
Intelligent VLSI Design for

Manufacturability

YANG, Haoyu

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

July 2020

Thesis Assessment Committee

Professor KING Kuo Chin Irwin (Chair)

Professor YU Bei (Thesis Supervisor)

Professor YOUNG Fung Yu (Committee Member)

Professor LIN Yibo (External Examiner)

Professor PAN David Z. (External Examiner)

Abstract

of thesis entitled:

Intelligent VLSI Design for Manufacturability

Submitted by YANG, Haoyu

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in July 2020

With the technology node continuously shrinking down, modern VLSI designs are

encountering great challenges. This thesis focuses on emerging AI solutions of vari-

ous VLSI design and sign-off problems, covering layout printability estimation, layout

sampling and layout generation.

Process variations caused by the limitations of the manufacturing system are one

of the key challenges on chip manufacturing yields. Even with various resolution en-

hancement techniques, manufacturing defects are still likely to happen for some sen-

sitive layout patterns, referred as hotspots. State-of-the-art solution to find hotspots

is lithography simulation or chip inspection, which is expensive and time consum-

ing. The extreme ultraviolet (EUV)-specific lithography hotspot detection, for exam-

ple, usually requires manual examination on taped-out chips whose costs grow with

inspection area. Therefore, we study and develop deep learning-based solutions for

efficient hotspot detection, targeting at imbalanced dataset, learning algorithms, fea-

ture representations and model reliability.

i

ii

Recent works show that learning-based hotspot detection solutions rely highly on

the quality of reference layout libraries. We optimize pattern library by embedding

the active learning engine into deep neural networks thus data sampling and incre-

mental model training can be conducted alternatively. Guaranteed by the on-line

property of stochastic gradient descent, we only need to finetune the neuron weights

according to new labeled instances instead of training model from scratch in each

iteration. A layout specific distance metric is to be designed to guarantee an efficient

sampling procedure during training runtime.

VLSI layout patterns provide critical resources in various design for manufactura-

bility (DFM) researches from mask optimization (mask pattern generation) to early

technology node development (design pattern generation). We investigate the pos-

sibility of generative machine learning models being solution candidates for layout

generation purposes. We develop the GAN-OPC family for intelligent mask optimiza-

tion that promises efficient and high-quality mask generation. For the design pattern

generation, we propose a transforming convolutional auto-encoder (TCAE) architec-

ture that is designed to capture layout design rules, which contributes to DRC-clean

test pattern generation.

With supporting experiments, we demonstrate the efficiency and effectiveness

of intelligent algorithms and architectures being alternate solutions for DFM prob-

lems, which has the potential to push the industry forward under the high demand

of manufacturing quantity and quality.

摘要

智能超大規模積體電路可製造性設計

隨著集成電路工藝節點的不斷進步，當代芯片設計正面著挑戰。本論文討論

基於人工智能技術的集成電路後端設計解決方案。主要包括電路版圖可製造性

（DFM）驗證，電路可製造性庫採樣與優化，以及集成電路版圖的生成。芯片製

造系統的局限性會造成產出芯片的性能和質量的不確定性，這對集成電路生產

線的產能造成了極大的影響。

儘管有諸多高階技術應用在芯片製造中，在某些類型的電路版圖中仍會出現

不可預料的缺陷。我們通常把這類缺陷又稱為熱點。熱點的檢測通常依賴模擬

和檢查。在極紫外光技術節點下的熱點檢測依賴流片結果的人工檢查，十分耗

時昂貴。因此，在本論文中我們研究基於深度學習的高效解決方案，特別地，考

慮數據的不平衡，特徵表示以及模型可靠性。考慮到基於深度學習的熱點檢測

器特別依賴於參考版圖庫以及對版圖添加標籤所需要的昂貴代價。我們將主動

學習引擎嵌入到傳統的熱點檢測流程中，使得版圖庫的優化採樣和模型的訓練

能夠交替進行。這樣，熱點檢測框架能夠以最少的訓練數據集實現較高的熱點

檢測精度。集成電路的版圖為可製造性的研究提供了重要的資源，從掩膜版的

優化到早起工藝節點的研究。在這裡我們研究生成型機器學習模型在版圖生成

時的應用。針對掩膜版優化問題，本文提出 GAN-OPC系列框架，提供高效高質

量的生成掩膜版。針對設計版圖的生成，我們提出了轉換卷積自編碼器（TCAE）

架構。TCAE通過抓取訓練集版圖中的設計規則，生成符合要求的測試圖形。在

iii

iv

支持有關理論的實驗中，我們證明了智慧型算法和架構作為 DFM解決方案的有

效性。

Acknowledgement

Firstly, I would like to have greatest thanks to my advisor, Professor Bei Yu, for his

patience, guidance and support during the years. He inspires me to find and face

cutting-edge research problems and develop emerging technologies to tackle these

challenges. This thesis cannot be possible without his warm advice and continuous

encouragements.

I also want to express my grateful thanks to rest of the committee members. In

particular, I would like to thank Professor Irwin King for his technical comments and

suggestions on mathematical formulations and terminologies. I would like to thank

Professor Evangeline Young for her suggestions on the thesis structure and technique

details on hotspot detection and mask optimization. I would like to thank Professor

Yibo Lin for his thoughtful comments and suggestions on design pattern generation

and thesis development. I would like to thank Professor David Pan for his detailed

comments, helpful suggestions and proofread on the thesis.

Besides, I really appreciateMr. Cyrus Tabery, Dr. Jing Su, Dr. Chenxi Lin andDr. Yi

Zou who taught me lithography during my internship at ASML. I would also like to

thank Dr. Piyush Pathak, Dr. Frank Gennari and Mr. Ya-Chieh Lai for their advice and

support during my internship at Cadence Design Systems.

My sincere thanks go tomy colleagues inmy group: YuzheMa, HaoGeng, Tinghuan

Chen, Ran Chen, Qi Sun, Lu Zhang, Wanli Chen, Leon He and Wei Li for our inspir-

ing discussions and productive collaborations. I am also lucky to have worked with

v

vi

fellas at SHB913: Peishan Tu, Jordan Pui, Gengjie Chen, Haocheng Li, Jingsong Chen,

Bentian Jiang, Xiaopeng Zhang. Except for academic discussions and collaborations,

I will definitely miss all the joys and fun I had with them.

Last but not least, I would like to thank my parents Yajuan Zhang and Hongbin

Yang for their endless love and being supportive from the very beginning, which have

always been the source of power for me to achieve everything.

Contents

Abstract i

摘要 iii

Acknowledgement v

Contents vii

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 VLSI Manufacturing Challenges . 3

1.2 Literature Review . 5

1.2.1 Legacy Mask and Layout Optimization 5

1.2.2 Mask and Layout Learning . 6

1.3 Thesis Outline . 11

2 Intelligent Hotspot Detection 15

2.1 Introduction . 15

2.2 Lithography Hotspot Detection . 17

2.2.1 Preliminaries and Problem Formulation 17

vii

viii CONTENTS

2.2.2 Architectures and Algorithms 18

2.2.3 Experiments . 37

2.2.4 Summary . 47

2.3 Multi-Layer Hotspot Detection . 48

2.3.1 Preliminaries and Problem Formulation 48

2.3.2 Architectures and Algorithms 51

2.3.3 Experiments . 55

2.3.4 Summary . 59

3 Intelligent Pattern Sampling 61

3.1 Introduction . 61

3.2 Diversity-Aware Layout Pattern Sampling 63

3.2.1 Preliminaries and Problem Formulation 63

3.2.2 Architectures and Algorithms 65

3.2.3 Experiments . 75

3.2.4 Summary . 87

4 Intelligent Pattern Generation 89

4.1 Introduction . 89

4.2 Test Layout Generation . 91

4.2.1 Preliminaries and Problem Formulation 91

4.2.2 Architectures and Algorithms 93

4.2.3 Experiments . 101

4.2.4 Summary . 109

4.3 Generative Mask Optimization . 110

4.3.1 Preliminaries and Problem Formulation 110

4.3.2 Architectures and Algorithms 113

4.3.3 Experiments . 127

CONTENTS ix

4.3.4 Summary . 136

5 Conclusion and Future Works 139

Bibliography 143

x CONTENTS

List of Figures

1.1 An example of a classical lithography system. 2

1.2 Lithography contour versus design target under process variations:

(a) low dose at focus produces small contours; (b) normal dose at focus

produces regular contours; (c) high dose at defocus produces larger

contours. 3

1.3 Improved tangent space with (a) angle and (b) radius. 5

1.4 Continuous forward lithography modeling. 6

1.5 Recent research on layout feature engineering. 8

1.6 Bring artificial intelligence into back-end design flow. 12

2.1 Layout design examples that contain hotspots and hotspot-free. . . . 15

2.2 Feature tensor generation example (n = 12). The original clip (1200×

1200 nm2) is divided into 12× 12 blocks and each block is converted

to a 100× 100 image representing a 100× 100 nm2 sub region of the

original clip. Feature tensor is then obtained by encoding on first k

DCT coefficients of each block. 19

2.3 The proposed convolutional neural network structure. 22

2.4 Stochastic gradient descent (SGD) v.s. Mini-batch gradient descent

(MGD). 26

2.5 Training loss versus accuracy. 27

xi

xii LIST OF FIGURES

2.6 Bias learning shows a smaller false alarm penalty to obtain the same

hotspot detection accuracy. 34

2.7 Benchmark examples. (a) and (b) are before-OPC patterns from ICCAD

and Industry0, respectively. (b)–(d) correspond to Industry1-Industry3,

which are from intermediate OPC results.. The pattern becomes more

complicated after OPC and is more challenging for machine learning

based hotspot detectors. 38

2.8 Visualize training of the batch biased learning (red) and the biased

learning (blue). On each benchmarks, batch biased learning exhibits

lower loss than the biased learning at convergence. 40

2.9 Throughput comparison of different neural network models. 43

2.10 Throughput comparison with state-of-the-art hotspot detectors. . . . 45

2.11 A simple multilayer pattern example with scan lines. 49

2.12 Partial receiver operating characteristics of three hotspot detectors. . 58

3.1 A conventional process of layout hotspot training set and detection

model generation. 62

3.2 Visualization of different layout pattern sampling methods: (a) Pat-

tern matching; (b) Conventional active learning; (c) Proposed layout

pattern sampling. 65

3.3 Pattern sampling and hotspot detection flow. 67

3.4 Geometric view of mb −m. P1 and P2 denote the end points of m,

and in particular, P2 lies in the center of the base polygon. The solid

segments in each figure represents ||mb −m||22 for a given m. 75

LIST OF FIGURES xiii

3.5 Dispatching layouts based on estimated D. Because there is no spac-

ing and overlapping between adjacent core regions of adjacent clips,

each layout is fully scanned in the sampling and detection flow. Par-

ticularly, exact matching has a detection rate of 98.9% with the clip

size in the original contest setting. 77

3.6 Learning model performance v.s. sampling count. The blue curve is

the reference performance obtained from fuzzy matching with dif-

ferent area constrains reflected as different sampling count. The red

curve shows the sampling results based on Algorithm 3.1. 79

3.7 Influence of initial sampling size. 85

3.8 Runtime comparison among different solutions. “PM-xx”s are con-

ducted on 10-core Intel E7-4830v2with 512GBmemory. “FT”, “Greedy”,

“US”, “EMC” and “Ours” are deep learning based flows that are tested

on a GPU platform with one GeForce GTX 1080Ti, one Intel i9-7900X

and 64GB memory. 86

4.1 Layout geometry and critical dimensions. 91

4.2 Architecture of transforming convolutional auto-encoder in (a) train-

ing phase and (b) testing phase. 94

4.3 Illegal topology examples. 96

4.4 Combination of existing patterns with latent vectors. 97

4.5 TCAE flow. 101

4.6 Contribution of Gaussian perturbation on topology reconstruction.

1000 topologies (∼400 legal) are created from one topology randomly

picked from the existing pattern library. 103

xiv LIST OF FIGURES

4.7 Visualization of the distribution of layout libraries: (a) Existing layout

pattern dataset. (b) Industrial layout generator; (c) Patterns generated

by DCGAN; (d) Patterns generated by TCAE-Combine; (e) Patterns

generated by TCAE-Random. 104

4.8 Context specific pattern generation for different complexities (cx’s

and cy’s). 108

4.9 Different types of defects. Same lithography images result in different

EPE violation counts due to different choices of measurement points.

Some defects are not detectable through merely checking edge place-

ment errors. 112

4.10 Conventional GAN architecture. 114

4.11 The proposed GAN-OPC architecture. 116

4.12 (a) GAN-OPC training and (b) ILT-guided pre-training. 120

4.13 New generator architecture with concatenation of intermediate fea-

ture maps and an SPSR structure. 122

4.14 Visualization of (a) standard deconvolution operation and (b) SPSR. . 122

4.15 Patterns generated from (a) deconvolution layers and (b) SPSR layers. 124

4.16 The framework summary. 126

4.17 An example of a target and a reference mask pair. 128

4.18 GAN-OPC flow: generator inference and ILT refinement. 128

4.19 Training curves of GAN-OPC and PGAN-OPC. 129

4.20 Average runtime comparison of different methods. 131

4.21 Some wafer image details of (a) ILT [30] and (b) PGAN-OPC. 132

4.22 Training behavior of the EGAN-OPC framework with faster and bet-

ter convergence. 132

LIST OF FIGURES xv

4.23 Result visualization of PGAN-OPC, EnhancedGAN-OPC and ILT. Columns

correspond to ten test cases from ICCAD 2013 CAD contest. Rows

from top to bottom are: (a) masks of [30]; (b) wafer images by masks

of [30]; (c) masks of PGAN-OPC; (d) wafer images bymasks of PGAN-

OPC; (e) masks of Enhanced GAN-OPC (f) wafer images by masks of

Enhanced GAN-OPC; (g) target patterns. 133

4.24 A larger-case example of (a) a mask pattern, (b) its wafer image and

(c) the corresponding target pattern. 136

4.25 Visualization of convergence during ILT refinement. 136

4.26 Average runtime comparison on larger benchmarks. 138

xvi LIST OF FIGURES

List of Tables

2.1 Neural Network Configuration. 24

2.2 Benchmark Statistics . 38

2.3 Training Configurations . 39

2.4 Performance comparison between the biased learning and the batch

biased learning on target layouts. 42

2.5 Performance comparison between the biased learning and the batch

biased learning on OPCed layouts. 42

2.6 Performance comparison with state-of-the-art hotspot detectors on

target layouts. 46

2.7 Performance comparison with state-of-the-art hotspot detectors on

OPCed layouts. 46

2.8 Benchmark statistics. 56

2.9 Result comparison of two adaptive squish solutions and a baseline

CNN with image-based inputs. 57

3.1 Benchmark Details . 76

3.2 Full chip pattern sampling and hotspot detection on ICCAD12 bench-

marks. 80

3.3 Full chip pattern sampling and hotspot detection on ICCAD16 bench-

marks. 81

xvii

xviii LIST OF TABLES

3.4 Result comparison with conventional active learning solutions on IC-

CAD12 benchmarks. 82

3.5 Result comparison with conventional active learning solutions on IC-

CAD16 benchmarks. 83

4.1 Visualizing how are convolutional features reflected in original topol-

ogy space. 103

4.2 Statistics of generated patterns. 105

4.3 Result comparison between TCAE and G-TCAE. 107

4.4 Symbols and notations used throughout the section. 111

4.5 The generator configuration. 125

4.6 The discriminator configuration. 125

4.7 The design rules used. 128

4.8 Comparison with state-of-the-art. 130

4.9 Experiments on larger benchmarks. 137

Chapter 1

Introduction

Moore’s Law [75] has guided fast and continuous development of VLSI design and

manufacturing technologies, which tend to enable the scaling of design feature size

to integrate more components into circuit chips. However, the significant gap be-

tween circuit feature size and lithography systems has brought great manufacturing

challenges. Before digging into these challenges and potential solutions, we will first

introduce some basis of lithography process.

