y⌉ is also true.

Therefore, if (x, y) is a legal pair such that x > y according to theorem description, then (y, x) is
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also legal and thus y ∈ {1, · · · ,
⌈√

N
⌉
}. If N is a square number, (

√
N,
√
N) is legal, then the total

number is 2
⌊√

N
⌋
− 1, otherwise it is 2

⌊√
N
⌋
.

Theorem 6 indicates that, we only need to perform a grid search inO(
√
HWCK) time complexity,

providing that if ⌈H/h′
1⌉ = ⌈H/h′

2⌉ we always prefer the smaller one min{h′
1, h

′
2} to make the conv

kernel compact.

For a dblock or cblock kernel, we balance the heights of its internal conv kernels first, otherwise

the resulted empty space due to the height difference will be wasted. Take a dblock kernel as an

example. It has three conv kernels Ki(i = 1, 2, 3) with execution arguments xKi
= (h′, w′, c′i, k

′
i).

To balance the height of kernels we have c′1 = c′2 = c′3. Similarly, to balance the runtime we have

k′1 : k′2 : k′3 = 4 : 9 : 4, based on the following results.

Theorem 7. For a dblock or cblock kernel K, its execution arguments (h′, w′, c′1, · · · , c′n, k′1, · · · , k′n)

is no better than the modified one (h′, w′, c′, · · · , c′, k′1, · · · , k′n) where c = maxi{c′i} with respect to

height, width, time and memory.

Proof. The proof is straight-forward, since runtime t and memory m is non-increasing with re-

spect to c′, and width w is irrelevant to c′. Height is the maximum of three conv kernels, from

maxi∈{1,··· ,n}{h′w′(c′i+1)} = h′w′(c′+1), we know that the height to this dblock remains unchanged.

Therefore the performance of execution arguments (h′, w′, c′, · · · , c′, k′1, · · · , k′n) is no worse than the

original one. It applies to the dblock kernel when n = 3, and cblock kernel when n = 4.

The result related to k′ is not easy to derive because of the ceil functions. From the argu-

ment selecting strategy for conv kernel we tend to select those numbers that roughtly divide the

corresponding formal arguments as execution arguments, e.g. h′ such that H/h′ is close to ⌈H/h′⌉.

Therefore, it should be reasonable to approximate ⌈H/h′⌉ by H/h′. We define the approximated

runtime t̃ of a conv kernel K with formal arguments µK = (H,W,R, S,C,K, T, U) and execution

arguments xK = (h′, w′, c′, k′) as follows,

t̃ :=
HWCKRS

h′w′c′k′T 2
. (5.8)

For block kernels, t̃ is defined as the maximum of that of its conv kernels. We have the following

result.
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Theorem 8. Given a dblock kernel K with execution arguments xK = (h′, w′, c′, c′, c′, k′1, k
′
2, k

′
3),

let k′ = min{k′1, k′3}. Then xK is no better than (h′, w′, c′, c′, c′,
⌈
4
9k

′
2

⌉
, k′2,

⌈
4
9k

′
2

⌉
) if 4

9k
′
2 ≤ k′,

otherwise no better than (h′, w′, c′, c′, c′, k′,
⌈
9
4k

′⌉ , k′) with respect to height, width and approximated

time defined in Equation (5.8).

Proof. The height is irrelevant to k′ so it remains unchanged. Consider the approximated time.

t̃1 =
HWF 2

4h′w′c′k′1
, t̃2 =

9HWF 2

16h′w′c′k′2
, t̃3 =

HWF 2

4h′w′c′k′3
.

Suppose that 4
9k

′
2 ≤ k′, then t̃2 ≥ max{t̃1, t̃3} and thus t̃ is not determined by k′1, k

′
3. We simply

decrease k′1 and k′3 such that they are still no less than 4
9k

′
2, then t̃ of this kernel must remain

unchanged and additionally total width is reduced.

If 4
9k

′
2 > k′, then t̃ = max{t̃1, t̃3} and thus t̃ is determined by k′1, k

′
3. We decrease k′1 and k′3 to

k′, and let k′2 be the minimum number such that 4
9k

′
2 ≥ k′ (in other words k′2 =

⌈
9
4

⌉
k′), it is clearly

that t̃ remains unchanged but w = 4(k′1 + k′2 + k′3) is reduced. Hence we completed the proof.

Theorem 8 indicates that the optimal settings of dblock kernel execution arguments should have

k′1 : k′2 : k′3 ≈ 4 : 9 : 4. Similarly, in cblock kernels, execution arguments k′1 : k′2 : k′3 : k′4 ≈ 8 :

9 : 4 : 8 are reasonably close to optimum. In our argument selecting strategy, such prior knowledge

significantly reduces the search space.

5.5 Experimental Results

We implemented our cupid kernel floorplan engine in C++ programming language on a 64-bit Linux

machine with a 3.4GHz Intel Xeon CPU and 32GB RAM. The results are evaluated on the ISPD20

contest benchmark suites (James et al., 2020).

The benchmark statistics and our experimental results are listed in Table 5.1. Weights λ1 and

λ2 represent the weight of wirelength and protocol cost in the objective function, respectively. The

cost columns describe the value of the objective in Equation (5.6). Our methodology performs much

better than the baseline floorplan algorithm (Jiang et al., 2020) based on twin binary sequence

(TBS) (Young et al., 2003) and simulated annealing, although the latter one could handle more

general cases.
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Table 5.1: Benchmark statistics and experimental results.

Benchmark Statistics TBS SA Algorithm (Jiang et al., 2020) Our Strategy

Case #Kernels λ1 λ2 Max Time WL Protocol Cost Max Time WL Protocol Cost

A 17 1 0 37044 3611.5 11 40655.5 35280 2047 13 37327

B 34 1 0 70560 6657 20 77217 65856 4905 17 70761

C 102 1 0 76608 15696 69 92034 65772 4278 281 70050

D 54 1 0 38304 9327.5 44 47631.5 34944 3071.5 89 38015.5

E 17 10 100 36288 2080.5 7 57793 39690 590 16 47190

F 34 10 100 76608 3237 15 110478 70560 1475 14 86710

G 102 10 100 91728 7784 29 172468 69888 2508 141 109068

H 54 10 100 47040 4450 21 93640 43008 893 115 63438

I 27 4 0 56448 3790 16 71608 52920 612 13 55368

J 81 4 0 63504 8009.5 52 95542 57792 1117.5 286 62262

K 18 4 0 576 236 3 1520 504 400 14 2104

L 54 4 0 1280 910.5 60 4922 504 774 114 3600

M 25 4 0 2359296 9359 24 2396732 2336256 5100 67 2356656

N 28 4 0 2268 707.5 0 5098 1599 448.5 9 3393

O 27 40 400 63504 1202 6 113984 52920 612 13 82600

P 81 40 400 115101 4015 24 285301 66528 2273 102 198248

Q 18 40 400 1152 178 1 8672 504 400 14 22104

R 54 40 400 1372 1443 30 71092 504 774 114 77064

S 25 40 400 2495376 3551 25 2647416 2396160 1899.5 65 2498140

T 28 40 400 5720 555.5 0 27940 2015 367.5 9 20315

Avg 1.17× 1.00×
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5.6 Summary

In this chapter, we discussed physical synthesis for advanced neural network processors. Due to the

regularity of neural network processors, we argue to utilize datapath driven placement that takes

circuit topology into physical design consideration. We scrutinized a wafer-scale deep learning ac-

celerator placement problem, a case study of specific physical synthesis for advanced neural network

processors. Experimental results show that datapath driven floorplan greatly outperforms standard

methods such as simulated annealing.
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Chapter 6

GPU-Accelerated Design Rule

Checking

6.1 Motivation

Design rule checking (DRC) is a critical stage in VLSI design flow that ensures a layout satisfies

a deck of design rules imposed by process technology. Modern design rules consist of complex

geometric constraints, such as constraints on distance, area, alignment, shape, and so on. Moreover,

these rules may involve interactions between layers (e.g., constraints on the NOT CUT result between

layers, minimum overlapping area constraints), as well as conditional rules (e.g., different spacing

constraints given different projection lengths). Recent advancements in process technology have

also significantly impacted design rule checking. A practical impact is an explosion in the number

of design rules that must be honored in the layout. The facts above have pushed DRC to become

one of the most time-consuming stages in the whole design flow.

Despite the fact that various parallel DRC algorithms have been investigated (introduced in Sec-

tion 2.4), their scalability still cannot catch up with the growth of computation demand of DRC

for modern designs under advanced processes. It takes more than a day and more than 2000 cores
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to complete an entire DRC on a 5nm design1. To achieve reasonable design cycle time, further

acceleration for computationally intensive DRC tasks has been demanded to accommodate the ever-

growing complexity of modern VLSI circuits. We argue that it is practical to orchestra novel DRC

algorithms with modern parallel compute substrate.

Meanwhile, open-source EDA tools have been inspiring and empowering the evolution of cutting-

edge EDA research. Many remarkable research outcomes would not be possible without the existence

of public pioneering tools ABC (Brayton and Mishchenko, 2010), FLUTE (Chu and Wong, 2008),

OpenTimer (Huang and Wong, 2015), DreamPlace (Lin et al., 2019), OpenROAD (Ajayi et al.,

2019), etc. An open-source EDA tool facilitates researchers by 1) offering an off-the-shelf working

solution to complete specific tasks, 2) serving as a strong baseline for algorithm development, and 3)

providing infrastructures for data collection and golden result acquiring for ML applications. When

it comes to ‘design rule checking’ in the literature, detailed routers (e.g., TritonRoute (Kahng et al.,

2018)) and layout editors (e.g., Magic (Ousterhout et al., 1985), KLayout (Köfferlein, 2018)) often

integrate design rule checkers. Although basic design rule checking algorithms are implemented

within these tools, they are not designed solely for physical verification purposes: detailed routers

handle fundamental ‘design rules’ like short, spacing, and minimum area (Chen et al., 2020), while

they are tightly coupled with the path search algorithms; layout viewers/editors are graphical user

interface (GUI) centric, which are not optimized for standalone design rule checking. As design rule

checking is a critical stage where many interesting research and design problems remain unsolved,

we feel that a new design rule checking engine is necessary to support all these explorations.

6.2 Preliminaries

6.2.1 Design Rules

Design rules consist of geometric constraints imposed by specific fabrication technologies to achieve

a high yield. Distance constraints are the most common constraints, which include, depending

on the positional relation between objects, width rules, spacing rules, extension rules, enclosure

1Statistics are provided by an industrial partner. The source is omitted due to confidentiality.
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Width

Spacing

(a) (b)

Figure 6.1: Typical rules: (a) width and spacing rules in a metal layer; (b) enclosing rule between
a metal layer and a via layer.

rules, and so on. Distance rules usually require a minimum distance between polygon edges due

to various reasons (Bhanushali and Davis, 2015): the minimum width of polygons is limited by the

resolution of the lithographic technique used, the minimum spacing between polygons is to ensure

electrical isolation, and the minimum enclosure is to avoid layer misalignment errors. Other popular

rules are minimum area rules, shape constraints (e.g., rectilinear), and multi-color design rules for

multi-patterning lithography.

We illustrate a few fundamental intra-layer and inter-layer rules. Intra-layer constraints define

interactions, measurements, and connectivity requirements between objects on the same layer, e.g.,

minimum dimensions of objects on each layer or minimum spacing between objects on the same

layer, as shown in Figure 6.1a. Inter-layer constraints define interactions, measurements, and con-

nectivity requirements between objects on multiple layers, e.g., encapsulation dimensions for objects

on different layers or minimum spacing between objects on different layers, as shown in Figure 6.1b.

6.2.2 Parallel Computation Model

In this chapter, we adopt the PRAM model with concurrent reads and exclusive writes (CREW).

We use the work-depth (WD) paradigm (JéJé, 1992) to analyze parallel algorithms, where work W

is the total number of operations, and depth D is the length of the critical path, assuming infinitive

processing resources. By the Brent’s principle, the runtime Tp of an algorithm using p processors

can be bounded by Tp ≤W/p+D.
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6.2.3 General-Purpose GPU and CUDA

The prosperous development of artificial intelligence has also popularized the concept of general-

purpose graphics processing unit (GPGPU), which runs general-purpose programs on the hardware

architecture initially dedicated to graphics rendering. GPGPUs offer massive computing power for

highly parallel applications in various disciplines, which finds orders of magnitude performance gain.

