Fast and Efficient Deep Learning

Deployments via Learning-based
Methods

SUN, Qi

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of
Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
July 2022

Thesis Assessment Committee

Professor XU Qiang (Chair)
Professor YU Bei (Thesis Supervisor)
Professor YANG Ming Chang (Committee Member)
Professor YANG Jianlei (External Examiner)

Abstract of thesis entitled:
Fast and Efficient Deep Learning Deployments via Learning-
based Methods
Submitted by SUN, Qi
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in July 2022

The past few years witnessed the significant success of deep
learning (DL) algorithms and the increasing deployment effi-
ciency and performance requirements. Features and weights in
the deep learning operations usually have prominent scales, and
the numbers of computations and consumptions of memory are
huge. Various types of operations, e.g., fully connected and con-
volutional operations, challenge deployment strategies on differ-
ent platforms, e.g., FPGA and GPU.

Great optimization efforts have been made for a wide range
of deep learning algorithms and hardware platforms. Empirics
can be summarized to guide the new tasks. We propose to adopt
the learning-based methods, that is, learning from known data
to drive the deployments of new algorithms. Learning-based
techniques can release researchers and designers from the com-

plicated and cumbersome design flow and improve performance

automatically and incrementally, with high flexibility compared
with the heuristic or analytical methods.

This thesis outlines several methodologies facilitating the de-
ployments of deep learning algorithms in different scenarios. It

is mainly composed of the following themes.

o A correlated multi-objective multi-fidelity Gaussian process
model with deep kernel functions is proposed to handle the
complicated optimization flow of the FPGA-based model
deployments. The Bayesian optimization (BO) method is
adopted to explore the optimal designs efficiently. Further-
more, the deep neural network is introduced to improve the

kernel functions in the Gaussian process model.

o A deep Gaussian transfer learning algorithm is proposed to
utilize the historical optimization data to learn the hidden
knowledge related to model structures, hardware charac-
teristics of GPU, optimal deployment strategies, etc., and
to transfer the knowledge to optimize the new deployment

tasks on GPU.

o Further, to preserve the computational graph information
and learn more accurate performance models, a graph at-
tention network is designed to extract the structural in-
formation via a graph neural network and delve into the
complicated relationship between the features via a multi-

head self-attention module.

ii

We expect that the thesis does contribute to fast and efficient
deep learning deployments, and our ideas will enlighten future

studies.

iii

S

BESFRETARAEELZE (DL) E2XHE KRINALREIRS
A BUERMMEEER. EARAESHERF, FIEREERE
EX, EEENNEHEREENRRAR. SEEVMNER, fle
EEREENMERER, H1-EF=E (F130 FPGA A1 GPU) L
HIE BRI IR T kB .

HEEBEZHWRAEREEINEAFLE, APIEEETT K
ENELIE, HAPTRELRIIEEHTH. RPHREX
AERSZBEMTE, BIRS MEERP 2 E M REE T E LR
e, HmEERAKOWTTEEL, BRSNS TR
ABMFF ABREHEENZARERBMLER, B8 &
EtRE M, BEAERENEEM.

KB XRTUTRERAPNERNBDSRPTBRESRE
BENTE:

- RETHEAREZRENHERZ BESRESINAREEREE
REEEN FPGA ERMBHNEEELRE. XHER
EHE (BO) HEARBRMRERERFT. E—DH,
S| NRE R 4B AL R BUE = BB FZE B B A% R £

- RET ERESHMEBRSZERL, MHAELEBLEERS

BEAEE. GPU NEARE. RETERBSHEEN
BRERIR, BB AEENL GPU LR EEH.

« E—HH, BT REBFABEEEE LS EEEENIEREE
B, &7 —EEZEEHHEE, RiBEHEEERIE S
BER, BRZHEEFEERZEFEENERRRZ.

BHMAEZR X AN RESINAESERELRE, H
IRRRER B AR R T IR FLREE

Acknowledgement

I would like to express my forever and sincere appreciation to
my supervisor, Prof. Bei YU, for his sophisticated guidance,
sparkling enlightenment, and sustained support. Without his
supervision, patience, and encouragement, completing this the-
sis and my Ph.D. studies seems impossible.

Taking this opportunity, I also would like to greatly thank my
committee members, Professor Qiang XU, Professor Mingchang
YANG, and Prof. Jianlei YANG, who have offered useful feed-
back throughout the process.

It has been a great honor to work with many great collabora-
tors during my Ph.D. studies. Thanks to Dr. Tinghuan CHEN,
and Dr. Hao GENG for fascinating collaborations on the top-
ics of HLS optimization, DNN acceleration, and design space
exploration. Thanks to Yuzhe MA, Lu ZHANG, Ran CHEN,
Zhuolun Leon HE, Wei LI, Chen BAI, Yuxuan ZHAO, Xufeng
YAO, Xinyun ZHANG, Yang BAI, and Siting LIU for heaps of
constructive discussions and cooperation in plenty of projects. I
would like to thank other intelligent and accomplished collabo-

rators, Wenqgian ZHAQO, Hongduo LIU, Guojin CHEN, and all

vi

other CUDA members. I would like to extend my appreciation

to the staff in the CSE department for generously helping me.
I owe the deepest gratitude to my parents for their ever-

encouraging and -supporting me to pursue what I am interested

in and overcome the difficulties in my life.

vii

This work is dedicated to my loving parents and friends.

Thank you.

viii

Contents

Abstract
Acknowledgement

1 Introduction
1.1 Backgrounds and Motivations

1.2 Thesis Structure and Contributions

2 Preliminaries

2.1 FPGA and HLS-based Implementation

2.2 GPU-based Implementation

3 Optimization of HLS Directives

3.1 Introduction
3.2 Preliminaries
3.2.1 Bayesian Optimization
3.2.2 Multi-objective Optimization
3.2.3 Multi-fidelity Optimization
3.2.4 Gaussian Process Regression.

3.2.5 Overview of Our Method

X

12
13
18

3.3 HLS Directive Design Space 40

3.3.1 Design Space and Space Pruning 41
3.3.2 Encoding of Directive Configurations . . . 45
3.4 Correlated Multi-objective Multi-fidelity Models
and Deep Kernel Functions 46
3.4.1 Non-linear Multi-Fidelity Model 46
3.4.2 Correlated Multi-Objective Model 48
3.4.3 Combined Model 51
3.4.4 Optimization Based on Deep Kernel Func-
tions oo 52
3.5 The Overall Optimization Flow 56
3.6 Experimental Results 61
3.6.1 Integration of Optimization and Deploy-
ment 62
3.6.2 Objective Selection 63
3.6.3 Benchmarks and Methods 64
3.6.4 Experimental Settings 67
3.6.5 Results and Analysis 70
3.6.6 Ablation Studies on Acquisition Function 73
3.6.7 Ablation Studies on Runtime 74
3.7 Summarization 75

4 Deployment via Deep Gaussian Transfer Learning 76
4.1 Introduction 76
4.2 Transfer Learning Based on Deep Gaussian Pro-

CESSCS v v v e e 80

4.3

4.4

4.2.1 DMotivations 80
4.2.2 Our Automatic Optimization Framework . 82

4.2.3 Deep Gaussian Processes with Stochastic

Variational Inference 83
4.2.4 Transfer Knowledge to New Tasks 87
Experiments 90
4.3.1 Experimental Settings 90
4.3.2 Layer Groups and Historical Data 93

4.3.3 Ablation Studies on the Proposed DGP . 94
4.3.4 Ablation Studies on the Transfer Learning 96
4.3.5 Performance of the Whole framework . . . 97

Conclusion 100

Tuning Computations via Graph Attention Net-

work 101
5.1 Introduction 101
5.2 Preliminaries 105
5.2.1 Computational Graphs 105
5.2.2 Graph Neural Networks and Attention Mech-
anism 107
5.3 Algorithms 109
5.3.1 Overall Flow of GTuner 109

5.4

5.3.2 GAT: Graph Neural Network Module . . . 112
5.3.3 GAT: Multi-head Self-attention Module . 115
Experiments, 118

5.4.1 Implementation Details 119

pel

5.4.2 Ablation Studies on GAT Structure 121
5.4.3 Ablation Studies on GPU Measure Trials . 123
5.4.4 Performance of the Whole framework . . . 124

5.5 Conclusion.o 125
6 Conclusion 127
6.1 Summary 127
6.2 Possible Future Directions 130

Bibliography 133

Xii

List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

3.1

The flow of deep learning deployment and our

topics. L

A typical seven-level for-loop of a direct convolu-
tional operation.
Three types of array partitioning, BLOCK, CYCLIC,
and COMPLETE.
“in_ channel loop” is the innermost loop.

“in_ width loop” is the innermost loop.
The fusion of PixelShuffle, ReduceSum and Shift-
MeanAdd.
A brief CUDA programming architecture [66],

composed of grids, blocks, threads, and some mem-

The computation workloads are partitioned into
blocks and then further split to threads and vir-
tual threads.

(a) The FPGA design flow. (b) HLS pseudo-

codes and directives.

xiii

3.2

3.3

3.4

3.5

3.6
3.7

3.8
3.9

An example of mapping from design space X to
objective space Y, with two directives and two
design objectives (e.g., power and delay). We

need to learn a black-box function f to bridge X

and Y, so as to simulate the FPGA design tool. . 33
The correspondence relationships between the de-

sign stages in the FPGA design flow and the mul-

tiple models and fidelities in the model level. . . . 36
The brief flow of our method for HLS directives
optimization. L. 40
An example of design space pruning method. (a)

Code with three loops and two arrays. L1 is the
outer loop. L2 and LL3 are the inner parallel loops.

(b) Graphs of array A and B, and the merged graph. 43
An example of directive encoding. 45
Normalized delay values of the three fidelities.

The X-axis is the index of the design. We assign
indices for these designs according to their direc-

tive values in increasing order. (a) GEMM (gen-

eral matrix multiplication). (b) SPMV_ELLPACK
(sparse matrix-vector multiplication using the ELL-
PACK format). A7
An example of minimizing power and delay. . . . 50
The combined models, with three stages (fideli-

ties) and three objectives. 53

Xiv

3.10 Our method combines the GP model GPg and

the deep kernel function ¢y, L. 55
3.11 Detailed overall optimization flow. 56
3.12 A toy example to explain the models of the 3

stages (as shown in Fig. 3.3) and their corre-

sponding acquisition functions. 60
3.13 Sizes of The Design Spaces Before and After Prun-

ing., 65
3.14 The training loss of our method, and the mean

parameters (W and ©) of the deep kernel func-

tions and the GP models. The results show the

great convergence of the training loss. The mean

parameters W and © follow the same conver-

gence trend which validates the effectiveness of

our training method. 69
3.15 Learned Pareto designs of GEMM and SPMV_ELLPACK

in the objective spaces. 70

4.1 Our automatic optimization framework, consists
of three stages, i.e., stage 1: DGP model prepa-
ration based on the history data, stage 2: trans-
fer knowledge to new DNN layers, and stage 3:

optimal configuration searching. 84

XV

4.2

4.3

4.4

4.5

0.1
0.2
0.3
0.4

RMSE of our predicted GFLOPS, the data are
expressed as the ratios to the results of XGBoost
in AutoTVM. Here, our DGP is directly used
to predict the GFLOPS of new tasks without
tuning. cv: convolution, rb: residual block, sc:
shortcut, sp: separable convolution, dp: depth-
wise convolution.
The randomly sampled tuning set and the set
selected according to DGP. The data are in de-
scending order. There are 300 configurations in
each tuning set, and the X-axis is the index of
the configuration.
Comparisons between AutoTVM and ours. “Se-
lected” means the tuning configurations are se-
lected by using our pre-trained DGP as the cri-
terion. “Random” means the tuning configura-
tions are randomly sampled from the configura-

tion space without any prior knowledge.
The ratios of the GFLOPS values of VGG-16. . .

An example of the sketch.
Two annotations of the code sketch.
The overall low of our GTuner.

Structure of our graph attention network (GAT).

XVi

2.9

0.6

5.7

5.8
2.9

Typical diverse structures in VGG, ResNet (resid-
ual block) and SqueezeNet (fire block). Conv-z

denotes that the kernel sizeis z. 113
Graph neural network. 115
Multi-head self-attention with « as the query (Q),

key (K), and value (V') simultaneously. 117
Results of different measure trials. 123

Detail results of subgraphs in ResNet-18. 124

xXvii

List of Tables

3.1

3.2
3.3

3.4
3.5

4.1

5.1
5.2
2.3
5.4

Average Runtime of The FPGA Tool for Each

Normalized Experimental Results 71
Profiling Information of Runtime Details (Opti-

mization Costs, hours) 72
Profiling Information of Overall Runtime (hours) 72

Comparisons of Normalized ADRS with MES . . 74

Comparisons of Search Time and End-to-end Model

Inference Latency 97
Comparisons between Convolutional Layers . . . 122
Performance without GNN or MHSA 122
End-to-end Model Inference Latency (ms) 125

Time Costs (minutes) of the Optimization Pro-

CESSES . v v e e e e e 126

xXviil

Chapter 1

Introduction

1.1 Backgrounds and Motivations

Deep learning algorithms, aka., deep neural networks (DNNs),
have achieved significant developments and shown great suc-
cess in wide application scenarios, such as object detection [99],
natural language processing [35], adversarial defense [118], text
recognition [148], physical design [45], and super-resolution algo-
rithms [129]. An interesting trend is that researchers proposed
to use larger and deeper models which contain more weights and
complicated computation patterns to delve into the tasks, learn
more information, and improve the model generalization. How-
ever, the enormous computational intensities and heavy com-
munication workload result in sustainable challenges to the fast
and efficient model inferences.

In recent years, great efforts have been made to accelerate
the inference from various algorithmic perspectives, including

quantization [8, 36, 41] to adjust the data precisions, pruning

1

CHAPTER 1. INTRODUCTION 2

22,81, 120, 156] to remove redundant data, neural architecture
search [47,76,143] to explore the model structures, hardware-
model co-design or hardware-aware neural architecture search
[18,32,52,73] to find the inference-efficient model structures or
design model-efficient hardware jointly, etc.

There are also many studies on designing and optimizing
DNN applications on various hardware platforms. [128] uses the
systolic array to accelerate convolutional layers on FPGA. [55]
implements FSRCNN-based super-resolution systems on FPGA.
[80] accelerates the kernel sharing Winograd systolic array on
FPGAs though the Winograd operation has limited applica-
tions due to the computational constraints on the kernels. [116]
fuses operations in DNN models and optimizes the power con-
sumptions on FPGA. [152] optimizes a dictionary learning-based
super-resolution model using NVIDIA TensorRT [1] and CUDA
programming on GPU. [68] introduces the CUDA graph, multi-
stream computing, and bipartite graph match to implement the
multi-task parallelism for DNN models on NVIDIA GPU. [144]
improves the depthwise and pointwise convolutional layers on
a quad-core ARM CPU. [95] quantizes and maps convolutional
networks on resistive random access memory (RRAM) accel-
erators. Devices vendors also provide highly optimized tools
by exploiting the details of the low-level hardware implementa-
tions, e.g., Intel oneDNN [2], NVIDIA TensorRT [1], and Xilinx
Deep Processing Unit (DPU) [5]. CPU provides limited supports

for the intensive computation and communication parallelism in

CHAPTER 1. INTRODUCTION 3

DNN tasks. In contrast, FPGA and GPU have been the most
popular platforms thanks to the flexibility and configurability of
their task implementations.

Furthermore, researchers propose some techniques to stimu-
late the fast and efficient deployments of DNN algorithms, due
to the complicated model structures and hardware architecture,
incomprehensible, time-consuming and expensive mapping pro-
cess, poor performance estimators, etc. Some approaches have
been proposed to counteract these challenges. For FPGA-based
implementations, some researchers defines some analytical mod-
els to measure the performance [21,40, 52, 73,116, 139], which
usually suffer from a lack of flexibility and accuracy [75, 104].
Researchers develop resource utilization and latency models in
these analytical methods, such as utilizations for DSP, BRAM,
and LUT, and latencies for computations and communications.
The whole performance models are usually built by dividing
problems into small modules, calculating performances for these
modules, and summarizing these modules finally. Therefore,
the details of hardware architectures and model structures are
crucial. Similarly, [71] defines analytical models for convolu-
tional neural networks (CNNs) on CPU. In contrast, the com-
plicated patterns and obscure mechanisms for mapping DNN
models on GPU hinder utilizing analytical models for GPU-
based deployments. Consequently, researchers propose some
learning-based approaches which use the machine learning mod-

els to map the DNN tasks and hardware platforms to the per-

CHAPTER 1. INTRODUCTION 4

formance values. AutoTVM [28] introduces the XGBoost to
regress the inference latency according to the code embeddings.
Based on AutoTVM, an advanced active learning method [114]
is designed to learn representative parameters in the optimiza-
tion process, with the help of transductive experimental design-
based initialization, boosting method, and adaptive optimiza-
tion. CHAMELEON [7] introduces reinforcement learning to
learn the searching strategies from the history tuning data and
adapts the searching space during optimization. Though re-
inforcement learning shows promising results in many applica-
tions, the results show that performance improvements mainly
results from the adaptive searching. Guided Genetic Algorithm
(GGA) [89] utilizes some heuristic rules to guide the genetic al-
gorithm. The similarities between new deployment tasks and
the historical tuning data are calculated to measure the perfor-
mance of new designs.

Despite the advancements, existing deployment techniques
are still unsatistying for several reasons. Firstly, the complicated
relationships between the input features, performance metrics,
and the design stages are not well modeled and clarified. There
are three design stages in the FPGA-based design flow (e.g.,
Vivado flow), i.e., high-level synthesis (HLS), logic synthesis,
and implementation. There are three performance metrics (ob-
jectives) in each stage, i.e., power, latency, and resource con-
sumption. In other words, each stage reports these three perfor-

mance values but with different fidelities. The later stages have

CHAPTER 1. INTRODUCTION 5

more information and consequently report more accurate data.
The correlated and non-linear relationships between these per-
formance metrics and these three stages are not characterized.
Secondly, the traditional optimization process is slow, resulting
from the immense design space and time-consuming design flow.
The performance models are of low quality, thus failing to find
optimum designs efficiently and wasting the optimization over-
heads. Usually, there are more than millions of designs in the de-
sign space. For FPGA, each design consumes hours of synthesis
costs. For GPU, compiling the codes and executing the kernels
consume several seconds. The learning-based models require col-
lecting the historical optimization data as the training set. The
expensive optimization process hinders the applications of the
existing methods while these methods fail to measure the per-
formance accurately, thus leading to more optimization steps.
Thirdly, the critical information of the historical tuning data is
not fully utilized, and some features are ignored despite their
physical meanings and relationships. Existing techniques rely
on the statistical features while the structural characteristics of
the DNN models are discarded. The statistical features are also
treated equally, and the implicit importance of information is
not taken into consideration.

These drawbacks stimulate our explorations for novel tech-
niques to improve the deployment approaches via learning-based
methods, targeting delving into the features, accurately model-

ing the data, reducing optimization costs, and finding better

CHAPTER 1. INTRODUCTION 6

deployment solutions faster and more efficiently.

1.2 Thesis Structure and Contributions

This thesis attempts to investigate several methodologies light-
ening the aforementioned challenges in the deployments of deep
learning algorithms. The flow of the deployment of deep learning

algorithms and the focuses of our methods are shown in Fig. 1.1.

Deep Learning | GEMM || Sy |

Algorithms DNN Models e e

v

)
Algo. Agaly?is & | Layout Transformation | S;‘gghcsht;;igg ’
Optimization | Operation Fusion | e e o

| Template-based (AutoTVM) | HLS Templates

Code Generation Chapter 2
| Rule-based (Ansor) | e o o

l GPU-based:

Deep Gaussian Transfer learning: Chapter 4
Graph Attention Network: Chapter 5

Code Optimization

l FPGA-based: [Correlated Method Chapter 3]
iv
Compilation A «D NVIDIA.
XILINX

EXCCUthH — @ & Alleo. m

Figure 1.1 The flow of deep learning deployment and our topics.

The first contribution of this thesis is improving the learn-

CHAPTER 1. INTRODUCTION 7

ing model in the HLS directives optimization for the FPGA-
based deployments [115]. Bayesian optimization is combined
with the multi-fidelity and multi-objective optimization as the
optimization framework, to trade-off the model accuracies and
optimization workloads of the FPGA design flow. Non-linear
multi-fidelity models are built to measure the non-linear rela-
tionship between the reports of the three design stages and HLS
directives. Correlated multi-objective Gaussian process mod-
els are proposed, to tackle both of the correlated relationships
among various design objectives and the implicit and compli-
cated mapping relationships between directives and objective
values, to find Pareto configurations accurately. Our method is
further enhanced to be a deep version (DCGP) by using deep
neural networks as the kernel functions, to learn better fea-
ture representations flexibly. Therefore the performance of our
method can be further improved significantly. Three design ob-
jectives, power, delay, and resource consumption are considered
as the objectives, thus making the task practical while chal-
lenging. We conduct experiments on some public FPGA design
benchmarks (including general matrix multiplication and sparse
matrix-vector multiplication) and DNN-based object detection
model iSmart2. The experimental results show the outstanding
performance of our algorithms on the DNN applications and the
related applications. The found Pareto designs cover the opti-
mal designs for various design objectives, ¢.e., power, delay, and

resource consumption, and strike a good balance between these

CHAPTER 1. INTRODUCTION 8

objectives. This contribution is detailed in Chapter 3.

The second contribution of this thesis is proposing a novel au-
tomatic optimization framework based on deep Gaussian trans-
fer learning, to utilize the historical data to help tune the deep
learning deployments on GPU [113]. Firstly, a deep Gaus-
sian process (DGP) model is built on the historical optimiza-
tion data to learn the hidden knowledge related to model struc-
tures, hardware characteristics, optimal deployment strategies,
and etc. Stochastic variational inference is adopted to optimize
the DGP. Secondly, when deploying a new DNN model, some
efficient initial configurations of this new model are sampled un-
der the guidance of the prior knowledge in the pre-trained DGP
model. Maximum-a-posteriori (MAP) estimation is applied to
tune the DGP model according to these initial configurations,
to make the DGP model accommodate for the new task with no
loss of the hidden knowledge. Finally, the tuned DGP model is
used as a replacement to the time-consuming compilations and
on-board inferences during optimization, to predict the perfor-
mance values of new configurations accurately. Our tuned DGP
model accelerates the optimization process remarkably while re-
ducing the inference latency of the final model deployment si-
multaneously. The representative DNN layers widely used in
both industries and academia are tested in these models, in-
cluding convolutional layers, residual blocks, depthwise separa-
ble convolutional layers, and etc. The results show that our

method outperforms the state-of-the-art baselines significantly.

CHAPTER 1. INTRODUCTION 9

This contribution is detailed in Chapter 4.

The third contribution of this thesis is delving into the struc-
tural features of the deep learning models and using the multi-
head self-attention module to learning more information to im-
prove the performance estimator [119]. The structural informa-
tion of the computational graphs and statistical code features
are utilized. The complicated relationships between the features
are learned automatically. A novel method, GTuner, is proposed
with a graph attention network (GAT) as the performance es-
timator. GAT comprises a graph neural network (GNN) mod-
ule to aggregate structural information and a multi-head self-
attention (MHSA) module to mine inter-feature relationships.
Structural information of the computational subgraphs is ex-
tracted from the intermediate representations of the compilation
flow with the help of our code parser and analyzer, i.e., in the
algorithm analysis and optimization step in Fig. 1.1. Then the
information is propagated and aggregated via the graph neu-
ral layers to learn high-quality features for the graphs. The
MHSA module is designed to learn the complicated but im-
plicit relationships between the structural and code statistical
features via the self-attention mechanism. The drawbacks of los-
ing structural information and long-range dependencies between
the features are overcome. With the GAT, GTuner optimizes
the kernel codes for GPU efficiently. The experimental results
demonstrate the remarkable performance of GTuner compared

with the baselines. This contribution is detailed in Chapter 5.

CHAPTER 1. INTRODUCTION 10

Some critical challenges in the deployment process are han-
dled, including the extremely-large design space, time-consuming
design flow, task and model transferability, and low-quality mod-
els. Our methods can adaptively handle the optimization flow
to find good results or stop the expensive flow at the early stages
if the results are promising. Further, with our high-quality and
high-transferability models, we can find more promising designs
in large design spaces with fewer optimization steps. Therefore,
our methods can accelerate the optimization processes signifi-
cantly. For example, in the multi-fidelity multi-objective opti-
mization for the HLS directives, our approach accelerates the
optimizations remarkably since we find better designs in each
Bayesian optimization step according to our advanced acquisi-
tion functions. Besides, in each Bayesian step, we can control
the FPGA design flow to stop at early stages (e.g., at the logic
synthesis stage) if the results are good enough. The Bayesian
optimization also adopts the early stopping techniques to re-
duce the computation and synthesis costs. In the GPU-based
methods, we utilize the simulated annealing with early-stopping
techniques and better performance models (e.g., deep Gaussian
process model or the multi-head self-attention model). Better
results are sampled according to the performance models, and
the process stops at good results intelligently.