A classical lithography system consists of mainly five stages that include source,

condenser lens,mask, objective lens andwafer, as shown in Figure 1.1. The source stage

ejects ultraviolet light beams toward the condenser lens which collects light beams

that can go towards the mask stage for further imaging. The remaining light beams

that can pass through the mask stage are supposed to leave expected circuit patterns

on the wafer stage. As the manufacturing feature size enters single-digit nanometer

era, diffraction is inevitable when a light beam enters the mask stage. The objective

lens tries to collect diffraction information as much as possible for better transferred

image quality. Because of the limited size of objective lens, higher order diffraction

patterns will be discardedwhen forming the image on the wafer that results in a lower

pattern fidelity [68]. Typically, to ensure the mask image can be transferred onto the

1

2 CHAPTER 1. INTRODUCTION

Source Condenser
Lens Mask Objective

Lens Wafer

! f

D

Figure 1.1: An example of a classical lithography system.

wafer as accurate as possible, at least the zero and ±1st diffraction order should be

captured by the objective lens. Accordingly, the smallest design pitch can be defined

as Equation (1.1),

1

p
∝ NA

λ
, (1.1)

where p denotes design pitch, λ is the wavelength of the light source and NA is the

numerical aperture of the objective lens which determines how much information

can be collected by the objective lens and is given by

NA = n sin θmax =
D

2f
, (1.2)

where n is the index of refraction of the medium, θmax is the largest half-angle of the

diffraction light that can be collected by the objective lens,D denotes the diameter of

physical aperture seen in front of the objective lens and f represents the focal length

[39].

Although researches have pushed higherNA design of lithography systems, diffrac-

tion information loss still causes mismatch between printed patterns on a wafer and

the patterns in the design, which is well known as lithography proximity effect. A

1.1. VLSI MANUFACTURING CHALLENGES 3

(a) Focus, Low Dose (b) Focus, Normal Dose (c) Defocus, High Dose

Figure 1.2: Lithography contour versus design target under process variations: (a)
low dose at focus produces small contours; (b) normal dose at focus produces regular
contours; (c) high dose at defocus produces larger contours.

mainstream solution is called resolution enhancement technique (RET) that includes

multiple patterning lithography (MPL) [7, 60, 42, 56], sub-resolution assist feature

(SRAF) [32, 109, 61] insertion and optical proximity correction (OPC) [18]. MPL at-

tempts split designs into multiple masks to achieve higher resolution, while SRAF and

OPC aim to compensate the diffraction information loss in the lithography procedure.

A lithography system is also subject to process condition variations such as focus and

dose, which are likely to deviate from optimal settings. Figure 1.2 illustrates the dif-

ferent effects of process variations with focus and dose variations resulting in image

distortion and contour deviation, respectively. It should be noted that high quality

RETs also make designs robust to process variations.

1.1 VLSI Manufacturing Challenges

Hotspot Detection

The fact of process variations have implied that even a design is fed into comprehen-

sive and high-quality RET engines, it is inevitable to have unexpected manufacturing

defects at certain design location(s), which causes fetal yield loss. In literature, we

4 CHAPTER 1. INTRODUCTION

call these process week locations hotspots that can be the results of lithography [16],

etch [88], planarization [82] or other manufacturing process variations. Efficient lo-

calization of hotspots in a design prior manufacturing is important to meet design

closure requirements and avoid unnecessary overheads. However, hotspot detectors

have to work at the context of known hotspot pattern libraries that are limited in

both quantity and generality, which become major factors prevent efficient hotspot

detector design.

Mask Optimization

RETs try to minimize the error when transferring a design onto silicon wafers. Main-

stream solutions varies from lithography source configuration [95, 26], mask pattern

optimization [125, 30, 109, 2], multiple patterning lithography [50, 42] and etc. Among

the above, mask optimization is one of the most critic and inevitable stage in sign-off

flows. It tweaks with features or contexts of design layout patterns to circumvent side

effects from lithography proximity effect, which requires frequent interaction with

lithography simulation engines, resulting in significant computation overhead. Also,

mask optimization recipes need to be carefully crafted for good result convergence.

Early Technology Node Development

Early technology node development is another important topic when a new design

technology (typically reflected as feature size shrinking down) comes right before

flow deployment. At this phase, there are only limited designs available with non-

optimally configured mask optimization recipes and design rule decks. Various new

designs are hence necessary to make mature manufacturing technology nodes. How-

ever, such designs are usually in short supply due to the long design cycle at design

houses.

1.2. LITERATURE REVIEW 5

✓1

<latexit sha1_base64="6GSu9/0QT7e76NxB7Oj0IQ5OBAI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoseAF48RzAOSJcxOOsmQ2YczvUJY8hNePCji1d/x5t84SfagiQUNRVU33V1BoqQh1/12CmvrG5tbxe3Szu7e/kH58Khp4lQLbIhYxbodcINKRtggSQrbiUYeBgpbwfh25reeUBsZRw80SdAP+TCSAyk4WandpRES73m9csWtunOwVeLlpAI56r3yV7cfizTEiITixnQ8NyE/45qkUDgtdVODCRdjPsSOpREP0fjZ/N4pO7NKnw1ibSsiNld/T2Q8NGYSBrYz5DQyy95M/M/rpDS48TMZJSlhJBaLBqliFLPZ86wvNQpSE0u40NLeysSIay7IRlSyIXjLL6+S5kXVu6xe3V9Wam4eRxFO4BTOwYNrqMEd1KEBAhQ8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AMqVj8I=</latexit>

✓2

<latexit sha1_base64="2XTZBnkAbwou0z5cTaWeJfCurTY=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lKRY8FLx4r2A9oQ9lsJ+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5nfudJ9BGxOoBpwn4ERspEQrO0ErdPo4B2aA2KFfcqrsAXSdeTiokR3NQ/uoPY55GoJBLZkzPcxP0M6ZRcAmzUj81kDA+YSPoWapYBMbPFvfO6IVVhjSMtS2FdKH+nshYZMw0CmxnxHBsVr25+J/XSzG88TOhkhRB8eWiMJUUYzp/ng6FBo5yagnjWthbKR8zzTjaiEo2BG/15XXSrlW9evXqvl5puHkcRXJGzskl8cg1aZA70iQtwokkz+SVvDmPzovz7nwsWwtOPnNK/sD5/AHMGY/D</latexit>

(a) Angle

r1

<latexit sha1_base64="6+LTCOu1vWULP5/4WwD4kCst96k=">AAACGnicbVDLSgMxFM34rPVVdelmsAiuykQUXRbcuKxgH9AOJZO5rcE8hiRTKcN8hxt/xY0LRdyJG//GTNuFth4IOZxzb3LviRLOjA2Cb29peWV1bb20Ud7c2t7Zreztt4xKNYUmVVzpTkQMcCahaZnl0Ek0EBFxaEf3V4XfHoE2TMlbO04gFGQo2YBRYp3Ur+CeBgkPVAlBZJz1RkDzLg6zXqR4bMbCXVkV53m5cDKd93G/Ug1qwQT+IsEzUkUzNPqVz16saCpAWsqJMV0cJDbMiLaMcnAvpwYSQu/JELqOSiLAhNlktdw/dkrsD5R2R1p/ov7uyIgwxZiuUhB7Z+a9QvzP66Z2cBlmTCapBUmnHw1S7lvlFzn5MdNALR87Qqhmblaf3hFNqHVpll0IeH7lRdI6reGz2vnNWbUezOIooUN0hE4QRheojq5RAzURRY/oGb2iN+/Je/HevY9p6ZI36zlAf+B9/QC4R6HX</latexit>

r2

<latexit sha1_base64="3avoD/2LhxvPDl9BueS499ZUonM=">AAACGnicbVDLSgMxFM34rPVVdelmsAiuykyp6LLgxmUF+4B2KJnMbRuax5BkKmWY73Djr7hxoYg7cePfmGm70NYDIYdz7k3uPWHMqDae9+2srW9sbm0Xdoq7e/sHh6Wj45aWiSLQJJJJ1QmxBkYFNA01DDqxAsxDBu1wfJP77QkoTaW4N9MYAo6Hgg4owcZK/ZLfUyDggUjOsYjS3gRI1vWDtBdKFukpt1da9rOsmDupyvrVfqnsVbwZ3FXiL0gZLdDolz57kSQJB2EIw1p3fS82QYqVoYSBfTnREGMyxkPoWiowBx2ks9Uy99wqkTuQyh5h3Jn6uyPFXOdj2kqOzUgve7n4n9dNzOA6SKmIEwOCzD8aJMw10s1zciOqgBg2tQQTRe2sLhlhhYmxaRZtCP7yyqukVa34tcrlXa1c9xZxFNApOkMXyEdXqI5uUQM1EUGP6Bm9ojfnyXlx3p2Peemas+g5QX/gfP0Aucuh2A==</latexit>

(b) Radius

Figure 1.3: Improved tangent space with (a) angle and (b) radius.

1.2 Literature Review

1.2.1 Legacy Mask and Layout Optimization

Hotspot Detection

Hotspot Detection, as a special case of pattern recognition, is deemed to be efficiently

solved with pattern/fuzzy matching technologies [101, 99, 66]. State-of-the-art solu-

tions are sharing similar idea that patterns that are close to the data in an existing

pattern library will be classified as hotspots. The procedure usually requires an com-

pact layout representation that will be fed into some cluster engines.

One representative solution is using improved tangent space-based distance met-

ric and hierarchical DBSCAN [110], where each polygon shape in a given layout clip

is converted into a vector-based representation in terms of the relative angle (Fig-

ure 1.3(a)) and radius (Figure 1.3(b)) of all vertices and clip center. The distance of

two clips will be evaluated by matching all polygons in the tangent space represen-

tation, which will be used to further formulate DBSCAN cluster. Other solutions

include pure pattern matching in layout geometry space and its derivatives [104, 34].

6 CHAPTER 1. INTRODUCTION

Optical Projection Photoresist ProcessMask Contour

I =
NhX

k=1

wk |M ⌦ hk|2

<latexit sha1_base64="hxTspK9pSLZIgLxRpcL044nM4pA=">AAACSnicbVBNSysxFM3Ur1qfWnXpJrwivFWZEUU3BcGNLp5UeFWhU4dMmumEZiZDckcpMb/PjSt370e4caGIG9PaRZ++CyEn557LPTlxIbgG3//rVebmFxaXqsu1lR+ra+v1jc0LLUtFWYdKIdVVTDQTPGcd4CDYVaEYyWLBLuPh8bh/ecOU5jL/A6OC9TIyyHnCKQFHRXUSxlL09Shzlzm1rVCXWWSGrcBem7PIpNbiW/e2oWAJ3M2Kf1scSuAZ03iWTu1Ervgghbtrs2ujesNv+pPC30EwBQ00rXZUfwz7kpYZy4EKonU38AvoGaKAU8FsLSw1KwgdkgHrOpgTZ6FnJlFYvOOYPk6kcicHPGFnJwzJ9NipU2YEUv21Nyb/1+uWkBz2DM+LElhOPxclpcAg8ThX3OeKURAjBwhV3HnFNCWKUHDp11wIwdcvfwcXu81gr7l/vtc48qdxVNE2+ol+oQAdoCN0gtqogyi6R0/oBb16D96z9+a9f0or3nRmC/1TlfkPvk221Q==</latexit>

Z(x, y) =

⇢
1, if I(x, y) � Ith
0, if I(x, y) < Ith

<latexit sha1_base64="tybZngK9c9LDZ7L8r3usH+e71pU=">AAACj3icjVFNb9QwEHXCR0sosIUjF4sVqEjVKqmKWqkFrcSFvRWJbSvWq5XjTLJWHSe1J6iRlb/DD+LWf1PvNofScmAky0/vzfOMZ9JaSYtxfB2Ejx4/ebqx+Sx6vvXi5avB9utTWzVGwFRUqjLnKbegpIYpSlRwXhvgZargLL34utLPfoGxstI/sK1hXvJCy1wKjp5aDH6ztFKZbUt/uZ/dztUubT9+ZgpyZI6lUEjtuDG87ZxQXZTs0g+UIVwhdVTmtKN3/ZPeT1kBl3SycEiXPoNF8X/ZjntHxEBnfVVmZLHE0WIwjEfxOuhDkPRgSPo4WQz+sKwSTQkaheLWzpK4xrl/FKVQ4Es0FmouLngBMw81L8HO3XqeHX3vmYzmlfFHI12zdx2Ol3bVu88sOS7tfW1F/kubNZgfzp3UdYOgxW2hvFEUK7paDs2kAYGq9YALI32vVCy54QL9CiM/hOT+lx+C071Rsj/69H1/OI77cWySt+Qd2SEJOSBj8o2ckCkRwVawFxwFx+F2eBB+Cce3qWHQe96QvyKc3ABV5sSh</latexit>

M

<latexit sha1_base64="+HWxfLzEV1OoaB2U/UctDRslg+w=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuCGzdCBfuAdiyZTKYNzSRDklHK0P9w40IRt/6LO//GTDsLbT0QcjjnXnJygoQzbVz32ymtrK6tb5Q3K1vbO7t71f2DtpapIrRFJJeqG2BNORO0ZZjhtJsoiuOA004wvs79ziNVmklxbyYJ9WM8FCxiBBsrPfQDyUM9ie2V3U4H1Zpbd2dAy8QrSA0KNAfVr34oSRpTYQjHWvc8NzF+hpVhhNNppZ9qmmAyxkPas1TgmGo/m6WeohOrhCiSyh5h0Ez9vZHhWOfR7GSMzUgvern4n9dLTXTlZ0wkqaGCzB+KUo6MRHkFKGSKEsMnlmCimM2KyAgrTIwtqmJL8Ba/vEzaZ3XvvH5xd15ruEUdZTiCYzgFDy6hATfQhBYQUPAMr/DmPDkvzrvzMR8tOcXOIfyB8/kDDyOS1A==</latexit>

Z

<latexit sha1_base64="lWCi74RNv8VltSCiOaFsLRQhJFE=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuCG5cV7APbsWQymTY0kwxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJEs60cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpugDXlTNCWYYbTbqIojgNOO8H4Ovc7j1RpJsWdmSTUj/FQsIgRbKz00A8kD/Uktld2Px1Ua27dnQEtE68gNSjQHFS/+qEkaUyFIRxr3fPcxPgZVoYRTqeVfqppgskYD2nPUoFjqv1slnqKTqwSokgqe4RBM/X3RoZjnUezkzE2I73o5eJ/Xi810ZWfMZGkhgoyfyhKOTIS5RWgkClKDJ9YgoliNisiI6wwMbaoii3BW/zyMmmf1b3z+sXtea3hFnWU4QiO4RQ8uIQG3EATWkBAwTO8wpvz5Lw4787HfLTkFDuH8AfO5w8i5JLh</latexit>

Figure 1.4: Continuous forward lithography modeling.