The programming model for GPGPUs is best described as Single Program Multiple Data (SPMD),

where many parallel processing elements execute a single program on different input data, making

them a good fit for data parallelism.

To enhance GPU programmability, higher-level programming environments have emerged, such

as CUDA (Nickolls et al., 2008), OpenCL (Munshi, 2009), and OpenACC (Wienke et al., 2012).

CUDA comes with a software stack that extends C++ as the programming interface, attracting

great attention in academia and industry. CUDA offers a thread hierarchy to organize parallel

threads, which form one-, two-, or three-dimensional thread blocks (NVIDIA, 2023). Thread blocks

are similarly organized into block grids. To allocate computation onto the above threads, CUDA

defines kernel with an execution parameter N , which will be launched N times in N different CUDA

threads. Each such thread is given a unique thread ID accessible with built-in variables in the kernel.

In a CUDA program, we refer to the CPU as host and the GPU as device, and both of them

maintain separate memory spaces in their own DRAM. In the compilation flow, a host compiler (e.g.,

GCC) compiles the host code into an executable on the host, while NVidia C Compiler (NVCC)

cross-compiles the device code (i.e., those qualified by __device__) into CUDA binary, which will be

handled by the CUDA runtime system whenever it is invoked from the host program.

6.2.4 DRC Engine in KLayout

As we are going to integrate our proposed parallel DRC algorithms into the DRC flow provided

by KLayout (Köfferlein, 2018), we introduce the basics of the KLayout DRC engine. The DRC

functionality in KLayout is controlled by a DRC script that specifies the check options and steps.

KLayout organizes a layout as layers, which are basically collections of polygons or edges. Large

layouts are first clipped into tiles to reduce memory requirements and to enable parallel processing
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by multiple CPU cores. In each tile, the touched objects are merged into a single object (the so-called

clean state in KLayout). The checking tasks are then performed on the merged layers.

6.3 X-Check: GPU-Accelerated Design Rule Checking via

Parallel Sweepline Algorithms

6.3.1 Design Rule Checking Algorithms

Problem Formulation

Before diving into technical details, we first describe a general distance check problem that we aim

to solve.

Problem 2 (Distance Check (informal)). A layout can be seen as a set of axis-parallel polygonal

objects. The distance rule says the following: any two edges must not be closer than a predefined

minimal distance. A distance violation is a pair of edges in the layout that violate the distance rule.

Given a layout, the task is to report all the distance violations.

Without loss of generality, we first consider horizontal segments only. We now give a more formal

definition of the above problem:

Problem 3 (Distance Check). Given a set H of horizontal segments in R2, report the segment pairs

from H2 whose horizontal projection is nonempty, and vertical distance is smaller than δ. Formally,

we want to report:

{([l1, r1]× y1, [l2, r2]× y2) ∈ H2}

s.t. [l1, r1] ∩ [l2, r2] ̸= ∅, |y1 − y2| < δ

(6.1)

Figure 6.2 illustrates the our problem formulation.

Sweepline Algorithms

Technically, Problem 3 can be efficiently solved by the sweepline algorithmic framework. A sweepline

algorithm can be conceptually regarded as moving a sweepline on the plane to process a set of points

(a.k.a. event points) one by one. Suppose the event points are stored in a data structure P that
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(a) Distance Check (informal) (b) Distance Check

Figure 6.2: Distance Check. See Problems 2 and 3.

supports a delete-min2 operation in T (Pdelete−min) time. While P is not empty, the algorithm

processes the points p in P by repeatedly calling the delete-min operation. For each event point p,

the algorithm updates a (persistent) status data structure S that supports insertion, deletion, and

range-report, whose time complexities are denoted as T (Sinsert), T (Sdelete), and T (Srange−report),

respectively. The total runtime for the sweepline algorithm can be written as

Ttotal = |P|T (Pdelete−min) + n · T (Sinsert)

+ n · T (Sdelete) +
m∑

T (Srange−report),

(6.2)

where n is the total number of elements to be inserted/deleted to S, and m is the total number of

range-reports.

To solve Problem 3 with a sweepline algorithm, assume all the event points (i.e., endpoints of

segments) are known ahead of time. We use a logarithmic time priority queue (e.g., a binary heap) to

organize the event points by prioritizing their x-coordinates, which supports delete-min in O(log |P|)

time. For each event point, we update a self-balancing binary search tree (e.g., a BB[α] tree) that

organizes horizontal segments by their y-coordinates, with T (Sinsert) and T (Sdelete) in O(log |S|)

time, and T (Srange−report) in O(log |S| + k) time where k is the number of reported elements.

Specifically, for a left endpoint of a horizontal segment, we insert the segment into S; for a right

2A delete-min operation finds the minimum element and removes it.
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endpoint of a horizontal segment, we remove it from S. When a segment [l, r] × y is inserted into

S, we also query S and report segments that are within [y − δ, y + δ], which all violate the distance

rule. Algorithm 2 summarizes the squential sweeping algorithm for distance check. Suppose there

are n segments and k violations, we have

Ttotal = O(n)T (Pdelete−min) +O(n) · T (Sinsert)

+O(n) · T (Sdelete) +
O(n)∑

T (Srange−report)

= O(n log n+ k)

The runtime bound is optimal, as the element uniqueness problem (lower bounded by Ω(n log n))

is reducible to the problem (Shamos and Hoey, 1976), and we need Ω(k) time to report all the

violations.

Algorithm 2 Sequential Sweepline Algorithm for Distance Check

Require: A set H of horizontal segments
Ensure: Segment pairs that violate the distance rule
1: Sort segment endpoints P by ascending x-coordinates
2: Initialize an empty BST S ▷ use y-coordinates as keys
3: for all endpoint p ∈ P do
4: if p is the left endpoint of a segment h = [l, r]× y then
5: Range query S for [y − δ, y + δ]
6: Report the corresponding segment pairs
7: Insert h to S
8: else
9: Delete h from S

10: end if
11: end for

Parallelizing Sweepline Algorithms

We present a parallel sweepline paradigm proposed by Sun and Blelloch (2019), the key idea of which

is to regard a sweepline algorithm as computing prefix structures. We follow the notations used

by Sun and Blelloch (2019). Event points pi ∈ P are processed in a total order ≺: P × P 7→ {0, 1}.

At each point, our goal is to build the intermediate data structure ti ∈ T with the previous data

structure ti−1 and the current point pi using an update function h : T×P 7→ T (i.e., ti = h(ti−1, pi)).
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The initial prefix structure is t0. In this way, we define a sweepline algorithm as a five tuple:

SW = {P,≺, T, t0, h}. (6.3)

To describe a parallel sweepline algorithm, we further define two operators, a fold function

ρ : ⟨P ⟩ 7→ T that converts a sequence of points to a prefix structure, and a combine function

f : T × T 7→ T that combines/reduces two prefix structures. We require f to be associative. A

parallel sweepline paradigm is defined as:

PSW = {P,≺, T, t0, h, ρ, f}. (6.4)

The essence of the parallel sweepline algorithm is to make use of the associativity of the combine

function f . More precisely, repeatedly updating a sequence of points ⟨P ⟩ into a sequence of prefix

structures ⟨T ⟩ using the update function h, is equivalent to first converting the points into (partial)

prefix structures, and then combining the partial prefix structures using the combine function f .

Sun and Blelloch (2019) propose to compute such prefix structures in three steps:

1. Batching. The inputs are sorted and evenly split into b blocks. Each thread converts the

consecutive n/b points in one block into a partial sum (i.e., prefix) T ′
kn/b for k = 1, 2, · · · , b

using the fold function ρ.

2. Sweeping. A single thread is invoked to sweep the b partial sums using the combine function

f to compute the prefix structures Tn/b, T2n/b, · · · , Tn.

3. Refining. The rest of the prefix structures are built using the b prefix structures built in

the second step. In each block, the points are processed sequentially to update the prefix

structures using h. The b blocks can be done in parallel.

Figure 6.3 illustrates the parallel prefix structure build. The runtime complexity of such a strategy

is analyzed by Sun and Blelloch (2019), which depends on the complexity of the functions h, ρ, and

f . We will do the analysis in Section 6.3.2 within the concrete (DRC) context.

Bootstrapping. Note that each subproblem in the refining step is of the same type as the original

problem, so that we can repeatedly apply the same algorithm for each block. Such bootstrapping
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Step1: Batching with T ′kn/b = ρ(p(k−1)n/b+1, · · · , pkn/b)

T ′
n/b T ′

2n/b T ′
3n/b · · · T ′

n

Step2: Sweeping with Tkn/b = f (T(k−1)n/b, T
′
kn/b)

Tn/b T2n/b T3n/b · · · T ′
n

Step3: Refining with Ti = h(Ti−1, pi)

T1 T2 · · · Tn/b Tn/b+1 Tn/b+2 · · · T2n/b T2n/b+1 T2n/b+2 · · · T3n/b · · · Tn−b+1 Tn−b+2 · · · Tn

Figure 6.3: Parallel prefix build for sweepline algorithms in three steps: batching, sweeping, and
refining. Each rectangle block represents a prefix structure, where different colors indicate different
blocks. Each colored arrow represents workload of a thread. Adapted from Sun and Blelloch (2019).

technique may slightly improve the runtime complexity (see Corollary 1 in Sun and Blelloch (2019)

for details), usually by some logarithmic factor.

6.3.2 Massively Parallel Design Rule Checking

Section 6.3.1 describes an efficient parallel sweepline algorithmic paradigm. Now, we are going to

show that design rule checking tasks fit into the prefix build framework. We claim that distance

check (Problem 3) is prefix computation as described in Equation (6.4).

Claim 1. Distance check is prefix computation.

To prove the claim, we introduce two strategies to solve the problem, i.e., sweeping vertically

and horizontally, in the following subsections.

The Vertical Sweeping Algorithm

Firstly, sort segments in ascending y-coordinates. We explain the algorithm by introducing the

components in Equation (6.4).

• The event point set P includes all the y-coordinates of the segments.
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• The total order ≺ is the total order < on the y-coordinates.

• The prefix structure contains a set S of segments that are below current segment within

δ in y-direction.

• The identity t0 contains an empty set ∅.

• The update function h processes the segments by adding the segment to S, and delete the

segments that are below current segment by more than δ.

• For the fold function ρ, it suffices to first binary search for the lowest segment that is within

δ to the highest segment, and then add the segments in between to the set S.

• The combine function f is defined by first taking the union of the sets, and then delete the

elements that are below the target segment by more than δ. Note that f is associative because

the set operations are associative.

By our construction, the prefix structures contain all the candidate segments below each segment,

in the sense that their distances in the y-direction are within δ. It remains to check whether each

pair of segments overlap in the x-direction. Each violation will be reported by the algorithm exactly

once.

We now analyze the runtime complexity of the vertical sweeping algorithm under the parallel

sweepline framework. Recall that we have n events evenly split into b blocks. As an implementation

trick, we store all the segments in a global array. The prefix structures only store pointers to this

global array instead of explicitly storing the set elements. As a side note, the depth will grow to as

large as O(n log n) if we use a persistent binary search tree for the implementation. We use si to

denote the size of the i-th prefix structure.

1. Batching. There are b blocks, and each block has O(n/b) elements. The ρ function can be

implemented using a binary search in the block, which takes O(log(n/b)) time. The total work

is O(b log(n/b)).

2. Sweeping. Consider the case of combining the prefix structures of the (k − 1)-th block and

the k-th block. After sweeping, the size of T(k−1)n/b is s(k−1)n/b, while T ′
kn/b can have at
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most n/b elements. The combine function can be implemented using a binary search in these

s(k−1)n/b + n/b elements, which takes O(log(s(k−1)n/b + n/b)) time. Therefore, the total work

and depth are
∑b

k=1 O(log(s(k−1)n/b + n/b).

3. Refining. The b blocks are refined in parallel. In general, building the i-th prefix structure

takes O(log si−1) time. Therefore the total work is
∑n

k=1 O(log(sk−1)). The depth is bounded

by maxk
∑n/b

i=1 O(log(s(k−1)n/b+i−1)).