The structure of the thesis is organized as follows. Chapter 2
provides related backgrounds about some common features de-

signed in different ML-aided design flow stages. Chapter 3 cov-

CHAPTER 1. INTRODUCTION 11

ers the first contribution with corresponding technique details,
while the second contribution is introduced in Chapter 4. The
third contribution is discussed in Chapter 5. Chapter 6 summa-

rizes this thesis and delivers the possible future study directions.

O End of chapter.

Chapter 2

Preliminaries

For-loops are the mainstreaming operations considered in the
deep learning algorithms. Typically, convolutional operations
can be represented as a seven-level for-loop, as shown in Fig. 2.1.
B is the batch size. M and N are the number of output chan-
nels and input channels. H is the height of features, and W is
the width of features. K H and KW are the height and width
of kernels. The size of weight tensor is [M, N, KH, KW] and
the size of input tensor is [B, N, H, W]. It is important to or-
ganize the hardware resources to conduct communications and
computations and schedule these loops, i.e., to determine an op-
timal deployment configuration. There are some similar opera-
tions, such as general matrix multiplication (GEMM) for fully-
connected layers, sparse matrix-vector multiplication (SPMV)
for sparse computations, etc.

Some operations are more complicated, such as softmax, Pix-

elShuffle, ShiftMeanAdd, etc., which are handled by templates

12

CHAPTER 2. PRELIMINARIES 13

or code generation rules. Designers usually suffer from compli-
cated development processes for optimizing the deployment con-
figurations. Urgent requirements are raised for the optimization

techniques to ease designers from cumbersome developments.

for b in range(0, B):
for o in range(0, M):
foriin range(0, N):
for h in range(0, H):
for w in range(0, W):
for kh in range(0, KH):
for kw in range(0, KW):
Out[b][o][h][w] += W[o][i][kh][kw]
x In[b][i][h+kh][w+kw]

Figure 2.1 A typical seven-level for-loop of a direct convolutional operation.

2.1 FPGA and HLS-based Implementation

HLS-based implementations are widely used in academic re-
search for deep learning deployments. In this thesis, the HLS-
based implementations are adapted for FPGA deployments and
some HLS code templates are designed. Typical optimization
techniques include pipelining, unrolling, reshaping, reordering,
fusion, etc. The HLS directive configurations are termed knobs.

Pipelining reduces the initiation interval for a function or
loop by allowing the concurrent execution of operations, e.g.,
read, calculation, and write. This is influenced by the design

of computation engines, data lengths, time slots for each op-

CHAPTER 2. PRELIMINARIES 14

eration, etc. Unrolling technique flattens the loops to paral-
lelize the computations and communications, thus reducing the
system latency at the cost of more resource consumption. Re-
shaping techniques reorganize the memory blocks to facilitate
memory accesses. Typically, the continuous memory allocated
to arrays is split into some fragments in the BLOCK, CYCLIC,
or COMPLETE manner [4] Fig. 2.2 is taken as an example to
illustrate the reshaping techniques. The original array is stored
in a continuous memory space. In this example, the partition-
ing factor is 2. Both the CYCLIC and BLOCK will partition the
array into two separate memory spaces. CYCLIC creates smaller
arrays by interleaving elements from the original array. BLOCK
creates smaller arrays from consecutive blocks of the original ar-
ray. COMPLETE decomposes the array into individual elements.
For a one-dimensional array, COMPLETE corresponds to resolving
a memory into individual registers. Usually, reshaping should
be compatible with unrolling, which means the data to be com-
puted simultaneously ought to be allocated to different onboard
memory blocks to permit parallel fetch. Reordering organizes
the loops in different orders for a given task and stimulates dif-
ferent communication and computation patterns, i.e., finishing
a task in different inner-task orders. The data accessed in the
outer loop are reused by the inner loops, aka. data reuse [29].
In this thesis, our HLS code templates have two types of data
reuse patterns are provided, input reuse and output reuse, i.e.,

input-stationary and output-stationary. Some examples of the

CHAPTER 2. PRELIMINARIES 15

BLOCK [N2 | [N2 | N1 |
ol oo |1 L. (N2
Array CYCLIC:l 1 | |N3 | N-1 |
[o | 1 | | N2 [NI | ——f
Lo] 2 | | N2 |
I I
COMPLETE {[1 |
I=m)

Figure 2.2 Three types of array partitioning, BLOCK, CYCLIC, and COMPLETE.

knobs are shown in Fig. 2.3, including array partition, unroll,
IT).

These optimization techniques should be considered elabo-

and pipeline with initiation interval

/N

rately. Optimizing a single technique would possibly have no
effect because of the unsuitable usage of other techniques. Some
pseudo-code examples of the HLS codes and the HLS knobs are
shown in Fig. 2.3 and Fig. 2.4. In Fig. 2.3, “in_ channel loop” is
the innermost loop, and unrolling it means the memory should
be split cyclically to make both techniques efficient. Executing
in_channel calculations in parallel requires 2xin_channel reads
and in_ channel writes simultaneously. In Fig. 2.4, the inner-
most loop is “in_ width loop”. Unrolling it requires the BLOCK
memory partition. The readers can refer to [3] for more de-
tails. Each multiplication operation consumes a DSP and three
memory communications, two for read and one for write. High

parallelism consumes more resources, makes the placement and

CHAPTER 2. PRELIMINARIES

R T IS T SN

R - T S

10
11
12
13
14
15

routing congested, thus resulting in timing challenges.

#pragma HLS ARRAY_PARTITION variable=results dim=0 cyclic factor=in_channel
#pragma HLS ARRAY_PARTITION variable=input_1 dim=@ cyclic factor=in_channel
#pragma HLS ARRAY_PARTITION variable=input_2 dim=@ cyclic factor=in_channel
in_height_loop:
for(int h = 9; h < in_height; h++) {
in_width_loop:

for(int w = 0; w < in_width; w++) {
in_channel_loop
#pragma HLS PIPELINE II=1

for(int ¢ = 0; ¢ < in_channel; c++)

{
#pragma HLS UNROLL factor=in_channel
results[h * in_width * in_channel + w * in_channel + c]
= input_1[h * in_width * in_channel + w * in_channel + c]
% input_2[h * in_width * in_channel + w % in_channel + c];

Figure 2.3 “in_ channel loop” is the innermost loop.

#pragma HLS ARRAY_PARTITION variable=results dim=@ block factor=in_channel
#pragma HLS ARRAY_PARTITION variable=input_1 dim=0 block factor=in_channel
#pragma HLS ARRAY_PARTITION variable=input_2 dim=0 block factor=in_channel
in_height_loop:
for(int h = 0; h < in_height; h++) {
in_channel_loop:

for(int ¢ = 0; ¢ < in_channel; c++) {
in_width_loop:

for(int w = 0; w < in_width; w++)

{
resultsfh * in_width * in_channel + w * in_channel + c]
= input_1[h * in_width * in_channel + w % in_channel + c]
* input_2[h * in_width * in_channel + w * in_channel + cJ;
}

Figure 2.4 “in_ width_loop” is the innermost loop.

16

A more complicated example is the fusion of PixelShuffie,

ReduceSum, and ShiftMeanAdd from a super-resolution model

WDSR [142]. PixelShuffle is to up-sample/reshape the input

features by merging the features from several channels into a

single channel (i.e., compressing the number of channels, and

expanding the features in the result channel) [107]. ReduceSum

operations (aka., reduction) sum values from all of the chan-

nels. In Fig. 2.5, inputs of this example have 4 channels. The

upscale factor of PixelShuffle is 2. Therefore the output has 1

CHAPTER 2. PRELIMINARIES

,,,,, [N Tl ____
\ Address Comp. | \ Address Comp. |
R e R
BRAM BRAM
{IIIIIIII---I} {IIIIIIIIIII---I}
G- TITI— +
Stream /\ -~ Stream

W*2

Figure 2.5 The fusion of PixelShuffle, ReduceSum and ShiftMeanAdd.

17

channel and the height and width are 2x of the inputs. The Pix-

elShuffle is implemented via reading and writing data at specific

addresses. The ReduceSum and ShiftMeanAdd are implemented

in the MAC:

out = (ing + ing) * 127.5 + rgb_mean|oc],

(2.1)

where 127.5 is a constant scale value and oc denotes the out-

put channel. The constant rgb _mean (RGB Mean) values of

the ShiftMeanAdd are stored in the onboard ROM. The HLS

CHAPTER 2. PRELIMINARIES 18

dataflow stream technique is also adopted. Each data item read
into the stream queue will be pumped into the MAC, do the cal-
culations, and be written out to the output stream. This process
executes sequentially, continuously, and steadily without block-
ing. Therefore, one MAC is adequate while the computation
speed is fully promoted.

Optimal performance attributes not only to the optimized
HLS code but also the knobs, e.g., the factors controlling the
parallelism and memory sizes. The onboard resources also con-
strain the algorithm deployments. For example, there are 504K
system logic cells, 38Mb memory, 461K CLB flip-flops, 1728
DSPs, 1 Quad core Arm Cortex-A53 MPCore, and 1 Dual core
Arm Cortex-R5 MPCore. The complicated design mechanism
makes the optimization problem non-trivial. Suitable learning

methods are essential which are the key topics of this thesis.

2.2 GPU-based Implementation

The NVIDIA CUDA [66] is taken as an example to explain
the programming abstraction architecture on GPU, as shown
in Fig. 2.6. The programming architecture is composed of grids,
blocks, and threads, and some memories. It provides fine-grained
data parallelism, thread parallelism, nested within coarse-grained
data parallelism, and task parallelism. The dense computational
task is partitioned into smaller sub-tasks that can be conducted

independently in parallel in these blocks. Following the single

CHAPTER 2. PRELIMINARIES 19

instruction multiple threads (SIMT) mechanism, each block is
partitioned into a group of threads that can run the same code
on different data synchronously. To further improve the per-
formance, the virtual threads (VT) technique is developed to
utilize the resources efficiently, ignore the schedule limits, avoid
resource conflicts, and reduce the logic complexity of manage-
ment [141]. Threads are categorized into active and inactive
groups according to their states, e.g., computing or blocking.
GPU scheduler switches between active and inactive threads to

keep the hardware in use without a long system stall.

Host Device

Block
Thread | Thread | Thread

\ i \ !
\ , v Kernel
Y e
o

~
~

[L2 Cache] Thread | Thread | Thread
v Thread | Thread | Thread
[DRAM)
GPU Structure Programming Arch.

Figure 2.6 A brief CUDA programming architecture [66], composed of grids,

blocks, threads, and some memories.

An important characteristic of deploying DNN models on
these platforms is to maximize parallelism. To schedule DNN
operations on GPU, the computation workloads are assigned

to these grids, blocks, virtual threads, and threads. Fig. 2.7 is

CHAPTER 2. PRELIMINARIES 20

B
inputs
N :::f-
| block
° |
«— » | -

vy I : 77w~ == = = Spllt

I=I : == o Virtual Split
: ~ thread o

" ==: thread 1
o loclcfactor block-factor
weights outputs

Figure 2.7 The computation workloads are partitioned into blocks and then

further split to threads and virtual threads.

taken as an example to illustrate how to partition the workloads
of DNN models and map them to hardware. For simplicity, the
input tensor and weight tensor are represented as matrices with
sizes N x B and M x N, respectively. Firstly, the input and
weight are split into small rectangles, with sizes step x block-
factor and block-factor x step. The size of the corresponding
outputs is block-factor x block-factor. To get the result of each
output rectangle, its corresponding input and weight rectangles
are assigned to a CUDA block to conduct the computations.
Secondly, the computations are further split into block-factor x
block-factor threads. Then these threads are assigned into some
virtual groups to be scheduled by the CUDA runtime system.
To determine the optimal deployment configuration, some au-
tomatic flows are developed, among which TVM [26] is widely
used. In TVM, deployment configurations of layers in a DNN
model are optimized layer by layer. In Fig. 2.1, each of the

CHAPTER 2. PRELIMINARIES 21

for-loops on M, H, and W is split into four sub-loops. These
four sub-loops are mapped to blocks, virtual threads, threads,
and in-thread-for-loops, respectively. The bound of each sub-
loop reflects the number of the allocated hardware resources.
Each of the for-loops on N, KH, and KW is split into two
sub-loops. These two sub-loops are mapped to threads, and
in-thread-for-loops, respectively. The detailed information of
deployment configurations is in the appendix. To determine
the number of resources allocated to these sub-loops, i.e., the
bounds of these sub-loops, a comprehensive search space is de-
fined, in which all of the possible configurations to the resource
allocations are contained. The search space is usually composed
of millions of configurations.

The limited GPU resources concurrently restricts the compu-
tation patterns with respect to the threads, blocks, etc. Different
GPUs have distinct compute capabilities. For clarity, the edge
embedded GPU NVIDIA Jetson Xavier NX which uses the Volta
microarchitecture is taken as an example to illustrate this. From
the perspective of hardware architectures, there are 6 stream-
ing multiprocessors (SMs) in it. Each SM occupies a 96 KB
shared memory /L1 cache. Each SM is further partitioned into 4
processing blocks. Every processing block has 16 FP32 cores, 8
FP64 cores, 16 INT32 cores, 2 Tensor cores, and a 64 KB shared
register file. Besides, each processing block has a warp sched-
uler, to schedule the threads assigned to this processing block.

From the perspective of the programming model, the computa-

CHAPTER 2. PRELIMINARIES 22

tion kernel is executed as a grid of thread blocks. Each thread
block (different from the processing block mentioned above) is
assigned to a single streaming multiprocessor. Once the block
is scheduled to an SM, threads in this block are further parti-
tioned into warps. Every warp consists of 32 consecutive threads
and all threads in a warp are executed in SIMT fashion. While
the warps within a thread block may be scheduled in any or-
der, the number of active warps is limited by SM resources.
Four processing blocks in every SM of NX means there are at
most four active warps in executing at the same moment. Be-
sides, the number of warps in a thread block is constrained by
the programming model to fit the sizes of warp schedulers, in-
struction registers, and etc. Sharing data in the shared register
files among the parallel threads in the same processing block, or
sharing data among the processing blocks in the same SM may
cause a race condition: multiple threads accessing the same data
in the memory simultaneously. Once a warp idles for the race
conditions, the SM is free to schedule other available warps.
For clearness, all of the deployment settings (e.g., bindings
of blocks, and threads) to be determined are encoded as the
attributes of a feature vector which is termed as deployment
configuration. A deployment configuration can be denoted as a
feature vector &. This is the similar to knob mentioned above.

For clarity, we do not distinguish between these two concepts.

O End of chapter.

Chapter 3

Optimization of HLS Directives

3.1 Introduction

The FPGA design flow is complicated, typically composed of
several different steps or phases, including design entry, logic
synthesis, and implementation (aka., placement-and-routing).
Design entry is to describe the functionalities by the hardware
description languages (HDLs). Logic synthesis turns the HDLs
into a design implementation in terms of logic gates. Implemen-
tation conducts the placement and routing and generates the
bitstream. The workload of the whole flow is heavy and time-
consuming. Further, high-level synthesis (HLS) tools, used as
the design entry tools, have made it possible for users who are
not experts in writing HDLs to describe their FPGA designs, by
translating high-level programming languages (e.g., C/C++) to
low-level HDLs, under the guidance of HLLS directives. An exam-
ple of the Xilinx FPGA design flow relying on HLS is illustrated
in Fig. 3.1(a). C/C++ source code and HLS directives are fed

23

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 24

into the design tool. There are three analysis stages and the
later stages obtain more accurate reports but consume longer
running times. The HLS directives are embedded into C/C++
source code, as the inputs to the FPGA design tool. Fig. 3.1(b)
shows the pseudo-codes and directives. The directives are in
the boxes, beginning with “#PRAGMA”. Each directive has some
factors, e.g., ON and OFF of INLINE, and 2, 5, and 10 of UN-
ROLL. Briefly, in this work, our task is to determine the optimal
factors for each of these directives.

HLS directives guide the translation process of the high-level
language descriptions, in terms of how to parallelize the compu-
tations, how to allocate the memory and computation resources,
and etc. Given different HLS directive configurations, the final
hardware architectures generated from the same high-level lan-
guage description may vary a lot from each other and therefore
have distinctive performance values. In the problem of HLS
directives design, the target is to find some HLS directives de-
signs that optimize the design objectives from the entire design
space which is composed of candidate directives designs. Some
common performance objectives include power, delay, and re-
source consumption. We need to choose the best factor for each
directive to obtain the best performance values. With these
advantages, HLS tools have been widely used in many applica-
tions, e.g., floating-point computations [12,74], and deep neural
network deployments [52,127].

Several problems still hinder researchers from finding the op-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 25

'HLS @—»‘ FPGA Design Tool
Directives {

v v v
Post-HLS Post-Syn Post-Impl
Reports Reports Reports

»

Longer running times, more accurate reports (higher fidelities)

(a)

comp (int in[10], int out[10]):

for(i = 0; i < 10; i ++) {

in[i] = out[i];

(b)

Figure 3.1 (a) The FPGA design flow. (b) HLS pseudo-codes and directives.

timal directives design efficiently. Firstly, it is difficult to find
designs that balance the multiple design objectives. For exam-
ple, reducing system delay demands higher parallelisms which
would require more computation cores and have higher resource
consumptions, and vice versa. Therefore, optimizing the multi-
ple objectives simultaneously is a multi-objective optimization
problem. Secondly, the whole design flow is time-consuming and
the analysis reports of these several stages have different fideli-
ties. Later stages can report more accurate analyses, at the cost
of longer running times. This kind of multi-stage design prob-

lem is also called multi-fidelity design. Besides, the reported

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 26

results of the three stages in Fig. 3.1(a) and the HLS directives
are usually in complicated relationships which make it difficult
to map between them. We cannot guarantee whether a design
is good or valid in the Implementation stage, though its HLS
estimated performance is good. Therefore, we need to predict
the quality of the reports at each stage to determine whether we
need to run the later FPGA design stages to get more accurate
reports.

Some efforts have been made to facilitate the selection of
HLS directives. Several analytical /synthesis methods were pro-
posed to analyze the HLS directives, to estimate the perfor-
mance with no need of running the FPGA design flow for too
many directives designs. For the general applications, the direc-
tive configurations are analyzed by using an analytic model or
a simulator, e.g., Lin-analyzer [155], COMBA [149, 150], poly-
hedral model [158] and etc. Some proposed to use the dedi-
cated heuristics methods, e.g., lattice [42], clustering [102], di-
vide and conquer [103], and greedy method [94] to guide the
exploration of the directive designs. For the deep neural net-
work applications, researchers proposed complicated formula-
tions to simulate the systolic arrays for convolutional opera-
tions [116, 128], Spatial/Winograd convolution [139], or several
specific code templates [52]. However, these works depend on
the accuracy of the analytical models and lack generality or still
consume much time to conduct the detailed code analysis and

synthesis (aka., profiling) to determine the parameters in the

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 27

analytical models [52,116,128,139]. Typical parameters include
the unit costs of latency, power, and resource consumptions for
the given application and FPGA device, which vary significantly
under different scenarios. For new applications, new analytic
formulations are required, especially for the complicated deep
neural networks. These applications challenge the generality of
these analytical methods. Besides, the feature of the multiple
stages (multi-fidelity) in the FPGA design flow is not considered
in these works.

Some model-based works use machine learning algorithms to
map from the HLS directives to the performance values, where
the complicated FPGA design stages are regarded as black-box
functions which can be modeled by machine learning algorithms.
Compared to the analytical methods, model-based methods are
more flexible and general. The inputs to these models are the
feature encodings of the HLS directives and the predicted out-
puts are the performance values. In these works, the authors
collect lots of data to train machine learning models. [86] uses
simulated annealing to collect training data, to train a deci-
sion tree to guide the exploration of new designs. [77] uses ran-
domized transductive experimental design (RTED) to draw ef-
ficient designs from the design space. [78] guides the FPGA de-
signs according to the known ASIC designs by training a regres-
sor, with the help of [77] as the initialization method. Simi-
larly, [27,33,79,91,121,151] propose to use more machine learn-

ing algorithms to predict the routing congestions, power, perfor-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 28

mance and etc., according to the reports and results at various
design stages, or the reports of some preliminary analytic mod-
els. Some typical algorithms include linear regression, artificial
neural networks, and boosting trees. However, huge amounts
of real design reports are necessary to guarantee accuracy due
to the limited performance of these models. The multiple ob-
jectives are usually considered independently, and a machine
learning model is built for each objective separately. Besides,
the multi-fidelity reports are also not utilized. They use the
post-Implementation reports at the cost of longer running times
or use the post-HLS reports at the cost of data accuracies with-
out considering the trade-offs are between running times and
data accuracies. To reduce the simulation costs and make full
use of the existing reports, recently, Bayesian optimization (BO)
approaches based on the Gaussian process (GP) have been pro-
posed. However, the multiple objectives are independent of each
other [82]. This work is further extended by considering linear
multi-fidelity designs [83]. Wider communities have discussed
similar tasks, e.g., high-speed adder [44].

However, it is regrettable that some important characteristics
of the directive design are ignored. Firstly, the multiple design
objectives are in complex correlated relationships. The corre-
lated relationship has been proven to be an important factor in
various applications in practical scenarios [24, 25]. Therefore,
there exist losses of accuracy in the previous works since they

build some independent models to characterize the design ob-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 29

jectives. Secondly, the performance values of the three design
stages and the directives are in non-linear relationships. It is
hard for the designers who implement the high-level descrip-
tions to estimate the performance of the design after placement
and routing. Some ignore or evade these complicated relation-
ships by only considering the lowest fidelity (post-HLS reports),
though they miss some data from the later stages. Unfortu-
nately, to the best of our knowledge, most of the previous meth-
ods did not focus on counteracting these challenges explicitly,
no matter the analytical methods, or the model-based methods.

In our previous work [117], to help solve these problems, we
proposed a novel correlated multi-objective multi-fidelity Gaus-
sian process model (CGP) based on Bayesian optimization. The
Bayesian optimization can strike a balance between model ac-
curacies and optimization workloads. Non-linear multi-fidelity
models were built to measure the non-linear relationship be-
tween the reports of the three design stages and HLS direc-
tives. Correlated multi-objective Gaussian process models are
proposed as the acquisition functions, to tackle both of the cor-
related relationships among various design objectives.

Despite that CGP [117] achieved enormous success in mod-
eling the complicated multi-objective and multi-fidelity prob-
lem, the shallow structures of Gaussian process models limit
the ability to extract information from the input configurations,
and bring great challenges to the characterization ability of

the kernel functions in the Gaussian process models [132]. Re-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 30

cently, it has been proven that neural networks could auto-
matically discover meaningful representations for the input fea-
tures by learning multiple layers of highly adaptive basis func-
tions [90, 101, 131-133]. Combining the deep neural networks
with GP models can be regarded as the enhancement of the ker-
nel functions, termed as deep kernel functions. The flexibility
and automatic calibration provided by the deep kernel func-
tions provide a better performance, with no need for tuning the
searching framework for different applications. This technique
has achieved more and more attention and applications in the
recent few years [101,131, 133].

We extend our CGP method, by introducing the deep kernel
functions to learn better feature representations for the configu-
rations and augment the ability of the Gaussian process models.

Our contributions are as follows:

« Bayesian optimization is combined with the multi-fidelity
and multi-objective optimization as the optimization frame-
work, to trade-off the model accuracies and optimization

workloads.

o Non-linear multi-fidelity models are built to measure the
non-linear relationship between the reports of the three de-
sign stages and HLS directives. Correlated multi-objective
Gaussian process models are proposed, to tackle both of
the correlated relationships among various design objec-

tives and the implicit and complicated mapping relation-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 31

ships between directives and objective values, to find Pareto

configurations accurately.

e Our method CGP is further enhanced to be a deep ver-
sion (DCGP) by using deep neural networks as the kernel
functions, to learn better feature representations flexibly.
Therefore the performance of our method can be further

improved significantly.

e Three design objectives, power, delay, and resource con-
sumption are considered in this thesis, thus making the task
practical while challenging. We conduct experiments on
some public FPGA design benchmarks (including general
matrix multiplication and sparse matrix-vector multiplica-
tion) and DNN-based object detection model iSmart2. The
experimental results show the outstanding performance of
our algorithms on the DNN applications and the related
applications. The found Pareto designs cover the optimal
designs for various design objectives, 7.e., power, delay, and
resource consumption, and strike a good balance between

these objectives.

3.2 Preliminaries

In selecting an optimal HLS directive design, our target is find-
ing a configuration of directives in the space of all directive con-

figurations (named design space or configuration space in our

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 32

context) X which have the optimal performance values in the
objective space (or value space) Y. The design space X is con-
structed by enumerating possible HLS directives to be used in
the high-level language descriptions. In X, each configuration
can be represented as a feature vector . The details on di-
rective encoding are in Section 3.3.2. The objective space Y is
composed of the performance values of the designs given HLS
directive configurations. Y is not known unless we run all of
the configurations with the FPGA design tool. Our target is to
achieve the configurations with the best performance with no
need of knowing the whole objective space Y. In the rest of this
chapter, the three FPGA design stages are shorted as hls, syn,

and tmpl.