Mask Optimization

Model-based OPC and inverse lithography techniques (ILT) are two major solutions

for layout optimization problems. The former conducts coarse-grained shape-level re-

finements on polygon edges that are divided into segments empirically. Optimization

procedure requires interactively call of lithography engine to make compensation of

contour errors with respect to design targets. An state-of-the-art model-based OPC

solution is presented in [57], which adopts adaptive fragmentation method to make

finer control of polygon corners. ILT, on the other hand, formulates the mask opti-

mization problemwith a non-linear objective that tries to minimize the error between

the lithography contour and its corresponding target. MOSAIC [30] is a representa-

tive solution by building up a forward lithography process model (see Figure 1.4).

The mask is hence updated by descending the gradient of contour error with respect

to each mask pixels. To ensure the mask-to-contour mapping to be differentiable,

sigmoid smoothness is applied on the binary mask and photoresist process.

1.2.2 Mask and Layout Learning

Recent advances of machine learning, especially deep learning, have brought oppor-

tunities to develop learning-based solutions for DFM challenges, which are associated

with two major machine learning categorizes that are called discriminative learning

and generative learning.

Discriminative learning targets at classification tasks that are either image level

or pixel level. Usually, a Discriminative learning model can be abstracted as a con-

1.2. LITERATURE REVIEW 7

ditional probability P (Y = y|X = x;w), where X is the random variable drawn

from the data space, Y is the random variable drawn from the label space and w

corresponds to model parameters. Researches on discriminative learning mainly fo-

cus on machine learning architecture and parameter training. Representative archi-

tectures range from simple logistic regression, support vector machines (SVMs) to

complicated VGG [94], ResNet [44], MobileNet [49] and other convolutional neural

networks, which are designed for certain application scenarios. Parameter training

algorithms are developed for good convergence and model generality [35, 17, 54] that

hence leads to high prediction accuracy.

Generative learning works in the opposite way to discriminative learning, where

we are asked to obtain observations that belong to one or some categories, i.e. P (X =

x|Y = y;w). Representative models are variational auto-encoder (VAE) [23] and

generative adversarial networks (GAN) [38], which are specifically designed for im-

age generation. Although neural network nature of these generative models make

legacy architecture and training algorithms applicable [3], several derivatives are also

explored for better performance [4, 64, 132].

The strict requirements and properties of DFM flows make these learning models,

although powerful in classic computer vision tasks, not directly applicable, and hence

motives continuous research of DFM-awaremachine learning. These researches cover

layout feature representations and learning models.

Layout Feature Engineering

Density-based Feature. Usually mask layouts with high pattern density show a higher

risk of suffering defects, therefore it is reasonable to measure the mask printability

via its local pattern density [70, 104]. As shown in Fig. 1.5(a), each layout clip is first

divided into square grids and each gridG(i, j) corresponds to a value xi,j reflects the

8 CHAPTER 1. INTRODUCTION

G(1, 1)

<latexit sha1_base64="grLXDV3uLOS39zRy/GWcVzmmNVE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZt2bvwzvvFkltx50CrxMtICTI0+sWv3kCSJKLCEI617npubPwUK8MIp9NCL9E0xmSMh7RrqcAR1X46v3aKzqwyQKFUtoRBc/X3RIojrSdRYDsjbEZ62ZuJ/3ndxITXfspEnBgqyGJRmHBkJJq9jgZMUWL4xBJMFLO3IjLCChNjAyrYELzll1dJq1rxapXL+1qpXs7iyMMJnEIZPLiCOtxBA5pA4BGe4RXeHOm8OO/Ox6I152Qzx/AHzucPpHyNyg==</latexit>

G(1, 2)

<latexit sha1_base64="pIvv2FXfrrbRtuGRMqvJ03Qw7Xg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZt2buonveLJbfizoFWiZeREmRo9ItfvYEkSUSFIRxr3fXc2PgpVoYRTqeFXqJpjMkYD2nXUoEjqv10fu0UnVllgEKpbAmD5urviRRHWk+iwHZG2Iz0sjcT//O6iQmv/ZSJODFUkMWiMOHISDR7HQ2YosTwiSWYKGZvRWSEFSbGBlSwIXjLL6+SVrXi1SqX97VSvZzFkYcTOIUyeHAFdbiDBjSBwCM8wyu8OdJ5cd6dj0VrzslmjuEPnM8fpgGNyw==</latexit>

G(1, 3)

<latexit sha1_base64="tfytRLQSYzgFNAI5vx5cZb70qFU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdreix4EGPFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uZXVtfSO/Wdja3tndK+4fNLVMFKENIrlU7QBrypmgDcMMp+1YURwFnLaC0c3Ubz1RpZkUD2YcUz/CA8FCRrCxUvO27J1dnPaKJbfizoCWiZeREmSo94pf3b4kSUSFIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUoEjqv10du0EnVilj0KpbAmDZurviRRHWo+jwHZG2Az1ojcV//M6iQmv/ZSJODFUkPmiMOHISDR9HfWZosTwsSWYKGZvRWSIFSbGBlSwIXiLLy+T5nnFq1Yu76ulWjmLIw9HcAxl8OAKanAHdWgAgUd4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/p4aNzA==</latexit>

G(1, 4)

<latexit sha1_base64="PElkVib8hxZy3Rrh0wImf+0tP6Q=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZt2buonfeLJbfizoFWiZeREmRo9ItfvYEkSUSFIRxr3fXc2PgpVoYRTqeFXqJpjMkYD2nXUoEjqv10fu0UnVllgEKpbAmD5urviRRHWk+iwHZG2Iz0sjcT//O6iQmv/ZSJODFUkMWiMOHISDR7HQ2YosTwiSWYKGZvRWSEFSbGBlSwIXjLL6+SVrXi1SqX97VSvZzFkYcTOIUyeHAFdbiDBjSBwCM8wyu8OdJ5cd6dj0VrzslmjuEPnM8fqQuNzQ==</latexit>

G(2, 4)

<latexit sha1_base64="0AiYTNYDLrpfc7rkoW4ZBAlW50M=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZtuXpRO+8XS27FnQOtEi8jJcjQ6Be/egNJkogKQzjWuuu5sfFTrAwjnE4LvUTTGJMxHtKupQJHVPvp/NopOrPKAIVS2RIGzdXfEymOtJ5Ege2MsBnpZW8m/ud1ExNe+ykTcWKoIItFYcKRkWj2OhowRYnhE0swUczeisgIK0yMDahgQ/CWX14lrWrFq1Uu72ulejmLIw8ncApl8OAK6nAHDWgCgUd4hld4c6Tz4rw7H4vWnJPNHMMfOJ8/qpKNzg==</latexit>

G(3, 4)

<latexit sha1_base64="qx1kYwnvK2SwGgElnjagZGxL5cg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdreix4EGPFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uZXVtfSO/Wdja3tndK+4fNLVMFKENIrlU7QBrypmgDcMMp+1YURwFnLaC0c3Ubz1RpZkUD2YcUz/CA8FCRrCxUvO2fHFWPe0VS27FnQEtEy8jJchQ7xW/un1JkogKQzjWuuO5sfFTrAwjnE4K3UTTGJMRHtCOpQJHVPvp7NoJOrFKH4VS2RIGzdTfEymOtB5Hge2MsBnqRW8q/ud1EhNe+ykTcWKoIPNFYcKRkWj6OuozRYnhY0swUczeisgQK0yMDahgQ/AWX14mzfOKV61c3ldLtXIWRx6O4BjK4MEV1OAO6tAAAo/wDK/w5kjnxXl3PuatOSebOYQ/cD5/AKwZjc8=</latexit>

G(4, 4)

<latexit sha1_base64="RRnbFB+wRZ5VlzwIzjnw37Mkjfw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdWdFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oNUHA4/3ZpiZFyacaeO6X05hZXVtfaO4Wdra3tndK+8ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbD8fXMbz9SpZkU92aS0CDGQ8EiRrCxUuum6p/5p/1yxa25c6C/xMtJBXI0+uXP3kCSNKbCEI617npuYoIMK8MIp9NSL9U0wWSMh7RrqcAx1UE2v3aKTqwyQJFUtoRBc/XnRIZjrSdxaDtjbEZ62ZuJ/3nd1ERXQcZEkhoqyGJRlHJkJJq9jgZMUWL4xBJMFLO3IjLCChNjAyrZELzll/+S1nnN82sXd36lXs3jKMIRHEMVPLiEOtxCA5pA4AGe4AVeHek8O2/O+6K14OQzh/ALzsc3raCN0A==</latexit>

G(4, 1)

<latexit sha1_base64="jlQ5AxXYtJx6//EG8h0pYgJNF5Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZtuXbhnfeLJbfizoFWiZeREmRo9ItfvYEkSUSFIRxr3fXc2PgpVoYRTqeFXqJpjMkYD2nXUoEjqv10fu0UnVllgEKpbAmD5urviRRHWk+iwHZG2Iz0sjcT//O6iQmv/ZSJODFUkMWiMOHISDR7HQ2YosTwiSWYKGZvRWSEFSbGBlSwIXjLL6+SVrXi1SqX97VSvZzFkYcTOIUyeHAFdbiDBjSBwCM8wyu8OdJ5cd6dj0VrzslmjuEPnM8fqRGNzQ==</latexit>

G(4, 2)

<latexit sha1_base64="tqgakoGkMQtvcdx++E3AJ36yQrU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZtuXZRPe8XS27FnQOtEi8jJcjQ6Be/egNJkogKQzjWuuu5sfFTrAwjnE4LvUTTGJMxHtKupQJHVPvp/NopOrPKAIVS2RIGzdXfEymOtJ5Ege2MsBnpZW8m/ud1ExNe+ykTcWKoIItFYcKRkWj2OhowRYnhE0swUczeisgIK0yMDahgQ/CWX14lrWrFq1Uu72ulejmLIw8ncApl8OAK6nAHDWgCgUd4hld4c6Tz4rw7H4vWnJPNHMMfOJ8/qpaNzg==</latexit>

G(4, 3)

<latexit sha1_base64="L7HjERvE5FoHGX0rUhJ3m1opuhM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdreix4EGPFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uZXVtfSO/Wdja3tndK+4fNLVMFKENIrlU7QBrypmgDcMMp+1YURwFnLaC0c3Ubz1RpZkUD2YcUz/CA8FCRrCxUvO2XD27OO0VS27FnQEtEy8jJchQ7xW/un1JkogKQzjWuuO5sfFTrAwjnE4K3UTTGJMRHtCOpQJHVPvp7NoJOrFKH4VS2RIGzdTfEymOtB5Hge2MsBnqRW8q/ud1EhNe+ykTcWKoIPNFYcKRkWj6OuozRYnhY0swUczeisgQK0yMDahgQ/AWX14mzfOKV61c3ldLtXIWRx6O4BjK4MEV1OAO6tAAAo/wDK/w5kjnxXl3PuatOSebOYQ/cD5/AKwbjc8=</latexit>

G(3, 3)

<latexit sha1_base64="bud/rDZ7UaZi/7ACAA+hYrXYWZ4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdW9FjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oNUHA4/3ZpiZF8ScaeO6X05uZXVtfSO/Wdja3tndK+4ftLRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8fXMbz9SpZkU92YSUz/CQ8FCRrCxUuumXD2rnvaLJbfizoH+Ei8jJcjQ6Bc/ewNJkogKQzjWuuu5sfFTrAwjnE4LvUTTGJMxHtKupQJHVPvp/NopOrHKAIVS2RIGzdWfEymOtJ5Ege2MsBnpZW8m/ud1ExNe+SkTcWKoIItFYcKRkWj2OhowRYnhE0swUczeisgIK0yMDahgQ/CWX/5LWucVr1a5uKuV6uUsjjwcwTGUwYNLqMMtNKAJBB7gCV7g1ZHOs/PmvC9ac042cwi/4Hx8A6qUjc4=</latexit>

G(2, 3)

<latexit sha1_base64="0wi26l/4JeGG5Rv09B8A7J7VvVk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdWtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oNUHA4/3ZpiZF8ScaeO6X05uZXVtfSO/Wdja3tndK+4ftLRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8fXMbz9SpZkU92YSUz/CQ8FCRrCxUuumXD07P+0XS27FnQP9JV5GSpCh0S9+9gaSJBEVhnCsdddzY+OnWBlGOJ0WeommMSZjPKRdSwWOqPbT+bVTdGKVAQqlsiUMmqs/J1IcaT2JAtsZYTPSy95M/M/rJia88lMm4sRQQRaLwoQjI9HsdTRgihLDJ5Zgopi9FZERVpgYG1DBhuAtv/yXtKoVr1a5uKuV6uUsjjwcwTGUwYNLqMMtNKAJBB7gCV7g1ZHOs/PmvC9ac042cwi/4Hx8A6kNjc0=</latexit>

G(2, 1)

<latexit sha1_base64="4hb7xXiF0NezBguiC5vLBslif1g=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZtuXrhnfeLJbfizoFWiZeREmRo9ItfvYEkSUSFIRxr3fXc2PgpVoYRTqeFXqJpjMkYD2nXUoEjqv10fu0UnVllgEKpbAmD5urviRRHWk+iwHZG2Iz0sjcT//O6iQmv/ZSJODFUkMWiMOHISDR7HQ2YosTwiSWYKGZvRWSEFSbGBlSwIXjLL6+SVrXi1SqX97VSvZzFkYcTOIUyeHAFdbiDBjSBwCM8wyu8OdJ5cd6dj0VrzslmjuEPnM8fpgONyw==</latexit>

G(2, 2)