Note that each si is upper bounded by i. The prefix structures can be build in O(n log n) work and

O((b+n/b) log n) depth in the worst case. When b = Θ(
√
n), the depth is O(

√
n log n). This worst-

case depth can be obtained by another naive solution that launches b threads to perform the n binary

searches in the whole space, resulting in an O(n log n/b) depth. However, when si = Θ(polylog(i))3,

our algorithm yields the better O(n log log n/b) time complexity.

After building the prefix structures, each element in the prefix structures can be examined in

constant time for violation check. The total work is bounded by
∑n

i=1 si. Again, the worse case

complexity is O(n2), and when si = o(i) the algorithm gives nontrivial runtime bound. Algorithm 3

summarizes the vertical sweeping algorithm.

Algorithm 3 Vertical Sweeping

Require: A set H of horizontal segments
Ensure: Segment pairs that violate the distance rule
1: Sort segments by ascending y-coordinates
2: Partition the sorted segments into b blocks
3: For each block do in parallel ▷ Batching
4: Find the lowest segment that is within δ to the highest segment in the block
5: Endfor
6: Sweep the partial results among the b blocks ▷ Sweep
7: For each block do in parallel ▷ Refine
8: Refine the prefix structures
9: Endfor

10: For each prefix structure do in parallel ▷ Report
11: Report the violations in the prefix structure
12: Endfor

3Some literature (Lauther, 1981) gives
√
n estimation.
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Figure 6.4: Illustration of vertical and horizontal sweeping algorithms.

The Horizontal Sweeping Algorithm

For horizontal sweeping, we first sort segment endpoints in ascending x-coordinates. We also describe

the components according to Equation (6.4).

• The event point set P contains the endpoints of the segments in H.

• ≺ is the total order < on the x-coordinates of the endpoints.

• The key observation here is that a sweepline algorithm maintains an ‘active set’ of segments.

This active set of segments are those who span the current (vertical) sweepline, or equivalently,

those whose left endpoints are to the left of the sweepline (i.e., have been processed), while the

right endpoints are to the right of the sweepline (i.e., have not been processed yet). Therefore,

we maintain two sets in the prefix structure t = (L,R) ∈ T : a set L that records the segments

whose left endpoints have been processed, and a set R that records the segments whose right

endpoints have been processed. This is natural, as the ‘active set’ can be easily computed by

L \R.

• The identity t0 contains two empty sets, i.e., t0 = (∅, ∅)

• The update function h processes the endpoint by adding the segment to the corresponding set.

Specifically, we have

h((L,R), p) =


(L ∪ hp,R), if p is a left endpoint

(L,R∪ hp), otherwise,
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where hp is the corresponding segment whose endpoint is p, and (L,R) is some prefix structure

t ∈ T .

• The fold function ρ can be trivially defined as applying h for each event point p in a recursive

manner. That is: 
ρ(p1) = h(t0, p1)

ρ(p1, p2, · · · , pn) = h(ρ(p1, p2, · · · , pn−1), pn)

• The combine function f is defined using set union, i.e.,

f((L1,R1), (L2,R2)) = (L1 ∪ L2,R1 ∪R2)

Note that f is associative because the set union operator ∪ is associative.

In this way, we also successfully relate the distance check problem to prefix computation, which can

be parallelized using the strategy in Section 6.3.1. We now analyze the time complexity. Assume we

organize sets in self-balanced binary search trees (specifically, on their y-coordinates) that support

common logarithmic time operations. Merging two binary search trees of sizes m and n takes

O(m+ n) time.

1. Batching. There are b blocks, and each block has O(n/b) elements. The total work is

O(b · n/b log(n/b)), and the depth is O(n/b log(n/b)).

2. Sweeping. Consider the case of combining the prefix structures of the (k − 1)-th block and

the k-th block. After sweeping, T(k−1)n/b may contain at most (k − 1)n/b elements, while

T ′
kn/b can have at most n/b elements. With our assumed tree operation bounds, it costs∑b
k=1 O(kn/b) = O(bn) work and the same amount of depth.

3. Refining. The b blocks are refined in parallel. Consider the k-th block, where each prefix struc-

ture can have at most kn/b elements. Therefore the total work is
∑b

k=1 O(n/b log(kn/b)) =

O(n log n). The depth is O(n/b log n).

By combining the three stages, we have total work O(n(b + log n)) and depth O(n(b + log n/b)).

When b = Θ(
√
log n), the depth is O(n

√
log n). This runtime bound is worse than that of the

vertical sweeping algorithm, but it maintains the y-coordinates of the segments in order. To report
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violations from the prefix structures, it suffices to perform two predecessor/successor searches and

report violations within the range, which costs O(log n+k) work and time, where n is the size of the

prefix structure, and k is the number of reported elements. Recall that such a range search takes

O(n) work in the vertical sweeping algorithm.

Summary and Discussions

Both algorithms proposed in previous sections give nontrivial runtime guarantees. We summarize

them in the following theorem:

Theorem 9. Assume si = Θ(polylog(i)). Distance check can be solved in O(n · polylog(n)) work

and O(
√
n · polylog(n)) depth, or in O(n log n) work and O(n

√
log n) depth.

We then show that many DRC tasks are distance check.

Claim 2. Width check is distance check.

Proof. Let H be the horizontal segments of a polygon. Let δ be the minimum width constraint.

Then, a distance check reports all the horizontal segment pairs that violate the width constraint.

Similarly, rotate the polygon by 90◦. Now a distance check reports violation between (originally)

vertical segments.

Corollary 1. Width check can be solved in O(n · polylog(n)) work and O(
√
n · polylog(n)) depth.

With almost identical arguments, we have following corollaries.

Corollary 2. Space check can be done in O(n · polylog(n)) work and O(
√
n · polylog(n)) depth.

Corollary 3. Enclosing check can be done in O(n · polylog(n)) work and O(
√
n · polylog(n)) depth.

We also illustrate the vertical and horizontal sweeping algorithms in Figure 6.4. Both vertical

and horizontal sweeping algorithms do not dominate each other: they achieve either better work

efficiency or better depth bound. From our perspective, the vertical sweeping algorithm appears

to be more promising since it provides polynomially better theoretical depth (Õ(
√
n) v.s. Õ(n)),

which is the main reason why we turn to GPU acceleration. Besides, the vertical sweeping algorithm

looks easier to implement, as the prefix construction mainly relies on 1D binary search. In contrast,
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for horizontal sweeping we have to count on efficient set operations (set union and set difference).

This is a bit surprising at the first glance, because we often use a horizontal sweeping strategy

for sequential implementation (see Section 6.3.1). We would like to argue that the phenomenon

provides an intuitive yet important insight for parallel algorithm design: suppose the problem can

be decomposed along both an ‘easier’ direction and a ‘harder’ direction, it is better to decompose a

problem by the ‘ simple’ direction for parallelism, and leave the ‘complex’ work to each individual

processors. In the distance check case, since the segments are horizontal, the x- and y-coordinates

are not equivalent. The y-coordinate is the ‘easier’ direction because each segment has only one y-

coordinate, which forms a total order. This also implicitly enables the use of two pointers to indicate

a range (recall how do we represent a prefix structure in the vertical sweeping algorithm). On the

contrary, the x-coordinate is the ‘harder’ one, as each segment has two endpoints with different

x-coordinates, and thus there is no global total order of the segments. To deal with the complexity,

we proposed to use two sets to maintain the left endpoints and right endpoints separately, but it

inevitably complicates the algorithm. Note that the emphasis is different from sequential algorithm

design: in the sequential sweepline algorithm, we would like to use the sweepline paradigm to look

after the complex x-coordinates and leave the simple y-coordinates to the status data structure S

(defined in Section 6.3.1) that we want to maintain for efficient queries.

6.3.3 GPU Implementation

The massive parallelism exposed in the vertical sweeping algorithm mainly comes from the divide-

and-conquer paradigm, which is conceptually GPU-friendly. Whenever the inputs are split into

blocks and processed in parallel, we launch multiple GPU kernels to perform the jobs concurrently.

Nevertheless, we would like to introduce several implementation details/considerations that we find

crucial to obtain satisfying performance.

Dynamic Algorithm Selection

GPU acceleration is not a free lunch. To run applications on GPUs, we inevitably have to move

input data from host memory to device memory, launch GPU kernels, wait for synchronization, and

move results back from device memory to the host memory. These operations have overhead. When
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the degree of parallelism is not high enough to make full utilization of GPU threads, the overhead

might dominate the overall runtime and decelerates the whole program.

One straightforward way to compensate for such overhead is to make a dynamic decision of

whether executing on GPU helps. For design rule checking, our experience is to estimate the

parallelism degree by counting the average number of edges per polygon. The more edges there are

in a polygon, the higher chance it has to gain performance from GPU acceleration. Accordingly, we

develop a simple dynamic algorithm selection strategy that first calculates the average number of

edges per polygon for each tile. If the number is higher than a threshold, we send it to the GPU

branch for parallel checking; otherwise, we simply run a sequential checking (i.e., CPU branch) for

the tile. The strategy is simple yet effective, as it helps X-Check to match the efficiency of CPU

checkers for small/simple tasks. The detailed comparisons are shown in Section 6.3.4.

Sorting Strategy Selection

Sorting is an essential step in our sweeping algorithm. One of the available efficient sorting procedures

comes from the thrust library, i.e., thrust::sort. In the actual program, we need to sort an array

of structs by the desired keys, which are some specific fields in the structs. For example, when the

structs represent edges, we might want to sort them by the x-coordinates for the vertical edges,

and by y-coordinates for the horizontal edges (recall how do we sweep them in the algorithm). The

default way to implement is to pass a comparison function object as an argument to the thrust::sort

function. Specifically, thrust::sort runs a merge sort procedure for such use cases.

Internally, thrust also provides a radix sort procedure that works for numeric data types (e.g.,

int) and default comparators. Therefore, an alternative solution is to copy the keys out, sort the

keys using radix sort, and permute the structs according to the sorted results. We call such a

solution a Copy-Sort-Permute (CSP) strategy. The code snippet to implement the CSP strategy

with thrust procedures is shown in Listing 1.

Intuitively, the CSP strategy should only be used with long arrays because it definitely involves

more steps and extra work, which would not be desired if sorting itself is already fast enough. In

our practice, we only use CSP for arrays of size larger than 8000. Detailed comparisons and more

experimental evaluations are shown in Section 6.3.4.
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Listing 1 Copy-Sort-Permute to sort long arrays.
1 template <typename S>

2 void sort_long_arrays(S *array, int n) {

3 int *keys; // the buffer for keys

4 int *indices; // the buffer for indices

5 S *tmp; // the buffer for permutation

6 // step 0: properly allocate the buffers

7 cudaMallocManaged(...)...

8 // step 1: Copy

9 for (int i = 0; i < n; ++i) {

10 keys[i] = array[i].key;

11 indices[i] = i;

12 }

13 // step 2: Sort

14 thrust::sort_by_key(keys, keys+n, indices);

15 // step 3: Permute

16 thrust::copy_n(

17 thrust::make_permutation_iterator(

18 array, indices),

19 n, tmp);

20 thrust::copy_n(tmp, n, array);

21 }

Kernel Granularity

It is possible to allocate GPU threads at various granularities; that is, each GPU thread can be

responsible for solving a subproblem of various scales. After parallel prefix computation, the primary

decision we face is how to report violations from the prefix structures and assign those computational

tasks to GPU threads. From coarser-grained to finer-grained, we might assign GPU threads for 1)

tile-wise tasks, 2) polygon-wise tasks, 3) tasks indicated by a prefix structure, and 4) a single violation

examination task. To allow adequate parallelism, option 1) might not be a good choice. To balance

the workload of each thread, options 2) and 3) might not be desired, as the sizes of polygons differ

significantly, and the sizes of prefix structures may vary by Θ(n) in the extreme case, where n is

the number of segments in the problem input. Therefore, we decided to implement option 4) in our

practice, where we use the unique thread id as the global offset to locate its task. Specifically, for

the t-th thread, its task is the q-th task in prefix Tp, such that t =
∑p−1

i=0 |Ti|+ q.
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Table 6.1: Runtime Comparisons of Width Check

Design Layer #Tiles #Polygons #Edges #Edge/Polygon
Width Check Time (s)

KLayout X-Check Speedup

gcd
Metal1 1 391 24440 62.5 <0.1 0.1 -

Metal2 1 1229 4916 4.0 <0.1 <0.1 -

aes
Metal1 16 17739 2059906 116.1 2.9 3.0 0.97×
Metal2 16 76007 304028 4.0 0.2 0.1 -

bp be
Metal1 56 34747 27245522 784.1 21.9 19.3 1.13×
Metal2 56 393834 1575336 4.0 0.4 0.4 -

bp
Metal1 144 107706 52595418 488.3 38.9 33.0 1.18×
Metal2 144 833588 3334352 4.0 0.9 0.9 -

Average 1.09×

6.3.4 Experimental Results

We implement our algorithms in C++ and CUDA, and conducted experiments on an Intel Xeon 2.90

GHz Linux machine with 128 GB RAM and one NVIDIA GeForce RTX 3090 GPU. We compile our

programs with NVCC 11.4 and GNU GCC 10.3. Since KLayout (Köfferlein, 2018) (version 0.26.6)

is utilized to complete the end-to-end DRC flow, we use the default DRC functionality in KLayout

(8 threads) as the baselines. The designs tested in the experiments are all synthesized from the

OpenROAD project (Ajayi et al., 2019).