3.2.1 Bayesian Optimization

Bayesian optimization (BO) is an efficient and widely-used frame

work [56,124] to solve global optimization problems, e.g., opti-
mizing analog circuits [85]. For an optimization problem with a
black-box objective function f, e.g., power consumption, whose
concrete form is unknown, the target of Bayesian optimization
is to find a configuration point & € X which has the optimal
objective value in the objective space Y by conducting a limited
number of trials or evaluations. A two-dimensional example of
the mapping from the design space to the objective space is

shown in Fig. 3.2.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 33

Design Space Objective Space Y

A 2 A
z 2
el o

T ~Y

‘ ~ f _ - - < ’

> >
directive 1 objective 1

Figure 3.2 An example of mapping from design space X to objective space
Y, with two directives and two design objectives (e.g., power and delay). We

need to learn a black-box function f to bridge X and Y, so as to simulate the
FPGA design tool.

In Bayesian optimization, firstly, a set of initial configura-
tions is randomly sampled from the design space X and passed
into the FPGA design tools to get the performance values. These
initial data are used to build a surrogate model to mimic the ob-
jective function. Secondly, the BO algorithm iteratively selects
a new configuration from the design space for evaluation under
the guidance of an acquisition function and then updates the
surrogate model accordingly. Finally, the optimal HLS directive
configuration is the best one explored by the BO algorithm in
the optimization process. Three essential elements in Bayesian
optimization are as follows:

1) Surrogate model: to optimize the black-box objective
function f : X — Y, BO learns a probabilistic surrogate model to
predict the function value and quantifies the uncertainty of the

predictions. A commonly used surrogate model is the Gaussian

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 34

process (GP) model.

2) Acquisition function «a(-) is used as a score function to
evaluate the utility of a candidate point & € X with respect to
finding the optimums of the optimization problem. The acquisi-
tion function should balance the exploitation of already-sampled
configurations and the exploration of un-sampled configurations
in the design space. It is built on the already-sampled con-
figurations and utilizes this prior knowledge (i.e., exploitation)
to evaluate the un-sampled configurations (i.e., exploration).
There are some popular acquisition functions, such as expected
improvement (EI), upper confident bound (UCB), lower confi-
dence bound (LCB), and entropy search (ES) [85].

3) Optimization procedure iteratively samples a config-
uration from X based on the acquisition function a(-) in each
optimization step and updates the surrogate model accordingly.
This process continues until convergency (i.e., no performance

improvement in several steps).

3.2.2 Multi-objective Optimization

In the optimization problem of HLS directives, there are multiple
objectives to be minimized, e.g., power, delay, and consumption
of various types of resources. No matter whether the design-
ers clearly emphasize the single-objective or multi-objective in
their problems or not, these multiple objectives should always

be considered to guarantee the system’s performance. Without

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 35

loss of generality, our goal is to minimize a group of objectives
(), f2(x), -, f¥(x),Vx € X. Denote the objective values
of the as f(x) = [f}(x), f2(x),..., f*(x)]". These M ob-
jectives would possibly conflict with each other. Finding one
solution that minimizes all of these objectives simultaneously is
difficult. Practically, to strike a balance between these objec-

tives, we want to identify the Pareto-optimal set.

Definition 1 (Pareto optimality). In an M -dimension mini-
mization problem, an objective vector f(x) is said to dominate
F(@) if

Vi e [1,M], f'(x) < f'(x’) and

| _ (3.1)
3j € [1, M], f/(x) < f/ ().

A point x is Pareto-optimal if there is no other x’ in de-
sign space satisfying that f(«’) dominates f(x). In the whole
design space, the set of points that are not dominated by oth-
ers is called the Pareto-optimal set, denoted as Y* € Y. For
the Pareto-optimal designs, there does not exist an alternative
choice that can improve every objective without sacrificing oth-
ers. In multi-objective optimization problems, the realistic and
accurate goal is to identify the Pareto-optimal set containing
all the Pareto-optimal directive configurations. In the previ-
ous works on HLS optimization, the M objective functions are
solved independently [83], while we proposed to combine them

together by a correlation method.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 36

3.2.3 Multi-fidelity Optimization

Definition 2 (Fidelity). Fidelity refers to the degree to which a
model reproduces the state of a real-world project or application.
It is therefore a measure of the realism of the model. Straight-
forwardly, lower fidelity means that the model has lower data

accuracy and the higher fidelity is more accurate.

Definition 3 (Multi-fidelity Model). For a multi-fidelity prob-
lem, each fidelity | € {1,2,---,L} corresponds to a objective
function fi(x). The multi-fidelity model can be defined as:

fl+1(w) - Z(fl(w)vw)a (3'2)

where z(-) is an aggregation function. In our context, | = 1

means hls, | = 2 means syn, and [= 3 means tmpl.

FPGA Flow Level

HLS Model Syn Model Impl Model
(Low Fidelity Model) (Middle Fidelity Model) (High Fidelity Model) | Model Level
lzl:fhls l:2afsyn l=37fimpl

Figure 3.3 The correspondence relationships between the design stages in the
FPGA design flow and the multiple models and fidelities in the model level.

We need to define three objective functions for the three
stages, i.e., { fuis; fsyns fimpi}- As shown in Fig. 3.1(a), the later
stages return more accurate reports, at the cost of consuming

longer running times and more computation resources. There-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 37

fore, the objective functions for the later stages with more ac-
curate reports would have higher fidelities. The correspondence
relationships are shown in Fig. 3.3. There are three models, the
HLS model, the Syn model, and the Impl model corresponding
to the HLS stage, the Syn stage, and the Impl stage, respec-
tively. That is why it is called multi-fidelity optimization.

In the Bayesian optimization, we define three surrogate mod-
els to mimic the objective functions for the three stages, and
three acquisition functions to evaluate the utilities of new con-
figurations on these three surrogate models respectively. For
convenience, we treat the design stage of FPGA design flow and
model fidelity of algorithms as equivalent and do not distinguish
between them, e.g., the lower fidelity implicitly means the lower

design stage and vice versa.

3.2.4 Gaussian Process Regression

Gaussian process (GP) regression [96] is a flexible method to
model the objective function, which is specified by a mean func-
tion u(x) and a covariance function k(x,x’) of the objective

f(x) as follows:

px) =E[f(z)],
k(w,z') = E[(f(z) — p())(f (&) — p(2')].

The mean function p(x) provides the prior estimations of the

(3.3)

objective value for input @, and typically a constant mean func-

tion p(x) = po is widely used. As to the covariance function

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 38

k(x, '), the common form is the squared exponential function
of x:

b, @) = Mexp(— (@ —) Al — o)), (34)
where A = diag(A[%, A%, -+, A;%) is the diagonal length scale
matrix, and A\? is used to scale the variance of the model.

Define a known single-objective training set {X,Y}, where
X = {x1,x9,--- ,x,} is a set of directive configurations and
Y ={v1,92, - ,yn} is the corresponding single-objective value
set. Assume that the objective function f(x) is influenced by
the independent and identical zero-mean Gaussian noise €, ~
N(0,0?). Therefore, we have the relationship between directive
configuration and its corresponding performance y; = f(x;)+e.,
withe=1,--- ,n.

For a newly sampled configuration «* and its corresponding
objective function f*, the joint distribution between f* and the
data set Y which is already sampled in previous steps is defined

as follows:
g,y = [P [Rl BGaD)
Lo E'(X,x") k(z*,x")
where k(X,x*) is a vector of covariance values between x* and
all of the configurations in X, and K (X) is the intra-covariance
matrix among configurations in X, i.e., K(X); ; = k(x;, ;) with
x;,x; € X. According to the Bayes’ theorem, the posterior

distribution is obtained by:

p(f*¥) = T LLER

oy fap @), X)), (3.6)

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 39

with
") = po + k' (0, 2") K (X) + o217 (4 — po), (3.7)
S(x*) = k(z*, x") — k' (X, ") [K(X) + oI k(X, z*).
Before the posterior is calculated, the hyper-parameters A, A

and o, need to be determined by maximum likelihood estimation

as follows:

max (Y = po) (K (X) +0cT) (Y = po) + log |[K(X) + o7 1],
o (3.8)
which can be handled by gradient-based methodologies.

3.2.5 Overview of Our Method

A correlated multi-objective multi-fidelity deep kernel learning
GP-based Bayesian Optimization algorithm is proposed to ex-
plore the Pareto solutions of HLS directives. The main tech-
niques include the construction of design space, surrogate mod-
els and acquisition functions, and optimal configuration selec-
tion. In constructing design space, HLS directives are trans-
formed into numerical vectors to perform GP-based Bayesian
optimization. Besides, a pruning method is proposed to shrink
design space so that the downstream GP-based Bayesian Opti-
mization can explore design space more efficiently. In construct-
ing surrogate models, we combine deep kernel learning with GP
to learn better feature representations flexibly. In construct-
ing acquisition functions, we use the expected improvement of

Pareto hypervolume as a metric to select the most representative

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 40

configuration to run the FPGA design tool. Then performance
values obtained from the FPGA design tool and the correspond-
ing configuration are used to extend the dataset and update the
models. All techniques mentioned above are used to achieve
more efficient design space exploration. The brief optimization
flow is shown in Fig. 3.4. In Section 3.5, the overall detailed op-
timization flow and algorithm framework are provided to solve

the optimization problems of HLS directives.

Construct »| Sample Initial Set
Configuration Space - Pp

\/

Construct Acquisition Construct Surrogate Models
Functions (Deep Kernel Learning Functions + GPs)

A

\/

Select Optimal Configuration

No

\/

Satisfy Stopping Yes
Criterion?

Get Pareto Configurations

‘ Update Sampled Set

Figure 3.4 The brief flow of our method for HLS directives optimization.

3.3 HLS Directive Design Space

To construct the design space X, we enumerate the designs, con-
duct the design space pruning to remove infeasible configura-

tions and encode the directive configurations as feature vectors.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 41

3.3.1 Design Space and Space Pruning

Some HLS directives are widely used, including pipelining, loop
unrolling, and array partitioning, etc. These directives are espe-
cially popular in DNN-based applications which are composed
of many dense matrix operations. Some typical dense matrix
operations include fully connected operations, convolutional op-
erations, and general matrix multiplication (GEMM). In general
applications, the codes are composed of several for-loops, some
arrays, and related computations. The design space can be gen-
erated by direct permutations and combinations of directives.

However, some directives are conflicting and some are obvi-
ously non-optimal, especially for loop unrolling and array par-
titioning. Infeasible configurations may increase optimization
workloads. For example, for an array used in a for-loop, if the
array partitioning factor is less than the loop unrolling factor,
this loop may not be unrolled successfully because the visits to
the array are limited by the partitioning factor [4]. If the ar-
ray partitioning factor is greater than the loop unrolling factor,
more memory resources are consumed without increasing the
system parallelism. Under this circumstance, compatible direc-
tives and factors are the best. A design space pruning method
is proposed to help solve this problem, as shown in Algorithm 1.
The inputs are high-level language descriptions and a file that
indicates which directives are to be analyzed.

Fig. 3.5 shows an example. There are two arrays A and B,

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 42

Algorithm 1 The Pseudo-code of Pruning Method

1:

10:

11:
12:
13:
14:
15:
16:
17:

Inputs: High-level programming language source code, and a directive
file;
Outputs: Pruned design space X, initially X < (;
Construct a graph for each array, with itself as the root node and related
loops as children nodes;
Merge graphs with common nodes, denote the set of graphs as T;
for all graph ¢; € 7 do
for root (array) node a; in t; do
for partitioning factor f; of a; do
Assign fi to aj;
Assign a unrolling factor to each loop node in t;;
Backtrack from leaf nodes, assign partitioning factors to array
nodes in t;, except a;;
end for
Record feasible configurations of a; as set Cj;
X<+~ Xudlj
end for
end for
Traverse X and remove repeated configurations;

return Pruned design space X.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 43

for L1 in range(O,N1):

for L2 in range(0,N2): ‘
op(A[L1 * 10 + L2])

for L3 in range(0,N3): @ @
op(A[L1 * 10 + L3])

op(B[L1 * 10 + L3]) (12)

(a) (b)

Figure 3.5 An example of design space pruning method. (a) Code with three
loops and two arrays. L1 is the outer loop. L2 and L3 are the inner parallel

loops. (b) Graphs of array A and B, and the merged graph.

and three loops L1, 1.2, and L3 in Fig. 3.5(a). Two graphs are
built for A and B, with arrays as root nodes and loops as non-
root nodes, as shown in Fig. 3.5(b). The outer loop L1 is the
leaf node and nested loops L2 and L3 are non-leaf nodes. These
two graphs are merged since they share some common nodes
L3 and L1. To help understand the common nodes of the two
arrays, we build two graphs separately and then merge them.
Merging trees can also be finished while constructing the graphs
for arrays and there is no effect on the results. In each graph, the
factor of each child node is determined by its parents. Two types
of array partitioning are considered here, CYCLIC and BLOCK, as
shown in Fig. 2.2.

If we partition A with type CYCLIC, then we will assign un-
rolling factors for L2 and L3. But we will not unroll L1. In other
words, the unrolling factor is 1, because L1 is incompatible with
CYCLIC partitioning of A and unrolling of L2 and L3. After
that, we will backtrack from L1 to assign CYCLIC partitioning

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 44

factors to B because A and B are in the same loop L3 and their
partitioning types should be the same. In the graph, they are
connected by the common node L3.

If we partition array A with type BLOCK, we will set the un-
rolling factors of L2 and L3 as 1. The reason is that the unrolling
of these two loops is incompatible with BLOCK of A. But we can
unroll loop L1 successfully because they are compatible. After
that, we will backtrack from L1 to B, to partition array B with
type BLOCK.

In this process, all factors will be checked whether they are
compatible, and more domain knowledge can be used here if
wanted. All of the compatible configurations are added into a
configuration set Cy belonging to A. After identifying C'y and
adding C'y into X, we can conduct the same configuration as-
signment process starting at array B in the merged graph. Note
that finally, we will traverse X again to remove repeated config-
urations. The invalid and incompatible directive configurations
are pruned with the graph-based method, which also eases the
optimization task. For the applications with extremely large
design spaces, sampling techniques can be adopted, e.g., Monte
Carlo-based sampling with reparameterization trick [134, 135].
Therefore, our proposed method can be used to explore large

design spaces efficiently.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 45

3.3.2 Encoding of Directive Configurations

The GP, as a typical machine learning model, can only work
on numerical values. Therefore, it is necessary to transform the
non-numerical design parameters, such as unroll and inline, into
numerical arrays. The TRUE/FALSE factors are represented as
0 or 1 directly. The directives which have several factors are rep-
resented as normalized features, e.g., three factors {2,5,10} are
encoded as {0,0.375,1}. The normalization can adjust all fea-
tures to the same scale and allows for a more uniform influence
for all weights and faster convergence on learning [16]. If the
partitioning factor 2 has good performances, we will conjecture
that 5 is better than 10 because 5 is closer to 2. Fig. 3.6 shows
an example. In this example, there are two HLS directives and
six configurations in the design space. More directives with fac-
tors are included in the experiments, e.g., pipelining and array
partitioning. The final feature vector for a code segment is the
concatenations and combinations of features of all the directives

in this segment.

comp (int in[10], int out[10]): p ———————]

Cfor(i = 0; i < 10; i +4) { / ST
| #PRAGMA HLS UNROLL factor={2,5,10} ! T 1["""" I

| 11,01 11,0.375] 11,1 |
} ! [0,0] [0,0.375] [0,1] |

Figure 3.6 An example of directive encoding.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 46

3.4 Correlated Multi-objective Multi-fidelity
Models and Deep Kernel Functions

In this section, non-linear multi-fidelity models and correlated
multi-objective models are described in Section 3.4.1 and Sec-
tion 3.4.2 and are enhanced by deep kernel functions in Sec-
tion 3.4.4.

3.4.1 Non-linear Multi-Fidelity Model

Traditionally, in HLS directive designs, the relationship among
the multiple stages (fidelities) is assumed to be linear. For exam-
ple, in [83], higher fidelity estimates scale the lower fidelity out-
put by a factor and add an independent GP to model the remain-
ing differences. However, it is not suitable and weak for the ap-
plications where these three FPGA design stages exhibit strong
complicated correlations. Therefore, non-linear models are pro-
posed to further exploit the corresponding non-linear relation-
ships between the low- and high-fidelity objective functions. The

non-linear model can be formulated as Equation (3.9).

finl(®) = 2(fi(x),) + [e(®), Vi {1,..., L =1}, (3.9)

where z(-) is the non-linear function and is modeled by a GP
model, and f.(x) is the error term which is also defined as a
GP model. The outputs f;(x) of the early stage (low Fidelity)
model are concatenated with the directive encoding features x

as the input features to the later stage (high fidelity) GP model.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 47

1 14 e +HLS Stage
X . =)
IS222222222222: 22022222 222222] ;;:?m*” T PEE AR s s ey ASyn Stage
EE tEE . AT {53333 ‘?"r‘”ﬁ‘ ”*t}:}tgf}ﬁw&tﬁéf g hnpl Stage
= 08 0.8 PP O AR
5 BRTH :::::::;;M‘..H..:::::*:";
A ,xw « 4‘### M ,2$$ $i4 trr
N
. ¥ ¥
= R 5
S 04fiiiiiisr Siiiriiis 04 AT, B,
=
3
Z,
0.2
HEFE v R
0 500 1000 1500 0 500 1000
Index of Design Index of Design
(a) (b)

Figure 3.7 Normalized delay values of the three fidelities. The X-axis is the
index of the design. We assign indices for these designs according to their
directive values in increasing order. (a) GEMM (general matrix multiplication).

(b) SPMV_ELLPACK (sparse matrix-vector multiplication using the ELLPACK
format).

Delay values of two benchmarks are shown in Fig. 3.7 as ex-
amples to illustrate the complex non-linear relationships among
the three fidelities. In the general matrix multiplication (GEMM),
delay values of the configurations in the three fidelities are highly
overlapping. For the sparse matrix-vector multiplication using
the ELLPACK format (SPMV_ELLPACK), delay values in the three
fidelities show high divergences. The high divergences of various
applications make it hard to regress the relationships accurately
by using traditional linear models. Obviously, using non-linear

models is a wise and general choice to handle various applica-

tions.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 48

3.4.2 Correlated Multi-Objective Model

To learn and measure the Pareto set for the multi-objective op-
timization problem, we introduce the expected improvement of
Pareto hypervolume (EIPV) [105] and define it as the acquisi-
tion function. Firstly, we will clarify the concept of the expected
improvement of Pareto hypervolume. Secondly, we will define
the probability model and compute the value of the expected
improvement.

Assume that in current optimization step t + 1, we already
have a Pareto-optimal set D = {X* Y*}, with X* = {x}._;,
and Y* = {ys}._;. Note that D is the Pareto-optimal set of the
designs explored in the previous t steps. A virtual configuration
point v,.f € RM is defined as the reference point, which is dom-
inated by Y*, i.e., ys = Uy U for Vy, € Y*. Vyef does not have
physical meanings and is only for the ease of computations. In
the experiments, we can directly assign extremely large values
which usually do not occur in practical scenarios to v,.r, e.g.,

100W for power. The Pareto hypervolume with respect to v,.;
in the objective space is defined as Equation (3.10).

vamf(y*) — /RM Iy > vyef] [1 = H I[w % y]] dy, (3.10)

uey*
where I(-) is the indicator function, which outputs 1 if its ar-

gument is true and 0 otherwise. This equation measures the

Lex-7 denotes “dominate”. In this minimization problem, its numerical meaning is “<”

as shown in Equation (3.1).

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 49

volume of the objective space composed of configurations which
dominate v,.; but are dominated by at least one configuration
in Y*. The greater the volume is, the better the Pareto set is.
Greedily, in each operation step, we want to sample a con-
figuration which can lead to the highest expected improvement
of the Pareto hypervolume. Here the “expected” comes from
the uncertainty information of the predicted performance val-
ues of GP models. We will estimate the expected improvements
for the un-sampled configurations and select the configuration
which leads to the largest expected improvement. The expected

improvement is defined as Equation (3.11).

EIPV(x11]|D) = Epy(a,, D) [va,.ef (Y Uy(xig1)) — PV, (H*)} .
(3.11)

An example of the Pareto hypervolume is shown in Fig. 3.8.
The objective space is divided into cells according to the lo-
cations of the currently found Pareto set. Orange points are
Pareto points and blue points are dominated. Blank cells are
dominated while light yellow cells are not. Volume of the blank
cells is the current Pareto hypervolume. We can decompose the
whole objective space into grid cells to simplify the integration
of Equation (3.10), as shown in Fig. 3.8(a). The decomposition
is according to the locations of the found Pareto-optimal con-
figurations in the objective space. The corresponding objective
values at these two axes are b} and b?. We denote the non-

dominated cells as Cyq. Then Equation (3.11) is simplified as

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 20

Power(z) Upef Power(z) Uref
bij © o bi| © °
o o

b2 ° e b2 o ®

([e ® ([
2) . 2) .

c) o
b? e b?)
blobl bl bl Delay(z) bl bl bl b Delay(z)

(a) (b)

Figure 3.8 An example of minimizing power and delay.

Equation (3.12), where A¢(x) is the volume of cell C' € Cyq.

EIPV(zi1|D) = Y Ac(w) =) /PV p(y|D)dy

C’E@nd Ceend
(3.12)

In Fig. 3.8(b), purple point minimizes the expected improvement
and is predicted to be the Pareto-optimal configuration. The
light purple cell is the corresponding expected improvement of
Pareto hypervolume.

Now we have clarified the concept of the expected improve-
ment of Pareto hypervolume. The next step is to define the
probability model p(y|D) and to further deduce the concrete
form of the expected improvements. In previous works [82,83],
the multiple design objectives are predicted via several indepen-
dent Gaussian process models, though in real applications, they
are usually correlated. For example, to reduce system delay, we
may want to increase the system parallelism which means we

will consume much more on-chip resources, e.g., LUTs. There-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 51

fore, delay and resource consumption are negatively correlated.
But power and resource consumption are positively correlated
since that instantiating more on-chip resources would increase
power consumption simultaneously.

In this thesis, p(y|D) is modeled as a correlated multi-objective
GP model [15], as shown in Equation (3.13).

p(ylD) =N(y',....y" s 1, 2), (3.13)

where p is the mean vector with length M and each element p;

in it is the mean value of objective f. The covariance matrix X

is non-diagonal. Specifically, definition of the covariance value
1s:

3= Cov(fi(z), f/(z) =K, jke(z,x'), (3.14)

where K; ; is the similarity between objectives ¢« and j and can

be obtained by maximizing likelihood estimation. k¢ is a covari-

ance function over X and is defined as automatic relevance de-

termination (ARD) Matérn 5/2 kernel to avoid over-smoothness
109].

3.4.3 Combined Model

Our method has two novel modeling techniques, one for mod-
eling the multiple correlated objectives and one for modeling
the three fidelities (i.e., three FPGA design stages). At each fi-
delity, all of the objectives construct a correlated multi-objective
model. Its expected improvement function of Pareto hypervol-

ume is denoted as EIPV;(x;41|D), with i € {hls, syn,impl}. In

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 52

the real FPGA design flow, obtaining results in different stages
costs different running times. To characterize the different costs,
an additional penalty term p; is applied to augment EIPV;(x;41)
as the penalized EIPV, termed as PEIPV,(x;1|D):

PEIPV;(441|D) = p; - EIPV;(z:1|D),

T%mpl

117; Y
where T; is the time of running the FPGA design tool from
scratch to stage 7. Finally, PEIPV functions in Equation (3.15)

(3.15)

pi = i € {hls, syn,impl},

are used as the acquisition functions in the Bayesian optimiza-
tion framework. For the designs that violate the design rules, no
valid reports are returned from the FPGA tool. Their simulation
performance is set to be 10x worse than the current worst-case,
to punish the illegal designs and teach the models. Fig. 3.9 visu-
alizes the structures of the combined models. The orange lines
represent the non-linear relationships. The blue lines represent

the inputs. Each fidelity has an acquisition function PEIPV.

3.4.4 Optimization Based on Deep Kernel Functions

The properties of the distributions over functions induced by a
GP are controlled by the kernel function, and the covariance ma-
trices implicitly depend on the hyper-parameters in the kernel
functions [34, 64,132,133, 140]. From this perspective, learning
better kernel functions is of vital importance to the performance
of the GP models. In the recent fewer years, deep neural net-

works have been shown to have powerful mechanisms to create

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 23

l Input Features l

v

HLS Model Syn Model Impl Model

PEIPVy, PEIPVy, PEIPV

Figure 3.9 The combined models, with three stages (fidelities) and three

Hy!
!

objectives.

adaptive functions to discover meaningful representations of in-
put data. Therefore, we propose to use the deep neural network
as the deep kernel function in the GP models.