<latexit sha1_base64="vSFaY1RRknks4l2/oCjUAcmyN64=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8ammZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45uZ336iSjMpHswkpn6Eh4KFjGBjpdZtuXpRPe8XS27FnQOtEi8jJcjQ6Be/egNJkogKQzjWuuu5sfFTrAwjnE4LvUTTGJMxHtKupQJHVPvp/NopOrPKAIVS2RIGzdXfEymOtJ5Ege2MsBnpZW8m/ud1ExNe+ykTcWKoIItFYcKRkWj2OhowRYnhE0swUczeisgIK0yMDahgQ/CWX14lrWrFq1Uu72ulejmLIw8ncApl8OAK6nAHDWgCgUd4hld4c6Tz4rw7H4vWnJPNHMMfOJ8/p4iNzA==</latexit>

G(3, 2)

<latexit sha1_base64="2A8oCdhkUPMawp47O5id0iJoj4o=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdWtFjwYMeK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oNUHA4/3ZpiZF8ScaeO6X05uZXVtfSO/Wdja3tndK+4ftLRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8fXMbz9SpZkU92YSUz/CQ8FCRrCxUuumfH5WPe0XS27FnQP9JV5GSpCh0S9+9gaSJBEVhnCsdddzY+OnWBlGOJ0WeommMSZjPKRdSwWOqPbT+bVTdGKVAQqlsiUMmqs/J1IcaT2JAtsZYTPSy95M/M/rJia88lMm4sRQQRaLwoQjI9HsdTRgihLDJ5Zgopi9FZERVpgYG1DBhuAtv/yXtKoVr1a5uKuV6uUsjjwcwTGUwYNLqMMtNKAJBB7gCV7g1ZHOs/PmvC9ac042cwi/4Hx8A6kPjc0=</latexit>

G(3, 1)

<latexit sha1_base64="khb0pHKZX68scHAjSQ3j4QoflDs=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdreix4EGPFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uZXVtfSO/Wdja3tndK+4fNLVMFKENIrlU7QBrypmgDcMMp+1YURwFnLaC0c3Ubz1RpZkUD2YcUz/CA8FCRrCxUvO2fHHmnfaKJbfizoCWiZeREmSo94pf3b4kSUSFIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUoEjqv10du0EnVilj0KpbAmDZurviRRHWo+jwHZG2Az1ojcV//M6iQmv/ZSJODFUkPmiMOHISDR9HfWZosTwsSWYKGZvRWSIFSbGBlSwIXiLLy+T5nnFq1Yu76ulWjmLIw9HcAxl8OAKanAHdWgAgUd4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/p4qNzA==</latexit>

(a) Density

1

1

1

1

1

(b) Topology (c) CCS

Figure 1.5: Recent research on layout feature engineering.

density information that is calculated through Equation (1.3).

xi,j =
AM(i, j)

AG(i, j)
, (1.3)

where AM(i, j) denotes the mask pattern area within G(i, j) and AG(i, j) is the area

ofG(i, j). Finally, the density information is flattened into a vectorx = {x11, x12, ..., x44}

that is applicable for varies machine learning models.

Layout Topology. The topological representation of a layout clip contains the ge-

ometry relationships of the patterns (rectangles) within it [11, 128]. As shown in

Fig. 1.5(b), all edges are extended to the border of the clip and cut the clip into grids,

which are filled with either geometry or space. If we label each grid with 1 (for ge-

ometry) and 0 (for space), the original layout clip can then be converted into a binary

matrix representation. The topology matrix itself has already been a good represen-

tation for pattern matching [11] and constructing the space of design layout config-

urations and sub-configurations [19]. Besides, by incorporating with design rules,

the topological representation can be a effective layout feature for accurate hotspot

detection [128]. Layout topology representation is also developed into squish pattern

as an effective and efficient representation for layout matching [34].

Concentric Circle Area Sampling. It has been believed that layout hotspots are

1.2. LITERATURE REVIEW 9

caused by optical proximity (diffraction) effect in the lithography process. Whether

a pattern is problematic or not is determined by all the patterns within a square [101]

or circular ambit [97]. In the 28nm technology node, the ambit area is approximately

1µm2 which corresponds to an R1000000 space with 1nm precision that makes it dif-

ficult to do quantitative analysis for OPC and hotspot detection. Concentric circle

area sampling (CCAS) [72], developed from concentric square sampling (CSS) [40],

has become an efficient feature extraction method because of being coherent with the

fact that diffracted light propagates in a circular concentric scheme. As illustrated in

Fig. 1.5(c), all the circles are concentrated on the center of the clip (or ambit). Eight

points are evenly sampled from each circle and each point is labeled 0 or 1 based on

whether it is located on the geometry or space. Although CCAS is originally designed

for machine learning based OPC [72], it is also effective in hotspot detection [130].

Layout Learning Model

Boosting. Boosting is a family of ensemble machine learning methods which are able

to build a strong classifier from a set of weak classifiers. [70] and [106] are two repre-

sentative works for hotspot detection, where decision tree is chosen as the weak clas-

sifier. Decision tree works in the form of a flow chart where each non-leaf node splits

the data by examining one attribute and leaf nodes predict the label. Information gain

(IG) is utilized to determine the feature of each node, as shown in Equation (1.4).

IG(P, f) = H(P)−H(P |f), (1.4)

whereH(P) is the entropy related to feature f of the parent node andH(P |f) is the

weighted entropy of all children. Final prediction are made by a weighted combina-

tion of the results from all decision trees (weak classifiers). Very recently, [130] also

investigated to use Naive Bayes as the weak learner to further improve the hotspot

10 CHAPTER 1. INTRODUCTION

detection accuracy. The classifier is developed together with CCS features as follows

y∗i = argmax
y

p(y)

⌊np⌋−1∏
j=0

p
(
xj·p
i , . . . , x

(j+1)·p−1
i |y

)
, (1.5)

where xi’s are encoded concentrated circles that are assumed to be independent.

SVM. SVM is deemed as one of the most powerful machine learning models with

the problem formulation as follows.

max
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjdidjk(xi,xj), (1.6)

s.t.
N∑
i=1

αidi = 0, (1.6a)

0 ≤ αi ≤ C, ∀i = 1, 2, . . . , N, (1.6b)

where αi and di are the Lagrangian coefficient and the label that correspond to the

instance xi. C is a manually chosen constant that controls the soft margin for non-

separable datasets. After solving the problem, we can form the following classifier

for hotspot detection.

d =

NS∑
i=i

αidik(xi,x), (1.7)

where xis are support vectors from the training set that have non-zero Lagrangian

coefficients. Because designers are free to choose different kernels, SVM provides

more robust solutions for hotspot detection problems [128, 22, 21].

Artificial/Convolutional Neural Networks. ANN is a standard multilayer percep-

tron model that is able to fit highly nonlinear functions. An example of ANN is pre-

sented in Equations (1.8) and (1.9) with one input layer, one hidden layer and one

output layer. The output layer generates the prediction scores or regression values.

1.3. THESIS OUTLINE 11

The value of each node corresponds to the weighted sum of the nodes in previous

layer, as shown in the following equations.

h = f(W1x), (1.8)

y = g(W2h), (1.9)

where f and g are activation functions that perform element wise operation on each

neuron. If we map layout features to x = {x1, x2, x3, . . . }, the ANN can do either

regression tasks (e.g. OPC [65]) or classification tasks (e.g. hotspot detection [22]).

Due to the advantages of shared features, CNNs have become alternatives of ANNs

as candidate layout learning models from hotspot detection [122, 124, 15] to mask

optimization [2, 113].

1.3 Thesis Outline

In this dissertation, we will present the research of machine learning techniques on

VLSI design for manufacturability problems, which, as outlined in Figure 1.6, includes

lithography hotspot detection [120, 121], multi-layer hotspot detection [119], lay-

out pattern sampling [114], mask optimization [112, 113] and test pattern generation

[118]. These researches target at key challenges in DFM flows under advanced tech-

nology nodes.

In Chapter 2, we tackle the recent challenges of hotspot detection problems with

discriminative learning models that cover: (1) standard lithography hotspot detec-

tion and (2) multi-layer hotspot detection. In the research of lithography hotspot

detection, we develop efficient frequency-domain layout representation which intro-

duces significant data compression that fits shallow convolutional neural networks

but suffer little information loss. A theoretically supported biased learning algorithm

is also developed to seek higher hotspot detection accuracy with limited false positive

12 CHAPTER 1. INTRODUCTION

Chapter 2: Intelligent
Hotspot Detection

DFM Research

Chapter 3: Intelligent
Pattern Sampling

Chapter 4: Intelligent
Pattern Generation

Physical Design

Fabrication

……

Lithography
Hotspot Detection

Multi-Layer
Hotspot Detection Generative Mask

Optimisation

Test Layout
Generation

Figure 1.6: Bring artificial intelligence into back-end design flow.

penalty. In light of other hotspot detection tasks, e.g. CMP hotspot detection [27],

where the detector is required to handle multiple layout layers, we introduce adap-

tive squish layout representation that fits well with state-of-the-art neural network

models.

In Chapter 3, we discuss and analyze state-of-the-art physical verification and

hotspot detection flows and show the importance of high quality small training datasets,

considering (1) good distributed training set ensures better model convergence and

generality and (2) labeled data instances are rare and costly to obtain at advanced

technology node. We present an active learning based pattern sampling and hotspot

detection flow that can efficiently update the training set on-the-fly and conduct de-

tection task simultaneously.

In Chapter 4, we focus on pattern generation research that includes mask genera-

tion and design generation. Mask generation deals with mask optimization problems,

1.3. THESIS OUTLINE 13

which requires costly interaction with lithography simulation engines. We develop

GAN-OPC family to instantly generate quasi-optimal masks, which takes much less

legacy mask optimization time when producing final manufacturable masks. Design

generation resolves the challenges of design shortage at the early stage of a technol-

ogy node. We develop the TCAE framework that can capture simple design rules and

generate DRC-clean massive designs with high diversity.

We summarize and conclude the thesis in Chapter 5.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Intelligent Hotspot Detection

2.1 Introduction

Layout hotpot detection is one of the critical steps in modern integrated circuit design

flow. It aims to find potential weak points (see Figure 2.1) in layouts before feeding

them into manufacturing stage. These hotspots Classic solution is pattern simulation

that can accurately predict hotspot regions incorporating with proper models, it is

extremely computational costly.

To quickly and correctly recognize hotspots during physical verification, two ma-

(a) Hotspot Pattern (b) Non-Hotspot Pattern

Figure 2.1: Layout design examples that contain hotspots and hotspot-free.

15

16 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

jor methodologies were heavily developed: pattern matching [104, 127, 110] and ma-

chine learning [128, 70, 130, 20, 22, 24]. In the pattern matching solutions, [104] fa-

cilitated the verification flow by integrating the density-based layout encoding, prin-

ciple components analysis (PCA) and customized city-block distance. Yu et al. [127]

developed a design rule-based pattern matching method to recognize hotspots. In

[110], an improved tangent space-based distance metric was proposed to perform

hotspot pattern analysis and classification. Although pattern matching is a direct

and fast method to detect layout characteristics, it has a high error rate for unknown

patterns. On the other hand, machine learning techniques are capable of learning

hidden relations between layout patterns and their defect characteristics, and can

greatly improve detection accuracy. Drmanac et al. [24] proposed a histogram-based

layout representation and an unsupervised support vector machine (SVM) model to

predict the variability of the lithography process. [20] incorporated hierarchical arti-

ficial neural networks (ANN) and SVMmodels to reduce the false alarm rates. Ding et

al. [22] constructed a meta classifier with basic pattern matching and machine learn-

ing classifiers to achieve better detection performance. [128] presented a hotspot

classification flow with a multi-kernel support vector machine and critical feature

extraction. In [70], Adaboost and decision tree are adopted for fast hotspot detection.

Very recently, Zhang et al. [130] achieved tremendous performance improvements on

the ICCAD Contest 2012 benchmark suite [101] by applying an optimized concentric

circle sampling (CCS) feature [72] and an online learning scheme.

However, there are several aspects that previous works do not take into account,

especially when targeting a very large scale problem size. (1) Scalability: As inte-

grated circuits develop to an ultra large scale, VLSI layout becomes more and more

complicated and traditional machine learning techniques do not satisfy the scalabil-

ity requirements for printability estimation of a large scale layout. That is, it may be

hard for machine learning techniques to correctly model the characteristics of a large

2.2. LITHOGRAPHY HOTSPOT DETECTION 17

amount of layout patterns. (2) Feature Representation: The state-of-the-art layout

feature extraction approaches, including density [70] and CCS [72], inevitably suffer

from spatial information loss, because extracted feature elements are flattened into

1-D vectors, and ignore potential spatial relations. Because of the automatic feature

learning technique and highly nonlinear neural networks, deep learning is highly suc-

cessful in image classification tasks [55, 105]. Several attempts were made to detect

layout hotspots using deep neural networks. [71, 93, 116, 117, 115] demonstrated that

ordinary convolutional neural networks have potential on hotspot detection tasks. In

this chapter, we will in detail discuss the layout-specific neural network architecture

and algorithms on lithography (single layer) and multi-layer hotspot detection.

2.2 Lithography Hotspot Detection

2.2.1 Preliminaries and Problem Formulation

Designed layout patterns are transferred onto silicon wafers through a lithographic

process, which involves a lot of variations. Some patterns are sensitive to lithographic

process variations and may reduce the manufacturing yield due to potential open or

short circuit failures. Layout patterns with a smaller process window and sensitive

to process variations are defined as lithography hotspots.

The main objectives of lithography hotspot detection procedure are identifying as

many real hotspots as possible, avoiding incorrect predictions on non-hotspot clips,

and reducing runtime. In this paper, we use the following metrics to evaluate perfor-

mance of a hotspot detector.

Definition 2.1 (Accuracy[101]). The ratio between the number of correctly predicted

hotspot clips and the number of all real hotspot clips.

18 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Definition 2.2 (False Alarm[101]). The number of non-hotspot clips that are predicted

as hotspots by the classifier.

With the above definitions, we can formulate the hotspot detection problem as

follows:

Problem 2.1 (Hotspot Detection). Given a set of clips consisting of hotspot and non-

hotspot patterns, the objective of hotspot detection is training a classifier that can maxi-

mize accuracy and minimize false alarms.

2.2.2 Architectures and Algorithms

Feature Tensor Extraction

Finding a good feature representation is a key procedure in image classification tasks,

and so is layout pattern classification. Local density extraction and concentric circle

sampling were widely explored in previous hotspot detection and optical proximity

correction (OPC) research [72], and were proved to be efficient on hotspot detection

tasks because of the embedded lithographic prior knowledge. It is notable that layout

hotspots are associated with light diffraction, therefore whether a layout pattern con-

tains hotspots is not only determined by the pattern itself, but is also affected by the

surrounding patterns. Therefore, to analyze clip characteristics, we mush be aware of

the spatial relations of its local regions. However, all of these existing features finally

are flattened into one dimensional vectors that limit hotspot detection accuracy due

to a large amount of spatial information loss.