Runtime Comparisons

We first compare the overall runtime of design rule checks between X-Check and KLayout. The

results are shown in Table 6.1 (width check) and Table 6.2 (space check, enclosing check).

Width check is the most simple task among the checks, as it examines violations within each

polygon. Although it is less meaningful to discuss speedup when the program already runs fast,

we still observe mild performance gain (1.13× and 1.18×) in the two largest cases (i.e., Metal1 of

bp be and Metal1 of bp). Besides, despite the dynamic algorithm selection process, such overhead

is negligible (< 0.1s) in all the cases.

For enclosing check and space check, the CPU version takes a much longer time to complete.

Therefore, X-Check achieves a much higher speedup in these cases. For enclosing check, GPU-
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Table 6.2: Runtime Comparisons of Enclosing Check and Space Check

Design Layer
Enclosing Check Space Check

KLayout X-Check Speedup KLayout X-Check Speedup

gcd
Metal1 38.4 2.4 16.00× 12.6 2.4 5.25×
Metal2 2.5 2.5 1.00× 6.4 2.4 2.67×

aes
Metal1 15 470.4 12.3 1257.76× 4493.8 67.5 66.57×
Metal2 2227.0 14.5 153.59× 2778.5 9.9 280.66×

bp be
Metal1 66 194.6 128.6 514.73× 6718.7 123.7 54.31×
Metal2 3089.2 147.4 20.96× 4171.5 16.6 251.30×

bp
Metal1 98 370.4 235.3 418.06× 14 019.7 233.4 60.07×
Metal2 3958.7 276.6 14.41× 5164.4 65.9 78.37×

Average 61.36× 45.00×

enabled X-Check achieves up to 1257.76× speedup, with an average of 61.36×. For space check,

X-Check offers up to 280.66× speedup and an average of 45.00× improvement. The significant

speedup confirms the effectiveness of our proposed parallel sweepline paradigm.

Runtime Breakdown

We care about the breakdown of runtime because 1) we want to understand where does the speedup

come from, and 2) want to foresee where is the new bottleneck for potential further speedup.

Width Check Runtime Breakdown As we have achieved mild speedup for width check, it is

desired to profile the application after GPU acceleration for further analysis. Therefore, we collected

the runtime statistics of each thread for the largest test case bp, with a particular interest in the

comparison between the merge stage and the check stage. The results are shown in Figure 6.5. Each

horizontal bar is for one thread, where the purple portion is for the merge stage, and the gold portion

is for the check stage. For KLayout, the check stage takes from 21.3% to 56.6% of the runtime, with

an average of 39.8%. After GPU acceleration, the check stage in X-Check takes from 1.5% to 21.4%

of the runtime, with an average of 6.5%. The result matches that in Table 6.1, indicating the source

of the current speedup, as well as explaining the limited performance gain.
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(a) KLayout (b) X-Check

Figure 6.5: Runtime breakdown of width check on Metal 1 of the bp design. The purple and gold
portions are for the merge and the check stages, respectively.

Figure 6.6: Runtime breakdown of enclosing check on Metal 1 of the bp design. The purple portion
is for merge, gold for sort , blue for prefix build , orange for violation report , and black for the rest,
respectively.

Enclosing Check Runtime Breakdown We are also curious about the runtime breakdown of

the slow cases. Therefore, we also profiled X-Check on the enclosing check for the bp design. The

results are shown in Figure 6.6. In the figure, each horizontal bar is for one tile, where the purple

portion is for merge, gold for sort , blue for prefix build , orange for violation report , and black for

the rest, respectively. Some tiles do not have valid enclosing checks to be performed, so there is

no time spent on sort, prefix build, and check. The lowest bar has a substantial portion for ‘the

rest’ because it is the first tile and carries some warm-up jobs for GPU. From the figure, the merge

stage still takes a significant portion of time (up to 82.5% and averaged 55.9%), indicating the new

runtime bottleneck after GPU acceleration of the sweepline algorithm for violation report.
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Ablation Study

In this section, we further investigate the effectiveness of some implementation techniques we dis-

cussed in Section 6.3.3.

Dynamic Algorithm Selection As introduced, it is not desired to invoke GPU execution if the

estimated parallelism is limited. To illustrate the importance of such a strategy, we compare the

width check runtime for Metal 2 of all the designs. For these cases, the average edges per polygon

are small - it is unlikely to have performance gain by involving GPU computation. The experimental

results, as shown in Figure 6.7, have confirmed the case.
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Figure 6.7: Runtime comparisons of width check on Metal 2. Runtimes are in log scale. For the
sparse tiles, dynamic algorithm selection significantly reduces runtime.

Sorting Strategy Selection Sorting strategies also affect the runtime performance. To demon-

strate, we compare the runtime of enclosing check using merely thrust::sort (i.e., merge sort),

merely Copy-Sort-Permute strategy, and a mixed strategy that switches to CSP when the array size

is larger than a predefined threshold (8k in our practice). As shown in Figure 6.8, the mixed strategy

indeed outperforms both single strategies.

Besides, we further tested sorting synthetic arrays. In this setting, the array contains structs

whose sizes are 48 bytes. The array lengths vary from 2 to at most 225, and we sort them using both

merge sort and the copy-sort-permute (CSP) strategy and compare the performance. The results
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Figure 6.8: Runtime comparisons of enclosing check on Metal 1 using different sorting strategies.
Runtimes are in log scale. The mixed strategy achieves the fastest runtime in all cases.

are shown in Figure 6.9, and note that both axes are in log scale. As can be seen, the CSP strategy

runs significantly faster than merge sort for large arrays. CSP outperforms merge sort when the

input arrays are large enough. However, CSP runs slower for smaller arrays as the overhead cannot

be ignored for those cases. The arrow in the figure points out that CSP wins when the array size is

around 65536 or larger.

6.3.5 Summary

Design rule checking is crucial in physical verification. As the size of modern VLSI circuits continues

to grow, the demand for parallel, hardware-friendly DRC algorithms have been highlighted. In this

section, we have proposed to utilize a parallel sweepline algorithmic paradigm to solve a series of

DRC problems. We have analyzed the theoretical complexity of the algorithms, implemented them

on GPUs, and further integrated them into an end-to-end DRC flow. We conducted thorough

experiments to demonstrate the effectiveness of the algorithms: they have achieved an average of

1.09×, 61.36×, and 45.00× speedup in three different DRC tasks, compared with a multi-threaded

CPU design rule checker. We also provided other experimental results for further discussion.

In the future, we would like to investigate parallelizing the merge procedure with the sweepline

paradigm, as it appears to be the new runtime bottleneck. Besides, we feel it necessary to develop
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Figure 6.9: Runtime comparisons of merge sort and the CSP sorting strategy. CSP outperforms
merge sort when the input arrays are large.

more programming infrastructures for GPUs, including dynamic vectors, associative data structures,

and their thread-safe solutions.

6.4 OpenDRC: An Efficient Open-Source Design Rule Check-

ing Engine with Hierarchical GPU Acceleration

6.4.1 Overall Flow

We first introduce the overall flow of OpenDRC, as illustrated in Figure 6.10. Given a hierarchi-

cal layout, OpenDRC parses the input file, and maintains the components in a layer-wise bounding

volume hierarchy tree (detailed in Section 6.4.2). Meanwhile, design rules are specified from the pro-

vided programming interface (introduced in Section 6.4.3). For the layers relevant to the specified

design rules, OpenDRC performs an adaptive row-based partition of the layout, which effectively

identifies independent regions (detailed in Section 6.4.2). After layout partitioning, OpenDRC pro-

vides a sequential (CPU) branch (detailed in Section 6.4.2) and a parallel (GPU) branch (detailed
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Figure 6.10: The overall flow of OpenDRC.

in Section 6.4.2) to execute the design rule checks.

6.4.2 Algorithms

Layer-wise Bounding Volume Hierarchy

Hierarchical modularity is a natural solution for designers to cope with very large-scale systems.

In the GDSII stream format (Calma, 1987), infinitely many hierarchical layers could be defined by

recursive structure reference:

<structure> ::= BGNSTR STRNAME {<element>}* ENDSTR

<element> ::= { · · · | <SREF> | · · · } · · · ENDEL

<SREF> ::= SREF · · · SNAME · · ·

In the above Backus Naur representation of the stream syntax, a ⟨structure⟩ is composed of a list

of ⟨elements⟩, and an ⟨element⟩ could be, among others, a structure reference ⟨SREF⟩ that instan-

tiates another structure defined elsewhere. Hereafter we use ‘cell’ and ‘structure’ interchangeably.

To enable hierarchical design rule checking, OpenDRC does not flatten the layout, but preserves

the layout hierarchy instead. Specifically, a structure reference effectively stores a pointer to the

structure definition to reduce memory consumption.

One drawback of the layout hierarchy is that objects belonging to the same layer could scat-

ter around the hierarchy tree. However, (range) queries for layer objects are very common since
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many design rules are defined for specific layers. To improve efficiency for such queries, OpenDRC

maintains the minimum bounding rectangle (MBR) of each cell; for a cell that spans multiple layers,

separated MBRs are computed for each layer and maintained. To answer a layer range query, it

suffices to descend the hierarchy tree from the topmost ⟨structure⟩ (root), and prunes the whole

subtree rooted at an element if its MBR for the interested layer is empty. Augmenting the hierarchy

tree with MBRs reduces the layer range query complexity from O(n) to O(min(n, kh)), where n is

the number of leaf nodes, k is the number of output, and h is the height of the hierarchy tree. Note

that such MBR technique is widely applied in geometric data structures such as kd-trees (Bentley,

1975) and R-trees (Guttman, 1984).

Duplication and inverted indices An effective strategy to trade space consumption for speed

is to duplicate the hierarchy tree in a layer-wise manner. Namely, a separated hierarchy tree is built

for each layer such that only modules containing objects in that layer are added to this hierarchy

tree. The space consumption could be enlarged by at most L times where L is the number of

layers. Suppose queries only ask for all objects in the given layer, it is possible to further construct

element-level inverted indices that each contain a full list of leaf elements belonging to a layer.

Adaptive Row-based Partition

OpenDRC offers an adaptive row-based partition scheme that turns out to be very effective for check

pruning and parallelization. The rationale behind is related to the popular row-based placement (Lu

et al., 2014; Lin et al., 2019). The intuitions are twofold:

1. Layouts can be partitioned into non-overlapping regions (rows) along the y-axis, where cells

do not overlap too much;

2. By grouping cells into independent rows, x-coordinates of cells in a row are more likely to be

separated as well.

Technically, the row-based partition can be regarded as an interval merging problem, which can be

efficiently solved in Θ(k+N) time, where k is the number of merge operations, and N is the size of

the domain. In our case, k equals the number of cells, and N is the number of unique y-coordinates
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(discretization assumed). The algorithm can be divided into three steps: 1) initialize an array A

of size N with indices as entry values; 2) merge y-coordinates belonging to the same cell; and 3)

scan the whole array A to obtain the cover. To be specific, we use an ‘pigeonhole array’ (of domain

size N) to maintain the right endpoints of intervals, while interval left endpoints are indicated by

the array indices. For each merge, only one array entry is updated in constant time. Algorithm 4

describes the details.

Note that the interval merging problem can also be solved without using the large pigeonhole

array by sorting the merge targets, which yields an algorithm with time complexity Ω(k log k). We

come up with our solution since k is typically much larger than N in our problems, and arrays

usually have a much better locality.