As mentioned above, the covariance value in the covariance
matrix % is defined as Equation (3.14), where k¢ is defined as
ARD Matérn 5/2 kernel. ARD Matérn 5/2 kernel [97] takes the

form:
14

21-
(\/ 21/d> K, (\/ 21/d) ,
I'(v)
d=(x—)' 0 (x -z,
where I' is the gamma function, v is the smoothness parameter

(v =5/2), K, is a modified Bessel function of the second kind,

bolw, &) = (3.16)

and 6 is the parameters to be learned. Despite the complicated
form, it can be regarded as the inner product of the input fea-
ture vectors. Since the covariance only depends on the distances

between inputs, it is stationary. In different applications, it is

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES o4

hard to give a general and uniform representation for the differ-
ent feature vectors to characterize the complicated relationships
between the design configurations.

To improve the characterization ability of the kernel func-
tion, we propose to use deep neural networks to enhance the
kernel function, termed as deep kernel function, as shown in

Equation (3.17).

ko(x, @) = ko (ow (), ow ()]0, W), (3.17)

where ¢ (-) represents the neural network and W represents
the parameters in the network. Implicitly, that is equivalent
to learn a novel distance metric to enhance the distance d in

Equation (3.16), i.e.,

d' = (¢w(z) — dw () 0" (¢w(x) — dw(x)). (3.18)

The structure of the model with deep kernel function is shown
in Fig. 3.10. The original input feature is . And the learned
novel feature representation is ¢y (). The learned feature of the
input configuration is ¢y (x). Then ¢y () is used as the inputs
to the GP models. The structure of our deep kernel function is
described in detail in the experiments.

The weight W of the neural network is a part of the parame-
ters in our method. For brevity, denote the multi-objective GP
model as GPg with parameters ©. Parameters © and W are
optimized jointly, by maximizing the log marginal likelihood £

of the Gaussian process model. According to the chain rule of

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 25

Figure 3.10 Our method combines the GP model GPg and the deep kernel

function ¢y .

the gradients, ©® and W can be updated according to:

oL 9L 9K
00 OKg 00
oW — K¢ Odw(x) OW

(3.19)

where K¢ denotes the kernel functions which contain K;; in

Equation (3.14) and k; in Equation (3.17), aaK—@C represents the

derivatives of the kernel with respect to the kernel parameters.

Ko

to the neural network ¢y, while © is fixed. With this training

represents the derivatives of the deep kernel with respect

method, all of the parameters are trained jointly according to
a unified supervised objective, as part of the Gaussian process
framework, without requiring approximate Bayesian inference.
During training, the gradients are computed via back propaga-

tion.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 26

3.5 The Overall Optimization Flow

The Bayesian optimization method is adopted as the algorithm
skeleton to explore the Pareto-optimal directive configurations,

with the GP models as the surrogate models, and PEIPV func-

tions as the acquisition functions.

................................

: Remove Sampled Set
. « | From Configuration Space
5 I S '
o] DKLGPs .. o * | Estimate Each FPGA
Select Optimal Configuration Design Stage (Eq. 15)
I \\ : v
\ : Select Optimal Candidate
Update Sampled Set \ Configuration
No *
‘\ ! Obtam Real Performance
.
Yes
CDelay 1 Delay Objective Space |
Get Pareto : :
Configurations ! \ k |
1 Resour;: Power E

...................................

Figure 3.11 Detailed overall optimization flow.

Using data from later stages contributes to a more accurate

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES o7

surrogate model, at the cost of more simulation workloads to
obtain the performance values. If the results at the early FPGA
design stage are good enough, there is no need to run the FPGA
design tool to the later stages. In each optimization step of the
BO algorithm, for the surrogate model of each stage, we need
to consider the quality of the selected point and its acquisi-
tion value, so as to determine whether it is necessary to opti-
mize models of the later stages. For example, in one BO step,
PEIPV,,, is the best compared with PEIPV};, and PEIP V1,
at configuration x,,,. We will then run the FPGA design tool
with @y, as the directive configuration input, to get the real
performance values at his and syn stages. Finally, we will up-
date the surrogate models of hls and syn stages according to
these performance values. If PEIPV;,,,; is the best, we will run
the FPGA design tool to the final impl stage, and update the
models of hls, syn, and impl stages.

The overall optimization flow is detailed in Algorithm 2 and
Fig. 3.11. DKLGP denotes the deep kernel learning functions
and Gaussian process model. Firstly, we define and prune the
design space according to the tree-based method described in
Algorithm 1. Denote the generated design space as X. Sec-
ondly, we randomly sample some configurations from the design
space for initialization. The configurations for the higher fi-
delities (later FPGA stages) are subsets of the lower fidelities
(earlier FPGA stages), i.e., Ximpi € Xsyn € Xps € X. These
configurations are then fed into the FPGA design tool to get

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 28

Algorithm 2 The Bayesian Optimization-based Optimization Flow

1:

10:

11:
12:

13:
14:
15:
16:
17:

18:
19:
20:
21:

22:

Inputs: High-level programming language source code, optimization
steps N, early-stopping step Sg;
Outputs: Pareto configuration set X* and objective value set Y*, initially
X* 0, 9" « 0;
Enumerate the design space and run tree-based pruning method, to get
pruned design space X; > Section 3.3.1
Randomly sample initial sets X;pp C Xgyn € Xps € X
Run FPGA tool to get the performance values Y; for X;, with ¢ €
{hls, syn,impl};
Initialize a surrogate model DKLGP; and an acquisition function PEIPV;
for each stage i according to {X;,Y;}, with i € {hls, syn,impl}; >
DKLGP; is our method with GPs and deep kernel learning functions
for t <1 to Ny, do
for all stage i € {hls, syn,impl} do
Update DKLGP; and PEIPV; according to {X;,Y;};
&; < argmaxgey PEIPV;(x); > Select the candidate Pareto
configuration from X
end for
(x*, h) « argmax ;. , PEIPV,(z), with i € {hls, syn, impl}; >
Determine the Pareto configuration
Run FPGA tool with &* up to stage h, to get y;, with i € {hls, ..., h};
X+ X;Ux*, Y, «+ Y; Uy;, with i € {hls, ..., h};
X+ X\ x5 > Remove x* from the design space
Compute current hypervolume hvy of {Ximpi, Yimpi }:
if hv, has no improvements in the continuous Sg steps then >
Early-stopping condition
break; > Converge and exit the optimization process
end if
end for
Select Pareto configurations {X*,Y*} from {Ximpi, Yimp }; > Obtain the
final results from the exploration record

return Pareto configurations {X*, Y*}.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 29

real performance values Y;, with i € {hls, syn,impl}. For each
stage, we initialize a surrogate model DKLGP; (i.e., GP model
with deep kernel learning function) and an acquisition function
PEIPV;. In each optimization time step, for each stage i, we
will select a configuration @; € X which maximizes the expected
improvement PEIPV;. x; is regarded as the candidate Pareto
configuration of this stage. Then a node-stage pair (x*, h) which
achieves the highest expected improvement is selected from the
three @; configurations. Here h denotes the stage index. a* is
our final choice of Pareto point in current optimization step. A
toy example on the surrogate models and PEIPV functions is
shown in Fig. 3.12. Red nodes are the sampled configurations.
Models of the lower stages have wider error ranges (light yel-
low fillers) since their fidelities are lower. Each stage selects a
configuration with the highest expected improvement, i.e., 1,
To, and 3. x1 has the higher expected improvement compared
with 29 and x3. Therefore, in this optimization step, the HLS
stage is selected and x; is sampled. We will pass the code to-
gether with configuration * into the FPGA design tool, run the
tool up to stage h to get the performance values (i.e., y;, with
i = hls, ..., h). Record the configuration and performance values,
e, X; < X; U{x*}, and Y; « Y; U{y;}, and update all of the
corresponding surrogate models and PEIPV functions. Then we
will start the next BO searching step. The final Pareto designs

{X*,Y*} found by our optimization method are computed from

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 60

{ximpl) yz’mpl} 2 .

—— HLS Model —— Syn Model —— Impl Model

—— HLS PEIPV —— Syn PEIPV —— Impl PEIPV
: T M/E T E 3

Figure 3.12 A toy example to explain the models of the 3 stages (as shown

in Fig. 3.3) and their corresponding acquisition functions.

Note that in our framework, no additional model training
dataset is required. Some configurations are sampled from the
design space to initialize the models during the model initializa-
tion, 7.e., train the model from scratch. These initial configura-
tions with their performance values {X;, Y;}, i € {hls, syn, impl}
are the initial training set. Then, new configurations are selected
from the design space in the iterative optimization process, ac-
cording to the expected improvements discussed above. These
newly sampled configurations are passed to the FPGA design
tool to get actual performance values and extend the training
set to tune the model further. The deep kernel modules and GP
modules are trained jointly according to Equation (3.19). The

process is repeatedly performed several times until convergence.

2Note that different from the optimization process, given a set with the known objective

values, the Pareto set of this set is deterministic and can be computed easily.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 61

Compared with our previous work CGP [117], considering
that the shallow structures of Gaussian process models limit the
ability to extract information from the input configurations, we
combine the deep kernel learning functions with GP models in
DCGP, as the enhancement of the kernel functions to learn bet-
ter feature representations flexibly. Based on this combination,
the proposed DCGP is expected to further improve significantly
the performance.

Our proposed method can be easily used to explore large de-
sign spaces. If the design space is large, our proposed pruning
method can effectively prune the design space since some direc-
tives are conflicting and some are obviously non-optimal (dis-
cussed in Section 3.3.1). Moreover, the sampling-based method
can handle the design space efficiently. The design space is spec-
ified by the users via configuration files, while also considering
the characteristics of FPGA designs. For example, the sizes of
memory blocks are the power of two. Further, considering the
required computation workloads in the applications, the num-
bers of candidate configurations of directives are limited. If in
some circumstances the design space is extremely large, we can
use sampling-based methods [134, 135] to help solve the prob-

lem.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 62

Table 3.1 Average Runtime of The FPGA Tool for Each Design

Benchmark ~ HLS (s) Syn (s) Impl (s)

GEMM 137.75 1379.67 1744.61
iSmart?2 2206.06 2895.15 4022.38
SORT_RADIX 166.66 917.01 1206.94
SPMV_ELLPACK 365.91 1528.81 1034.79
SPMV_CRS 1333.95 3614.51 1503.30
STENCIL3D 369.10 2082.25 969.29

Average 763.24 2069.57 1746.89

3.6 Experimental Results

In our experiments, the initial design space is defined by speci-
fying all of the possible locations of directives and their factors
in YAML files. We parse the YAML files and convert the direc-
tives to feature vectors and HLS TCL files. The target FPGA
board is Xilinx Virtex-7 VC707. The FPGA design tool is Xil-
inx Vivado 2018.2. Our correlated GP version “CGP” [117] is
implemented based on [15] and [105]. The deep version “DCGP”
is implemented based on BoTorch [11] and GPyTorch [43].

3.6.1 Integration of Optimization and Deployment

Here we recap the integration of the proposed Bayesian-based
optimization techniques and the Xilinx-based FPGA deploy-
ment flow, as shown in Fig. 3.11. The Xilinx-based FPGA design
tool (i.e., Vivado) is used in both the initialization and the iter-

ative optimization steps to obtain the performance reports. The

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 63

HLS optimization directives sampled by our algorithm and the
HLS C/C++ sources codes are the inputs to the FPGA design
tool. We run the FPGA design tool for the input designs to
certain stages with the best acquisition values, according to the
acquisition functions in Equation (3.15).

Some HLS directive designs are initially sampled and syn-
thesized with the FPGA tool to build the models. Then, our
algorithm iteratively samples HLS directive designs from the de-
sign space and then synthesizes them with the FPGA tool. The
new designs and performance reports are utilized to update the
models. This process stops while convergence, i.e., the sampled

designs satisfy the performance requirements.

3.6.2 Objective Selection

Power, performance, and area (PPA) are three popular metrics.
To measure the system performance, we choose to use delay
(task time length), i.e., the product of latency and clock period.
Latency reflects how many clock cycles are needed to finish one
task. The clock period is the time length of each cycle, which
reflects the congestion information of the designs and is a key
design indicator for some applications. We use the utilization
of the look-up table (LUT) as the area (i.e., resource consump-
tion) metric. LUT can be used to implement the control logic
and simple computations. For tasks requiring high parallelism

designs, the LUT utilization is usually the key metric. Other re-

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 64

source metrics (RAMs, DSPs, FFs) can also be easily integrated
into the multiple objectives in the same manner. Power as a
metric is directly used in the experiments. Compared to works
that consider only one or two metrics or linear combinations of

these metrics, our work is more practical and challenging.

3.6.3 Benchmarks and Methods

We conduct experiments on six benchmarks. Five are from the
open-source FPGA application benchmark MachSuite [98], i.e.,
GEMM, SORT RADIX, SPMV_ELLPACK, SPMV_CRS, and STENCIL3D.
Another benchmark is iSmart2 [60], an object detection deep
neural network model deployed on FPGA. GEMM is the general
matrix multiplication which is widely used to implement the
convolutional operators, fully connected operations, and etec.
Both SPMV_ELLPACK and SPMV_CRS are for the sparse matrix-
vector multiplication while their storage formats are different
(ELLPACK format and CRS format). These two sparse computa-
tions are needed by the sparse neural networks. iSmart2 stacks
12 convolutional modules, including group convolutions, point-
wise convolutions, ReLLU, pooling layers, and etc. Stencil3D is
the stencil operation used in numerical analysis. We consider
the unrolling and pipelining for the loops and partitioning for
the arrays. BRAM core is used as the storage resource. DSP48
and Mul LUT are used as the computation resource cores. The

numbers of the consumed computation cores are influenced by

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 65

I Before Pruning B After Pruning

100000 T T T T T T T
50000 { | }
0

ggﬁgk {ﬁﬁg) ?Sfj” Q?§§;C§§5 C§§g0}56
G ° Q> W N
%Q?v N@ VR v
N

Number of Designs

Figure 3.13 Sizes of The Design Spaces Before and After Pruning.

loop unrolling. The storage volumes are influenced by array
partitioning. Achieving the optimal allocation solution is non-
trivial, while different resource allocations will affect other opti-
mization targets significantly. There are no particular directives
that can uniquely determine the allocations, thus making this
problem challenging. Our method uses the correlated multi-
objective method and deep kernel functions to help find the
optimal configurations. Loop tiling cannot be easily handled
by the HLS directives and requires more techniques provided
by the compilation toolchain (backend code generator). Each
benchmark contains a large number of possible configurations.
The average runtimes of the FPGA tool for these designs are
shown in TABLE 3.1. The sizes of the design spaces before and
after the pruning method are plotted in Fig. 3.13.

In the deep kernel function of DCGP, there are four fully
connected layers, with output dimensions 1000, 500, 50, and 6.
Each of the first three fully connected layers is appended with
a ReLU layer. The outputs of the deep kernel functions are the

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 66

inputs of the GP models. The input features are enlarged into a
high-dimension space (i.e., 1000, and 500) by the deep model to
learn more information. The dimension is very large compared
with the original feature configurations, and that is why this
is called the deep method. Then the features are embedded to
learn key information with smaller dimensions (i.e., 50, and 6).

Four popular and representative methods are compared with
our methods. [83], shorted as FPL18, is also based on Bayesian
methods and the Gaussian process. The authors build linear
multi-fidelity and independent multi-objective models. [78], ab-
breviated as DAC19, defines several regression models to guide
the FPGA HLS designs with existing ASIC designs. Although
the starting points are different, their methods are transferable.
Post-HLS reports in our problem can be regarded as the ASIC
implementations, to predict the post-Implementation reports.
Randomized Transduction Experimental Design (RTED) pro-
posed by [77] is also used in DAC19 [78] to select better and
representative initialization configurations. Artificial neural net-
work (ANN) and Boosting tree (BT) methods have been used
in [33,121,151] to guide the back-end designs and achieve good
performances. For these regression algorithms, some configura-
tions are randomly sampled from the design space to initialize
these models. We use the post-Implementation reports as the
regression targets. For each objective, we build one model. Af-
ter all of the models are trained, the whole design space is fed

into these models to predict the Pareto points. For these learned

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 67

Pareto points, we run the Xilinx Vivado design flow to get their
real reports. Note that these models are only used to learn the
relative numerical relationships to determine the Pareto points.
Besides, the various design objectives have performance values
that vary greatly in order of magnitude. To guarantee the stabil-
ity and robustness of the trained models, the performance values
are divided by estimated values to scale different target values
to a suitable range. For fairness, all of these algorithms use the
same feature encodings and design spaces as our method.
Different design objectives have distinctive ranges of perfor-
mance values, which would mislead the models significantly. For
example, the latencies are several seconds while the consump-
tions of LUTs are hundreds of thousands. The objective values
should be normalized during optimizations to avoid inappro-
priate data shifts. Considering that the maximum power and
hardware resources are specified for a known FPGA platform,
in practice, we can use these specifications to help adjust the
data magnitude. For delay, we estimate a scale factor accord-
ing to the delays obtained in the initialization stages (2 X of
the maximum in the initialization stages). Then the delays are

divided by the scale factor before feeding into the model.

3.6.4 Experimental Settings

For our methods and FPL18 [83], we run 10 tests on each bench-

mark and the results reported in the results are the averages.

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 68

For each benchmark, 8 configurations are randomly sampled to
initialize the models. The maximum optimization step is 40 and
the early stopping factor is 5. There exists a trade-off between
the optimization costs and the quality of results. The experi-
mental results show that our methods converge after 30 steps.
Therefore, we choose to use 40 steps.

For ANN, we design a model with 2 hidden layers. We train
the model with {500, 1000, ...,5000} times. For the Boosting
method [33,121,151], we run a group of experiments, with tree
depth from 1 to 6, and learning rate in {0.1,0.2,0.3,0.4,0.5}.
In DAC19 [78], different numbers of initial sets are sampled to
build the models. Therefore, the number of initial sets is also
considered as a hyper-parameter, i.e., {3,4,...,11}. In experi-
ments of ANN, Boosting, and DAC19, for each benchmark, the
number of initialization configurations is 48. It is worth men-
tioning that some optimization techniques require initialization
and iterative optimization (e.g., ours and FPL18), while some
methods have only initialization steps (e.g., ANN). In practical
applications, with or without initializations and iterative opti-
mizations is not an issue since the target is to find the optimal
solutions. They both run the FPGA design tools to get the ac-
tual performance values. For each benchmark, we optimize the
configurations from scratch with no prior data. Therefore, the
fair comparisons should consider the overall costs of the initial-
izations and the iterative optimizations for different optimiza-

tion techniques. This kind of cost measures the overall overhead

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 69

for the users to achieve final optimization results. The overall
costs are compared in Section 3.6.7. Although the maximum op-
timization step is 40, the optimization step is usually fewer than
40 because of the early stopping mechanism (i.e., convergence).

Two metrics are used to measure the performance: average
distance to reference set (ADRS) and overall runtime. ADRS
computes the distance between the learned Pareto set and the

real Pareto set [78].

ADRS(T', Q) = — Y ~min f(y,w), (3.20)

where €2 is the learned Pareto set, I is the real Pareto set, f(v,w)
is the distance between two points, v € I' and w € Q, |I'| is
the number of points in I'. Overall runtime is the total time
needed to get all results, including initialization and iterative
optimization. To validate the effectiveness of our method, all the
configurations in the design space are run to obtain the whole
objective space, though consuming lots of time, huge amounts

of computation, and storage resources.

3.6.5 Results and Analysis

As mentioned above, all of the parameters are trained jointly
with a unified supervised objective based on the chain rule, as
shown in Equation (3.19). An example of the training loss and
parameters of our deep kernel function and GP model is shown

in Fig. 3.14. The results show that the parameters of the deep

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 70

— Model Training Loss £ —— Mean Weights W of Kernel Functions Mean Parameters O of GPs
2 0 2

0 i -0.07

-2+ -
-0.14 — ‘ ‘
0 300 600 0 300 600 0 300 600

Training Epochs Training Epochs Training Epochs
Figure 3.14 The training loss of our method, and the mean parameters (W
and ©) of the deep kernel functions and the GP models. The results show
the great convergence of the training loss. The mean parameters W and ©
follow the same convergence trend which validates the effectiveness of our

training method.

Table 3.2 Normalized Experimental Results

Normalized ADRS Normalized Standard Deviation of ADRS
FPL18 ANN BT DAC19 CGP DCGP | FPL18 ANN BT DAC19 CGP DCGP

Benchmark

GEMM 0.50 1.00 0.65 1.08 0.27 0.25 0.46 1.00 0.37 0.90 0.12 0.19
iSmart2 0.68 1.00 1.28 1.49 0.65 0.59 0.75 1.00 1.10 1.24 0.20 0.26
SORT_RADIX 0.72 1.00 1.09 0.94 0.64 0.59 0.57 1.00 1.72 2.28 0.48 0.27
SPMV_ELLPACK | 0.47 1.00 0.22 1.21 0.19 0.11 0.24 1.00 0.06 0.99 0.09 0.01
SPMV_CRS 0.29 1.00 2.09 1.15 0.22 0.20 0.26 1.00 2.09 1.52 0.03 0.20
STENCIL3D 0.41 1.00 040 041 0.39 0.31 0.57 1.00 0.00 0.05 0.03 0.05

Average ‘ 0.51 1.00 096 1.05 0.39 0.34 ‘ 0.47 1.00 0.89 1.16 0.16 0.16

kernel function and the GP model have good convergence trends,
which validates the performance of our joint training method.

Two examples are plotted in Fig. 3.15 to show the learned
Pareto points. For easy visualizations, three objectives are plot-
ted in two figures. The results demonstrate that our learned
Pareto points are much more closer to the real Pareto points.
All of the statistical results are listed in TABLE 4.1, while ex-
pressed as ratios to the results of ANN.

As shown in TABLE 4.1, our methods, CGP [117] and DCGP

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 71

1 . 1 : Data
§> 08l 0.8 ji(f\?}l\lpalcto
A ’ -E?Cl,‘)
E ik 0.6) = “FPLIS
= «CGP
z 04 0.4] -DCGP
s 02 02 T .

O e -

0.0 0.1 0.2 0.3 0 see e .. e

) _ , 0.0 0.1 0.2 0.3

Normalized Consumption of LUT Normalized Power

(a) GEMM LUT-Delay (b) GEMM Power-Delay
Data
%) 0.6 0.6 -R,e;l‘Pareto
$ 05 0.5 AR
BT
. 0.4 0.4 ‘52%38
S 03). 0.3{. -DCGP
g 0.2y50 0.2
20 0.1 -
0L eecn —a 0 - e e w
00 01 02 03 00 01 02 03
Normalized Consumption of LUT Normalized Power
(c) SPMV_ELLPACK LUT-Delay (d) SPMV_ELLPACK Power-Delay

Figure 3.15 Learned Pareto designs of GEMM and SPMV_ELLPACK in the objec-

tive spaces.

outperform all of these baselines by a lot. Firstly, compared with
FPL18 [83], our methods can achieve much better results on all
benchmarks. That is because we consider practical non-linear
and correlated relationships in real applications. Secondly, the
other three methods are also worse than ours, because they
cannot handle complex relationships between multiple fidelities.
Thirdly, for benchmarks with complicated code structures, the
models without GP models are inferior. For example, the ir-
regular memory accesses of SORT_RADIX bring great challenges

to ANN, Boosting tree, and DAC19. The results prove that

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 72

Table 3.3 Profiling Information of Runtime Details (Optimization Costs,

hours)
FPL18 ANN BT DAC19 CGP DCGP
Benchmark
Alg. FPGA | Alg. FPGA | Alg. FPGA | Alg. FPGA | Alg. FPGA | Alg. FPGA
GEMM 0.46 2492 | 0.05 30.03 | 0.21 30.03 | 0.09 210.21 | 0.54 20.42 | 0.63 18.48

iSmart2 0.41 127.83 | 0.12 145.26 | 0.39 145.26 | 0.22 1016.82 | 0.56 61.01 | 0.58 59.07
SORT_RADIX | 1.02 15.19 | 098 32.32 |0.98 3232 |1.02 226.24 |1.17 1099 | 1.06 10.47
SPMV_ELLPACK | 0.37 16.28 | 0.03 38.77 | 0.27 38.77 | 0.05 271.39 | 0.48 25.20 | 0.72 19.25
SPMV_CRS 048 7718 | 0.02 85.75 | 0.22 85.75 | 0.06 600.25 | 0.58 61.74 | 0.73 60.32
STENCIL3D 0.54 1859 | 0.07 4534 | 043 4534 |0.12 317.38 | 0.63 19.95 | 042 17.44

Average | 055 46.67 |0.21 6291 | 042 6291 [026 44038 | 0.66 33.22 [0.60 2039

Table 3.4 Profiling Information of Overall Runtime (hours)

Benchmark | FPL18 | ANN | BT | DAC19 | CGP | DCGP

GEMM 25.38 | 30.08 | 30.24 | 210.30 | 20.96 | 19.11
iSmart2 128.24 | 145.38 | 145.65 | 1017.04 | 61.57 | 59.65
SORT_RADIX 16.21 | 33.30 | 33.30 | 227.26 | 12.16 | 11.53
SPMV_ELLPACK | 16.65 | 38.80 | 39.04 | 271.44 | 25.68 | 19.97
SPMV_CRS 77.66 | 85.77 | 85.97 | 600.31 | 62.32 | 61.05
STENCIL3D 19.13 | 45.41 | 45.77 | 317.50 | 20.58 | 17.86

Average | 47.21 | 63.12 | 63.33 | 440.64 | 33.88 | 30.08

our methods are general enough to handle various applications.
Our methods also achieve much better stability according to the
standard deviations of ADRSs, as shown in TABLE 4.1. Besides,
our deep version DCGP outperforms CGP [117] on all of the six
benchmarks with respect to the Pareto results with lower ADRS
values, and the same average standard derivations. These results
effectively prove the performance of the deep method proposed
in Section 3.4.4.