To address the above issue, we propose a feature tensor extraction method that

provides a lower scale representation of the original clips while keeping the spatial

information of the clips. After feature tensor extraction, each layout image I is con-

verted into a hyper-image (image with a customized number of channels) F with

2.2. LITHOGRAPHY HOTSPOT DETECTION 19

D
iv
is
io
n

D
C
T

2 6 6 6 4

C
1
1
,1

C
1
2
,1

C
1
3
,1

..
.

C
1
n
,1

C
2
1
,1

C
2
2
,1

C
2
3
,1

..
.

C
2
n
,1

. . .
. . .

. . .
. .
.

. . .
C

n
1
,1

C
n
2
,1

C
n
3
,1

..
.

C
n
n
,1

3 7 7 7 5

2 6 6 6 4

C
1
1
,k

C
1
2
,k

C
1
3
,k

..
.

C
1
n
,k

C
2
1
,k

C
2
2
,k

C
2
3
,k

..
.

C
2
n
,k

. . .
. . .

. . .
. .
.

. . .
C

n
1
,k

C
n
2
,k

C
n
3
,k

..
.

C
n
n
,k

3 7 7 7 5

(k

En
co
di
ng

Fi
gu

re
2.2

:F
ea

tu
re

te
ns

or
ge

ne
ra
tio

n
ex

am
pl
e(
n
=

12
).
Th

eo
rig

in
al

cl
ip

(1
20

0×
12

00
n
m

2
)i
sd

iv
id
ed

in
to

12
×
12

bl
oc

ks
an

d
ea

ch
bl
oc

k
is

co
nv

er
te
d
to

a
10
0
×

10
0
im

ag
e
re
pr

es
en

tin
g
a
10
0
×

10
0
n
m

2
su

b
re
gi
on

of
th
e
or

ig
in
al

cl
ip
.F

ea
tu
re

te
ns

or
is

th
en

ob
ta
in
ed

by
en

co
di
ng

on
fir

st
k
D
CT

co
effi

ci
en

ts
of

ea
ch

bl
oc

k.

20 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

the following properties: (1) size of each channel is much smaller than I and (2) an

approximation of I can be recovered from F .

Spectral analysis of mask patterns for wafer clustering was recently explored in

literature [131, 91] and achieved good clustering performance. Inspired by that work,

we express the sub-region as a finite combination of different frequency components.

High sparsity of the discrete cosine transform (DCT) makes it preferable over other

frequency representations in terms of spectral feature extraction, and it is consistent

with the expected properties of the feature tensor.

To sum up, the process of feature tensor generation contains the following steps.

Step 1: Divide each layout clip into n×n sub-regions, then obtain feature repre-

sentations of all sub-regions for multi-level perceptions of layout clips.

Step 2: Convert each sub-region of the layout clip Ii,j (i, j = 0, 1, . . . , n− 1) into

a frequency domain:

Di,j(m,n) =
B∑

x=0

B∑
y=0

Ii,j(x, y) cos[
π

B
(x+

1

2
)m] cos[π

B
(y +

1

2
)n],

where B = N
n

is sub-region size, (x, y) and (m,n) are original layout image and

frequency domain indexes respectively. Particularly, the left-upper side of DCT co-

efficients in each block correspond to low frequency components, that contain high

density information, as depicted in Figure 2.2.

Step 3: Flatten Di,js into vectors in Zig-Zag form [103] with the larger index

being higher frequency coefficients as follows.

C∗
i,j = [Di,j(0, 0),Di,j(0, 1),Di,j(1, 0), ...,Di,j(B,B)]⊺. (2.1)

2.2. LITHOGRAPHY HOTSPOT DETECTION 21

Step 4: Pick the first k ≪ B ×B elements of each C∗
i,j ,

Ci,j = C∗
i,j[: k], (2.2)

and combine Ci,j, i, j ∈ {0, 1, ..., n − 1} with their spatial relationships unchanged.

Finally, the feature tensor is given as follows:

F =

C11 C12 C13 . . . C1n

C21 C22 C23 . . . C2n

...

Cn1 Cn2 Cn3 . . . Cnn

 , (2.3)

where F ∈ Rn×n×k. By reversing above procedure, an original clip can be recovered

from an extracted feature tensor.

The nature of discrete cosine transform ensures that high frequency coefficients

are near zero. As shown in Figure 2.2, large responses only present at the entries with

smaller indexes, i.e. low frequency regions. Therefore, most information is kept even

when a large amount of elements in C∗
i,j are dropped.

The feature tensor also has the following advantages when applied in neural net-

works: (1) Highly compatible with the data packet transference in convolutional neu-

ral networks and (2) forward propagation time is significantly reduced when com-

pared with using an original layout image as input, because the scale of the neural

network is reduced with the smaller input size.

The Neural Network Basis

This section discusses the the convolutional neural network details. First, we in-

troduce the basis and the architecture of convolutional neural networks. Then, we

present a customized training procedure that looks for better trade-offs between ac-

22 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

…

H
ot

sp
ot

N
on

-H
ot

sp
ot

Co
nv

ol
ut

io
n

+
 R

eL
U

 L
ay

er
M

ax
 P

oo
lin

g
La

ye
r

Fu
ll

Co
nn

ec
te

d
N

od
e

2 6 6 6 4

C
1
1
,1

C
1
2
,1

C
1
3
,1

..
.

C
1
n
,1

C
2
1
,1

C
2
2
,1

C
2
3
,1

..
.

C
2
n
,1

. . .
. . .

. . .
. .
.

. . .
C

n
1
,1

C
n
2
,1

C
n
3
,1

..
.

C
n
n
,1

3 7 7 7 5

2 6 6 6 4

C
1
1
,k

C
1
2
,k

C
1
3
,k

..
.

C
1
n
,k

C
2
1
,k

C
2
2
,k

C
2
3
,k

..
.

C
2
n
,k

. . .
. . .

. . .
. .
.

. . .
C

n
1
,k

C
n
2
,k

C
n
3
,k

..
.

C
n
n
,k

3 7 7 7 5

(k

Fi
gu

re
2.3

:Th
e
pr

op
os

ed
co

nv
ol
ut
io
na

ln
eu

ra
ln

et
w
or

k
st
ru

ct
ur

e.

2.2. LITHOGRAPHY HOTSPOT DETECTION 23

curacy and false alarms. Finally, we list additional training and testing strategies.

To address the weak scalability of traditional machine learning techniques, we in-

troduce the convolutional neural network (CNN) as preferred classifier. CNN is built

with several convolution stages and fully connected layers, where convolution stages

perform feature abstraction and fully connected (FC) layers generate the probability

of testing instances drawn from each category (Figure 2.3).

In this paper, our convolutional neural network has two convolution stages fol-

lowed by two fully connected layers, and each convolution stage consists of two con-

volution layers, a ReLU layer and a max-pooling layer. In each convolution, a set of

kernels perform convolution on a tensor F as follows:

F ⊗K(j, k) =
c∑

i=1

m∑
m0=1

m∑
n0=1

F (i, j −m0, k − n0)K(i,m0, n0), (2.4)

where F ∈ Rc×n×n, and kernel K ∈ Rc×m×m. In this work, the convolution kernel

size is set to 3× 3 and the numbers of output feature maps in two convolution stages

are 16 and 32 respectively. ReLU is an element-wise operation that follows each con-

volution layer as a replacement of the traditional sigmoid activation function. As

shown in Equation (2.5), ReLU ensures that the network is nonlinear and sparse.

ReLU(x) =

 x, if x > 0,

0, if x ≤ 0.
(2.5)

The max-pooling layer performs 2 × 2 down-sampling on the output of the pre-

vious layer and is applied as the output layer of each convolution stage. Following

the two convolution stages are two FC layers with output node numbers of 250 and 2,

respectively. A 50% dropout is applied on the first FC layer during training to allevi-

ate overfitting. The second FC layer is the output layer of the entire neural network,

where two output nodes generate the predicted probabilities of an input instance be-

24 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION
Table 2.1: Neural Network Configuration.

Layer Kernel Size Stride Output Node #
conv1-1 3 1 12× 12× 16
conv1-2 3 1 12× 12× 16

maxpooling1 2 2 6× 6× 16

conv2-1 3 1 6× 6× 32
conv2-2 3 1 6× 6× 32

maxpooling2 2 2 3× 3× 32

fc1 - - 250
fc2 - - 2

ing hotspot and non-hotspot. Detailed configurations are shown in Table 2.1.

Determining the gradient of each neuron and the parameter updating strategy

in the neural network are two key mechanisms in the training procedure. Back-

propagation [84] is widely applied to calculate gradients when training large neural

networks. Each training instanceF has a corresponding gradient setG= {G1,G2, ...,Gv},

where each element is a gradient matrix associated with a specific layer and v is the

total layer number. All the neural network parameters are then updated with the

obtained G.

Stochastic gradient descent (SGD), where each training data instance is randomly

presented to the machine learning model, has proved more efficient to train large

data sets [31] than conventional batch learning, where a complete training set is pre-

sented to the model for each iteration. However, as a data set scales to the ultra large

level, e.g. millions of instances, SGD has difficulty to efficiently utilize computation

resources. Therefore, it takes a long time for the model to cover every instance in the

training set. A compromise approach called mini-batch gradient descent (MGD) [37]

can be applied where a group of instances are randomly picked to perform gradient

descent. Additionally, MGD is naturally compatible with the online method allowing

it to facilitate convergence and avoid large storage requirements for training ultra

large instances.

2.2. LITHOGRAPHY HOTSPOT DETECTION 25

However, for large nonlinear neural networks, back-propagation andMGD do not

have rigorous convergence criteria. A fraction, empirically 25%, of training instances

(validation set) is separated out and is never shown to the network for weight updat-

ing. We then test the trained model on the validation set every few iterations. When

the test performance on the validation set does not show much variation or starts

getting worse, the training procedure is considered to be converged. To make sure

MGD reaches a more granular solution, we reduce the learning rate along with the

training process.

Algorithm 2.1 Mini-batch Gradient Descent (MGD)
1: function MGD(W , λ, α, k, y∗

h, y∗
n)

2: Initialize parameters j ← 0, W > 0;
3: while not stop condition do
4: j ← j + 1;
5: Sample m training instances {F1, F2, …, Fm};
6: for i← 1, 2, ...,m do
7: Gi ← backprop(Fi);
8: end for
9: Calculate gradient Ḡ ← 1

m

∑m
i=1 Gi;

10: Update weight W ←W − λḠ;
11: if j mod k = 0 then
12: λ← αλ, j ← 0;
13: end if
14: end while
15: return Trained model f ;
16: end function

The details of MGD with learning rate decay are shown in Algorithm 2.1, where

W is the neuron weights, λ is the learning rate, α ∈ (0, 1) is the decay factor, k is the

decay step, y∗
h is the hotspot ground truth and y∗

n is the non-hotspot ground truth.

MGD can be regarded as a function that returns the model with the best performance

on the validation set. Indicator j will count up through iterations (line 4), and in

each iteration, m training instances {F1, F2, …, Fm} are randomly sampled from the

training set (line 5). Gradients of these training instances (Gi) are calculated using

26 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

0 100 200 300 400 500

0.00

1.00

2.00

3.00

Elapsed Time

Lo
ss

SGD MGD

Figure 2.4: Stochastic gradient descent (SGD) v.s. Mini-batch gradient descent (MGD).

back-propagation (lines 6–8). Then neuronweightsW are updated by subtracting the

average gradient of sampled instances λḠ scaled by learning rate γ (line 14). When

j is an integer multiple of k, λ is reduced to αλ, i.e. the learning rate decays every

k iterations (lines 11–13). At the end of MGD, a trained model that has satisfactory

performance on validation set will be returned (line 15).

Although SGDhas shown an advantage in emergingmachine learning techniques,

it cannot fully utilize GPU resources. MGD, on the other hand, is more compatible

with parallel computing and can speed up training procedures. To evaluate the effi-

ciency of MGD, we train the neural network on the ICCAD benchmark using MGD

and SGD separately with the configuration in Table 2.3. The training procedure is

shown in Figure 2.4, where the X-axis is the elapsed time (s) in the training procedure

and the Y-axis is the cross-entropy loss on the validation set. The curve shows that

MGD behaves much more stably than SGD, which indicates the neural network with

the MGD learning strategy is more efficient and effective than conventional SGD.

2.2. LITHOGRAPHY HOTSPOT DETECTION 27

Learning Towards Biased Target

0.5 1

0.5

1 (0.1,0.9)

(0.3,0.7)

(0.2,0.8)

(0.6,0.4)

y(0)

y(1)

(a) acc=0.75, loss=0.69

0.5 1

0.5

1

(0.4,0.6)
(0.3,0.7)

(0.45,0.55)

(0.2,0.8)

y(0)

y(1)

(b) acc=1, loss=0.73

0.5 1

0.5

1

(0.9,0.1)
(0.85,0.15)
(0.8,0.2)

(0.4,0.6)

y(0)

y(1)

(c) fa=1, loss=0.61

0.5 1

0.5

1

(0.6,0.4)

(0.7,0.3)
(0.65,0.35)

(0.8,0.2)

y(0)

y(1)

(d) fa=0, loss=0.66

Figure 2.5: Training loss versus accuracy.

Softmax cross entropy can provide speedup for back-propagation while attaining

comparable network performance with the mean square error [37]. In a n-category

classification task, the instance that belongs to class c has a ground truth y∗ ∈ Rn

where y∗ has the property that y∗(c) = 1 and
∑n

i=1 y
∗(i) = 1. Each entry of y∗ is

regarded as the probability of the instance drawn from each category. The predicted

label vector y by classifier is defined similarly.

In the task of hotspot detection, y∗ = y∗
n = [1, 0] and y∗ = y∗

h = [0, 1] are

28 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

assigned as the ground truths for non-hotspot and hotspot. To generate loss with

respect to ground truth, score x = [xh, xn] predicted by the neural network is scaled

to a (0, 1) interval by the softmax function shown in Equation (2.6).

y(0) =
expxh

expxh + expxn

, y(1) =
expxn

expxh + expxn

, (2.6)

and then, cross-entropy loss is calculated as follows,

l(y,y∗) = −(y∗(0) logy(0) + y∗(1) logy(1)). (2.7)

In case of the situation we need to calculate log 0, we define,

lim
x→0

x logx = 0. (2.8)

Because each entry of softmax label yi is the probability of given instanceFi being

non-hotspot N and hotspotH, we have,

F ∈

 N , if y(0) > 0.5,

H, if y(1) > 0.5.
(2.9)

y(0) + y(1) = 1. (2.10)

To improve the hotspot detection accuracy, a straightforward approach is shifting

the decision boundary, as shown in Equation (2.11).