Algorithm 4 Interval Merging for Adaptive Layout Partition

Require: A set S of intervals to be merged
Ensure: Non-overlapping intervals covering the domain of S
1: Initialize an array A with indices ▷ Step1: Initialize
2: for all interval [l, r] ∈ S do ▷ Step2: Merge
3: Update A[l]← max(A[l], r)
4: end for
5: Initialize current interval end e← −1
6: for the i-th element ∈ A do ▷ Step3: Scan
7: if i > e then ▷ moving across interval boundary
8: Create a new interval and reset e
9: end if

10: Update current interval end e← max(e,A[i])
11: end for

Task Pruning from Hierarchy Tree

With the preserved hierarchy, OpenDRC always attempts to minimize the number of checks that

are actually run. Redundancy could occur due to two possible reasons: 1) the check result could

be inferred from previously finished checks; and 2) the check could be eliminated because violations

must or cannot happen. In either the case, running an actual check is unnecessary. The former

situation commonly occurs in hierarchical layouts, as they usually contain isomorphic modules that

preserve geometric invariants under certain transformations, such as reflection and rotation, and

under instantiation constructs like ⟨SREF⟩ and ⟨AREF⟩ in GDSII files. The latter situation can also
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be improved with the MBR augmented hierarchy tree.

Intra-Polygon Checks As the finest granularity for transformations is usually at the polygon-

level, there exist great optimization opportunities for intra-polygon checks. Given an intra-polygon

check for a certain layer, OpenDRC performs depth-first search (DFS) along the hierarchy tree to

locate layer objects. When a specific layer polygon is first encountered, the corresponding check

is scheduled to the task graph. If the check is done for a leaf object, a tag is marked to indicate

the finished check type. The same tag is marked for a non-leaf module if all submodules and leaf

elements belonging to the module have been checked. In this way, OpenDRC tries to reuse check

results when visiting a cell reference element: if the corresponding cell has already been checked

elsewhere, and the transformations preserve the target properties of the check, the check result

could be safely reused.

Inter-Polygon Checks Inter-polygon checks are slightly more complicated as many invariants are

no longer preserved under common constructs. Nevertheless, OpenDRC still attempts to explore

opportunities to reduce workloads. Given an inter-polygon check between layer M and layer N (M

and N could be identical), OpenDRC still searches along the hierarchy tree from the root, denoted as

a pair of nodes (rootM , rootN ). A similar memoization strategy is used as described in intra-polygon

checks. Specifically, only if (aM , aN ) has been checked, OpenDRC marks it down for possible reuse.

Note that the check result of (aM , bN ) cannot be reused if a and b do not belong to the same parent

cell, because another instantiation of them may not be of the same relative position. A check for

node pair (aM , bN ) could possibly be eliminated if:

• M = N ∧ ida > idb. Node id assignment could be arbitrary. This is a duplication of the check

for (bM , aN ).

• a = b and (aM , aN ) has been checked. This corresponds to redundancy case 1) we described.

• MBRM
a ∩MBRN

b = ∅. This corresponds to redundancy case 2) we described.

Technically, the MBRs should be enlarged by a minimum rule distance to ensure non-overlapping

indeed indicates no violations.
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Figure 6.11: Three inter-polygon checks could be eliminated.

Figure 6.11 illustrates the above three cases. When M = N , the check (aM , bN1 ) is a duplication

of (bM1 , aN ). As b2 and a refer to the same cell, the check result of (aM , aN ) can be reused if it is

already checked. The check (aM , bN3 ) can be pruned because their MBRs are non-overlapping.

The Sequential Mode

As by the task pruning strategy introduced in Section 6.4.2, the sequential mode of OpenDRC first

detects potential violations between objects by querying overlapping MBRs of polygons or cells, and

then performs edge-based checks among those object pairs.

Overlapping MBR Query. OpenDRC runs a standard sweepline algorithm (Bentley and Wood,

1980) to detect all overlapping MBRs, except that interval trees (McCreight, 1980) are used instead

of segment trees for implementation simplicity. An interval tree is a binary search tree that stores

an interval I in the highest node satisfying u ∈ I, where u is the key of this node. Specifically, every

node of the interval tree maintains its intervals in two separate lists: one is sorted by left endpoints,

and the other is sorted by right endpoints. By the definitions above, all left endpoints (resp. right

endpoints) stored in the right (resp. left) subtree are larger (resp. smaller) than the parent node’s

key, which enables efficient range queries. The sweepline algorithm moves a conceptual line across the

plane from top to bottom, which scans through the top and bottom sides of all MBRs in descending

y. When the top side of an MBR m is encountered, the corresponding horizontal interval is inserted

into the interval tree, and a query to the interval tree reports all the MBRs overlapping with m.

When the bottom side of m is encountered, the horizontal interval is removed from the interval tree.
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Figure 6.12: Sweepline and interval tree for overlapping MBR query.

Figure 6.12 illustrates the sweepline procedure and the corresponding interval tree.

Check Procedures. For distance rules, edge-to-edge checks need to be performed, be it an intra-

polygon check extracted from the hierarchy tree, or an inter-polygon check obtained from MBR

queries. Polygon vertices are stored in clockwise order, so that positional relations of edges are

determined accordingly. For area rule checks, OpenDRC computes polygon areas by the Shoelace

Theorem.

The Parallel Mode

The parallel mode of OpenDRC runs design rule checks on GPUs, which utilizes very different

algorithms and data structures from those for sequential processing. After layout partitioning,

OpenDRC performs parallel design rule checks in a row-by-row manner, as cells belonging to different

rows will not produce any violation.

Before checking, OpenDRC packs the edges of relevant polygons into a flattened array, which is

transferred from the host memory to the GPU device memory. Depending on the complexity of each

polygon or polygon pair, OpenDRC selects either a brute-force executor or a sweepline executor.

For smaller tasks, parallel threads are launched for each polygon (or pair), in which edge pairs are

enumerated and checked. For larger tasks, a parallel sweepline algorithm is performed, which is

similar to the one described in Section 6.3.2: firstly, a parallel scan determines the check range of

each edge; then parallel threads are launched to perform the check between an edge and all other

edges within its check range. Although these two steps can be combined theoretically, separating

them into two kernel launches enables efficient kernel code optimization (viz. for loops versus while

loops).
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6.4.3 Design and Implementation Details

Software Architecture

Conceptually, OpenDRC consists of four layers, from topmost to bottommost:

1. the interface layer,

2. the application layer,

3. the algorithm layer, and

4. the infrastructure layer.

In general, higher layers depend on the abstraction of lower layers, but not the other way around.

The interface layer is responsible for the interaction between OpenDRC and the outside world,

such as reading design files, defining rule decks, adaptors to design databases, and result output.

The application layer can be regarded as a system controller that schedules computation tasks

and dispatches them to algorithms. The algorithm layer, as indicated by the name, consists of the

implementation of design rule checking algorithms, such as width-check and space-check. The

infrastructure layer is for abstract data structure and algorithms, various program utilities (timer,

logger, etc.), and some basic GPU libraries.

General Programming Interface

OpenDRC aims to provide extreme extensibility and usability through its general programming

interface. OpenDRC recognises the need of researchers and end users to customize their usage of

the engine, so it encourages the use of the C++ programming interface, instead of another scripting

language, as the default way to define design rule checking tasks. The code snippet in Listing 2

demonstrates how to program OpenDRC. We start by reading-in a layout file and creating an

instance of the DRC engine. Then we specify a list of design rules using the add rules method,

where each rule is described in chaining methods that resemble natural language. In this example,

we have defined three rules: the first rule ensures that all the polygons are rectilinear; the second

rule ensures the minimal width in layer 19 is 18nm; the third rule ensures that every polygon in

layer 20 has a non-empty name. Finally, calling check() will run checks for the specified rules.
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Listing 2 Code snippet of using OpenDRC.

1 auto db = odrc::gdsii::read(/* path-to-gdsii */ );

2 auto e = odrc::engine();

3 e.add_rules({

4 db.polygons().is_rectilinear(),

5 db.layer(19).width().greater_than(18),

6 db.layer(20).polygons().ensures(

7 [](const auto& p){return !p.name.empty();}

8 )

9 });

10 e.check(db);

OpenDRC defines two categories of methods, selectors and predicates to help define design rules.

Selectors locate the target objects for which a design rule is defined. In our example, chained

methods layer(19).width() selects the width in the 19-th layer as the check target. Predicates

are the conditions that the selected objects need to conform to, such as is rectilinear() that

requires axis-aligned shapes. Specifically, the ensures() method takes a callable as a parameter

that enables user-defined predicates.

Heterogeneous Computing via Asynchronous Operations

A CPU-GPU computing platform is heterogeneous, which requires special considerations on the or-

chestration between them. OpenDRC utilizes asynchronous operations and Stream Ordered Memory

Allocator (NVIDIA, 2023) to hide communication or computation latencies. When OpenDRC starts,

it creates CUDA stream objects that are responsible for asynchronous operations. As the parsing is

finished and the database is ready, asynchronous data copies are launched to prepare necessary data

(e.g., polygon edges) for parallel checks. The data movement is thus usually hidden by the layout

partitioning in the flow. OpenDRC also tries to overlap CPU computation and GPU processing

to hide latency. For example, parallel checks of a row (taking place on device) can be performed

concurrently with the necessary data preprocessing of the next row (taking place on host).

Functors and Type Traits

The extensibility of OpenDRC also comes from a generic implementation of underlying functors.

The sweepline functor shown in Listing 3 is a typical example, which is regarded as a metafunction
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that takes another callable as a parameter. Here an executor is either a wrapper for a CUDA

Listing 3 The sweepline functor.
1 template <typename Executor, typename EventIt,

2 typename Status, typename Op>

3 void sweepline(Executor&& exec, EventIt first,

4 EventIt last, Status* st, Op op) {

5 if constexpr (std::is_same_v<std::remove_cv_t<

6 std::remove_reference_t<decltype(exec)>>,

7 odrc::execution::sequenced_policy>) { // CPU

8 } else { /* GPU */ }

9 }

stream object (cudaStream_t), indicating the operation will be appended to the stream, or a simple

odrc::sequenced_policy object that indicates a sequential operation.

OpenDRC utilizes type traits to manage certain properties of rules and checks, which dispatches

function calls at compile time and avoids runtime branching. Line 5-8 in Listing 3 demonstrates

how OpenDRC decides whether a sweepline operates on CPU or GPU by accessing the type traits

of the executor in a constexpr if statement. Another typical usage is to mark the rule types by the

target edge relations (e.g., width or space), which is also implemented in KLayout (Köfferlein, 2018)

as runtime arguments. In general, using type traits slightly improves runtime efficiency and helps

organize code logic concisely.

6.4.4 Experimental Evaluation

OpenDRC is implemented in C++17 and CUDA. Experiments were conducted on a Linux machine

with an Intel Core i7-11700 processor (2.5GHz), 64GB main memory, and an NVIDIA GeForce GTX

1660Ti graphics card. Benchmark layouts are synthesized from OpenROAD (Ajayi et al., 2019), with

the ASAP7 (Clark et al., 2016) process design kit (PDK) and all default settings provided in the

flow scripts.

To evaluate the efficiency of OpenDRC, we compare its performance with the state-of-the-art

multi-threading design rule checker, KLayout (Köfferlein, 2018), and the state-of-the-art GPU design

rule checker, X-Check (He et al., 2022). KLayout provides three different operation modes, namely

flat mode, deep (hierarchy) mode, and tiling mode. In the deep mode, the operations will be

performed in a hierarchical fashion; in the tiling mode, operations are evaluated in tiles, and multi-
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Table 6.3: Runtime comparisons for intra-polygon design rule checks.