The averages of runtime are listed in TABLE 3.3 and TA-

BLE 3.4 to show that our methods can also save time. For fair,

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 73

the FPGA times are computed according to the average times
listed in TABLE 3.1 and the number of interactions with the
FPGA tool. For DAC19, the size of one training data set equals
ANN. But it has 3 ~ 11 training sets. Therefore the average run-
time of FPGA tool is 7 times (i.e., (3+11)/2 = 7) greater than
ANN and Boosting tree. DCGP also consumes less time than
CGP [117], thanks to the fewer interactions with FPGA tools.
Though DCGP is more complicated compared with CGP, the
costs are acceptable with several minutes longer “Alg.” times.
More analyses are provided in Section 3.6.7.

In summary, our DCGP outperforms our CGP [117] and the
other baselines. Numerically, the DCGP wins CGP 12.8% on
average ADRS and up to 42.1% on SPMV_ELLPACK, thanks to the
outstanding performance of using deep kernel learning functions

and the joint training method.

3.6.6 Ablation Studies on Acquisition Function

In this section, we compare our acquisition function with max-
value entropy search (MES), another popular acquisition func-
tion for multi-objective optimization problems. In literature
[13,56], the objectives fl(z), f2(x),--- , f*(x) are modeled us-
ing M independent GP models with zero mean and 4.7.d. noise.
Researchers propose maximizing the information gains with re-
spect to the Pareto designs learned in the previous optimization

steps to overcome the challenges of computing the acquisition

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 74

function based on input space’s entropy. The GP priors are
approximated as fz and sampled from the M independent GP
models [13,56,57,126]. We implement MES and embed it into
our optimization framework in place of our correlated acquisi-
tion function. The experimental results are listed in TABLE 3.5,
under the same experimental settings as our DCGP. The results
show that using MES degrades performance. The results prove
the outstanding performance of our framework with correlated

multi-objective optimization methods.

Table 3.5 Comparisons of Normalized ADRS with MES

Benchmark DCGP MES

GEMM 0.25 0.47
iSmart?2 0.59 0.61
SORT_RADIX 0.59 0.66
SPMV_ELLPACK 0.11 0.30
SPMV_CRS 0.20 0.26
STENCIL3D 0.31 0.40

Average 0.34 0.45

3.6.7 Ablation Studies on Runtime

The DCGP method accelerates the optimization process signif-
icantly compared with baselines because it requires fewer opti-
mization iterations. Though more time is needed to train the
model in each optimization iteration, the training workload is
tiny and can be finished in minutes. The time costs reduced
by interacting fewer with the FPGA design flow are exciting.
The details are listed in TABLE 3.3 and TABLE 3.4. “Alg.”

CHAPTER 3. OPTIMIZATION OF HLS DIRECTIVES 75

denotes the time costs of running the optimization algorithms,
and “FPGA” represents the time costs to run the FPGA design
tool to get the actual performance. The results show that using
DCGP reduces the time costs remarkably compared with the

baselines.

3.7 Summarization

In this chapter, we solve the problem of FPGA HLS directives
design optimization. A pruning method is proposed to prune
the design space. Correlated multi-objective multi-fidelity Gaus-
sian process models (CGP) can handle the strong nonlinearities
among the multiple fidelities. To the best of our knowledge, the
correlated multi-fidelity model is introduced into the HLS direc-
tive optimization domain for the first time and has been proven
to be effective. The advanced deep version further improves the
qualities of the learned Pareto points with shorter running times,
by using deep neural networks to enhance the kernel functions.
The public benchmarks, e.g., GEMM and SPMV, and an objective
detection deep neural network iSmart2 are tested. The results

prove the outstanding performance of our method.

O End of chapter.

Chapter 4

Deployment via Deep (Gaussian

Transfer Learning

4.1 Introduction

In this section, we focus on the optimization of deployment
configurations. Configurations represent the resource alloca-
tions, scheduling, binding of DNN models on hardware plat-
forms, and etc. Traditionally, these optimization methods are
tightly coupled with hardware architectures and model struc-
tures [116,128,147]. These methods usually propose some an-
alytical formulations to model the latencies, and characterize
the target DNN models and hardware platforms with respect to
some properties, e.q., the sizes of layers, and the capacities of
buffers. Therefore, these methods cannot be flexibly adapted to
different models. Further, some general deployment frameworks
are developed, e.g., Halide [72] and TVM [26], which use some

auto-tuning algorithms to automatically find the optimal de-

76

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGTT

ployment configuration for any given model and hardware plat-
form. For example, XGBoost [23] is used to build a boosted
decision tree to predict the deployment performance of configu-
rations. Simulated annealing (SA) is used as the solution search-
ing algorithm. AutoTVM [28], which integrates the above al-
gorithms, is an automatic optimization framework in TVM [26]
and achieves outstanding performance. GGA [89] takes advan-
tage of a guided genetic algorithm (GGA) to explore the can-
didate configurations, under the guidance of an artificially de-
signed scoring calculator. CHAMELEON [7] proposes to use a
proximal policy reinforcement learning algorithm to learn the
actions to search the configuration space progressively.
However, these automatic frameworks are still unsatisfying.
Firstly, the optimization process is slow, resulting from the large
configuration space and the time-consuming compilation pro-
cess. Usually, the configuration space contains more than mil-
lions of configurations, e.g., more than 200 million in the first
layer of VGG-16. It is inevitable to traverse lots of configura-
tions to guarantee the performance of the searching algorithm.
It also takes a long time to compile a configuration and do the
inference to get the real on-board latency. Therefore, the over-
all optimization process is very slow, e.g., longer than a whole
day. Secondly, although lots of efforts are required to optimize
the deployments of various DNN models, explicit empirics have
seldom been drawn from the historical data. Despite that many

duplicated works have been done to deploy some models, we

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGT8

usually start from scratch to optimize new models even though
they are very similar to what has been deployed before. It is
believed that with prior empirics, we can further improve the in-
ference performance. CHAMELEON [7] leverages reinforcement
learning to learn the evolution rules of the deployment configura-
tions from the historical data. However, the experimental results
show that the performance improvements mainly rely on adap-
tive sampling (AS) which adjusts the searching scope adaptively,
instead of the policies of reinforcement learning. The guided
genetic algorithm (GGA) [89] explores the candidate configu-
rations to evaluate the similarities between the new layers and
the history data, so as to guide the genetic evolution process.
However, this method relies on complex and tricky evolution
rules and the high-quality scoring calculator of the similarities.
These disadvantages make it hard to be popularized in practical
scenarios. And its deployment configurations have worse infer-
ence latencies compared with CHAMELEON [7]. Meanwhile,
engineers are looking forward to the advent of automatic opti-
mization flows without human interference. Ideally, the inputs
of an automatic optimization flow are the historical tuning data
with no need for manually designed rules.

To counteract these problems, on the one hand, it is urgent
to find an accurate method to estimate the performance quickly
without interacting with hardware to compile the model and do
the inference. On the other hand, historical information should

be fully utilized to guide the deployments of new models. In this

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGT9

section, we propose a novel automatic optimization framework
based on deep Gaussian transfer learning. Firstly, a deep Gaus-
sian process (DGP) model is built on the historical optimiza-
tion data to learn the hidden knowledge related to model struc-
tures, hardware characteristics, optimal deployment strategies,
and etc. Stochastic variational inference is adopted to optimize
the DGP. Secondly, when deploying a new DNN model, some
efficient initial configurations of this new model are sampled un-
der the guidance of the prior knowledge in the pre-trained DGP
model. Maximum-a-posteriori (MAP) estimation is applied to
tune the DGP model according to these initial configurations,
to make the DGP model accommodate for the new task with no
loss of the hidden knowledge. Finally, the tuned DGP model is
used as a replacement to the time-consuming compilations and
on-board inferences during optimization, to predict the perfor-
mance values of new configurations accurately. Our tuned DGP
model accelerates the optimization process remarkably while re-
ducing the inference latency of the final model deployment si-
multaneously. We test our method on various types of convo-
lutional layers and networks and results show that our method

outperforms the state-of-the-art baselines significantly.

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS80

4.2 'Transfer Learning Based on Deep Gaus-

sian Processes

To avoid confusion, in the following, the model refers to our
proposed DGP model, and the DNN model to be deployed on

hardware is named as a task.

4.2.1 Motivations

In our problem, there are some great challenges, including the
undersized available dataset resulting from the time-consuming
design flow, and the uncertainties with respect to the character-
istics of hardware and models which are hard to measure. Deep
learning methods achieve outstanding results on many regression
problems, but they are prone to be overfitted with a lack of large
training dataset in our problem and be overconfident. Previous
researches have shown that as the width of a one-hidden-layer
neural network increases to infinity, the network converges to
a Gaussian process (GP) model [34,64,69], which is a powerful
nonparametric distribution and has wide applications [9,83,85].
GP method grows in complexity to suit the data and is robust
enough to the overfitting on small datasets while providing rea-
sonable predictions as well as uncertainty estimations. However,
the GP models are limited by the expressiveness of kernel func-
tions. Learning on a large and richly parameterized space of

kernels is expensive, and approximations are at risk of overfit-

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS1

ting [19,39]. A deep Gaussian process (DGP) is a hierarchical
composition of GPs that can overcome the limitations of GPs
while retaining the advantages [100]. It can be regarded as a
multi-layer neural network with multiple, infinitely wide hidden
layers [17]. The mapping between layers is parameterized by a
GP, and consequently, DGP can provide powerful uncertainty
estimations. It performs input warping or dimensionality com-
pression or expansion and automatically learns to construct a
kernel that works well on the data. With these advantages, the
DGP model is adopted in this chapter, as the performance esti-
mator in the optimization process of deployment configurations.

Considering the diversities and relationships between deploy-
ment tasks, it is imperative to transfer the knowledge learned in
the source domain (historical task) to the target domain (new
task). Some kernel learning methods are used as transfer learn-
ing approaches to learn scalable, expressive, and flexible ker-
nels [62,93,132]. These methods rely on retraining or joint
learning on a large number of tuning points of the new tasks.
Note that we want to accelerate the searching process, therefore
the slow joint learning and data collections are infeasible in our
situation. These transfer learning approaches are also highly
coupled with their regression or classification methods, which
hinders flexibility. Traditionally, Gaussian process models are
fitted from scratch via maximum likelihood estimation. In this
chapter, we propose a novel transfer learning algorithm based

on the maximum-a-posteriori (MAP) estimation. The knowl-

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS?2

edge learned on history is used as the prior of DGP. Then DGP
is tuned via MAP. This has similar philosophies with [84,125],
which also introduce a prior in the model and then calibrate it
via posterior. Thanks to the knowledge learned on history, our
method does not require much data on the new task. MAP is
also easy to be solved with low workloads, so as to accelerate
the search of optimums and improve the quality simultaneously.
With these advantages, MAP has been widely used recently,
e.g., reinforcement learning [110], structured prediction [46], and

statistical inference [53].

4.2.2 Our Automatic Optimization Framework

The overall optimization framework is shown in Fig. 4.1. The
DNN tasks are optimized layer by layer, following previous arts
[7,26,89]. Before starting to optimize a new task, a deep Gaus-
sian process model is built on the historical optimization data.
The DGP preparation step is task-independent, i.e., the pre-
trained DGP model can be used to deploy other tasks. In
Fig. 4.1, the DNN task is represented as a graph, in which each
node is a layer. For each layer, a searching space D contain-
ing all of the configurations of this layer is generated. In the
tuning stage, the pre-trained DGP model is utilized as the cri-
terion to sample some efficient initial configurations from D.
These initial configurations are then compiled and deployed to

get their on-board performance values. These configurations

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS83

and performance values are denoted as a tuning set. The hyper-
parameters of the pre-trained DGP model are introduced as the
prior. Maximum-a-posteriori (MAP) estimation is used to tune
the pre-trained DGP model under the guidance of the tuning
set. The tuned DGP model is then adopted as the performance
estimator in the third stage (i.e., the optimum searching stage).
Various algorithms can be applied here as the searching algo-
rithm to find optimal configurations. In experiments, we use
simulated annealing as the searching algorithm. The previous
arts [7,26,89] interact with hardware iteratively in the search-
ing process to obtain the real on-board performance. By con-
trast, our tuned DGP can take the place of the real hardware
and report the predicted performance, so as to accelerate the
searching remarkably. All of the configurations found by the
searching algorithm are recorded and the final optimal deploy-
ment configuration for this layer is selected from the record. The

pseudo-code of our framework is provided in the appendix.

4.2.3 Deep Gaussian Processes with Stochastic Varia-

tional Inference

Denote our task as f : — y, with the deployment configura-
tion vector @ and its performance value y. The historical op-
timization record is D = {X,y}, with X = {xy,...,xy} and
y ={y1,...,yn}. For a single layer Gaussian process, the non-

parametric Gaussian process places a GP prior over the value

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING84

DNN Hlstory f Transfer
Task Conf ;¢ | Learning

Figure 4.1 Our automatic optimization framework, consists of three stages,
i.e., stage 1: DGP model preparation based on the history data, stage 2:
transfer knowledge to new DNN layers, and stage 3: optimal configuration

searching.

function f as f(x) ~ §P(u(x), k(x, x’')), where u(-) is the mean
function and k(x, ') is the kernel function. K (X, X) denotes
the kernel matrix, i.e., K(X,X);; = k(x;, ;). Given the his-
torical data D, y is assumed to be influenced by the zero-mean
Gaussian noise € ~ N(0,02), i.e., y; = f(x;) + ¢. The noise is
indispensable to characterize the hardware uncertainties which
may be caused by real-time workloads, temperature fluctuation,
and etc. The function values with respect to X are denoted as
a vector f. Denote the hyper-parameters as 8, including noises

and parameters in the kernel function. The marginal likelihood

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS85

takes the form shown in Equation (4.1).

P(y|6) = H/ Wl fp(F)df = N, K), (4.)

where p is the mean vector, K = K(X,X)+0?Iy, and Iy is
the identity matrix.

A DGP model stacks multiple single-layer Gaussian processes.
The outputs of the previous GP layer are the inputs of the next
GP layer. For a DGP model comprised of L layers, denote the
value functions of these L layers as {f!,---, fI'}. Correspond-
ingly, the function values on inputs X are {f!,---, f'}. Here
f? is defined as X . The hyper-parameters in the [-th layer are
represented as @'. Based on the definitions of the single-layer
Gaussian process, the prior of a DGP model comprising L layers

can be written as Equation (4.2).

r‘P(fl) :N(p’l:Kl)u [= 17 7L7

N L (4.2)
Py A 1 = [T 2wt 00 TT 2017500,

=1

where the hyper-parameters @' are solved via maximum likeli-
hood estimation which is computationally expensive. For the
training set with N configurations, the computation complexity
of the gradients of K with respect to 8" is O(N?). Besides, the
marginal density is unavailable in closed form or requires expo-
nential time to compute [14], thus making the inference hard.

Inspired by recent works on posterior approximations of sparse

Gaussian approximations, the stochastic variational inference

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS86

[14] is employed to accelerate the computations of DGPs in our
method. The key technique is to introduce an inducing con-
figuration set Z = {z!,--- , zF} with |2!| < N and 2! C X.
Denote the function values at configurations 2! as w! in the I-th
layer. The basic assumption is that {u!}X | is a sufficient statis-
tic for { f'}£ |, so that the real posterior P({ f',u'; 0’} |y) can
be approximated given a Gaussian distribution Q({u'}~). To
achieve the best {u!'}* |, we minimize the KL divergence be-
tween P({f!,u'; 0"} | |y) and Q({f!, u'}F |) with respect to the
selection of {z!, 0"} | as shown in Formulation (4.3).

aln, KL QU u YLD IPUSF w00 y) . (4.3)
Formulation (4.3) can be transferred to be the equivalent for-

mulation as follows:

max 10giP(y|{Z 01}1 1)

{ 0l}l 1
N
- {Izrb?fi > Eo(st i, z) log P(uil £150)] (4.4)
ZV= | =
_Zm ul)||P(u; 0",

where P(y|{z',0'}F) is the likelihood function. The model
hyper-parameters {z', 0'}F | are solved via Formulation (4.4).
For simplicity, denote {2, 8'} as 6'. Until now, we have finished

the training of our DGP model based on the historical data
D={X,y}.

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS8T7

In our method, the DGP model together with stochastic vari-
ational inference grows in complexity to suit the historical data
and is robust enough to provide reasonable errors that would re-
sult from hardware or system uncertainties [14,17,100]. It also
has a greater capacity to generalize and contains more hidden
information compared with previous arts. The experimental re-
sults show us an outstanding performance by using our DGP

and its high transferability.

4.2.4 Transfer Knowledge to New Tasks

To transfer the hidden knowledge and empirics from the known
historical tasks (a.k.a., source tasks) to new tasks (a.k.a., target
tasks), two steps are required, i.e., finding a good initial tun-
ing data set and choosing a fast and efficient transfer learning
algorithm.

Firstly, to guarantee that adequate knowledge is learned for
the new task, it is crucial to find a good tuning data set. Ran-
domly picking some initial configurations from the extremely
large design space would introduce some illegal configurations
(i.e., with performance values equal to zero) which cannot help
us but wastes lots of time to compile them. Besides, there is no
guarantee that the historical data set is large enough to cover
the data distribution of the target task. The target task would
also possibly have a higher upper bound of performance values,

which means the mean value of the historical data might be

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGS88

smaller than the mean value of the target task. Therefore, the
tuning data set should contain configurations with performance
values as higher as possible, to calibrate the mean function.

To handle these, the DGP model learned from the historical
data is used as the empirical criterion to select suitable initial
configurations for the new task. A set which is large enough is
randomly sampled from the search space and then fed into the
DGP model to get the predicted performance. We sort these
initial configurations according to their predicted performance
values and the configurations with top s performance values are
chosen as the tuning points, i.e., X' = {x!,--- ,x'}. The con-
figurations in X' are compiled and deployed on real hardware to
get the real performance set y' = {¢!,--- ,y'}. Denote { X" y'}
as D!, and then D! is used as the tuning set to calibrate the em-
pirical DGP model. Intuitively, a tuning set with high diversities
is better. However, in our context, the configuration space is too
large and only small parts have good performance. Our target is
to find the optimal configurations instead of characterizing the
whole configuration space. In other words, we are interested in a
small part of the solution space with high performance. Besides,
compared with the large space, the size of the randomly sam-
pled set and the number of the sorted configurations are small, a
basic situation is that these sampled configurations will always
scatter with high diversities in the space. Therefore, finding a
better initial tuning set via our DGP is wise with no harm to

the diversities.

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING89

Secondly, a fast and efficient transfer learning algorithm based
on MAP is proposed to tune the DGP model with D!. As
mentioned above, the widely-used transfer learning algorithms
(62,93, 132] are unsuitable in our situations for several reasons.
For the target task, with the help of MAP, the model parameters
are optimally determined by combining the hidden knowledge
(in the form of the parameters 6;) and D*. For the convenience
of explanation, we omit the layer indices to lighten the nota-
tions. Denote all of the parameters in the source task DGP
model as 0 and the parameters for target task as 6. According
to the Bayes’ theorem, MAP is to find the optimal value of 0
(i.e., most likely to occur) to maximize the posterior distribution
P(Oly"). Specifically, P(8|y") follows Formulation (4.5).

P(6ly") o P() - P(y'0), (4.5)

where P(y'|0) is the likelihood function in Formulation (4.4).
The prior of 0 is assumed to follow a Gaussian distribution with
6 as the mean value [125]. To accelerate the computation, the
MAP is implemented as an L2 regularization term of 0 and é,
i.e., ||@ — 6)|2. The objective function to tune the parameters is
defined as Formulation (4.6).

max log(y/|6) — A0 — O], (4.6)

6

where A is a hyper-parameter. Theoretically, L2 regularization
is equivalent to MAP inference with a Gaussian prior on the

parameters [48]. Compared with the traditional GP methods

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING90

which are fitted from scratch, our method with prior 8 does not
require too much data and saves time.

An important characteristic of deployment is that various
computation operations would have a non-negligible influence
on the communication modes, resource allocations, and etc. For
example, depthwise convolutions and direct convolutions have
distinct computation patterns. These characteristics are hard
to be summarized as a unified rule even for senior engineers. To
guarantee the performance of our flow, DNN layers are catego-
rized into some groups according to their types. The knowledge

is learned and transferred within each group.

4.3 Experiments

We implement our flow based on GPyTorch [43] and embed it
into TVM to validate the performance. Some ablation studies
are conducted. Layer-wise and model-wise performance are an-
alyzed and compared with the state-of-the-art. Due to space
limitations, we present some important settings and representa-
tive results, and more details and results can be referred to the

appendix.

4.3.1 Experimental Settings

Our experiments are running on an Intel(R) Xeon(R) E5-2680
v4 CPUQ 2.40GHz. The hardware platform is an NVIDIA
GeForce GTX 1080Ti GPU and the CUDA version is 9.0.176.

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING91

m Qurs == AutoTVM
—~ 160 F T T T T T T

100

RMSE (%

PRI RILIEILILIL L \@»G
bQ &2 &2% BBQB %&2% %&2% (\&2(\ &2@ < x‘b §

& S g
%Q%Q%Q&%Q&%Q%Q%Q%Q%Q%Q%Q@Q \/%'Q%Q@Q

(a) MobileNet-v1

— 100 100
S
€3]
2 50
~

20

— 100

RMSE (%

© %ﬁo %/%e \;%o @@ 04'\, 04\, , 0@» , é\ / Q@» . 04'\/ G@z 46

07 07 0 NPV AN SN SV 20 4
RN

ﬁdy

(d) ResNet-18

Figure 4.2 RMSE of our predicted GFLOPS, the data are expressed as the
ratios to the results of XGBoost in AutoTVM. Here, our DGP is directly
used to predict the GFLOPS of new tasks without tuning. cv: convolution,
rb: residual block, sc: shortcut, sp: separable convolution, dp: depthwise

convolution.

For fair comparisons, models tested in previous work [7,28, 89]
are tested, including AlexNet [67], ResNet-18 [54], and VGG-
16 [108]. Further, MobileNet-v1 [58] is tested. Note that the
current deployment flows [7,28,89] optimize the DNN models

layer by layer. The optimization algorithms and processes are in-

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING92

dependent of the model structure, therefore simple model struc-
tures are enough to validate our method with no need of using
more complicated DNN models. The representative DNN layers
widely used in both industries and academia are covered in these
models, including convolutional layers, residual blocks, depth-
wise separable convolutional layers, and etc. For the layers with
the same structures, only the first of them will be optimized and
others directly use the same configuration for this layer. Besides,
same with [7,28 89|, we focus on the optimizations of various
convolutional layers, and other types of layers are skipped, e.g.,
fully connected layers and pooling layers. These other layers
directly use the settings provided by TVM.

AutoTVM [28], integrating XGBoost, simulated annealing,
and etc., is used as the baseline. Besides, two outstanding base-
lines are also compared, including DAC’20 GGA [89] which uses
a well-designed heuristic guided genetic algorithm, and ICLR’20
CHAMELEON [7] which is based on reinforcement learning and
adaptive sampling algorithm. In our method, we use the simu-
lated annealing in TVM as the searching algorithm and follow
the same settings as AutoTVM and CHAMELEON. Our DGP
is used as the performance estimator and a replacement to GPU
during configuration searching, as mentioned in Section 4.2.2.
The radial basis function is adopted as the kernel function. The
number of inducing points in variational inference is 128. No-
tably, the experimental platforms and software versions are dis-

tinct compared with other works, which would have a significant

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING93

effect on the search time and the performance of the final de-
ployments. For fairness, the results are expressed as ratios to
the results of AutoTVM.

To illustrate the performance, three metrics are used, i.e.,
Giga floating operations per second (GFLOPS), the reduction
of the inference latency, and the reduction of the search time to
find the optimal configuration. GFLOPS measures the number
of floating-point operations conducted by the hardware per sec-
ond during executing the model. It is used as the optimization
objective for each layer in our method and the baselines. In-
ference latency is the final end-to-end on-board inference time
of the whole model. Search time is the overall time cost to op-
timize the deployment of the whole DNN model, including the
interactions with hardware and model tuning.