F ∈

 N , if y(0) > 0.5 + λ,

H, if y(1) > 0.5− λ,
(2.11)

where λ > 0 is the shifting level. However, this method can cause a large increase in

false alarms.

2.2. LITHOGRAPHY HOTSPOT DETECTION 29

The conventional training procedure applies ground truth label y∗
n = [1, 0] for

non-hotspot instances and y∗
h = [0, 1] for hotspot instances. For non hotspot in-

stances, the classifier is trained towards y∗
n. If the training procedure meets the stop

criteria, then for most non-hotspot clips, f will predict them to have a high proba-

bility, close to 1, to be non-hotspots. However, as can be seen in Equation (2.9), the

instance would be predicted as a non-hotspot as long as the predicted probability is

greater than 0.5. Thus, to some extent, the classifier is too confident as expected.

Intuitively, a too confident classifier is not necessary to give a good prediction per-

formance and on the contrary, may induce more training pressure or even overfitting

problem. We exemplify the case using a linear classifier. As illustrated in Figure 2.5,

a more confident classifier results in an optimized loss, but cannot guarantee higher

classification accuracy. Therefore, an assumption can be made that the hotspot detec-

tion accuracy can be further improved by sacrificing the training loss of non-hotspot

samples. Meanwhile, the induced false alarm penalties are expected to be lower than

directly shifting the decision boundary.

Assumption 2.1. Given a pre-trained convolutional neural network model with ground

truth y∗
n = [1, 0] and y∗

h = [0, 1] and hotspot detection accuracy a on a given test set.

Fine-tune the network with yϵ
n = [1− ϵ, ϵ], ϵ ∈ [0, 0.5), we can obtain the hotspot detec-

tion accuracy a′ and false alarm fs′ of the new model. Shifting the decision boundary

of the original model to reach the detection accuracy a′, the corresponding false alarm is

fs′′. We have a′ ≥ a and fs′′ ≥ fs′.

Because it is hard to have a solid proof of the above assumption due to the un-

certainty of the deep neural networks, we conduct a sketch explanation of a′ ≥ a by

analyzing the training actions of the fully connected layer.

Proof. Consider a trained classifier f with Ol−1(Fi) as the output of the second last

30 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

layer, and the neurons have weightWl. Then the output can be expressed as follows:

xi = W ⊺
l Ol−1(Fi), (2.12)

whereWl is learned towards the target y∗
n = [1, 0]. Wewill show in Equations (2.29)–

(2.32) that training gradients of non-hotspot instances with biased labels are smaller

than those without bias. Considering the fine-tune process with yϵ
n = [1−ϵ, ϵ], train-

ing instances with predicted probability less than 1− ϵ are only supposed to generate

minor gradient to update the network, since they can not even make prominent dif-

ference with the target yn when the stopping criteria is met. For those non-hotspot

instances that have predicted probability in (1 − ϵ, 1) (confident instances), neuron

weights are updated along the gradient generated by confident instances.

Also, gradient vanishing theory [47] indicates a later layer in the neural network

learns faster, thereforewithin a limited number of iterations, updates of the front layer

can be ignored. We assume the layers before Ol−1 are fixed for some iterations. Let

the updated weight for the output layer be W ′
l , and the current output for confident

instance Fc is,

x′
c = W ′⊺

l Ol−1(Fc). (2.13)

Before adjusting the ground truth, we have

xc = W ⊺
l Ol−1(Fc). (2.14)

Note that x ∈ R2, therefore Wl has two columns Wl,1 and Wl,2. Similarly, W ′
l =

[W ′
l,1,W

′
l,2]. We define w and w′ as follows:

w = Wl,1 −Wl,2, w′ = W ′
l,1 −W ′

l,2. (2.15)

2.2. LITHOGRAPHY HOTSPOT DETECTION 31

Here w′ is updated from w through gradient descent:

w′ = w − α∇w(xc(0)− xc(1))(∇xc(0)Lc −∇xc(1)Lc)

= w − αOl−1(Fc)(∇xc(0)Lc −∇xc(1)Lc), (2.16)

where Lc is the cross-entropy loss and α > 0 is the learning rate. Besides,

Lc = −yϵ
n(0) logyc(0)− yϵ

n(1) logyc(1), (2.17)

yc(0) =
expxc(0)

expxc(0) + expxc(1)
, (2.18)

yc(1) =
expxc(1)

expxc(0) + expxc(1)
. (2.19)

Substitute Equation (2.18) and Equation (2.19) into Equation (2.17),

Lc = −yϵ
n(0)xc(0)− yϵ

n(1)xc(1)

+ log(expxc(0) + expxc(1)), (2.20)

∇xc(0)Lc = −yϵ
n(0) + yc(0), (2.21)

∇xc(1)Lc = −yϵ
n(1) + yc(1). (2.22)

∇xc(0)Lc −∇xc(1)Lc > 0. (2.23)

For hotspot instances:

w′⊺Ol−1(Fh)

=w⊺Ol−1(Fh)− αO⊺
l−1(Fc)(∇xc(0)Lc −∇xc(1)Lc)Ol−1(Fh). (2.24)

32 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Because Ol−1 is ReLU output, we have Ol−1(Fc) > 0 and Ol−1(Fh) > 0. Therefore,

w⊺Ol−1(Fh) > w′⊺Ol−1(Fh), (2.25)

which indicates that

xh(0)− xh(1) > x′
h(0)− x′

h(1), (2.26)

⇒ expxh(1)

expxh(0) + expxh(1)
<

expx′
h(1)

expx′
h(0) + expx′

h(1)
. (2.27)

Therefore, the predicted probability of hotspot instances being real hotspots is ex-

pected to be greater, and the classifier is more confident about those wrongly detected

patterns that have predict probability around 0.5. In other words, a′ ≥ a.

From a physical point of view, the biased term ϵ can be regarded as a force “drag-

ging” the decision boundary closer to non-hotspot instances. However, in the space

defined by the pre-trained model, all the instances are located in different locations

and have different distances to the decision boundary. For any non-hotspot instance,

the loss with and without the biased term ϵ is given by Equations (2.28) and (2.29)

respectively.

l = − logy(0), (2.28)

lb = −(1− ϵ) logy(0)− ϵ logy(1)

= −(1− ϵ) logy(0)− ϵ log(1− y(0)). (2.29)

The training speed of the neural network is determined by the gradient of the loss

with respect to neuron weights. Because the relationships between the prediction

score y and neuron weights are the same regardless of the loss function, the training

2.2. LITHOGRAPHY HOTSPOT DETECTION 33

speeds of the two cases are determined by the following equations:

∂l

∂y(0)
= − 1

y(0)
, (2.30)

∂lb
∂y(0)

=
ϵ+ y(0)− 1

y(0)(1− y(0))
. (2.31)

Observe that when y(0) ≤ 0.5, i.e. the network makes an incorrect prediction,

| ∂l

∂y(0)
| > | ∂lb

∂y(0)
|, (2.32)

which indicates if the bias is directly applied at the random initialized networks, the

networkwith bias updates slower than the networkwithout bias. Therefore, we apply

multiple rounds fine-tuning on the pre-trained model instead of directly training the

network with bias.

The bias term ϵ cannot be increased without limitations, because at some point,

most of the non-hotspot patterns will cross the middle line, where the probability is

0.5, causing a significant increase of false alarms. Because the approach improves the

performance of hotspot detection at the cost of confidence on non-hotspots, we call

it biased learning. As the uncertainty exists for large CNN, a validation procedure is

applied to decide when to stop biased learning. To sum up, biased learning is itera-

tively carrying out normal MGD with changed non-hotspot ground truths, as shown

in Algorithm 2.2.

Algorithm 2.2 Biased-learning
Require: ϵ, δϵ, t, W , λ, α, k, y∗

h, y∗
n;

1: i← 0, ϵ← 0, y∗
h ← [0, 1];

2: while i < t do
3: y∗

n ← [1− ϵ, ϵ];
4: fϵ← MGD(W , λ, α, k, y∗

n, y∗
h); ▷ Algorithm 2.1

5: i← i+ 1, ϵ← ϵ+ δϵ;
6: end while

34 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Here ϵ is the bias, δϵ represents the bias step, and t is the maximum iteration of

biased learning. In biased learning, the hotspot ground truth is fixed at [0, 1] while

the non-hotspot truth is [1 − ϵ, ϵ]. Initially, the normal MGD is applied with ϵ = 0

(line 1). After getting the converged model, fine-tune it with ϵ updated by ϵ = ϵ+ δϵ.

Repeat the procedure until the framework reaches the maximum bias adjusting time

t (lines 2–6).

80 82 84 86 88 90
2,000

2,500

3,000

3,500

4,000

Accuracy (%)

Fa
lse

A
la
rm

Shift-Boundary Bias

Figure 2.6: Bias learning shows a smaller false alarm penalty to obtain the same
hotspot detection accuracy.

Assumption 2.1 shows that the biased learning algorithm can improve hotspot de-

tection accuracy by taking advantage of the ReLU property. Because biased learning

is applied through training, the false alarm penalty on the improvement of hotspot

accuracy is expected to be limited. Here we evaluate the biased learning algorithm

by training the neural network with ϵ = 0 to obtain an initial model and fine-tuning

with ϵ = 0.1, 0.2, 0.3. Then we perform boundary shifting on the initial model to

achieve the same test accuracy with three fine-tuned models. As shown in Figure 2.6,

biased learning has 600 less false alarm penalties for the same improvement of hotspot

2.2. LITHOGRAPHY HOTSPOT DETECTION 35

detection accuracy, which demonstrates the validity of Assumption 2.1.

Batch Biased Learning

In the biased learning algorithm, we perform fine-tuning on the pre-trained models

with a fixed and biased ground truth until meeting the stop condition. From the

deduction above, we also notice that it might not be suitable to apply the same biased

ground truth on all the non-hotspot instances. Therefore, to dynamically adjust the

bias for different instances, we define a bias function as follows:

ϵ(l) =

 1
1+exp(βl) , if l ≤ 0.3,

0, if l > 0.3,
(2.33)

where l is the training loss of the current instance or batch in terms of the unbiased

ground truth and β is a manually determined hyper-parameter that controls how

much the bias is affected by the loss. Because the training loss of the instance at the

decision boundary is− log 0.5 ≈ 0.3, we set the bias function to take effect when l ≤

0.3. With the bias function, we can train the neural network in a single-round MGD

and obtain a better model performance. Because ϵ(l) is fixed within each training

step, no additional computing effort is required for back-propagation, as indicated by

Equation (2.31).

The training procedure is summarized as Algorithm 2.3, where β is a hyper-

parameter defined in Equation (2.33). Similar to MGD, we initialize the neural net-

work (line 1) and update the weight until meeting the convergence condition (lines

2–16). Within each iteration, we first sample the same amount of hotspot and non-

hotspot instances to make sure the training procedure is balanced (lines 3–4); we then

calculate the average loss of non-hotspot instances to obtain the bias level and the bi-

ased ground truth (lines 5–6); the gradients of the hotspot and non-hotspot instances

are calculated separately (lines 8–9); the rest of the steps are the normal weight update

36 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

through back-propagation and learning rate decay (lines 11–15).

Algorithm 2.3 Batch Biased-learning
Require: W , λ, α, k, y∗

h, y∗
n, β;

1: Initialize parameters, y∗
h ← [0, 1];

2: while not stop condition do
3: Sample m non-hotspot instances {N1, N2, …, Nm};
4: Sample m hotspot instances {H1, H2, …, Hm};
5: Calculate average loss of non-hotspot samples ln with ground truth [1, 0];
6: y∗

n ← [1− ϵ(ln), ϵ(ln)];
7: for i← 1, 2, ...,m do
8: Gh,i ← backprop(Hi);
9: Gn,i ← backprop(Ni);

10: end for
11: Calculate gradient Ḡ ← 1

2m

∑m
i=1(Gh,i + Gn,i);

12: Update weight W ←W − λḠ;
13: if j mod k = 0 then
14: λ← αλ, j ← 0;
15: end if
16: end while

Data Augmentation and Ensemble Testing

Many studies have shown that data preprocessing provides a greater generalization

ability of the deep learning model [116, 55, 94]. Observe that (1) the orientation of a

clip does not affect its property under most illumination settings and (2) usually there

are more non-hotspot clips than hotspot clips, we include several data augmentation

techniques in the training stage accordingly.

• We randomly performflipping (top-bottom transformation) andmirroring (left-

right transformation) on each feature tensor along its last axis. It is easy to de-

rive that the convolution operation is not flipping invariant, therefore random

flipping and mirroring will introduce diversity to the dataset and increase the

trained model’s generalization ability (how well the model fits the testing data

[129, 79]).

2.2. LITHOGRAPHY HOTSPOT DETECTION 37

• We force the number of hotspot and non-hotspot instances to be equal in each

mini-batch. As shown in the experiment of [116], a highly imbalanced dataset

causes performance degradation. Sampling equal amount of instances from

different categories is expected to benefit both the training progress and the

model performance.

To make better use of the flipping variance property, an ensemble method is ap-

plied in the testing phase.

• We do prediction on four directions of each clip and take the average of the

prediction scores as the final prediction result.

Although ensemble testing will induce additional testing runtime, it offers better

model performance.

2.2.3 Experiments

Experimental Setup

We implement our deep biased learning framework in Python with the TensorFlow

library [1], and test it on a platform with a Xeon E5 processor and Nvidia Graphic

card. To fully evaluate the proposed framework, we employ four test cases. Because

the individual test cases in the ICCAD 2012 contest [101] are not large to verify the

scalability of our framework, we merge all the 28nm patterns into a unified test case

ICCAD. Additionally, we adopt four more complicated industry test cases: Industry0

– Industry3. The details for all test cases are listed in the Table 2.2.

Columns “Train HS#” and “Train NHS#” list the total number of hotspots and the

total number of non-hotspots in the training set. Columns “Test NHS#” and “Test

HS#” list the total number of hotspots and total number of non-hotspots in the test-

ing set. Images in the testing set of ICCAD have a resolution of 3600 × 3600 which

38 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Table 2.2: Benchmark Statistics

Benchmarks Training Set Testing Set Size/Clip
HS# NHS# HS# NHS# (µm2)

ICCAD 1204 17096 2524 13503 3.6× 3.6
Industry0 3629 80299 942 20412 1.2× 1.2
Industry1 34281 15635 17157 7801 1.2× 1.2
Industry2 15197 48758 7520 24457 1.2× 1.2
Industry3 24776 49315 12228 24817 1.2× 1.2

(a) (b)

(c) (d) (e)

Figure 2.7: Benchmark examples. (a) and (b) are before-OPC patterns from ICCAD
and Industry0, respectively. (b)–(d) correspond to Industry1-Industry3, which
are from intermediate OPC results.. The pattern becomesmore complicated after OPC
and is more challenging for machine learning based hotspot detectors.