Design Rule
KLayout

X-Check
OpenDRC

Rule
KLayout

X-Check
OpenDRC

flat deep tile Seq. Par. flat deep tile Seq. Par.

aes

M1.W.1 3.45 12.69 0.49 0.41 0.02 0.03 M1.A.1 3.34 3.32 0.65 - 0.02 0.03

M2.W.1 1.37 3.83 0.23 0.14 0.04 0.04 M2.A.1 1.35 1.33 0.37 - 0.04 0.04

M3.W.1 2.52 2.98 0.36 0.11 0.03 0.03 M3.A.1 2.49 2.51 0.51 - 0.03 0.03

ethmac

M1.W.1 11.88 45.84 1.56 1.21 0.07 0.08 M1.A.1 11.55 11.55 2.05 - 0.07 0.08

M2.W.1 3.76 10.72 0.52 0.42 0.10 0.11 M2.A.1 3.62 3.63 1.01 - 0.10 0.11

M3.W.1 6.36 7.64 0.77 0.31 0.08 0.08 M3.A.1 6.20 6.24 1.24 - 0.08 0.08

gcd

M1.W.1 0.13 0.44 0.13 0.11 < 0.01 < 0.01 M1.A.1 0.13 0.13 0.13 - < 0.01 < 0.01

M2.W.1 0.05 0.08 0.05 < 0.01 < 0.01 < 0.01 M2.A.1 0.05 0.05 0.05 - < 0.01 < 0.01

M3.W.1 0.06 0.07 0.06 < 0.01 < 0.01 < 0.01 M3.A.1 0.06 0.06 0.06 - < 0.01 < 0.01

ibex

M1.W.1 3.60 12.38 0.50 0.43 0.02 0.03 M1.A.1 3.52 3.52 0.65 - 0.02 0.03

M2.W.1 1.30 3.61 0.24 0.14 0.03 0.04 M2.A.1 1.27 1.28 0.36 - 0.04 0.04

M3.W.1 2.38 2.88 0.36 0.10 0.03 0.03 M3.A.1 2.36 2.35 0.51 - 0.03 0.03

jpeg

M1.W.1 13.32 55.35 1.68 1.39 0.08 0.08 M1.A.1 13.01 13.00 2.17 - 0.07 0.08

M2.W.1 3.05 8.77 0.46 0.40 0.10 0.10 M2.A.1 2.98 2.95 0.95 - 0.09 0.09

M3.W.1 4.86 6.14 0.59 0.29 0.08 0.08 M3.A.1 4.79 4.81 1.10 - 0.08 0.07

sha3

M1.W.1 3.48 12.36 0.49 0.43 0.02 0.03 M1.A.1 3.40 3.40 0.63 - 0.02 0.03

M2.W.1 1.10 2.95 0.21 0.12 0.03 0.03 M2.A.1 1.07 1.09 0.33 - 0.03 0.03

M3.W.1 1.79 2.15 0.30 0.09 0.02 0.02 M3.A.1 1.79 1.77 0.42 - 0.02 0.02

uart

M1.W.1 0.15 0.40 0.15 0.11 < 0.01 < 0.01 M1.A.1 0.14 0.14 0.15 - < 0.01 < 0.01

M2.W.1 0.06 0.12 0.06 < 0.01 < 0.01 < 0.01 M2.A.1 0.06 0.06 0.06 - < 0.01 < 0.01

M3.W.1 0.08 0.09 0.08 < 0.01 < 0.01 < 0.01 M3.A.1 0.08 0.08 0.08 - < 0.01 < 0.01

Average 37.7× 82.1× 9.6× 4.5× 0.9× 1.0× 37.6× 37.6× 13.0× - 1.0× 1.0×

CPU support is enabled (Köfferlein, 2018). These three modes are exclusive, so we list DRC runtime

under the three options in individual columns since no combination of them is directly accessible.

We reimplement the vertical sweeping algorithm proposed in X-Check (Section 4.1 in their paper (He

et al., 2022)).

We follow the experimental settings in X-Check (He et al., 2022) to check (minimum) width,

spacing, and enclosure rules; we further implement minimum area checks that X-Check is unable

to deal with. These rules are typical, as they include two intra-polygon rules (width, area) and two

inter-polygon rules (spacing, enclosure); enclosure rules are inter-layer while others are intra-layer;

except area rules, other rules are essentially distance rules. The selected rules involve Back-End-Of-

Line (BEOL) layers M1, M2, M3, V1, and V2 (Clark et al., 2016).

Runtime comparisons for intra-polygon checks are shown in Table 6.3, and comparisons for inter-

polygon checks are in Table 6.4.

The ‘average’ rows are normalized against the parallel mode of OpenDRC, where the runtime
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Table 6.4: Runtime comparisons for inter-polygon design rule checks.

Design Rule
KLayout

X-Check
OpenDRC

Rule
KLayout

X-Check
OpenDRC

flat deep tile Seq. Par. flat deep tile Seq. Par.

aes

M1.S.1 4.33 13.78 0.62 0.17 0.21 0.06 V1.M1.EN.1 468.24 462.28 15.97 0.20 6.44 0.12

M2.S.1 1.55 4.15 0.29 0.13 0.09 0.02 V2.M2.EN.1 2.93 1.64 0.59 0.14 0.18 0.09

M3.S.1 2.64 3.25 0.38 0.12 0.15 0.02 V1.M2.EN.2 469.96 468.89 15.71 0.20 0.24 0.12

ethmac

M1.S.1 14.67 48.50 1.89 0.39 0.72 0.14 V1.M1.EN.1 3045.02 3038.10 57.76 2.00 42.35 0.41

M2.S.1 4.35 11.71 0.59 0.20 0.23 0.05 V2.M2.EN.1 8.29 4.74 1.45 0.23 0.47 0.22

M3.S.1 6.68 8.17 0.82 0.16 0.39 0.04 V1.M2.EN.2 3031.20 3034.67 55.63 0.36 0.84 0.32

gcd

M1.S.1 0.15 0.46 0.14 0.11 < 0.01 0.01 V1.M1.EN.1 3.06 2.96 3.09 0.11 0.06 < 0.01

M2.S.1 0.05 0.09 0.05 0.11 < 0.01 < 0.01 V2.M2.EN.1 0.07 0.05 0.08 0.10 < 0.01 < 0.01

M3.S.1 0.06 0.07 0.06 0.11 < 0.01 < 0.01 V1.M2.EN.2 2.95 2.95 2.99 0.10 < 0.01 < 0.01

ibex

M1.S.1 4.45 13.15 0.63 0.17 0.22 0.06 V1.M1.EN.1 477.86 473.62 16.03 0.21 7.14 0.13

M2.S.1 1.49 3.96 0.25 0.13 0.09 0.02 V2.M2.EN.1 2.78 1.56 0.56 0.15 0.18 0.08

M3.S.1 2.50 3.08 0.39 0.12 0.14 0.02 V1.M2.EN.2 479.79 477.17 15.90 0.17 0.24 0.12

jpeg

M1.S.1 15.82 57.36 2.01 0.43 0.80 0.16 V1.M1.EN.1 3609.55 3580.46 58.29 1.59 55.07 0.49

M2.S.1 3.48 9.79 0.49 0.21 0.20 0.05 V2.M2.EN.1 7.07 4.04 1.22 0.22 0.40 0.20

M3.S.1 5.17 6.70 0.64 0.16 0.30 0.03 V1.M2.EN.2 3611.69 3588.04 57.01 0.35 0.87 0.32

sha3

M1.S.1 4.23 13.02 0.60 0.16 0.21 0.06 V1.M1.EN.1 476.10 472.44 15.87 0.49 7.07 0.12

M2.S.1 1.16 3.23 0.22 0.12 0.07 0.02 V2.M2.EN.1 2.32 1.29 0.48 0.13 0.14 0.07

M3.S.1 1.87 2.31 0.30 0.11 0.11 0.02 V1.M2.EN.2 468.70 467.92 17.28 0.15 0.22 0.11

uart

M1.S.1 0.19 0.44 0.19 0.11 < 0.01 0.01 V1.M1.EN.1 3.61 3.50 3.62 0.10 0.06 < 0.01

M2.S.1 0.07 0.13 0.07 0.11 < 0.01 < 0.01 V2.M2.EN.1 0.10 0.06 0.10 0.12 < 0.01 < 0.01

M3.S.1 0.08 0.10 0.08 0.10 < 0.01 < 0.01 V1.M2.EN.2 3.49 3.48 3.54 0.10 < 0.01 < 0.01

Average 47.6× 99.5× 12.0× 5.6× 3.2× 1.0× 514.9× 429.0× 61.5× 2.9× 4.7× 1.0×

is the geometric mean of the column, as we value all checks equally regardless of their sizes. Note

again that X-Check is unable to perform area checks, so the column is empty. Intra-polygon checks

generally run fast, which confirms the claim in X-Check (He et al., 2022). OpenDRC achieves 4.5×

speedup on average compared with X-Check, and 9.6× - 13.0× speedup compared with KLayout

(tiling mode). For sequential modes, OpenDRC is around 37.6× faster than the flat/deep mode of

KLayout, which we argue is due to the hierarchy strategy OpenDRC adopts. In fact, both sequential

and parallel modes of OpenDRC run equally fast for intra-polygon checks. Inter-polygon checks have

heavier computation workloads, where we see more significant speedup from GPU acceleration. For

space checks, GPU-accelerated OpenDRC is 3.2×, 5.6×, and 12.0× faster than sequential OpenDRC,

X-Check, and KLayout (tiling mode), respectively; for enclosing checks, the speedups become 4.7×,

2.9×, 61.5×, respectively.4 The sequential implementation of OpenDRC is also 14.9× - 91.3× faster

than KLayout (the faster one in flat/deep mode). The experiments demonstrate the efficiency of

4We notice the abnormal runtime of KLayout reported in X-Check (He et al., 2022), which we think could be due
to a very large number of violations that trigger abnormal program behavior (e.g., heavy disk IO, etc.).
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Figure 6.13: The runtime breakdown of OpenDRC sequential minimum spacing checks. ‘Layout
Part’ refers to adaptive layout partitioning; ‘Intvl. Tree Ops.’ refers to interval tree operations
insert, remove, and query; ‘E2E Check’ refers to edge-to-edge checks.

OpenDRC and the effectiveness of the proposed techniques.

We also provide a runtime breakdown of OpenDRC in Figure 6.13, taking sequential space checks

as an example. Since asynchronous operations are utilized in the parallel mode, runtime profiling

and visualization are slightly complicated and are left to future work. As can be seen, the adaptive

layout partition consumes only around 15% of overall runtime, but greatly enhances the efficiency

of subsequent steps. The sweepline algorithm, together with operations in the interval tree, taking

around 35% of runtime, examines overlapping of cell MBRs and prunes unnecessary checks. Finally,

40% - 50% of the overall runtime is spent on edge-to-edge space checks.

6.4.5 Summary and Roadmap

As inspired by many interesting research problems in VLSI layout operations and design rule check-

ing, we develop OpenDRC, a new open-source design rule checking engine. By introducing adaptive

row-based layout partition and efficient sequential/parallel hierarchical DRC procedures, OpenDRC

achieves significant speedup compared with state-of-the-art multi-threading and GPU design rule

checkers. Ongoing works for OpenDRC include a systematic evaluation of heterogeneous comput-

ing in DRC, data compression techniques for memory footprint reduction, and supports for general

geometric shapes.
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6.5 Discussion: Developing An STL-like Parallel Program-

ming Library for GPU

6.5.1 Introduction

GPUs are ubiquitous nowadays as they offer massive parallel computing power to support modern

applications like high performance computing and deep neural network execution. While parallel

computing is a common solution due to its high peak performance, programming parallel devices

is nontrivial, and the programmer needs to understand hardware details to obtain good software

performance.

Domain-specific languages offer another direction to ease GPU programming. Many functional

data-parallel languages (e.g., Accelerate (McDonell et al., 2013) and Futhark (Henriksen et al., 2017))

are invented, in which parallelism are implicitly expressed by higher-level parallel constructs, such as

map, reduce, and scan. The compiler is responsible for the implementation details of the constructs,

which highly affects the performance of the generated program. In this way, the programming efforts

are greatly reduced since the compiler abstracts the programmer away from GPU architecture details.

Still, the programmers do not have very fine-grained control over the programs. In other words, the

generated program is a black box to the user, which prevents the analysis or reasoning of the program.

Another design option is to enable lower-level parallel programming by using extra directives (e.g.,

# pragma in C++), such as PGI (Wolfe, 2010). These directives are used to annotate the original

program to guide compiler decisions, such as how large the loop tiling size is or which memory to

allocate.