Note that in the current single GPU stream deep learning
implementations, the GPU resources are occupied exclusively
by the tasks during inference. Therefore, the onboard memory
consumptions, the numbers of blocks and threads, etc., are not
compared since we rely on this basic assumption about resource

usage.

4.3.2 Layer Groups and Historical Data

As mentioned above, to guarantee the transferability of prior
knowledge, the DNN layers are categorized into some groups.

We choose three criteria, including layer type (e.g., direct con-

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNINGY4

volution, or depthwise separable convolution), kernel size (e.g.,
3 x 3, or 7x7), and padding type (e.g., no padding, or padding
size = 1). These criteria are fundamental factors that would
have a great influence on the deployment performance and usu-
ally bother engineers. According to these criteria, VGG-16 has
1 group, while ResNet-18, AlexNet, and MobileNet-v1 have 4,
3, and 4 groups, respectively. The first layer of each group is
deployed via AutoTVM and the configurations explored by Au-
toTVM in this process are collected as the historical data for
this group. This makes our method more practical in demand-

ing application scenarios.

4.3.3 Ablation Studies on the Proposed DGP

We perform ablation studies on our pre-trained DGP model,
i.e., evaluate the results of stage 1 in Fig. 4.1. The accuracies
of directly using DGP trained on the historical data to predict
the performance of configurations of new layers are plotted, in
comparison with the prediction performance of the XGBoost
used by AutoTVM. For fair comparisons, these two methods
use the same training data, as mentioned in Section 4.3.2. Af-
ter training, they are directly used to predict the performance
without tuning. The root-mean-square error (RMSE) of the pre-
dicted GFLOPS values is to characterize the prediction error.
The results are shown in Fig. 4.2. The prediction accuracy of

our DGP on direct convolutional layers outperforms XGBoost

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING95

—— Random — Our DGP

1,800 [1,800 F
p]
S
= 900 k 1 900 k ,
=
O
0 : 0 :
0 100 200 300 0 100 200 300
(a) cvl of AlexNet (b) sp-13-dpl of MobileNet-v1
1,600 F 7,000 [
N
&,
8 800 |- g 3,500 i
=
& \\
0 L | 0 | L
0 100 200 300 0 100 200 300
(¢) rbd-conv2 of ResNet-18 (d) conv2-1 of VGG-16

Figure 4.3 The randomly sampled tuning set and the set selected according
to DGP. The data are in descending order. There are 300 configurations in

each tuning set, and the X-axis is the index of the configuration.

remarkably, no matter whether with padding or not, or with
various sizes of kernels, or different sizes of strides. Our DGP
wins on most of the depthwise convolutional layers. As to the
performance of residual blocks, our method is also the superior
one. On these four models, our average results are the best. It
is demonstrated that our DGP models are able to learn enough
prior knowledge of the hidden characteristics of the hardware
architecture, model structures, and etc.

As mentioned above, the pre-trained DGP is used as the em-
pirical criterion to select a suitable initial configuration set for
the subsequent tuning stage. Note that our target is to learn

the good configurations instead of the whole configuration space.

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING96

mEm AutoTVM = Selected == Random

B\eﬁ’ﬁe\@\@ﬁe}g \IGG‘NXO\OX\QSQm P&\eﬁﬁe&?\@@e‘ \IG‘G wob&\eﬂe‘
(a) Search Time (b) Inference Latency

Figure 4.4 Comparisons between AutoTVM and ours. “Selected” means
the tuning configurations are selected by using our pre-trained DGP as the
criterion. “Random” means the tuning configurations are randomly sampled

from the configuration space without any prior knowledge.

Using our DGP will help choose the useful configurations and
will teach the model to learn more about the characteristic of
this layer. Examples of the sampled configurations and their on-
board GFLOPS values are plotted in Fig. 4.3. In experiments,
the tuning set contains 300 configurations. Most of the configu-
rations sampled via our DGP model are feasible and have con-
tinuous GFLOPS values. In comparison, most of the randomly
sampled configurations are infeasible on hardware. Besides, the
maximum GFLOPS of the random method is lower than ours
which means the DGP tuned on the random set is unable to

give higher prediction values for good configurations.

4.3.4 Ablation Studies on the Transfer Learning

To prove the effectiveness of our transfer learning method, we

compare the results of using the randomly sampled tuning set

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING97

Table 4.1 Comparisons of Search Time and End-to-end Model Inference La-

tency
AutoTVM |[28] ICLR20 [7] Ours
Model Search Infer. | Search Infer. v Search Search Infer. Infer. v
(h) (ms) | Red. % Red. % (h) Red. % (ms) Red. %

MobileNet-v1 | 31.14 0.8980 - - - 10.06 67.69 0.7664 14.65 9.9168
AlexNet 6.28 1.3467 | 72.16 5.88 4.2409 | 2.14 65.96 1.2537 6.91 4.5573
VGG-16 19.92 6.7847 | 82.56 3.44 2.8418 | 4.61 76.83 6.4972 4.24 3.2556
ResNet-18 32.04 1.8248 | 76.67 4.16 3.1915 | 9.47 70.43 1.7305 5.17 3.6423

with the results of using the tuning set selected by our DGP (as
mentioned in Section 4.2.4). The results are shown in Fig. 4.4,
The randomly sampled tuning sets increase the inference laten-
cies significantly because the performance of most of the sampled
configurations is unsatisfying. Randomly sampling a small num-
ber of configurations cannot introduce enough knowledge about

the optimal configurations, but confuses the pre-trained DGPs.

4.3.5 Performance of the Whole framework

Some results with respect to the reduction of search time of the
whole optimization process and reduction of model inference
latency are analyzed here, compared with the state-of-the-art

The detailed results are listed in TABLE 4.1. The

reported latency is the average of latencies from 1800 on-board

baselines.

inference trials and is believed to be accurate enough. Usually,
there is a trade-off between search time and model inference la-
tency. To improve the model inference performance, more con-

figurations are sampled and analyzed in the searching process.

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING98

Consequently, the search time increases, and vice versa. For fair
comparisons between these two closely related and interacting
metrics, we introduce the concept of hypervolume (HV) [130].
Hypervolume is commonly adopted to measure the solutions of
multi-objective optimization problems. The reduction ratios of
inference latency and search time are multiplied, to measure the

overall performance, as shown in Equation (4.7).

HV = Redu. of Latency x Redu. of Search Time x 100. (4.7)

Here the HV value is multiplied by 100 to adjust the order of
magnitude. The solution with a higher HV value is the better
one. The results prove the superior performance of our method.
Compared with ICLR’20 CHAMELEON [7], though our reduc-
tions in search times are not optimal, the reductions of the in-
ference latencies are much better. Our overall results are much
better than CHAMELEON, with respect to the HV values. In
GGA [89], the authors reduce the search time of ResNet-18 by
93.17% and reduce the inference latency by 3.26%. Although
they have the fastest search speed, the inference latency is the
worst. The HV value of their method is 3.037, which is also
worse than [7] and ours. Accelerating the search speed too ag-
gressively does not worth the loss of the quality of results. The
precise search times and inference latencies of VGG-16, AlexNet,
and MobileNet-v1 are not provided in GGA [89]. For supple-
mentary, the GFLOPS values of VGG-16 are plotted in Fig. 4.5.

Compared with AutoTVM, our method wins on most layers and

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING99

mm Ours == AutoTVM
— 180
X
a2 100 | |
o
—
&
©
] N1 2 S)) SN NG NG B
A A AR A A A AR VAV

RUANL AN
& &S ST S S S S
IS SUG SIS SIS SIS SIS S SIS NS S

Figure 4.5 The ratios of the GFLOPS values of VGG-16.

has a better average GFLOPS value. As mentioned before, the
resources are used exclusively by the deep learning tasks dur-
ing inference in the single-stream implementations. Therefore,
the memory consumptions are not compared in our work and
the baselines [7,89]. Besides, for different GPU devices, the
learning-based techniques can always fit the onboard resources
to tune the deployments and achieve the best latencies. Reduc-
ing memory consumption is not an optimization target anymore.

Despite the existing trade-off between the searching time and
the inference latency, on-chip inference latency is actually the
most critical metric since the model deployment is “once for all”,
which means no matter how much time we spent to optimize
the deployment, the faster on-chip inference is more important
than the faster optimization process. From this perspective, our

method also outperforms the baselines significantly.

CHAPTER 4. DEPLOYMENT VIA DEEP GAUSSIAN TRANSFER LEARNING100
4.4 Conclusion

In this chapter, a transfer learning algorithm based on a deep
Gaussian process (DGP) is proposed to optimize the deployment
of DNN models, by using the historical information efficiently.
The representative DNN layers and models are tested. Both
the search time and inference latency are reduced simultane-
ously. The experiments show that our method outperforms the

baselines remarkably.

O End of chapter.

Chapter 5

Tuning Computations via

Graph Attention Network

5.1 Introduction

The great successes of deep learning algorithms in this Al era
[45,54,99,145] stimulate the fast development of high-performance
computing for deep neural networks. Many techniques have
been developed to optimize the on-chip inference performance,
tackle heavy workloads, and bridge the gap between hardware
designs and algorithm developments. Some representative arts
include algorithm compression and pruning [22,51], hardware /algorithm
co-optimization [146], neural architecture search [38], etc.

Some compilation frameworks have been proposed to opti-
mize the model inference on GPU. Halide [72] and TVM [26]
propose to decouple the model analysis and backend code op-
timization and use the auto-tuning algorithms to tune the op-

timal deployment configuration for DNN models. The models

101

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK102

are analyzed and partitioned into some small subgraphs. Each
subgraph is implemented as a kernel on GPU and some param-
eters in these kernels are tuned to achieve the best performance.
Candidate values of these parameters are termed knobs [7], or
annotations [153]. The genetic algorithm (GA) and simulated
annealing (SA) are the typical parameter-tuning algorithms.
Based on TVM, many techniques are proposed to help tune
the kernel implementations. AutoTVM [28] provides some fixed
optimization rules and code templates for the DNN operations
on GPUs and encodes the parameters in the templates as fixed-
length feature vectors. These features contain the numbers
of on-device threads, virtual threads, blocks, etc. In the ge-
netic algorithm process, AutoTVM interacts with GPU to col-
lect the on-device performance and trains an XGBoost model
as the performance estimator of the feature vectors to guide
the search for optimal parameters. The optimization process is
slow, and no historical tuning data are utilized. Based on Au-
toTVM, an advanced active learning method [114] is designed
to learn representative parameters in the optimization process.
CHAMELEON [7] introduces reinforcement learning to learn the
searching strategies from the history tuning data and adapts the
searching space during optimization. Guided Genetic Algorithm
(GGA) [89] improves AutoTVM by using some heuristic rules
to guide the genetic algorithm. The similarities between new
deployment tasks and the history tuning data are computed to

measure the performance of new knobs. DGP-TL [113] proposes

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK103

to use deep Gaussian process models to learn the history data
and use transfer learning with fine-tuning to guide the new DNN
deployment tasks. These methods prove the effectiveness of the
learning-based methods. Further, Ansor [153] designs some com-
plicated rules to generate code “sketches” for the computational
subgraphs in models to break the shackles of fixed templates.
The sketches are high-level program structures and leave billions
of low-level parameters as “annotations”. The features repre-
senting these codes are statistical which are more complicated,
including parallelism in multiple programming levels, type of
memory access, the number of touched cache lines, the number
of floating /integer multiplication-add operations, etc. With the
advantages of flexible sketches and annotations, Ansor outper-
forms the AutoTVM-based previous arts significantly.

Despite the advancements, existing frameworks are still un-
satisfying. Firstly, the structural information of the computa-
tional subgraphs is underutilized. Existing techniques rely on
the statistical information of codes to train a cost model as the
performance estimator [7,28,89, 113,153, 154] while the struc-
tural information is discarded. The structures reflect the topo-
logical relationships and scheduling information of the opera-
tions, which greatly influence the inference performance, while
the statistical features fail to characterize the structures. Mod-
ern DNN models contain different structures. Learning-based
techniques which only rely on statistical information are inca-

pable of measuring these diversities. Secondly, the feature items

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK104

in the statistical feature vectors are treated equally, despite their
physical meanings and relationships related to the implementa-
tion details. Each statistical feature vector is usually directly
passed to the learning models to predict its performance. There-
fore, the complicated but implicit relationships between the fea-
ture items are not taken into considerations.

To tackle the above problems, a novel method, GTuner, is
built based on TVM and Ansor to tune the computations of
deep neural networks on GPU. The structural information of the
computational graphs and statistical code features are utilized.
The complicated relationships between the features are learned

automatically. The contributions are summarized as follows:

e A novel method, GTuner, is proposed with a graph atten-
tion network (GAT) as the performance estimator. GAT
comprises a graph neural network (GNN) module to aggre-
gate structural information and a multi-head self-attention

(MHSA) module to mine inter-feature relationships.

o Structural information of the computational subgraphs is
extracted from the intermediate representations of the com-
pilation flow with the help of our code parser and analyzer.
Then the information is propagated and aggregated via the
graph neural layers to learn high-quality features for the

graphs.

e The MHSA module is designed to learn the complicated

but implicit relationships between the structural and code

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK105

statistical features via the self-attention mechanism. The
drawbacks of losing structural information and long-range

dependencies between the features are overcome.

o With the GAT, GTuner optimizes the kernel codes for GPU
efficiently. The results demonstrate the remarkable perfor-

mance of GTuner compared with the baselines.

5.2 Preliminaries

5.2.1 Computational Graphs

The deep neural network models are usually represented as com-
putational graphs, with layers (operators) as nodes and the
edges representing communications in the models and reflecting
the topological information. These computational graphs are
mapped to the hardware accelerators (e.g., FPGA [52], GPU
[111], ASIC [30] and TPU [63]) through some deep learning
frameworks and libraries (e.g., cuDNN [31], oneDNN [2], and
TensorFlow [6]). The implementation details for the FPGA or
ASIC are available for the designers, such as the allocations
of the MAC engine, systolic array, cache behavior, and com-
putation patterns [30, 61, 63,80]. Therefore, accurate models,
even analytical formulations, can be built to measure the perfor-
mance. In contrast, for GPU, the complexities of the hardware
and programming model and the lack of implementation details

make this problem challenging.

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK106

Existing compilation techniques partition the graphs into small
subgraphs. Each subgraph contains several neighboring layers,
e.g., softmax, pooling, linear layers, and convolutions [26, 153].
Each subgraph is implemented as a kernel on GPU. Many code
templates with some parameters to be determined are designed
to implement the computations of a kernel. Some parameters
are loop boundaries, splits, cache read steps, inlines, etc. The
final executable kernel codes are generated according to these
parameters. As mentioned above, in Ansor, the code templates
and parameters are termed sketches and annotations, respec-
tively. Fig. 5.1 and Fig. 5.2 show an example of one sketch and
its two annotations. Sketches for the same subgraph may have
distinct structures with various numbers and orders of loops
and computations. Implementing a unified encoding method
to represent the different sketches and annotations is difficult.
Therefore, Ansor extracts statistical features for each code an-
notation via static code analyses, e.g., number of touched cache
lines, touched memory in bytes, number of floating multiplica-
tion operations, sizes of allocated buffer in bytes, etc. Some

important concepts are clarified here:

o« Computational graph and subgraph: the whole DNN
model is represented as a computational graph, and the

graph is split into some subgraphs by the DNN compilers.

o Sketch: the code templates designed by compilers to im-

plement the computations of a subgraph are termed sketches.

CHAPTER 5.

TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK107

Generated Kernel Code Sketch:
[Placeholder: A, B
for i.0 in range (None) :
for j.0 in range (None):
for ic.2 in range (None) :
for jc.2 in range (None) :
for k.0 in range (None) :
for k.1 in range (None) :
for k.2 in range (None) :
for i.3 in range (None) :
for j.3 in range(None):

c=. 1

Figure 5.1 An example of the sketch.

Each subgraph has many templates, 7.e., many sketches.

An example of the sketch is shown in Fig. 5.1.

e Annotation: the combinations of the parameters to be

determined in each sketch are termed annotations, i.e., each

sketch has many annotations, as shown in Fig. 5.2.

e Structural feature: each node in a subgraph has some

structural features. The nodes’ features are aggregated as

the structural features of the subgraph.

« Statistical feature: each annotation of the subgraph has

a statistical feature vector reported by Ansor via static pro-

gram analyses.

5.2.2 Graph Neural Networks and Attention Mecha-

nism

Graph neural networks (GNNs) have been widely used in mod-

eling graph data, achieving impressive results in the prediction,

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK108

Annotation 1: Annotation 2:
[Placeholder: A, B [Placeholder: A, B
for i.0 in range(32): for i.0 in range(2):
for j.0 in range(64): for j.0 in range(1024):
for ic.2 in range(16): for ic.2 in range (32):
for jc.2 in range(4): for jc.2 in range(2):
for k.0 in range(2): for k.0 in range(2):
for k.1 in range(16): for k.1 in range(8):
for k.2 in range(2): for k.2 in range (4):
for i.3 in range(2): for i.3 in range(4):
for j.3 in range(2): for j.3 in range(4):
c=. 1 c=. 1

Figure 5.2 Two annotations of the code sketch.

regression, and classification tasks of nodes and graphs [136,137].
There has been a surge of interest in GNN approaches for repre-
sentation learning of graphs. GNNs follow a recursive neighbor-
hood aggregation scheme, where each node aggregates feature
vectors from its neighbors. After several iterations of aggrega-
tions, each node is represented by a new feature vector. The
new feature vectors capture the structural information within
the neighborhood [10, 70, 137]. The feature representation of
the whole graph (aka., graph embedding) is obtained via graph
pooling (aka., graph reduction, readout [87]), which maps the
set of nodes into a compact representation o capture a mean-
ingful and unified embedding of an entire graph. Mean pooling
is a typical and widely used pooling method.

Transformers [122] have achieved great success and become
the de facto choice for many natural language processing (NLP)
tasks. Further, inspired by NLP successes, many works [20, 37]
unveiled the potential of multi-head attention (MHA), which

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK109

plays a crucial role in transformers for computer vision tasks.
The attention operation has three inputs: query, key, and value
vectors. Each query vector can attend to all the key vectors and
compute the attention scores with respect to these key vectors.
The final output is the weighted sum of the value vectors, with
the attention scores as the weights. A significant advantage
of MHA is that it can learn the long-range dependencies and
complicated relationships between the inputs. The MHA stacks
the attention modules to achieve outstanding performance in
many fields [138,157]. The readers may refer to [122] for more

details on attention mechanisms and transformers.

5.3 Algorithms

5.3.1 Overall Flow of GTuner

(77777777777777 { Graph Optimization ‘ ‘ Kernel Code ' iGPU § i 1 :

P | 1 Optimal |
Sketch b Do |
g ——— | @ | Code !

Intermediate | | wosmmen eoemmews) Soooooood
Representations (IR)

Genetic Algo.
Optimizator

& Analyzer Kernel Codes Annotations

i’ 77777777777777 {,_} 7777777777777777777777 i'_llé

|
I ’r Optimized

Computational ' ‘

=£® Subgraphs [%

als

DAG Parser Generate Sample Code

S 2

Extract Code
Statistical Features

Extract Graph

Structural Features ﬂ

(GNN)

GAT

Figure 5.3 The overall flow of our GTuner.

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK110

The flow graph is shown in Fig. 5.3. Graph-level optimiza-
tions are conducted on the DNN model, e.g., operator fusion,
constant-folding, memory planning, data layout transformation,
combinations of dense convolutions and linear operations, and
operation canonicalizations. Then the optimized model is split
into some subgraphs, i.e., subtasks. GPU codes are optimized
for each of these subgraphs independently. The final model de-
ployment strategy is achieved by deploying these subgraphs se-
quentially [26].

After the graph optimizations, subgraphs are represented as
intermediate representations (IRs) in the compilation tool. We
implement a directed acyclic graph (DAG) parser and analyzer
(lexical analysis and syntactic analysis) to analyze the IRs and
construct the DAG representations for the subgraphs. Nodes in
the DAG are computation and data nodes. Structural features
are extracted for these nodes, including node types, shapes, op-
eration types, etc. The node structural features are passed to a
graph neural network to learn a unified embedding for the graph
(i.e., graph structural features). This embedding reflects this
graph’s scheduling and topological information, distinguishes
different graphs, and improves the generalization to new tasks
with various graphs structures.

Some rule-based kernel code templates (i.e., sketches) are
generated for each computational subgraph. The code sketches
with parameters (i.e., annotations) comprise the code design

space of this subgraph. The statistical features are extracted via

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPHATTENTION NETWORK111

Ansor and concatenated with the graph structural features for
each sampled code. The concatenated features are then passed
to the multi-head self-attention to learn the complicated rela-
tionships to predict the inference latency.

The genetic algorithm (GA) is adopted as the optimization
method to explore the code design space to find the optimal
code. Our GAT model predicts the inference latencies for the
codes and guides the exploration of the GA algorithm. In each
optimization iteration of the GA algorithm, codes sampled by
GA are passed to GAT to predict the performance. Then the
codes with the best-predicted performance are compiled and ex-
ecuted on GPU to get the actual performance. The final optimal
code is selected according to the actual performance. The num-
ber of codes executed on GPU is also termed measure trials.
For example, 10000 code annotations are sampled by GA and
estimated by GAT. GAT selects the best 80 annotations and
compiles and deploys them on GPU. Therefore, the measure
trial is 80. The final deployment solution is the code with the
best actual performance from these 80 codes.

In our framework, the graph level optimization, code gener-
ation, and genetic algorithm-based optimization are from TVM
[26] and Ansor [153], and the other modules are ours.

Graph Attention Network (GAT) consists of the graph
neural network (GNN) module and the multi-head self-attention
(MHSA) module, as shown in Fig. 5.4. Structural analysis is

conducted on the graph to get the structural features, including

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK112

Structural
Graph Neural Features

Network —

Multi-head
Self-attention 1

Concat.

' Statistical
. Features

Comp. Graph Graph Attention Network |

,,,

Figure 5.4 Structure of our graph attention network (GAT).

the types of operations, dimensions of data, etc. These features
are the inputs to the graph neural network layers which will be
discussed in Section 5.3.2. The output of the graph neural net-
work is the structural features for the subgraph. The multi-head
self-attention module will be discussed in detail in Section 5.3.3.
Then a multi-layer perceptron (MLP) is appended to reduce the

dimension and map to the performance.

5.3.2 GAT: Graph Neural Network Module

DNN models usually have different model structures, e.g., the
three structures shown in Fig. 5.5. The distinctive model struc-
tures result in different on-chip scheduling, communication, and
computation patterns. These differences also help distinguish
deployment tasks while their statistical features have no struc-
tural information. In other words, it is easy to identify the

deployment tasks given structural information while the statis-

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK113

tical information is incapable. In this section, the graph neural
network is used to learn the representations for the subgraphs.

Therefore, this part is independent of the sketches and annota-

tions.

Conv-3 e
(1
Conv-3 Conv-1 3
.
\ "1 Conv-1 Conv-3 !
Max-Pool Conv-1 i N K
* \\ i Concat i
u O v |

VGG ResNet SqueezeNet

Figure 5.5 Typical diverse structures in VGG, ResNet (residual block) and

SqueezeNet (fire block). Conv-z denotes that the kernel size is z.

Each computational subgraph to be implemented as a kernel
is represented as G(V, &), with the node set V and edge set €.
V has n nodes, i.e., |V| = n. The neighborhood set is N, with
N(v) denoting the neighbors of v. The features for the graph
are represented as X. Each vector ; € X with ¢ € {1,...,n}
denotes the features for node v; € V. Denote the feature length
as dy, i.e., ©; € R™% To learn the structural information
of the computational subgraph, we update the representations
of a node by aggregating information from its neighbors. Let
AGGREGATE(:) denotes the aggregation function, and a func-

tion COMBINE combines the information from neighbors and

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK114

the features of the node itself. These functions take the following
common forms:

AGGREGATE" ({a: cvr € N(vy)}),
COMBINEW (=1 al),

2

a; =

5.1
ot — (5.1)
where k represents the k-th iteration of aggregations in the graph
neural network. For k = 0, ¥~ is the raw feature of node v;
itself.

Researchers have proposed many aggregation and combina-
tion functions for various applications [10,70,137]. An important
target in our problem is to distinguish the different model struc-
tures. Therefore, the concept of the Weisfeiler-Leman (WL) test
is of vital importance. The WL test is to distinguish the iso-
morphic graphs via information propagation and can identify
the structural similarities between graphs. Further, [88] demon-
strated that GNNs could be viewed as an extension of the WL
test, which in principle have the same power but are more flexi-
ble in their ability to adapt to the learning task at hand and are
able to handle complicated node features. We choose to use the
graph convolutional layer used by [88], denoted as WL-GCN; in
which the AGGREGATE and COMBINE steps are integrated.