2.2. LITHOGRAPHY HOTSPOT DETECTION 39

Table 2.3: Training Configurations

Configurations Value

Optimizer Adam [54]
Initial Learning Rate (λ) 0.001
Learning Rate Decay (α) 0.75

LR Decay Step (k) 10,000
Bias Function Coefficient (β) 6 and 43

Batch Size 32
Feature Tensor Channel 32

is larger than the images in industry benchmarks (1200 × 1200). Therefore, during

the testing phase, each clip in ICCAD Testing Set is divided into nine 1200 × 1200

blocks before feeding into the testing flow. Mask images in the four benchmarks are

from different OPC stages, and have different complexities, as shown in Figure 2.7.

Note that classic hotspot detection problems aim to find and revise problematic de-

signs at an early stage of the whole layout verification flow which corresponds to

cases ICCAD benchmarks and Industry0 that contains before-OPC patterns and are

labeled based on the results of the entire layout verification flow, including OPC and

lithography simulation. Industry1-Industry3 are benchmark sets that contain lay-

outs from intermediate OPC results which are labeled hotspot or non-hotspot based

on the lithography simulation results of current OPC step. The motivation of intro-

ducing intermediate OPCed layouts is to show some potential of embedding efficient

hotspot detectors into OPC engines and facilitate the procedure.

Model Training

We train five individual models for each benchmark set following Algorithm 2.3. Ta-

ble 2.3 lists the details of the training configurations. “Adam” is an improved opti-

mizer to conduct a gradient descent proposed in [54] that is proved to converge faster.

40 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

0
20

,0
0
0

40
,0
00

60
,0
00

80
,0
00

10
0
,0
00

0
.0
0

0
.2
0

0
.4
0

0
.6
0

T
ra
in
in
g
S
te
p

Loss

B
B
L

B
L

(a
)I

CC
AD

0
20

,0
00

40
,0
00

60
,0
00

80
,0
00

10
0
,0
00

0
.0
0

0
.2
0

0
.4
0

0
.6
0

T
ra
in
in
g
S
te
p

Loss

(b
)I

nd
us

tr
y0

0
2
0
,0
0
0

40
,0
00

60
,0
00

80
,0
00

1
00
,0
00

0
.0
0

0
.2
0

0
.4
0

0
.6
0

T
ra
in
in
g
S
te
p

Loss

(c
)I

nd
us

tr
y1

0
20

,0
00

40
,0
00

60
,0
00

8
0
,0
00

10
0
,0
00

0
.0
0

0
.2
0

0
.4
0

0
.6
0

T
ra
in
in
g
S
te
p

Loss

(d
)I

nd
us

tr
y2

0
20

,0
00

40
,0
00

60
,0
00

80
,0
00

1
00
,0
00

0
.0
0

0
.2
0

0
.4
0

0
.6
0

T
ra
in
in
g
S
te
p

Loss

(e
)I

nd
us

tr
y3

Fi
gu

re
2.8

:V
isu

al
iz
et

ra
in
in
g
of

th
eb

at
ch

bi
as
ed

le
ar
ni
ng

(re
d)

an
d
th
eb

ia
se
d
le
ar
ni
ng

(b
lu
e)
.O

n
ea

ch
be

nc
hm

ar
ks

,b
at
ch

bi
as
ed

le
ar
ni
ng

ex
hi
bi
ts

lo
w
er

lo
ss

th
an

th
e
bi
as
ed

le
ar
ni
ng

at
co

nv
er
ge

nc
e.

2.2. LITHOGRAPHY HOTSPOT DETECTION 41

Parametersα and k denote that the learning rate (λ) drops toαλ every k steps. β is the

coefficient that appears in Equation (2.33) and controls how much the bias is affected

by the loss of a non-hotspot batch, therefore, it also controls the trade-offs between

accuracy and false alarms. Here we use β = 6 for the datasets (ICCAD, Industry0

and Industry1) with more regular patterns and β = 43 for the datasets (Industry2

and Industry3) with complicated patterns. Because it takes more effort to fit the

complicated patterns with the neural networks, we pick a larger β to avoid additional

perturbation on the neural networks at early training stages (Figure 2.8). Feature

Tensor Channel represents the number of remaining elements after dropping high

frequency components in the feature tensor extraction procedure.

We visualize the training loss of Batch Biased Learning (BBL) and Biased Learn-

ing (BL) of five benchmarks in Figure 2.8, where ((a)), ((b)), ((c)), ((d)) and ((e)) corre-

spond to ICCAD, Industry0, Industry1, Industry2 and Industry3, respectively.

The “Loss” is the average cross-entropy loss given by Equation (2.7) with respect to

the unbiased ground truth. For the ICCAD and Industry0 dataset, the batch biased

learning converges quickly within 20,000 steps, while the biased learning requires

manual adjustment of the bias and finally converges at a higher loss level. (see the

blue curve in Fig. (a) and Fig. (b)). Also, for the benchmarks Industry1-Industry3,

the batch biased learning (red curve) has better convergent result than the biased

learning (blue).

Model Testing

To evaluate the effectiveness of the batch biased learning, we first compare the test

results on four datasets (statistics are listed in Table 2.2) with our preliminary results

in [121], as shown in Table 2.4 and Table 2.5. “Accu (%)” and “FA #” denote the hotspot

detection accuracy (Definition 2.1) and the false alarm number (Definition 2.2). “FA

(%)” is the percentage representation of false alarms that are coherent with “FA #”.

42 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Ta
bl
e
2.4

:P
er
fo
rm

an
ce

co
m
pa

ris
on

be
tw

ee
n
th
e
bi
as
ed

le
ar
ni
ng

an
d
th
e
ba

tc
h
bi
as
ed

le
ar
ni
ng

on
ta
rg

et
la
yo

ut
s.

Be
nc

hm
ar
ks

SP
IE
’

17
[1
16

]+
BL

SP
IE
’

17
[1
16

]+
BB

L
BL

[1
21

]
BL

[1
21

]+
A
UG

BB
L

BB
L+

A
UG

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

IC
CA

D
97

.60
20

54
98

.04
32

37
98

.20
34

13
98

.4
0

38
78

98
.00

27
45

98
.4
0

35
35

In
du

st
ry

0
98

.73
31

6
99

.4
7

46
9

97
.35

14
2

99
.26

24
6

97
.66

13
6

99
.36

38
7

Av
er
ag

e
98

.17
11

85
98

.76
18

53
97

.78
17

78
98

.83
20

62
97

.83
14

41
98

.8
8

19
61

Ra
tio

0.9
93

0.
60

4
0.9

99
0.9

45
0.9

89
0.9

06
0.9

99
1.0

52
0.9

89
0.7

35
1.
00

0
1.0

00

Ta
bl
e
2.5

:P
er
fo
rm

an
ce

co
m
pa

ris
on

be
tw

ee
n
th
e
bi
as
ed

le
ar
ni
ng

an
d
th
e
ba

tc
h
bi
as
ed

le
ar
ni
ng

on
O
PC

ed
la
yo

ut
s.

Be
nc

hm
ar
ks

SP
IE
’

17
[1
16

]+
BL

SP
IE
’

17
[1
16

]+
BB

L
BL

[1
21

]
BL

[1
21

]+
A
UG

BB
L

BB
L+

A
UG

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

In
du

st
ry

1
98

.61
31

1
98

.30
36

2
98

.90
68

0
99

.0
0

55
8

98
.20

40
2

98
.20

40
9

In
du

st
ry

2
94

.62
11

56
95

.49
15

50
93

.60
21

65
94

.80
14

83
94

.70
17

02
95

.5
0

16
91

In
du

st
ry

3
89

.95
25

41
93

.7
2

43
61

91
.30

41
96

91
.30

39
17

90
.00

38
40

91
.40

38
88

Av
er
ag

e
94

.39
13

36
95

.8
4

20
91

94
.60

23
47

95
.03

19
86

94
.30

19
81

95
.03

19
96

Ra
tio

0.9
93

0.
66

9
1.
00

8
1.0

48
0.9

95
1.1

76
1.0

00
0.9

95
0.9

92
0.9

93
1.0

00
1.0

00

2.2. LITHOGRAPHY HOTSPOT DETECTION 43

SPI
E’1

7+B
L

SPI
E’1

7+B
BL BL

BL+
AU

G BBL

BBL
+A

UG

120

150

104 104

156 154 156 154

Th
ro
ug

hp
ut

(c
lip

s/
s)

Figure 2.9: Throughput comparison of different neural network models.

“SPIE’17[116]+BL” corresponds to the results obtained by inserting biased learning

(Algorithm 2.2) in SPIE’17[116] neural networks model; “SPIE’17[116]+BBL” lists the

results obtained by embedding batch biased learning (Algorithm 2.3) in SPIE’17[116]

neural networks model; “BL [121]” corresponds to the original biased learning algo-

rithm (Algorithm 2.2) that is applied in our preliminary work; Column “BL [121] +

AUG” contains the results obtained from the original biased learning and the data

augmentation mentioned in Section 2.2.2; “BBL” lists the testing results of the batch

biased learning as in Algorithm 2.3; “BBL + AUG” also includes the data augmen-

tation in the batch biased learning procedure. Note that original SPIE’17 [116] also

employs data augmentation on raw layout images.

In this paper, we propose a batch biased learning algorithm that can train the neu-

ral network in one round MGD and seek a better trade-off than the biased learning

algorithm. Table 2.4 lists the testing results of target layouts ICCAD and Industry0,

which show that BBL surpasses BL on both average detection accuracy and false

alarm. With the aid of data augmentation, detection accuracy is further improved

44 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

from 97.8% to 98.8% with ignorable false alarm penalty. For intermediate OPCed lay-

outs Industry1-3 in Table 2.5, BBL also significantly reduces average false alarm

from 2347 to 1981 when achieving almost the same detection accuracy. We can also

notice that for OPCed layouts with data augmentation, BBL does not exhibit as effi-

ciently as on target layouts. One reason falls on the complexity of OPC patternswhich

induce more challenge on neural network training, when unbiased labels dominate

the training procedure compared to BL which forces non-hotspot labels to be biased.

We also embed the proposed biased learning and batch biased learning algorithms

into large neural networks designed in SPIE’17 [116] which takes raw layout images

as input. Compared with original SPIE’17 [116] (as shown in Table 2.6 and Table 2.7),

BL and BBL can significantly improve the hotspot detection performance. For target

layouts, average detection accuracy increased from 97.63% to 98.17% and 98.76% with

BL and BBL, respectively. BL also reduces the false alarm count from 1394 to 1185.

For OPCed layouts, BL and BBL dramatically increase the detection accuracy from

88.17% to 94.39% and 95.84% respectively. In particular, BBL can further improve the

hotspot detection accuracywhen inserted in large SPIE’17 nets at relatively large false

alarm penalty, because biased labels dominate during the training procedure of BBL

for neural networks with larger capacity. Figure 2.9 illustrates the testing speed of

different neural network models that correspond to Table 2.4 and Table 2.5. From the

experimental results, we can clearly see that the proposed methods can achieve sim-

ilar hotspot detection accuracy compared to larger neural network models but with

much less computing costs (104 clips/s of deep networks in SPIE’17 v.s. 156 clips/s

in our proposed network architecture). Although data augmentation and ensemble

testing slightly induces computing costs, we can still observe great advantage of the

proposed models over SPIE’17 nets.

We then compare the hotspot detection results with four state-of-the-art hotspot

detectors in Table 2.6 and Table 2.7. “SPIE’15 [70]” is a traditional machine learning-

2.2. LITHOGRAPHY HOTSPOT DETECTION 45

SPI
E’1

5

ICC
AD

’16

SOC
C’1

7
SPI

E’1
7

BBL
+A

UG

60

90

120

150

59

145

98
104

154

Th
ro
ug

hp
ut

(c
lip

s/
s)

• SPIE’15 & ICCAD’16: tested on 3.3GHz Quad-Core Intel processor;

• SOCC’17, SPIE’17 & BBL+AUG: tested on NVIDIA GPU.

Figure 2.10: Throughput comparison with state-of-the-art hotspot detectors.

based hotspot detector that applies the density-based layout features and the Ad-

aBoost [28]–DecisionTree model. “ICCAD’16 [130]” takes the lithographic properties

into account during feature extraction and adopts the more robust Smooth Boosting

[86] algorithm. “SPIE’17 [116]” is another deep learning solution for hotspot detec-

tion that takes the original layout image as input and contains more than 20 lay-

ers. “SOCC’17 [115]” employs a deep neural networks that replace all pooling layers

with strided convolution layers and contains the same number of layers as SPIE’17.

Overall, our framework performs better than traditional machine learning techniques

(SPIE’15 [70] and ICCAD’16 [130]) with at least a 2% advantage for the detection accu-

racy (98.88% of BBL v.s. 96.89% of ICCAD’16) on target layouts. Traditional machine

learning models are effective for the benchmarks with regular patterns (ICCAD and

Industry0) with the highest detection accuracy of 97.7% on the ICCAD and 96.07%

on the Industry0 achieved by [130]. However, manually designed features, includ-

ing the density-based features and the CCAS, have difficulties to grasp the attributes

46 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Ta
bl
e
2.6

:P
er
fo
rm

an
ce

co
m
pa

ris
on

w
ith

st
at
e-
of
-th

e-
ar
th

ot
sp

ot
de

te
ct
or

so
n
ta
rg

et
la
yo

ut
s.

Be
nc

hm
ar
ks

SP
IE
’1
5[
70

]
IC

CA
D
’1
6[
13

0]
SO

CC
’1
7[
11

5]
SP

IE
’1
7[
11

6]
BB

L+
A
UG

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

IC
CA

D
84

.20
29

19
97

.70
44

97
96

.90
19

60
97

.70
27

03
98

.4
0

35
35

In
du

st
ry

0
93

.63
30

96
.07

11
48

97
.77

10
0

97
.55

85
99

.3
6

38
7

Av
er
ag

e
88

.92
14

75
96

.89
28

23
97

.34
10

30
97

.63
13

94
98

.8
8

19
61

Ra
tio

0.8
99

0.7
52

0.9
80

1.4
39

0.9
84

0.
52

5
0.9

87
0.7

11
1.
00

0
1.0

00

Ta
bl
e
2.7

:P
er
fo
rm

an
ce

co
m
pa

ris
on

w
ith

st
at
e-
of
-th

e-
ar
th

ot
sp

ot
de

te
ct
or

so
n
O
PC

ed
la
yo

ut
s.