Besides inventing a new programming language, developing a GPU programming library is an

easier choice with probably lower starting efforts. The domain-specific libraries are commonly seen,

each dedicated to a particular domain, such as deep learning and graph processing. CuDNN (Chetlur

et al., 2014) provides an efficient implementation of deep learning primitives such that the program-

mers can achieve high efficiency on deep learning operations without having a deep understanding

of parallel architecture. Similarly, the cuSPARSE (Naumov et al., 2010) library provides a set of

basic linear algebra subroutines used for handling the computation of sparse matrices. In graph pro-
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cessing, Gunrock (Wang et al., 2016) is a library that delivers high performance in computing graph

analytics and allows programmers to develop new graph primitives with minimal GPU programming

knowledge quickly. Apart from domain-specific libraries, there are also GPU programming libraries

that are designed to be more generic. ArrayFire (Malcolm et al., 2012) and Boost.Compute (Szuppe,

2016) provide massive capability for GPU computing on CUDA and OpenCL capable devices, in

which a rich set of fine-tuned functions are provided for various domains including linear algebra,

convolutions, etc. Moreover, STL-like GPU programming libraries offer several generic GPU data

structures for implementing high-performance parallel applications with minimal programming ef-

fort. Thrust (Bell and Hoberock, 2012) is a C++ template library for CUDA based on the STL,

which provides an extensive collection of data-parallel primitives such as scan, sort, and reduce.

Stdgpu (Stotko, 2019) provides several GPU data structures as the counterparts to the containers

defined in the C++ STL, as well as a large set of management functionality and guarantees to

improve productivity.

In this section, we follow the philosophy of Thrust, to propose IcyVeins, an STL-like parallel pro-

gramming library for GPU. We mainly demonstrate how interface design benefits standard program-

ming techniques like operator fusion (Section 6.5.3) and data layout optimization (Section 6.5.3).

To adapt library performance to various computing platforms, we also carry out comprehensive

experiments in Section 6.5.4 to analyze the choice of execution configurations.

6.5.2 Preliminary

Standard Template Library

Templates in the C++ programming language are a typical abstraction for generic programming,

where data types are passed/specified as parameters to avoid code duplication for different data

types. Templates are expanded at compile-time (i.e., with low runtime overhead) with concrete data

type arguments. Therefore, one template may be compiled to multiple instances of the same logic

with varied types.

Specifically, the Standard Template Library (STL) is a generalized software library that provides

a series of parameterized containers, algorithms, and iterators to boost productivity. Containers
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store objects and data, and typical containers include vector, list, and map. Iterators, implemented

by some pointer-like objects, are dedicated to accessing and traversing through a range of elements

of containers. Algorithms define a collection of functions, which perform on the content of containers

for various targets like sorting, searching, and reversing. The algorithms in STL are decoupled from

containers, which significantly reduces the complexity of the library.

6.5.3 Programming Interface

Library Interface

The library interface basically follows the C++ STL interface, with minor adaptation to parallel

programming semantics. Similar to the abstraction in C++ STL, our library consists of three main

generic components, namely containers, iterators, and algorithms.

Container A container manages data storage on the device side. It provides member functions

to access the elements directly or through iterators.

Iterator Iterators are pointer-like objects that provide a standard interface to step through ele-

ments of a container. Typically, two iterators (begin and end) represent a range of data.

Algorithm Algorithms define functions for various purposes (e.g., searching, counting, manipu-

lating) on a range of elements.

This paper presents a minimal collection of components to help illustrate several exciting ideas

behind the library’s design philosophy and implementation techniques. To be specific, we use the

vector container, and two commonly used algorithmic patterns reduce and transform, as well as

their lazy counterparts reduce view and transform view (introduced in Section 6.5.3).

• icv::vector

• icv::reduce

• icv::reduce_view

• icv::transform
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• icv::transform_view

Listing 4 gives an example of computing the squared Euclidean norm of a vector using the library.

Listing 4 Squared Euclidean norm of a vector with IcyVeins.

1 # include <icyveins/algorithm.h>

2 # include <icyveins/vector.h>

3 int main() {

4 icv::vector<int> vi(100, 0);

5 auto view = vi

6 | icv::transform_view(icv::square)

7 | icv::reduce_view(icv::plus);

8 return 0;

9 }

Operator Fusion through Lazy Evaluation

Operator fusion potentially eliminates memory access for intermediate results, which may result in

better performance. Consider the two (pseudo) functions in Listing 5 that applies two transformation

f and g onto elements in the container v: in task v1, the elements in v are loaded and stored twice

Listing 5 A motivating example of operator fusion.

1 // V is some container type

2 void task_v1(V &v) {

3 transform(v, f);

4 transform(v, g);

5 }

6 void task_v2(V &v) {

7 // gof is the composition of f and g

8 transform(v, gof);

9 }

since there are two separated transformation calls. In task v2, however, elements in v are exactly

loaded once, transformed by gof (the composition of f and g), and then stored back exactly once.

Therefore, it is commonly recommended in many best practice guides to fuse many operators in one

heavy function, which usually harms the program’s readability.

What is the actual difference between task v1 and task v2? In task v1, the operations for each

entry are

LOAD → f → STORE → LOAD → g → STORE.
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In task v2, the operations for each entry are

LOAD → f → g → STORE.

We can see that the only difference lies in the middle between f and g, where the intermediate

results are immediately stored back and then read out again in task v1. Given that, we attempt

to remove such overhead implicitly, without significant overhead in terms of both readability and

performance.

Lazy Evaluation serves as a good technical way to abstract operator fusion. With a lazy semantic,

operations are executed only when the result is finally required; otherwise, they are lightweight

objects that store a promise to execute.

Listing 6 demonstrates the interface of icyveins::views:: transform, which is the lazy version

of icyveins::transform. In our design, the template class icyveins::views::transform takes

three template parameters, namely a functor type Callable, a closure type ClosureType, and an

iterator type InputIt. A transform operator view can be constructed using a single functor (e.g., a

lambda expression), leaving the closure and the iterators empty defaults (Line 12).

Operators can be chained together using a pipe operator | (Line 24-29). Besides, a container can

be bound to an operator chain (Line 17-23) so that the operators are to be executed on the container.

We use the type traits standard library to differentiate the above two cases: an instance of the

transform operator is always derived from the dummy base class view, while containers are not.

Therefore, we use std::is_base_of to examine the inheritance relationship, and use std::enable_if

to conditionally select the relevant function overloads. If the left hand side operand of the pipe is a

container, then the begin and end iterators are updated by calling the begin() and end() methods

of the container. If both operands are operators, a new transform object will be constructed, where

the left-hand side operator and its own closure are captured in the closure context (because they

will execute first), while the right-hand side operator is stored in the func member variable.

When the result of the view is finally required, the operators will be invoked one by one from left

to right. This is implemented using constexpr if statement (if constexpr): we use std::is_same<

view, ClosureType> to check if the closure of a transform is a default empty, meaning it is the

leftmost operator that should be invoked directly; otherwise, it recursively invokes the operators of
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Figure 6.14: Experimental results for operator fusion.

its closure and operates on top of that result. Therefore, the call chain (or the piped views) can

be imagined as a linked list of operators (or of single views). In this way, within one LOAD and one

STORE, multiple operations can be performed, and no intermediate main memory access is needed.

To confirm that, we can compile some CUDA code into PTX to check the assembly behaviours.

Listing 7 shows such an example, where three transform views are chained together using the pipe

operator. From the resulting PTX assembly, we can see there are three consecutive add instructions

between a ld introcution and a st instruction, which meets our expectation.

Enabling the reduce pattern We implemented another computational pattern reduce with the

same design philosophy as transform. The pattern requires a user-defined binary operator (e.g.,

addition, multiplication, etc.), passed as a parameter to reduce, to accumulate multiple entries in

a container into a single object. By combining reduce and transform, we can concisely implement

complex functions (e.g., Squared Euclidean norm) and apply the STL-like parallel programming

library in more applications.

To keep consistency in the interface, we use a similar method in transform to overload operator

|, chaining all operations with the same pipe operator. Considering that the left operand of | can

be either a vector, a transform, or another reduce, our library handles the different situations

separately. If the left-hand side operators are transforms, they will be invoked in order as introduced
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above.

Data Layout Optimization

Data layout optimization is a commonly used technique to optimize memory access patterns. Con-

sider the example in Listing 8, where we want to store a vector of tuples of an integer (int) and

a double-precision floating number (double). We have two options to explicitly store the data in

an array of struct (AoS) manner or in a struct of array (SoA) manner. The AoS manner (Line 2-

5) is more intuitive from a programmer’s perspective, since each element in the vector is exactly

a tuple (icv::tuple<int, double>); when we are going to access one field of the tuples, we di-

rectly loop over the vector, obtain each tuple, and access the corresponding field in the tuple.

The SoA manner (Line 8-12), however, explicitly splits fields of the tuple into different vectors

(icv::tuple<icv::vector<>...>). When we are going to access a single field of the original tu-

ples, we simply access the corresponding field in the vector tuple.

Our goal is to provide a simple interface for users to switch between the two data layouts. One

of the best possible designs perhaps is to add an extra template parameter to control the layout, as

shown in Listing 9. In this way, the user only needs to specify the target layout (Layout::AoS or

Layout::SoA), and then uses the vector in a possibly natural way. Therefore, the remaining problem

lies in the implementation. The AoS implementation should be relatively trivial, since we can wrap

a normal vector, and forward the functions to the underlying vector class. We now discuss how to

implement the SoA version. There are basically two tricky points: 1) how to dynamically dispatch

the values into corresponding vectors, and 2) how to correctly arrange host/device memory access.

Dynamic dispatching is solved by using template parameter pack, which is a template param-

eter that accepts zero or more template arguments. A parameter pack can be expanded to a

comma-separated list of zero or more patterns. Specifically, we use std::integer sequence to

represent a compile-time sequence of integers that counts the fields in a tuple. As elaborated in

Listing 10, we use a private helper function get to deal with the reloaded operator []. Here,

get accepts a single template parameter Ids, which is an integer sequence that will be expanded in

icv::get<Ids> ( sv)[index] to obtain elements in various fields indexed by index. These elements

are used to construct a target value of type tuple<T &...>. When calling this helper function, we
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use std::make integer sequence to generate such integer sequence according to the size of the

parameter pack (i.e., number of fields of the tuple), namely a sequence of {0, 1, · · · , N − 1} where

N equals to the size of the parameter pack.

It is crucial to keep in mind that the host and the device have separated execution spaces and

memory spaces. In our design philosophy, the library interface consists of host functions to ease

GPU programming, while the data are stored in device memory to enable parallel manipulation.

This inherent mismatch between execution spaces and memory spaces brings about two obstacles:

1) host functions cannot access device memory and vice versa, and 2) __device__ functions are not

allowed to call __host__ functions and vice versa, unless the callee is marked as constexpr and the

experimented flag --expt-relaxed-constexpr is enabled. Looking back to Line 11 in Listing 9, if

the layout vector object is instantiated in the host memory, the icv::tuple<> member variable

is also a host variable. However, the pointers stored in the tuple must point to device memory

locations. Therefore, there is no direct way to access a single entry from the host side (and we

should not be able to!). On the other hand, if we are going to access the device data from a

__device__ or __global__ function, we have to copy the class object or the tuple variable to the

device memory, which should be light-weight enough because only the array pointers instead of data

are copied. Listing 11 demonstrates a simple use case to switch from SoA to AoS. Note that the

parameters of the __global__ function are pass-by-value ones, where implicit copies are made.

Iterator of SoA To cooperate with algorithms, the SoA container should be equipped with it-

erators as well. Since the container supports random access, its iterator should be tagged with the

random access iterator tag. We implement the iterator according to the specification, where the

key idea is to store an index in the iterator and access the fields using the index.

Result We compare the performance of different layouts. We create two vectors of tuple<int,

double> using the two layouts, and test the runtime needed to obtain the int field with a simple

transformation function. The experiments were carried out on a GeForce RTX 2080 Ti Graphics

Card, with vector length 223, and the operation is repeated for 1000 times to minimize random

errors. The results are shown in Table 6.5, where we can see SoA significantly outperforms AoS, as

we expect. Even the performance of the AoS vector is comparable to the Thrust baseline (Bell and
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Table 6.5: Experimental results for layout optimization.

Vector AoS SoA Thrust (Bell and Hoberock, 2012)

Runtime (ms) 308.154 131.129 308.431

Hoberock, 2012) with nearly the same runtime.