The function of the graph convolutional layer takes the form as

bl | ! k-1
@ = Wi W) (5.2)
v €N(v;)

where W/ and WJ ! denote the learnable weights. Then, the

mean pooling is used to achieve the feature embedding for the

follows:

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK115

DAG 2 %* W2
Analysis 2 fl:fl> %e @ E>H
Results | e e o O,C}o P 1
777777777777777777 1777777777;/ StruCtura
o4 O Features

Figure 5.6 Graph neural network.

computational subgraph, i.e., the feature vectors of the nodes
in the graph are summed up and averaged as the feature for the

graph:

1 K
G—nZwi, (5.3)

v, €V
where G denotes the feature embedding for the subgraph, n is
the number of nodes, and K is the maximum iteration of infor-

mation aggregation. The model structure is shown in Fig. 5.6.

5.3.3 GAT: Multi-head Self-attention Module

The structural features learned by the graph neural network and
the statistical features of the annotations should be analyzed to
understand the complicated relationships between features, en-
hance the critical parts and fade out the unimportant parts. Un-
like FPGA and TPU, there are no low-level implementation de-
tails on GPU. Therefore, determining which features are essen-
tial for the tasks should be finished automatically. As discussed
above, the statistical features for GPU are weakly related to the

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK116

computation patterns. In Ansor, the statistical features can be
briefly categorized into some groups, i.e., buffer access features,
buffer storage features, arithmetic-related features, etc. Typi-
cal features include the number of touched cache lines, touched
memory in bytes, number of floating multiplication operations,
number of unrolled iterators, etc. They are unstructured data
that are directly concatenated, with no information related to
the kernel structures. The orders of the features in the vectors
have no physical meanings. To build better performance mod-
els, it is necessary to learn the implicit relationships between
the features while these are the prior knowledge for other types
of devices. For simplicity of notations, the statistical and struc-
tural features after concatenation are briefly denoted as .

Inspired by self-attention mechanisms’ success in the com-
puter vision field, we propose to use the multi-head self-attention
(MHSA) module to learn the features. To formulate MHSA, we
first introduce the scaled dot-product attention Attn(:). Given
queries Q € R"*% keys K € R™% and values V € R™ % we
have [122]:

Attn(Q, K, V') = softmax <?/Idi;:> Vv, (5.4)

where ng, n, di, d, are the query number, key number, key di-
mension and value dimension, respectively. Then we can define

the multi-head attention as:

MHA(Q, K,V) = Concat(H,, H,,--- ,H,)W?, (5.5)

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK117

3 Multi-head Self-attention
MatMul i “\\
=

heads

\
\‘ (

7
Scaled Dot-Product Attention /u/

*

1 1 $
P, g ((C
‘ Linear U ‘ Linear U ‘ Linear U
1 i 1

T T T

Figure 5.7 Multi-head self-attention with @ as the query (Q), key (K), and

value (V') simultaneously.

where H; is the output of the ¢-th attention head, A is the num-
ber of heads and W is the learnable projection weight matrix.

H; is computed by:
H, = Attn (QW;Q, KWK, Vﬂfi‘/) , (5.6)

where VVZ-Q € Réxdi W ¢ Rixd WV ¢ RE&*d are learn-
able projection matrices corresponding to the i-th head. Each
query vector of @Q can attend to all the key vectors of K and
compute the attention scores concerning these key vectors. The
final output is the weighted sum of the value vectors of V', with
attention scores as the weights. The output projection matrix
is WO e RMvxdow wwhere d,,, is the output dimensionality for
the multi-head attention function.

To fit the inputs of MHA, we firstly reshape the original vec-

tor @ into several shorter vectors. Denote the original length of

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK118

x as [. Then the reshaped x, denoted as %, has the shape h x %,
where h is the number of heads in MHA. The z is used as the
query (@), key (K), and value (V') simultaneously. MHA be-
comes multi-head self-attention (MHSA), which captures
global dependencies among the inputs, as shown in Fig. 5.7 and

Equation (5.7).
SelfAttn (meQ, Wi a:RVVZ-V) : (5.7)

According to Equation (5.4), the inner products between vec-
tors in & are computed. These products characterize the simi-
larities between the feature vectors. Further, these similarities
reflect the implicit relationships among the features, including
the scheduling of the subgraphs, memory patterns, which fea-
tures are related to each other or have similar influences on the
performance, etc. The similarity values are then used as the
weight scores to sum the values, i.e., vectors in & itself. The
connections between MHSA and inference latency are learned
through model training. And the weights in MHSA will be up-
dated to enhance the critical parts of the features and fade out

the unimportant parts.

5.4 Experiments

In this section, we conduct experiments on our GTuner to val-

idate the performance. The experimental inference platform is

Nvidia GeForce RTX 3090 (Ampere architecture, SM86), with

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK119

CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev. The CPU
is 16 core Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz. Some
public models defined in TVM Relay library are tested, including
ResNet-18, ResNet-34 [54], MobileNet V1 [58], and SqueezeNet
V1.1 [59]. The representative DNN layers widely used in both in-
dustries and academia are all covered in these models, including
conventional convolutional layers, shortcut layers, multi-branch
layers, fully connected layers, depth-wise convolutional layers,
etc. The tuning history of Ansor (with XGBoost as performance
model) on Inception-V3 and VGG-11 is collected as the train-
ing data to train the models, in total about 170000 annotations.
Some baselines are compared in the experiments to prove the ef-
fectiveness of our method, including Ansor [153], AutoTVM [28],
PyTorch, and PyTorch with JIT optimization [92]. The perfor-
mance metric is the end-to-end inference latency of the model.
We also show the results of Giga floating operations per second
(GFLOPS), which reflects the peak computation speed of a task

on the device.

5.4.1 Implementation Details

Our GAT model has two WL-GCN layers [88] to process the
graph features, a mean pooling layer, a concatenation layer (to
concatenate statistical and graph features), a fully-connected
layer (downscale the features to 512), a four-head multi-head

self-attention layer (i.e., h = 4), and an MLP regression module

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK120

(with output dimensions: 200-100-20-1). In the benchmarks and
Ansor, there are 136 elements representing the types of nodes,
inputs, outputs, data shapes, types of operations, etc. The graph
embedding has 136 elements after graph pooling. The statistical
features reported by Ansor have 656 elements and are concate-
nated with the graph features and downscaled to 512 via the
fully-connected layer.

The baseline multi-head self-attention (MHSA) comprises a
four-head multi-head self-attention layer (the same as ours) and
an MLP regression module (also the same as ours) without graph
module and structural features.

We train the models with Adam optimizer for 300 epochs
with a learning rate le-4 and batch size 512. The loss function
is mean square error (MSE). The regression target is inference
latency. We denote our method as GTuner (GNN + MHSA) in
the result tables for ease of explanation.

Our method’s genetic algorithm optimization process and the
baselines all follow the default settings of TVM. The different
numbers of measure trials are compared in the ablation studies.
Note that except for the ablation studies on the measure trials,
the measure trials of other results are 80 trials per subgraph.
In other words, for a DNN model, the total number of measure

trials is the product of the number of subgraphs and 80 trials.

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK121

5.4.2 Ablation Studies on GAT Structure

We compare our method with some widely-used graph convo-
lutional layers, including spectral graph convolution (SpecGCN)
[65], masked attention convolution (MaskGAT) [123], and Graph
SAGE [50]. SpecGCN propagates information in the graph via

a first-order approximation of localized spectral filters on the
graphs. Learned filters are used to represent the nodes in the
Fourier domain. MaskGAT introduces the attention-based ar-
chitecture to compute the hidden representations of the nodes
by using masks during information aggregation. GraphSAGE
learns a function that generates embeddings by sampling and
aggregating features from a node’s local neighborhood to im-
prove the generalization abilities to unseen nodes.

We replace the WL-GCN layers in GAT with these three
convolutional layers. Under the same training and experimen-
tal settings, the inference latencies of ResNet-18 are listed in
TABLE 5.1. The results show that these methods have poor
performance in this problem. As mentioned before, graph iso-
morphism is important in our context. These methods fail to
learn this kind of isomorphism and fall into the trap of overfit-
ting to the training set and therefore are incapable of tackling
new tasks and the isomorphic graphs with different volumes of
computations and communications. SpecGCN outperforms An-
sor (1.016 < 1.073, i.e., 5.31%). MaskGAT and GraphSAGE

force the model to ignore some information to improve the gen-

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK122

Table 5.1 Comparisons between Convolutional Layers

ResNet-18 Ansor [153] GTuner SpecGCN [65] MaskGAT [123] GraphSAGE [50]

Latency (ms) 1.073 0.923 1.016 1.105 1.168

Table 5.2 Performance without GNN or MHSA

ResNet-18 ~ GTuner (GNN + MHSA) MHSA GNN + MLP

Latency (ms) 0.923 0.963 1.121

eralization. It degrades the performance significantly since the
important topological and scheduling knowledge is discarded.
These techniques achieve good results on big data problems,
e.g., social networks and recommendation systems with millions
of nodes and edges. In our problem, the structures of graphs are
limited compared with these applications, and it is unacceptable
to forget information.

Further, to validate the performance of our proposed MHSA
module, we do the ablation study via dropping the MHSA mod-
ule in GAT. The outputs of the GNN module and the statis-
tical features are concatenated and then directly passed to a
fully-connected layer to achieve a feature vector with length 512.
Then this feature vector is passed to the same MLP regression
module. This experiment is denoted as GNN + MLP in TA-
BLE 5.2. For comparison, the baseline MHSA is also listed. Re-
sults show that the combination of our GNN and MHSA achieves

the best performance.

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK123

—— Ansor GTuner < mEm Ansor 1 GTuner
SN— L I ‘
50T 1z
2 < 100 n
B
& 250 13 g0
8 3
S ol ‘ 2 00
. =
5 30 60 Q? 5 30 60
Trials Per Subgraph Trials Per Subgraph

(a) (b)

Figure 5.8 Results of different measure trials.

5.4.3 Ablation Studies on GPU Measure Trials

The genetic algorithm implemented by TVM is adopted as the
default searching algorithm in Ansor and our method. Interact-
ing with GPU helps validate the designs found by the search-
ing algorithms. Therefore, more interactions (measure trials)
will find better solutions. Some experiments are conducted on
ResNet-18 to reveal the performance of our method under dif-
ferent measure trials, as shown in Fig. 5.8. The numbers of
measure trials are 5, 10, 15, ..., 60. The ratios of latencies with
respect to Ansor are shown in Fig. 5.8(b). With the increases
in measure trials, both Ansor and our GTuner can find better
results, while our performance advantages compared with Ansor

are still remarkable (more than 10%).

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK124

Em Ansor 1 GTuner
_015[| 7
o2}
&
. 0.10
9]
=
£ 0.05
<
3
0.0
1 8 16 24
Subgraphs
(a)
—~ 280
=
n
?5
= 100
=
© 0
1 8 16 24
Subgraphs

(b)

Figure 5.9 Detail results of subgraphs in ResNet-18.

5.4.4 Performance of the Whole framework

Detailed results of subgraphs in ResNet-18 are shown in Fig. 5.9,
including the inference latencies and GFLOPS. The GFLOPS
values are represented as ratios to Ansor. It is shown that
our method reduces the latencies and improves the GFLOPS
on most subgraphs. The performance improvements on the dif-
ficult subgraphs (with long latencies) are inspiring.

The end-to-end inference latencies of the DNN models are
listed in TABLE 5.3. The results demonstrate the significant
advantages of our method compared with the baselines. The

proposed multi-head self-attention module improves the per-

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK125

Table 5.3 End-to-end Model Inference Latency (ms)

Model ‘ PyTorch ‘ PyTorch-JIT [92] ‘ AutoTVM [28] ‘ Ansor [153] ‘ MHSA ‘ GTuner
ResNet-18 27.180 4.119 1.056 1.073 0.963 | 0.923 (13.98%)
ResNet-34 | 48.988 5.929 1.180 0.968 0.907 | 0.872 (9.92%)
SqueezeNet | 16.658 3.648 0.311 0.207 0.201 | 0.197 (4.83%)
MobileNet 30.324 6.972 0.513 0.242 0.252 | 0.227 (6.20%)

+ Ratios are performance improvements compared with Ansor.

Table 5.4 Time Costs (minutes) of the Optimization Processes

Model ‘ AutoTVM [28] ‘ Ansor [153] ‘ MHSA ‘ GTuner

ResNet-18 45.57 45.95 46.94 65.22
ResNet-34 46.66 48.89 50.71 54.86
SqueezeNet 43.53 44.40 45.91 63.90
MobileNet 42.88 43.80 44.20 61.60

formance based on Ansor. The graph network module in our
GTuner further improves the performance. On the four models
in TABLE 5.3, our method reduces the latencies by 13.98%,
9.92%, 4.83%, and 6.20%, respectively, compared with An-
sor, and more than 30% on average compared with AutoTVM.
The two PyTorch-based methods are rule-based, and their per-
formance is not satisfying. The results also reveal that using
the graph structural features helps improve the generalization
of the performance model to new tasks that do not exist in the
training set. The time costs of the whole optimization processes
of TVM-based methods are listed in TABLE 5.4, including the
searching processes of the genetic algorithm, the compilations
of codes, and the interactions with GPU. It is shown that our
performance improvements have no extra overheads on the time

costs.

CHAPTER 5. TUNING COMPUTATIONS VIA GRAPH ATTENTION NETWORK126
5.5 Conclusion

In this chapter, we proposes a novel method GTuner to opti-
mize the computations of DNN models on GPU. The computa-
tional graphs are learned via the WL graph isomorphism convo-
lutional layers to extract high-quality features. The structural
and statistical features are jointly learned via the multi-head
self-attention module to improve the regression quality. Our
results outperform the baselines and prove the effectiveness of

GTuner.

O End of chapter.

Chapter 6

Conclusion

In this thesis, we have supplied some learning-based method-
ologies to stimulate the fast and efficient deployments of deep
learning algorithms. In this chapter, we summarize the proposed

methodologies and then discuss the future directions.

6.1 Summary

Deep learning deployments have been widely discussed in the
Al era to facilitate the applications of deep learning algorithms.
Though brilliant achievements have been made in the model de-
sign and training of neural networks, the gaps between these and
the hardware-level implementations are still challenging. FPGA
and GPU are the most popular hardware platforms for algorithm
deployments due to their high parallelisms, high throughputs,
and flexible configurability. In this thesis, three approaches are
designed: one for FPGA-based and two for GPU-based imple-

mentations. Our methods are superior to prior deployment tech-

127

CHAPTER 6. CONCLUSION 128

niques on popular deep learning algorithms and models.

FPGA-based design flow is complicated and time-consuming,
composed of three design stages, where each stage reports three
performance metrics (power, latency, and resource consump-
tion). High-level synthesis (HLS) is adopted to implement some
code templates in Section 2.1 to ease the difficulties of FPGA im-
plementations. Meanwhile, the HLS directives are left to be de-
termined to improve the performance. The cumbersome design
flow and the complex relationships between the HLS directives,
the stages, and performance metrics make this problem nontriv-
ial. In Chapter 3, we propose a correlated multi-objective multi-
fidelity method to explore the Pareto-optimal HLS directives,
which can balance the performance metrics well. Bayesian opti-
mization is utilized as the optimization framework. An expected
improvement of Pareto hypervolume is defined as the acquisi-
tion function, and the correlated Gaussian process models are
adopted to characterize the complex relationships. The reports
from the multiple stages are measured via the non-linear Gaus-
sian process models. With these techniques, our method reduces
optimization costs and simultaneously improves the quality of
results.

Deployments on GPU suffer from the vast design space in
which there are typically more than millions of candidate imple-
mentations for each layer, as discussed in Section 2.2. Though
the compilations and executions of the GPU codes are usually

shorter than several seconds, the optimizations are still expen-

CHAPTER 6. CONCLUSION 129

sive due to the extensive design spaces. The optimization pro-
cesses start from scratch traditionally, while the historical opti-
mization data are not utilized. In Chapter 4, we propose to use
the deep Gaussian transfer learning methods to learn from the
historical data. Maximum-a-posteriori (MAP) estimation is ap-
plied to tune the DGP model according to the history to make
the DGP model accommodate the new task with no loss of hid-
den knowledge. With this method, we reduce the optimization
costs remarkably and significantly improve the quality of results
on the mainstreaming deep learning models on Nvidia GPUs.
Furthermore, researchers devise advanced code generation
rules to realize larger design spaces covering better code imple-
mentations. Despite the implementation-level progress, model
structural information is ignored in the performance estimator,
degrading the performance accuracies in the exploration pro-
cess. Besides, the mutual feature effects and importance are
well modeled so as to result in poor performance. In Chapter 5,
we use a graph neural network to delve into the neural network
model structures and design a multi-head self-attention mod-
ule to enhance the critical parts of the features and fade out
the unimportant parts. The experiments on deep learning algo-

rithms demonstrate inspiring improvements.

CHAPTER 6. CONCLUSION 130

6.2 Possible Future Directions

Specific devices for deep learning computations have received
growing attention in recent years, and the joint optimization
of the models and the hardware platforms is a prevailing direc-
tion. In optimizations, the collaborative design for the models
and hardware enlarges the design space and prompts us to use
more sophisticated optimization methods. Differentiable model
structure optimization is helpful to update the model structures
together with the model parameters according to the training
or testing loss and avoid ineffective structure explorations. To
deal with the explosive memory costs, we must introduce more
techniques while guaranteeing a fast and accurate performance
estimation for the new structures. Besides, the hardware archi-
tectures should be designed in alignment with the model struc-
tures. Consequently, we can devise some architectural templates
to form the hardware design spaces. In the joint optimization,
some crucial questions must be solved, including the definitions
of the design spaces, high-quality performance models, and effi-
cient exploration methods.

Heterogeneous computing for the deep learning algorithms
promises thanks to the growing support from the hardware ven-
dors. Modern devices usually integrate various hardware re-
sources to facilitate their usage in diverse scenarios. Therefore,
the existing deep learning deployment techniques that rely on a

single device suffer from low system utilization. Further, some

CHAPTER 6. CONCLUSION 131

researchers explore the potential of integrating various plat-
forms to take full advantage of various technological advance-
ments. [106] couples an LSTM co-processor with an embedded
RISC-V CPU in the RISC-V design flow to compute sparse
LSTM tasks which are for character recognition and language
models. [49] builds a simultaneous multi-mode architecture that
integrates the systolic model with a GPU-like SIMD execution
model and outperforms the general processors CPU and GPU
significantly. For graph neural networks, [112] designs a frame-
work that contains a dense engine to compute fully connected
(FC) layers and a graph engine to compute the message passing
in the graph. Heterogeneous computing can tackle more com-
plicated deep learning models such as the super-resolution (SR)
models. Unlike the widely-discussed deep learning models, the
SR algorithms are composed of irregular operations and compli-
cated structures that require specific optimizations. Compared
with the well-studied models, such as VGG, in the SR models,
shift operations, shuffles, tensor multiplications, long-term de-
pendencies, etc., make the optimization task non-trivial. These
operations are not considered in the general deployment frame-
works for classification or regression deep learning models. The
SR model is divided into some small segments, thus making the
existing tools fail to achieve the end-to-end inference. Besides,
the volumes of frames increase in the model, resulting in heavier
communication workloads. With the heterogeneous platforms,

the irregular tasks can be computed by the specifically designed

CHAPTER 6. CONCLUSION 132

FPGA kernels or the onboard CPUs, and the common tasks are
deployed on Al engines or GPUs. Considering these circum-
stances, we need to explore the task analysis, allocation, sys-
tem integration, fast deployment flows, and provide easy-to-use
computation libraries, optimization techniques, and interfaces

to ease designers from cumbersome developments.

O End of chapter.

Bibliography

1]

2]

3]

NVIDIA-TensorRT. https://developer.nvidia.com/

zh-cn/tensorrt.

oneAPI Deep Neural Network Library (oneDNN). https:

//www.oneapi.io/open-source/.

Pragma HLS Array Partition. https://docs.xilinx.
com/r/en-US/ugl399-vitis-hls/pragma-HLS-array _

partition.
Vivado Design Suite User Guide: High-
Level Synthesis. https://www.xilinx.com/

support/documents/sw_manuals/xilinx2020 1/

ug902-vivado-high-level-synthesis.pdf.

Xilinx Deep Processing Unit (DPU). https:
//www.xilinx.com/html docs/xilinx2019 2/vitis_

doc/dpu_over.html.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Dayvis,
J. Dean, et al. TensorFlow: A system for large-scale ma-

chine learning. In Proc. OSDI, pages 265-283, 2016.

133

https://developer.nvidia.com/zh-cn/tensorrt
https://developer.nvidia.com/zh-cn/tensorrt
https://www.oneapi.io/open-source/
https://www.oneapi.io/open-source/
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-array_partition
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-array_partition
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-array_partition
https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/dpu_over.html
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/dpu_over.html
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/dpu_over.html

BIBLIOGRAPHY 134

7]

[12]

[13]

B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and H. Es-
maeilzadeh. CHAMELEON: Adaptive code optimiza-

tion for expedited deep neural network compilation. In

Proc. ICLR, 2020.

T. Ajanthan, P. K. Dokania, R. Hartley, and P. H. Torr.
Proximal mean-field for neural network quantization. In

Proc. ICCYV, pages 4871-4880, 2019.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schul-
man, and D. Mané. Concrete problems in Al safety. arXiv

preprint arXiw:1606.06565, 2016.

J. Atwood and D. Towsley. Diffusion-convolutional neural

networks. In Proc. NeurIPS, pages 1993-2001, 2016.

M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham,
A. G. Wilson, and E. Bakshy. BoTorch: A frame-
work for efficient Monte-Carlo Bayesian optimization. In

Proc. NeurIPS, volume 33, pages 21524-21538, 2020.

S. Bansal, H. Hsiao, T. Czajkowski, and J. H. Ander-
son. High-level synthesis of software-customizable floating-

point cores. In Proc. DATFE, pages 37-42, 2018.

S. Belakaria, A. Deshwal, and J. R. Doppa. Max-value
entropy search for multi-objective Bayesian optimization.

In Proc. NeurIPS, volume 32, pages 7825-7835, 2019.

BIBLIOGRAPHY 135

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Varia-
tional inference: A review for statisticians. Journal of the

American Statistical Association, 112(518):859-877, 2017.

E. V. Bonilla, K. M. Chai, and C. Williams. Multi-task
gaussian process prediction. In Proc. NeurIPS, pages 153—

160, 2008.

J. Brownlee. Data preparation for machine learning: data
cleaning, feature selection, and data transforms in Python.

Machine Learning Mastery, 2020.

T. Bui, D. Hernandez-Lobato, J. Hernandez-Lobato, Y. Li,
and R. Turner. Deep Gaussian processes for regression us-
ing approximate expectation propagation. In Proc. ICML,

pages 1472-1481, 2016.

H. Cai et al. ProxylessNAS: Direct neural architecture
search on target task and hardware. In Proc. ICLR, 2019.

R. Calandra, J. Peters, C. E. Rasmussen, and M. P.
Deisenroth. Manifold Gaussian processes for regression.
In Proc. IJCNN, pages 3338-3345. IEEE, 2016.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kir-
illov, and S. Zagoruyko. End-to-end object detection with
transformers. In Proc. ECCYV, 2020.

J.-W. Chang, S. Ahn, K.-W. Kang, and S.-J. Kang. To-

wards design methodology of efficient fast algorithms for

BIBLIOGRAPHY 136

[22]

23]

[24]

2]

[27]

28]

accelerating generative adversarial networks on FPGAs.

In Proc. ASPDAC, pages 283-288. IEEE, 2020.

T. Chen, B. Duan, Q. Sun, M. Zhang, G. Li, H. Geng,
Q. Zhang, and B. Yu. An efficient sharing grouped convo-
lution via Bayesian learning. IEEFE TNNLS, pages 1-13,
2021.

T. Chen and C. Guestrin. XGBoost: A scalable tree boost-
ing system. In Proc. KDD, pages 785—794, 2016.

T. Chen, B. Lin, H. Geng, S. Hu, and B. Yu. Leverag-
ing spatial correlation for sensor drift calibration in smart

building. IEEE TCAD, 40(7):1273-1286, 2021.

T. Chen, B. Lin, H. Geng, and B. Yu. Sensor drift cali-
bration via spatial correlation model in smart building. In
Proc. DAC, pages 1-6, 2019.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, et al. TVM: An au-
tomated end-to-end optimizing compiler for deep learning.
In Proc. OSDI, pages 578-594, 2018.

T. Chen, Q. Sun, and B. Yu. Machine learning in
nanometer AMS design-for-reliability (invited paper). In
Proc. ASICON, pages 1-4, 2021.

T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze,
C. Guestrin, and A. Krishnamurthy. Learning to opti-

BIBLIOGRAPHY 137

[29]

[31]

[32]

[33]

[34]

mize tensor programs. In Proc. NeurlPS, pages 3389-3400,
2018.

Y.-H. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convo-
lutional neural networks. In Proc. ISSCC, pages 262263,
2016.

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze. Eyeriss v2:
A flexible accelerator for emerging deep neural networks

on mobile devices. IEEE JETCAS, 9(2):292-308, 2019.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen,
J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN: Ef-

ficient primitives for deep learning. arXiv preprint, 2014.

K. Choi, D. Hong, H. Yoon, J. Yu, Y. Kim, and
J. Lee. DANCE: Differentiable accelerator/network co-
exploration. In Proc. DAC, pages 337-342. IEEE, 2021.

S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and
Z. Zhang. Fast and accurate estimation of quality of re-

sults in high-level synthesis with machine learning. In

Proc. FCCM, pages 129-132, 2018.

A. G. de G. Matthews, J. Hron, M. Rowland, R. E. Turner,
and Z. Ghahramani. Gaussian process behaviour in wide

deep neural networks. In Proc. ICLR, 2018.

BIBLIOGRAPHY 138

[35]

[37]

[39]

[40]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of deep bidirectional transformers for

language understanding. In Proc. NAACL, pages 4171—
4186, 2019.

Z. Dong, 7. Yao, A. Gholami, M. W. Mahoney, and
K. Keutzer. HAWQ: Hessian aware quantization of neu-

ral networks with mixed-precision. In Proc. ICCV, pages

293-302, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An
image is worth 16x16 words: Transformers for image recog-
nition at scale. In Proc. ICLR, 2021.

L. Dudziak, T. Chau, M. S. Abdelfattah, R. Lee, H. Kim,
and N. D. Lane. BRP-NAS: Prediction-based NAS using
GCNs. In Proc. NeurIPS, 2020.

D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, and
G. Zoubin. Structure discovery in nonparametric regres-

sion through compositional kernel search. In Proc. ICML,
pages 1166-1174, 2013.

H. Fan, M. Ferianc, M. Rodrigues, H. Zhou, X. Niu, and
W. Luk. High-performance FPGA-based accelerator for
bayesian neural networks. In Proc. DAC, 2021.

BIBLIOGRAPHY 139

[41]

[42]

[43]

[45]

[40]

[47]

J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley, G. Geor-
giadis, and J. H. Hassoun. Post-training piecewise linear

quantization for deep neural networks. In Proc. ECCYV,

pages 69-86, 2020.

L. Ferretti, G. Ansaloni, and L. Pozzi. Lattice-traversing
design space exploration for high level synthesis. In

Proc. ICCD, pages 210-217, 2018.

J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel,
and A. G. Wilson. GPyTorch: Blackbox matrix-matrix

Gaussian process inference with GPU acceleration. In

Proc. NeurIPS, pages 75877597, 2018.

H. Geng, Y. Ma, Q. Xu, J. Miao, S. Roy, and B. Yu.
High-speed adder design space exploration via graph neu-

ral processes. IEEE TCAD, pages 1-1, 2021.

H. Geng, H. Yang, Y. Ma, J. Mitra, and B. Yu. SRAF
insertion via supervised dictionary learning. In Proc. AS-

PDAC, pages 406411, 2019.

A. Ghoshal and J. Honorio. Learning maximum-a-
posteriori perturbation models for structured prediction in
polynomial time. In Proc. ICML, pages 1754-1762. PMLR,
2018.

C. Gong, Z. Jiang, D. Wang, Y. Lin, Q. Liu, and D. Z.

Pan. Mixed precision neural architecture search for energy

BIBLIOGRAPHY 140

[43]

[49]

[50]

[52]

efficient deep learning. In Proc. ICCAD, pages 1-7. IEEE,
2019.

I. Goodfelow, Y. Bengio, and A. Courville. Deep learning

(adaptive computation and machine learning series), 2016.

C. Guo, Y. Zhou, J. Leng, Y. Zhu, Z. Du, Q. Chen, C. Li,
B. Yao, and M. Guo. Balancing efficiency and flexibil-
ity for DNN acceleration via temporal GPU-systolic array
integration. In Proc. DAC, pages 1-6. IEEE, 2020.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive rep-
resentation learning on large graphs. In Proc. NeurlPS,
pages 1024-1034, 2017.

S. Han, H. Mao, and W. J. Dally. Deep Compression:
Compressing deep neural networks with pruning, trained

quantization and Huffman coding. In Proc. ICLR, 2016.

C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow,
W.-m. Hwu, and D. Chen. FPGA/DNN co-design: An
efficient design methodology for IoT intelligence on the
edge. In Proc. DAC, pages 1-6, 2019.

T. Hazan, F. Orabona, A. D. Sarwate, S. Maji, and T. S.
Jaakkola. High dimensional inference with random max-

imum a-posteriori perturbations. [EFEE Transactions on

Information Theory (TIT), 65(10):6539-6560, 2019.

BIBLIOGRAPHY 141

[54]

[57]

[58]

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proc. CVPR, pages 770778,
2016.

Z. He, H. Huang, M. Jiang, Y. Bai, and G. Luo. FPGA-
based real-time super-resolution system for ultra high defi-

nition videos. In Proc. FCCM, pages 181-188. IEEE, 2018.

D. Hernandez-Lobato, J. Hernandez-Lobato, A. Shah, and
R. Adams. Predictive entropy search for multi-objective
Bayesian optimization. In Proc. ICML, pages 1492—-1501.
PMLR, 2016.

J. M. Hernandez-Lobato, M. W. Hoffman, and Z. Ghahra-
mani. Predictive entropy search for efficient global opti-
mization of black-box functions. In Proc. NeurIPS, vol-

ume 27, pages 918-926, 2014.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mo-
bileNets: Efficient convolutional neural networks for mo-

bile vision applications. arXiv preprint arXiv:1704.04861,
2017.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. SqueezeNet: AlexNet-level accu-

racy with 50x fewer parameters and < 0.5 mb model size.

arXiw preprint arXiw:1602.07360, 2016.

BIBLIOGRAPHY 142

[60]

[61]

[64]

[65]

[66]

167]

iSmartDNN. https://github.com/onioncc/iSmartDNN.

N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, et al. In-datacenter performance analysis of

a tensor processing unit. In Proc. ISCA, pages 1-12, 2017.

M. Kandemir. Asymmetric transfer learning with deep
gaussian processes. In Proc. ICML, pages 730-738, 2015.

S. J. Kaufman, P. M. Phothilimthana, Y. Zhou, C. Mendis,
S. Roy, A. Sabne, and M. Burrows. A learned performance

model for tensor processing units. 2021.

M. E. E. Khan, A. Immer, E. Abedi, and M. Korzepa.
Approximate inference turns deep networks into gaussian
processes. In Proc. NeurIPS, volume 32, pages 3094-3104,
2019.

T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. In Proc. ICLR, 2017.

D. Kirk, B. S. Center, et al. NVIDIA CUDA software and
GPU parallel computing architecture. In ISMM, volume 7,
pages 103-104, 2007.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In

Proc. NeurIPS, pages 1097-1105, 2012.

https://github.com/onioncc/iSmartDNN

BIBLIOGRAPHY 143

68

[72]

(73]

W. Kwon, G.-I. Yu, E. Jeong, and B.-G. Chun. Nimble:
Lightweight and parallel GPU task scheduling for deep
learning. In Proc. NeurIPS, 2020.

J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Penning-
ton, and J. Sohl-Dickstein. Deep neural networks as Gaus-

sian processes. In Proc. ICLR, 2018.

J. Lee, I. Lee, and J. Kang. Self-attention graph pooling.
In Proc. ICML, pages 3734-3743. PMLR, 2019.

R. Li, Y. Xu, A. Sukumaran-Rajam, A. Rountev, and
P. Sadayappan. Analytical characterization and design

space exploration for optimization of CNNs. In Proc. AS-

PLOS, pages 928-942, 2021.

T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-
Kelley. Differentiable programming for image processing
and deep learning in Halide. In ACM SIGGRAPH, vol-
ume 37, pages 139:1-139:13, 2018.

Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-
m. Hwu, and D. Chen. EDD: Efficient differentiable dnn
architecture and implementation co-search for embedded

ai solutions. In Proc. DAC, pages 1-6. IEEE, 2020.

Z. Li, T.-Y. Ho, K. Y.-T. Lai, K. Chakrabarty, P.-H. Yu,
and C.-Y. Lee. High-level synthesis for micro-electrode-

BIBLIOGRAPHY 144

[75]

[76]

[77]

(78]

[79]

[80]

[81]

dot-array digital microfluidic biochips. In Proc. DAC,
pages 1-6, 2016.

Z. Lin, J. Zhao, S. Sinha, and W. Zhang. HL-Pow: A
learning-based power modeling framework for high-level

synthesis. In Proc. ASPDAC, pages 574-580. IEEE, 2020.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable
architecture search. In Proc. ICLR, 2018.

H.-Y. Liu and L. P. Carloni. On learning-based methods
for design-space exploration with high-level synthesis. In
Proc. DAC, pages 1-7, 2013.

S. Liu, F. Lau, and B. C. Schafer. Accelerating FPGA
prototyping through predictive model-based HLS design
space exploration. In Proc. DAC, pages 1-6, 2019.

S. Liu, Q. Sun, P. Liao, Y. Lin, and B. Yu. Global place-
ment with deep learning-enabled explicit routability opti-
mization. In Proc. DATE, pages 1821-1824, 2021.

X. Liu, Y. Chen, C. Hao, A. Dhar, and D. Chen.
WinoCNN: Kernel sharing Winograd systolic array for ef-

ficient convolutional neural network acceleration on FP-
GAs. In Proc. ASAP, pages 258-265. IEEE, 2021.

Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng,

and J. Sun. Metapruning: Meta learning for automatic

BIBLIOGRAPHY 145

[82]

[83]

[84]

8]

[30]

[87]

neural network channel pruning. In Proc. ICCYV, pages

3296-3305, 2019.

C. Lo and P. Chow. Model-based optimization of high-
level synthesis directives. In Proc. FPL, pages 1-10, 2016.

C. Lo and P. Chow. Multi-fidelity optimization for high-
level synthesis directives. In Proc. FPL, pages 272-277,
2018.

C. Louizos, K. Ullrich, and M. Welling. Bayesian com-
pression for deep learning. In Proc. NeurIPS, volume 30,
2017.

W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng.
Batch Bayesian optimization via multi-objective acquisi-
tion ensemble for automated analog circuit design. In
Proc. ICML, volume 80, pages 3312-3320, 10-15 Jul 2018.

A. Mahapatra and B. C. Schafer. Machine-learning based
simulated annealer method for high level synthesis design
space exploration. In Proceedings of the 2014 FElectronic
System Level Synthesis Conference (ESLsyn), pages 1-6.
IEEE, 2014.

D. Mesquita, A. Souza, and S. Kaski. Rethinking pooling
in graph neural networks. In Proc. NeurIPS, volume 33,
pages 22202231, 2020.

BIBLIOGRAPHY 146

[38]

[90]

[91]

92]

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E.
Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Le-
man go neural: Higher-order graph neural networks. In

Proc. AAAI volume 33, pages 4602-4609, 2019.

J. Mu, M. Wang, L. Li, J. Yang, W. Lin, and W. Zhang.
A history-based auto-tuning framework for fast and high-

performance DNN design on GPU. In Proc. DAC, pages
1-6. IEEE, 2020.

S. W. Ober, C. E. Rasmussen, and M. van der Wilk. The
promises and pitfalls of deep kernel learning. In Proc. UAI,
volume 161, pages 1206-1216. PMLR, 27-30 Jul 2021.

K. O'Neal, M. Liu, H. Tang, A. Kalantar, K. DeRenard,
and P. Brisk. HLSPredict: cross platform performance
prediction for FPGA high-level synthesis. In Proc. IC-
CAD, pages 1-8, 2018.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in PyTorch. In NIPS Workshop,
2017.

M. Patacchiola, J. Turner, E. J. Crowley, M. O’Boyle, and
A. Storkey. Deep kernel transfer in Gaussian processes for

few-shot learning. arXiv preprint arXiv:1910.05199, 2019.

BIBLIOGRAPHY 147

[94]

[95]

[96]

[97]

98]

A. Prost-Boucle, O. Muller, and F. Rousseau. A fast and
autonomous HLS methodology for hardware accelerator
generation under resource constraints. In Euromicro Con-
ference on Digital System Design, pages 201-208. IEEE,
2013.

S. Qu, B. Li, Y. Wang, D. Xu, X. Zhao, and L. Zhang.
RaQu: An automatic high-utilization CNN quantization
and mapping framework for general-purpose RRAM accel-
erator. In Proc. DAC, pages 1-6. IEEE, 2020.

J. Quinonero-Candela and C. E. Rasmussen. A unifying
view of sparse approximate Gaussian process regression.
The Journal of Machine Learning Research, 6:1939-1959,
2005.

C. E. Rasmussen and C. Williams. Gaussian processes for

machine learning. Cambridge, MA, 32:68, 2006.

B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and
D. Brooks. Machsuite: Benchmarks for accelerator design
and customized architectures. In 2014 IEEFE International

Symposium on Workload Characterization (IISWC), pages
110-119, 2014.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:
Towards real-time object detection with region proposal

networks. In Proc. NeurIPS, pages 91-99, 2015.

BIBLIOGRAPHY 148

100]

101]

102]

103]

104]

[105]

106

H. Salimbeni and M. Deisenroth. Doubly stochastic
variational inference for deep Gaussian processes. In

Proc. NeurIPS, pages 4588-4599, 2017.

H. Sapkota, Y. Ying, F. Chen, and Q. Yu. Distribution-
ally robust optimization for deep kernel multiple instance
learning. In Proc. AISTATS, volume 130, pages 2188—
2196. PMLR, 2021.

B. C. Schafer and K. Wakabayashi. Design space explo-
ration acceleration through operation clustering. [IFEE

TCAD, 29(1):153-157, 2009.

B. C. Schafer and K. Wakabayashi. Divide and conquer
high-level synthesis design space exploration. ACM TO-
DAES, 17(3):1-19, 2012.

B. C. Schafer and Z. Wang. High-level synthesis design
space exploration: past, present, and future. IEEE TCAD,
39(10):2628-2639, 2019.

A. Shah and Z. Ghahramani. Pareto frontier learning with
expensive correlated objectives. In Proc. ICML, volume 48,

pages 1919-1927, 2016.

R. Shi, J. Liu, K.-H. H. So, S. Wang, and Y. Liang. E-
LSTM: Efficient inference of sparse LSTM on embedded
heterogeneous system. In Proc. DAC, pages 1-6. IEEE,
2019.

BIBLIOGRAPHY 149

107]

108]

109

[110]

[111]

[112]

W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken,
R. Bishop, D. Rueckert, and Z. Wang. Real-time single
image and video super-resolution using an efficient sub-

pixel convolutional neural network. In Proc. CVPR, pages

18741883, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proc. ICLR,

2015.

J. Snoek, H. Larochelle, and R. P. Adams. Practical
Bayesian optimization of machine learning algorithms. In

Proc. NeurIPS, volume 25, pages 2951-2959, 2012.

H. F. Song, A. Abdolmaleki, J. T. Springenberg, A. Clark,
H. Soyer, J. W. Rae, S. Noury, A. Ahuja, S. Liu, D. Tiru-
mala, N. Heess, D. Belov, M. Riedmiller, and M. M.
Botvinick. V-MPO: On-policy maximum a posteriori pol-

icy optimization for discrete and continuous control. In

Proc. ICLR, 2020.

Z. Song, J. Wang, T. Li, L. Jiang, J. Ke, X. Liang, and
N. Jing. GPNPU: enabling efficient hardware-based direct

convolution with multi-precision support in GPU tensor
cores. In Proc. DAC, pages 1-6. IEEE, 2020.

J. R. Stevens, D. Das, S. Avancha, B. Kaul, and A. Raghu-
nathan. GNNerator: A hardware/software framework for

accelerating graph neural networks. In Proc. DAC, 2021.

BIBLIOGRAPHY 150

[113] Q. Sun, C. Bai, T. Chen, H. Geng, X. Zhang, Y. Bai,
and B. Yu. Fast and efficient DNN deployment via deep

Gaussian transfer learning. In Proc. ICCYV, pages 5380—
5390, October 2021.

[114] Q. Sun, C. Bai, H. Geng, and B. Yu. Deep neural net-
work hardware deployment optimization via advanced ac-

tive learning. In Proc. DATE, pages 1510-1515, 2021.

[115] Q. Sun, T. Chen, S. Liu, J. Chen, H. Yu, and B. Yu.
Correlated multi-objective multi-fidelity optimization for

hls directives design. ACM TODAES, 27(4), mar 2022.

[116] Q. Sun, T. Chen, J. Miao, and B. Yu. Power-driven DNN
dataflow optimization on FPGA. In Proc. ICCAD, pages
1-7, 2019.

[117] Q. Sun, T. Chen, L. Siting, J. Miao, J. Chen, H. Yu, and
B. Yu. Correlated multi-objective multi-fidelity optimiza-
tion for HLS directives design. In Proc. DATE, pages 46—
51, 2021.

[118] Q. Sun, X. Yao, A. A. Rao, B. Yu, and S. Hu. Counter-
acting adversarial attacks in autonomous driving. [EEE

TCAD, 2022.

[119] Q. Sun, X. Zhang, H. Geng, Y. Zhao, Y. Bai, H. Zheng,
and B. Yu. GTuner: Tuning DNN computations on GPU
via graph attention network. In Proc. DAC, 2022.

BIBLIOGRAPHY 151

120]

[121]

122]

123]

[124]

[125]

H. Tian, B. Liu, X.-T. Yuan, and Q. Liu. Meta-learning
with network pruning. In Proc. ECCYV, pages 675-700,
2020.

E. Ustun, S. Xiang, J. Gui, C. Yu, and Z. Zhang. Lamda:
Learning-assisted multi-stage autotuning for FPGA design

closure. In Proc. FCCM, pages 74-77, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, t.. Kaiser, and I. Polosukhin. Attention is
all you need. In Proc. NeurlPS, 2017.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio. Graph attention networks. In
Proc. ICLR, 2018.

M. Volpp, L. P. Frohlich, K. Fischer, A. Doerr, S. Falkner,
F. Hutter, and C. Daniel. Meta-learning acquisition func-
tions for transfer learning in Bayesian optimization. In

Proc. ICLR, 2020.

F. Wang, P. Cachecho, W. Zhang, S. Sun, X. Li, R. Kanj,
and C. Gu. Bayesian model fusion: large-scale perfor-
mance modeling of analog and mixed-signal circuits by
reusing early-stage data. IEEE TCAD, 35(8):1255-1268,
2016.

BIBLIOGRAPHY 152

126]

127]

128]

129]

[130]

131]

Z. Wang and S. Jegelka. Max-value entropy search for
efficient Bayesian optimization. In Proc. ICML, volume 70,

pages 3627-3635. PMLR, 2017.

X. Wei, Y. Liang, and J. Cong. Overcoming data trans-
fer bottlenecks in FPGA-based DNN accelerators via layer
conscious memory management. In Proc. DAC, pages 125—

1, 2019.

X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu,
Y. Liang, and J. Cong. Automated systolic array archi-

tecture synthesis for high throughput CNN inference on
FPGAs. In Proc. DAC, pages 1-6, 2017.

L. Wenbo, Z. Kun, Q. Lu, J. Nianjuan, L. Jiangbo, and
J. Jiaya. LAPAR: Linearly-assembled pixel-adaptive re-

gression network for single image super-resolution and be-
yond. In Proc. NeurIPS, 2020.

L. While, P. Hingston, L. Barone, and S. Huband. A faster
algorithm for calculating Hypervolume. I[FEE Transac-
tions on Evolutionary Computation, 10(1):29-38, 2006.

A. Wilson and H. Nickisch. Kernel interpolation for
scalable structured Gaussian processes (KISS-GP). In
Proc. ICML, volume 37, pages 1775-1784. PMLR, 2015.

BIBLIOGRAPHY 153

132]

133]

[134]

[135]

[136]

137]

138

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing.
Deep kernel learning. In Proc. AISTATS, pages 370-378,
2016.

A. G. Wilson, Z. Hu, R. R. Salakhutdinov, and E. P.
Xing. Stochastic variational deep kernel learning. In

Proc. NeurIPS, volume 29, pages 25862594, 2016.

J. T. Wilson, F. Hutter, and M. P. Deisenroth. Maxi-
mizing acquisition functions for Bayesian optimization. In

Proc. NeurIPS, volume 31, pages 9884-9895, 2018.

J. T. Wilson, R. Moriconi, F. Hutter, and M. P.
Deisenroth. The reparameterization trick for acquisi-
tion functions. In Workshop on Bayesian Optimization

of Conference on Neural Information Processing Systems
(NeurIPS), 2017.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y.
Philip. A comprehensive survey on graph neural networks.
IEEE TNNLS, 32(1):4-24, 2020.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful
are graph neural networks? In Proc. ICLR, 2019.

S. Yang, Z. Quan, M. Nie, and W. Yang. Transpose: Key-
point localization via transformer. In Proc. ICCV, pages
11802-11812, 2021.

BIBLIOGRAPHY 154

[139)

[140]

141]

[142]

143

[144]

H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen. Hy-
bridDNN: A framework for high-performance hybrid DNN

accelerator design and implementation. In Proc. DAC,

2020.

Z. Yin, W. Gross, and B. H. Meyer. Probabilistic sequen-
tial multi-objective optimization of convolutional neural

networks. In Proc. DATE, pages 1055-1060. IEEE, 2020.

M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. An-
navaram. Virtual thread: Maximizing thread-level paral-
lelism beyond GPU scheduling limit. In Proc. ISCA, pages
609-621, 2016.

J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and
T. Huang. Wide activation for efficient and accurate image

super-resolution. In Proc. BMVC, 2019.

Z. Yuan, B. Wu, G. Sun, Z. Liang, S. Zhao, and W. Bi.
S2DNAS: Transforming static CNN model for dynamic in-

ference via neural architecture search. In Proc. ECCYV,

pages 175-192, 2020.

P. Zhang, E. Lo, and B. Lu. High performance depth-
wise and pointwise convolutions on mobile devices. In

Proc. AAAI pages 6795-6802, 2020.

BIBLIOGRAPHY 155

[145]

[146]

147]

[148]

149

[150]

X. Zhang, Y. Li, C. Hao, K. Rupnow, J. Xiong, W.-m.
Hwu, and D. Chen. SkyNet: A champion model for DAC-
SDC on low power object detection. arXiv preprint, 2019.

X. Zhang, Y. Ma, J. Xiong, W.-m. Hwu, V. Kindratenko,
and D. Chen. Exploring HW /SW co-design for video anal-
ysis on CPU-FPGA heterogeneous systems. IEEE TCAD,
2021.

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu,
and D. Chen. DNNBuilder: an automated tool for building

high-performance DNN hardware accelerators for FPGAs.
In Proc. ICCAD, pages 56:1-56:8, 2018.

X. Zhang, B. Zhu, X. Yao, Q. Sun, R. Li, and B. Yu.
Context-based contrastive learning for scene text recogni-
tion. In Proc. AAAI 2022.

J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and
B. He. COMBA: A comprehensive model-based analysis

framework for high level synthesis of real applications. In

Proc. ICCAD, pages 430-437, 2017.

J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He.
Performance modeling and directives optimization for high
level synthesis on FPGA. IEEE TCAD, 39(7):1428-1441,
2019.

BIBLIOGRAPHY 156

[151]

[152]

153]

154]

[155]

[156]

[157]

J. Zhao, T. Liang, S. Sinha, and W. Zhang. Machine learn-
ing based routing congestion prediction in FPGA high-
level synthesis. In Proc. DATE, pages 1130-1135, 2019.

W. Zhao, Q. Sun, Y. Bai, W. Li, H. Zheng, B. Yu, and
M. D. Wong. A high-performance accelerator for super-
resolution processing on embedded GPU. In Proc. ICCAD,
2021.

L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Alj,
Y. Wang, J. Yang, D. Zhuo, K. Sen, et al. Ansor: Gener-

ating high-performance tensor programs for deep learning.

In Proc. OSDI, pages 863-879, 2020.

L. Zheng, R. Liu, J. Shao, T. Chen, J. E. Gonzalez,
[. Stoica, and A. H. Ali. TenSet: A large-scale pro-

gram performance dataset for learned tensor compilers.

In Proc. NeurIPS, 2021.

G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar.
Lin-analyzer: a high-level performance analysis tool for

FPGA-based accelerators. In Proc. DAC, pages 1-6, 2016.

Y. Zhou, Y. Zhang, Y. Wang, and Q. Tian. Accelerate
CNN via recursive Bayesian pruning. In Proc. ICCV, pages
3306-3315, 2019.

B. Zhu, R. Chen, X. Zhang, F. Yang, X. Zeng, B. Yu, and
M. D. Wong. Hotspot detection via multi-task learning

BIBLIOGRAPHY 157

and transformer encoder. In Proc. ICCAD, pages 1-8,
2021.

[158] W. Zuo, W. Kemmerer, J. B. Lim, L.-N. Pouchet,
A. Ayupov, T. Kim, K. Han, and D. Chen. A polyhedral-
based systemc modeling and generation framework for ef-

fective low-power design space exploration. In Proc. IC-

CAD, pages 357-364. IEEE, 2015.