Extension to structs In our demonstration, we use tuples to elaborate the design considerations

and implementation details of the data layout switch. Since C++ is not officially equipped with

reflection (e.g., reflexpr (ISO/IEC TS 23619:2021, 2021)), it is nontrivial to extend the above

methodology to deal with structs, for which we do not have universal helper functions like get.

Nevertheless, this is still somehow achievable using some “Substitution Failure Is Not An Error”

(SFINAE) solution, such as matching a struct against an initialization list {std::any...} (of various

lengths) to determine the number of its fields. The tools provided in boost::pfr is a good starting

point, and interested readers may refer to it for further information.

6.5.4 Performance Adaptability

Execution configurations in CUDA define the dimension of grids and blocks used to execute a

function on the device, which in general specifies resource usage to strike for a good performance.

Some of the recent works propose to use design space exploration (DSE) methods to search for an

exemplary configuration for a specific application, typically DNN deployment (Chen et al., 2018;

Sun et al., 2021; Zhao et al., 2021). However, the library could not know the target application

beforehand, so it is unlikely to perform DSE at the design time. Besides, it is difficult to accurately

model/predict performance, one reason of which, as pointed out by Volkov (Volkov, 2010), is that

lower occupancy (i.e., lower thread-level parallelism) may lead to higher instruction-level parallelism.

Therefore, we decided to carry out experiments to see how is the overall performance related to

different execution configurations.

The performance is highly related to 1) the platform, 2) the problem size, and 3) the task

complexity. We come up with the following settings: 1) platforms include a server with a GeForce

RTX 2080 Ti graphics card, a server with a GeForce RTX 3090 graphics card, and a Jetson Xavier
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Figure 6.15: Experimental results for execution configurations. The three rows from top to bottom
are for vectors of size 1k, 216, and 223. The three columns from left to right are for tasks add,
polynomial, and loop.

NX embedded device; 2) sizes include 1000, 216, and 223; and 3) tasks include a simple addition,

a polynomial calculation of degree 5, and a loop of 100 numerical operations (3a + 1 for the even

iterations and (a − 1)/3 for the odd iterations). We then run grid experiments, namely all the

possible combinations of the above settings, and the results are illustrated in Figure 6.15. In each

sub-figure, the x-axis stands for the number of threads per block, and the y-axis denotes the system

throughput. The colored curves denote the results, and the horizontal dashed lines are the baseline

performance of the Thrust library (Bell and Hoberock, 2012). In general, except for some minor

jittering, the performance is relatively stable.

Since the loop task is the most complicated one, we further investigated the experimental results,

as listed in Table 6.6. Since the thread block size should not be too small, we calculate the mean

and standard deviation of throughput with block size greater than or equal to 32. Heuristically, we

also tested the performance for thread block sizes of ‘key’ configurations, which we refer to thread

block sizes of 128, 256, 384, or 512. We also compare the statistics with the Thrust baseline (Bell
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Table 6.6: Statistics for the loop tasks under various platforms and vector sizes. Best results are
in boldface. Columns under ‘all’ cover thread block sizes no smaller than 32; ‘key’ columns count
thread block sizes of 128, 256, 384, or 512.

Platform size
all key

Thrust (Bell and Hoberock, 2012)
mean std mean std

NX 1k 0.012 0.001 0.013 0.000 0.007
2080 Ti 1k 0.161 0.014 0.177 0.006 0.105
3090 1k 0.143 0.013 0.152 0.010 0.109
NX 216 0.492 0.032 0.517 0.035 0.129

2080 Ti 216 7.463 0.656 8.533 0.236 6.641
3090 216 7.610 0.566 7.749 0.206 6.189
NX 223 1.202 0.061 1.285 0.010 1.142

2080 Ti 223 18.939 1.592 21.470 0.330 21.563
3090 223 24.379 1.807 27.058 0.225 26.471

and Hoberock, 2012). The table shows that the ‘key’ configurations generally have higher average

performance and much lower standard deviation. Except for the case with the largest vector size on

the 2080 Ti platform, the average performance of key configurations also outperforms the baseline.

Therefore, they serve well enough as universal configurations.

6.5.5 Summary

GPUs provide powerful parallel computing capacity for modern applications. To help programmers

write GPU programs more efficiently, we propose IcyVeins, an STL-like parallel programming library.

We demonstrated how interface design benefits standard programming techniques, including oper-

ator fusion and layout optimization. We also conducted comprehensive experiments to investigate

how execution parameters affect program performance. Our library also outperforms the Thrust

library in many test cases, showing the effectiveness of such designs. We hope to see more research

works aiming to improve the accessibility of GPU programming.
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Listing 6 The interface of icyveins::views::transform.

1 class view {};

2 template<typename Callable,

3 typename ClosureType = view,

4 typename InputIt = nullptr_t>

5 class transform : public view {

6 public:

7 //re-export types

8 using F = Callable;

9 using C = ClosureType;

10 using iterator = InputIt;

11 // constructors

12 constexpr transform(F &func);

13 constexpr transform(F &func, C &closure);

14 constexpr transform(F &func, C &closure,

15 InputIt begin, InputIt end);

16 // operator overload

17 template <typename V, typename Closure>

18 friend constexpr typename std::enable_if<

19 !std::is_base_of<view, V>::value,

20 transform<typename Closure::F,

21 typename Closure::C,

22 typename V::const_iterator>>::type

23 operator|(const V &v, const Closure &closure);

24 template <typename L, typename R>

25 friend constexpr typename std::enable_if<

26 std::is_base_of<view, L>::value,

27 transform<typename R::F, L,

28 typename L::iterator>>::type

29 operator|(const L &lhs, const R &rhs);

30 private:

31 F _func;

32 C _closure;

33 InputIt _begin;

34 InputIt _end;

35 };
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Listing 7 CUDA source file and the corresponding PTX assembly of operator fusion using
icyveins::views::transform.

1 // ranges.cu

2 auto func = [] __device__ (int i) -> int

3 { return i * i; };

4 auto v = icyveins::vector<int>(100, 1);

5 using T = icyveins::view::transform<

6 decltype(func)>;

7 auto view = v | T(f) | T(f) | T(f);

8 // ranges.ptx

9 ...

10 ld.global.u32 %r5, [%rd11];

11 add.s32 %r6, %r5, %r5;

12 add.s32 %r7, %r6, %r6;

13 add.s32 %r8, %r7, %r7;

14 add.s64 %rd13, %rd9, %rd7;

15 st.global.u32 [%rd13], %r8;

16 ...

Listing 8 A motivating example of data layout optimization.

1 //Array of Struct (AoS)

2 icv::vector<icv::tuple<int, double>> aos;

3 for(auto &t: aos) {

4 icv::get<0>(t) += 1;

5 }

6

7 //Struct of Array (SoA)

8 icv::tuple<icv::vector<int>,

9 icv::vector<double>> soa;

10 for(auto &i: icv::get<0>(soa)) {

11 i += 1;

12 }

Listing 9 A simple template parameter interface for data layout switch.

1 enum class Layout { AoS, SoA };

2

3 template <Layout TLayout, typename... T>

4 class layout_vector {};

5 template <typename... T>

6 class layout_vector<Layout::AoS, T...>{

7 vector<tuple<T...>> _v;

8 }

9 template <typename... T>

10 class layout_vector<Layout::SoA, T...>{

11 tuple<T *...> _sv;

12 }

139



Listing 10 Dynamic dispatching using template parameter pack.
1 template <typename... T>

2 class layout_vector<Layout::SoA, T...> {

3 public:

4 using reference = tuple<T &...>;

5 using size_type = std::size_t;

6 __device__ reference

7 operator[](size_type index) noexcept {

8 return _get(

9 index,

10 std::make_integer_sequence<

11 unsigned, sizeof...(T)>());

12 }

13 private:

14 template <unsigned... Ids>

15 __device__ constexpr reference

16 _get(size_type index,

17 std::integer_sequence<unsigned,

18 Ids...>) {

19 return reference{

20 icv::get<Ids>(_sv)[index]...};

21 }

22 tuple<T *...> _sv;

23 }

Listing 11 Data layout switch from SoA to AoS.
1 template <typename SoA, typename AoSp>

2 __global__ void soa2aos(const SoA soa,

3 AoSp aosp) {

4 int i = blockDim.x * blockIdx.x +

5 threadIdx.x;

6 auto size = soa.size();

7 if (i < size) {

8 aosp[i] = soa[i];

9 }

10 }

11 layout_vector<DataLayout::AoS, T...>

12 &operator=(const layout_vector<

13 DataLayout::SoA, T...> &soa) {

14 soa2aos<<</*...*/ >>>(soa, _v.begin());

15 }
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Chapter 7

Conclusion and Future Work

In this thesis, we have proposed several algorithmic methodologies to tackle the efficiency issue in

electronic design automation. Our major contributions include:

• In Chapter 3, we have proposed, for the first time, a graph learning-based scheme for arith-

metic block identification. We formulate a node classification problem to identify boundaries of

arithmetic components from large design netlists. To facilitate the above procedure, we devel-

oped customized GNN architecture dedicated for netlists representation learning. We further

presented network-flow-based method for input-output matching. Experiments on open-source

RISC-V CPU designs synthesized by industrial tools confirm the effectiveness and efficiency of

our proposed framework compared with other state-of-the-art macro block matching solutions.

We also discussed a fast cut enumeration algorithm.

• In Chapter 4, we have presented the first systematic attempt on leveraging the idea of rein-

forcement learning to floorplanning. Unlike many previous RL works that aimed at solution

construction, we investigated the possibility of acquiring local search heuristics through mas-

sive search experiments. We trained an agent, which performs a walk in the search space by

selecting a candidate neighbor solution at each step, using a novel deep Q-learning algorithm

with action sampling. The experimental results have demonstrated the effectiveness of our

proposed methods.
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• In Chapter 5, we have scrutinized a wafer-scale deep learning accelerator placement problem, a

case study of specific physical synthesis for advanced neural network processors. We especially

argue that datapath design is an essential methodology in the above procedures due to the

organized computational graph of neural networks. Experimental results show that datapath

driven floorplan greatly outperforms standard methods such as simulated annealing.

• In Chapter 6, we have introduced novel parallel algorithms and implementation for design rule

checking. We showed that many DRC tasks can be solved via a general prefix computation

scheme, which we parallelized with both nontrivial theoretical guarantee and efficiency in

practice. We implemented the algorithms on modern GPUs, resulting in two state-of-the-art

design rule checkers, namely X-Check, the one integrated into KLayout, and OpenDRC, which

is now open-source.

With the above exploration and discussions, we have presented novel algorithmic methodologies

to improve electronic design automation efficiency. Given the importance of EDA tools and the

continuous advancement of related techniques, we hope to see more research along this line. In

particular, following are some directions and open problems for future research:

• Training neural models for EDA tasks is generally expensive due to the lack of data and

the runtime cost of running EDA tools. There could be efforts to lessen the barrier to such

training, such as constructing universal, multi-modality circuit datasets, developing model-

based reinforcement learning algorithms for EDA tasks, and building explainable AI models.

• Customizing design flow for specific designs is critical. We have explored datapath driven floor-

plan for deep learning accelerators. It would be interesting to see how systematic investigation

considering technology, design, and algorithm would benefit the whole design flow.

• Current efforts to X-Check and OpenDRC (algorithms, codebase, etc.) can be extended to

other layout-centric tasks, such as Layout Versus Schematic (LVS), layout pattern generation,

and design rule checking beyond digital designs (e.g., for nanophotonic or analog circuits).
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Neural Information Processing Systems, 3566–3577. https://proceedings.neurips.cc/paper/

2018/hash/645098b086d2f9e1e0e939c27f9f2d6f-Abstract.html

Wei Zeng, Azadeh Davoodi, and Rasit Onur Topaloglu. 2020. Explainable DRC Hotspot Prediction
with Random Forest And Shap Tree Explainer, In 2020 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020. Design, Automation
and Test in Europe, 1151–1156. https://doi.org/10.23919/date48585.2020.9116488

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing
FPGA-Based Accelerator Design for Deep Convolutional Neural Networks, In Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA,
USA, February 22-24, 2015, George A. Constantinides and Deming Chen (Eds.). Symposium on
Field Programmable Gate Arrays, 161–170. https://doi.org/10.1145/2684746.2689060

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. 2019b. Het-
erogeneous Graph Neural Network, In Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-
8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George
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