Be
nc

hm
ar
ks

SP
IE
’1
5[
70

]
IC

CA
D
’1
6[
13

0]
SO

CC
’1
7[
11

5]
SP

IE
’1
7[
11

6]
BB

L+
A
UG

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

Ac
cu

(%
)

FA
#

In
du

st
ry

1
93

.20
22

04
89

.90
11

36
98

.5
0

31
8

97
.74

51
9

98
.20

40
9

In
du

st
ry

2
44

.80
13

20
88

.40
74

02
91

.1
71

0
89

.62
76

0
95

.5
0

16
91

In
du

st
ry

3
44

.00
31

44
82

.30
86

09
84

.01
16

28
77

.14
19

66
91

.4
0

38
88

Av
er
ag

e
60

.67
22

23
86

.87
57

16
91

.20
88

5
88

.17
10

82
95

.0
3

19
96

Ra
tio

0.6
38

1.1
14

0.9
14

2.8
64

0.9
60

0.
44

4
0.9

28
0.5

42
1.
00

0
1.0

00

2.2. LITHOGRAPHY HOTSPOT DETECTION 47

of the post-OPC mask layouts. For OPCed layouts, [70] suffers a large performance

degradation with only approximately 45% detection accuracy on the most compli-

cated case Industry3. Although prior knowledge and a more robust Smooth Boost-

ing [86] algorithm are applied in [130], the hotspot detection accuracy inevitably

drops around 8%. Deep learning solutions [115], [116] and BBL+AUG exhibit better

performances with hotspot detection accuracy of 91.20%, 88.17% and 95.03% respec-

tively. It is notable that the architecture of our framework contains significantly fewer

layers than the framework in SPIE’17 and SOCC’17. Although the shallow architec-

ture results in acceptable more false alarms than deepmodels, our framework can still

offer significant higher accuracy on ICCAD, Industry0, Industry2 and Industry3.

Although neural networks are not as computational efficient as traditional ma-

chine learning methods, with the aid of parallel computing units (e.g. GPU), we are

able to achieve comparable and acceptable processing speed. Figure 2.10 presents the

detecting speed of different hotspot detectors adopted in this work, where SPIE’15 and

ICCAD’16 are tested on CPU only and neural network implementations are tested on

graphic cards. Runtime reports show that although neural network models are not

computational friendly due to the complicated convolutional operations, we are still

able to complete the task with comparable and acceptable time, which also show the

potential of enhancing the layout verification flow with dedicated computing units

instead of CPU only.

2.2.4 Summary

To address the existing problems of machine learning-based printability estimation

techniques, we first propose a high-dimensional feature (feature tensor) extraction

method that can reduce the size of training instances while keeping the spatial in-

formation. The feature tensor is also compatible with powerful convolutional neural

networks. Additionally, to improve hotspot detection accuracy, we first develop a

48 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

biased learning algorithm, which takes advantage of the ReLU function in CNN to

prominently increase accuracy while reducing false alarm penalties. We further pro-

pose a batch biased learning algorithm to automatically adjust the training ground

truth according to the current batch loss, that can offer better trade-offs between ac-

curacy and false alarms. The experimental results show that the batch biased learning

algorithm is more efficient during training and our framework outperforms the other

hotspot solutions on complicated benchmarks. Source code and trained models are

available at https://github.com/phdyang007/dlhsd.

2.3 Multi-Layer Hotspot Detection

2.3.1 Preliminaries and Problem Formulation

Squish Pattern

Multilayer patterns are much more complicated from geometric point of view. State-

of-the-art layout representations are more or less exhibiting minor drawbacks that

might be amplified when applied in multi-layer patterns. For example, density-based

feature and CCS drop the spatial information of layouts, frequency domain features

are computational costly if clip size is large and pixel-based representation is not

storage friendly. Squish patterns, on the other hand, have been widely used in DFM

tasks like pattern matching and pattern cataloging. The classic squish pattern [34]

is a lossless layout representation that consists of layout topology and geometric in-

formation. As shown in Figure 2.11, a clip of layout is split into grids using a set of

scan lines that cover all the shape edges. The topology of a given pattern can then be

defined by a matrix T that has the same dimension as the pattern grids. Each entry

https://github.com/phdyang007/dlhsd

2.3. MULTI-LAYER HOTSPOT DETECTION 49

x0 x1 x3x2 x4
y0
y1

y3
y2

y4

y5

0.2 0.072 0.06 0.048

0.09

0.137

0.017
0.06
0.013

Figure 2.11: A simple multilayer pattern example with scan lines.

of T ∈ Rnx×ny is determined by Equation (2.34).

tij =
n−1∑
l=0

αl · 2l, (2.34)

where l is the layer id andαl indicates whether there are patterns in the corresponding

grid, as in Equation (2.35).

αl =

0, given grid contains spacing in layer l,

1, given grid contains geometry in layer l.
(2.35)

We also need geometric information to define a pattern. Here we use two vectors δx
and δy to store the grid sizes in x and y directions, respectively. Each entry of the

two vectors is defined in Equation (2.36) and Equation (2.37).

δx,i = xi − xi−1, i = 1, 2, ..., nx, (2.36)

δy,i = yi − yi−1, i = 1, 2, ..., ny, (2.37)

50 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

where xis are the vertical scan line coordinates and yis are horizontal scan line coor-

dinates.

Therefore the pattern in Figure 2.11 can be represented as follows.

T =

1 0 0 0

0 0 0 0

1 1 1 1

1 1 3 1

1 1 1 1

, (2.38)

δx =
[
0.2 0.072 0.06 0.048

]
, (2.39)

δy =
[
0.013 0.06 0.017 0.137 0.09

]
. (2.40)

Above derivation shows that squish patterns benefit from two good properties: (1)

Squish patterns are lossless representation and can be recovered to original layouts

exactly; (2) Squish patterns store layout topologies and geometry information sepa-

rately that make them storage efficient. However such representation still violates

the requirements of most machine learning models, because squish patterns cannot

guarantee a fixed size for a given layout window. Additionally, patterns with low

complexity might have relatively larger geometry information per unit topology grid,

which induces training bias for the learning models.

Problem Formulation

As hotspot detection problem, we still keep accuracy and false alarms as our evalua-

tion metrics, with a new problem target as follows.

Problem2.2 (Multi-Layer Hotspot Detection). Given a set of clips consisting of hotspot

and non-hotspot metal-via patterns, the objective of hotspot detection is training a clas-

sifier that can maximize accuracy and minimize false alarms.

2.3. MULTI-LAYER HOTSPOT DETECTION 51

2.3.2 Architectures and Algorithms

This section will discuss the development of adaptive squish patterns and how them

can be fed into convolutional neural networks.

Adaptive Squish Pattern

As we have discussed in Section 2.3.1, the dimensionality of squish topologies is not

determined by the clip window size but the complexity of given patterns, which is not

compatible with most machine learning models. Additionally, the large variation of

pattern geometric information will induce more challenge on model convergence and

generality, which can be explained by the relatively good behavior of the pixel-based

images. Inspired by the benefits of data normalization computer vision task, here we

propose an adaptive squish representation that derives from classic squish patterns.

The main objectives are (1) reducing the variance of pattern geometric infor-

mation (i.e. δx and δy) and (2) extending original squish pattern into desired

dimensions. The basic idea is further adding more scan lines such that the topology

dimensionality matches machine learning model requirements and the variance of δs

can be minimized.

Before discussing more details, we first introduce an operation

M ′ = RepeatElements(M , s, a), (2.41)

which duplicates the columns (a = 0) or rows (a = 1) of a matrix M ∈ Ra1×a2 by

certain times such that the shape of the new matrixM ′ will be increased to a desired

value. Equation (2.42) determines how the kth column of M ′ is constructed when

52 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

a = 0.

m′
k = mj,∀

j−1∑
i=1

si < k ≤
j∑

i=1

si, (2.42)

where mj is the jth column of M and k = 1, 2, ...,
∑n

i=1 si. Row duplication can be

done similarly by

RepeatElements(M , s, 1) = RepeatElements(M⊤, s, 0)⊤. (2.43)

For example, if we let s =
[
1 1 2 1

]⊤
and a = 0, then the RepeatElements

operation on the topology matrix of Figure 2.11 will result in

T ′ =

1 0 0 0 0

0 0 0 0 0

1 1 1 1 1

1 1 3 3 1

1 1 1 1 1

. (2.44)

We can also notice that RepeatElements is equivalent to get the topology matrix

after adding additional scan lines that can evenly split existing grids. The number and

the direction of additional scan lines are determined by s and a. Compared to zero-

padding, RepeatElements extends a squish topology to a given size while keeping

all the entries of the topology matrix to be informative. Now the problem becomes

where and how many scan lines we should add, i.e. determining s for both x and y

directions.

We denote the duplication vectors for both directions as sx and sy respectively.

To ensure the layout represented by the squish pattern unchanged, we also need to

scale and duplicate δx and δy accordingly. Here we formulate the following problem

2.3. MULTI-LAYER HOTSPOT DETECTION 53

to obtain satisfactory sx and sy to change the topology matrix to a desired size as well

as attaining low variance δx and δy . For simplicity, we discard x and y subscription

and use unified symbols in following discussion and assume the desired total number

of scan lines in one direction is d. The geometry information before and after scaling

are denoted as δ and δ′.

min
s
||δ′||∞ (2.45a)

s.t. δ′i = δi/si, ∀i, (2.45b)

si ∈ Z+,∀i, (2.45c)∑
i

si = d. (2.45d)

The problem in Formula (2.45) aims to add more scan lines in the original squish

pattern such that the grids are split into given number of pieces. The objective ensures

the variance of the geometric vectors are minimized. Although this problem is non-

convex and hard to solve, we can still observe the basic idea beneath this problem

is adding scan lines to split large grids. Here we will propose two algorithms that

promise an approximate solution of Formula (2.45).

Algorithm 2.4 Obtaining adaptive squish patterns with a greedy procedure.
Require: T , δ, a, d0, d;
Ensure: T , δ;
1: while d0 < d do
2: s← 1 ∈ Rd0 , i← argmaxi{δi|i = 1, 2, ..., d0 − 1};
3: si ← 2, δi ← δi/2,∀i;
4: δ ← RepeatElements(δ, s, 1);
5: T ← RepeatElements(T , s, a);
6: d0 ← d0 + 1;
7: end while

Algorithm 2.4 circumvents Formula (2.45) and directly targets at obtaining adap-

tive squish patterns where scaling and duplication are conducted in serial. It requires

54 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

inputs of original squish topology matrix, geometry information vector δ with re-

spect to a given direction a, the current and the desired total number of scan lines

d0 and d along that direction. The algorithm will continuously add scan lines until

d0 reaches d. In each iteration, we first find the index i corresponding to the largest

value in δ (line 2), then we build a split vector s that has the same size as δ and reduce

the largest value in δ by a half (line 3), and then both δ and T will be updated with

RepeatElements according to current s indicating a scan line is added at location i

(lines 4–5) followed by the update of d0.

Algorithm 2.5 Deriving an approximate solution of Formula (2.45) that will be used
for generating adaptive squish patterns.
Require: δ, d0, d;
Ensure: s;
1: l←

∑
i δi;

2: t← l/(d− 1);
3: si ← max{1, int(δi/t)},∀i;
4: while

∑
i si < d− 1 do

5: δ′i ← δi/si,∀i;
6: i← argmaxi{δi|i = 1, 2, ..., d0 − 1};
7: si ← si + 1;
8: end while
9: δi ← δi/si,∀i;

10: δ ← RepeatElements(δ, s, 1);
11: T ← RepeatElements(T , s, a);

Algorithm 2.5 does not generate the adaptive squish patterns on-the-fly and we

target at Formula (2.45) itself for an optimal or suboptimal s. Therefore, only δ, d0 and

d are required. The first step is to calculate the mean t for all the δis which will be used

as a criteria to determine s (lines 1–2). We then obtain an approximate s according

to the ratio between current δ and t (line 3). We add additional scan lines at index

i where δi is still the largest among all the entries in δ until the requirement of the

number of scan lines is met (lines 4–8). A few steps are required to get the adaptive

squish pattern, including update the δ (line 9) and duplicate entries in δ (line 10) and

2.3. MULTI-LAYER HOTSPOT DETECTION 55

T (line 11). Wewill show later in the experiment that Algorithm 2.5 actually performs

better than Algorithm 2.4, which can be explained by the fact that the ideal objective

value in Formula (2.45) is the mean of δis that is targeted by Algorithm 2.5.

To make the adaptive squish patterns compatible with convolutional neural net-

works, we package T , δx and δy into a 3D tensor S ∈ Ra1×a2×3 that is defined below,

S[:, :, 0] = T , (2.46)

S[:, :, 1] = RepeatElements(δ⊤
x , [a1], 1), (2.47)

S[:, :, 2] = RepeatElements(δy, [a2], 0). (2.48)

The Network Architecture and Detection Flow

ResNet [44] has shown significant better training convergence and model general-

ity. It resembles regular convolutional neural networks with additional shortcut links

connecting the input and the output of each convolution stage, which is a group of

convolution layers as designed in VGG [94]. We therefore integrate ResNet blocks

with a regular CNN similar to the structure used in [117]. Although additional ResNet

blocks introducemore computational efforts, wewill also show later that our network

exhibits similar throughput compared to [117]. Both trainging and testing layouts are

cataloged with legacy squish patterns that will be used to derive adaptive squish pat-

terns. We train machine learning models with adaptive squish dataset and select the

best model with standard cross-validation. Finally, the machine learning model will

categorize testing data into hotspot and nonhotspot.

2.3.3 Experiments

The framework is implemented using Python 2.7 with Tensorflow library [1]. All

experiments are conducted on a platform with NVIDIA Tesla P100 accelerator.

56 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Table 2.8: Benchmark statistics.

Train Test Image Squish

Hotspot 3073 6015 320×320 64×64×3Nonhotspot 973197 1457830

The Dataset

To verify the effectiveness and the performance of our multilayer hotspot detection

flow, we adopt an industry 14nm benchmark layout that contains at most 3 layers that

cover metal 4, via 3 and via 4. The statistics are listed in Table 2.8. Columns “Train”

and “Test” indicate the training set and testing set respectively. Columns “Image”

and “Squish” denotes the data dimensionality that is used for image-based detection

and adaptive squish pattern-based detection. Rows “Hotspot” and “Nonhotspot” cor-

respond to the number of hotspot and non-hotspot clips. We can notice that the

benchmark is consistent with regular layout designswhere hotspot patterns/locations

are extremely rare, which brings much more challenges to machine learning engines

[117]. To address this concern, we apply a training technique that during training,

we manually force each mini-batch contains same number of hotspot and nonhotspot

samples.

Effectiveness of Adaptive Squish Patterns

In this experiment, we show how adaptive squish patterns behave with two approx-

imate solutions. We train the neural networks using two types of squish patterns

obtained from Algorithm 2.4 and Algorithm 2.5 respectively. The initial learning rate

is set to be 0.001 and decays by 0.7 every 2000 steps. The batch size is 64 and each batch

contains 32 hotspot samples and 32 non-hotspot samples. Neuron weights are initial-

ized with xavier approach [35] and are optimized with Adam optimizer on softmax

cross entropy loss. We also apply weight normalization on weights in all convolution

2.3. MULTI-LAYER HOTSPOT DETECTION 57

Table 2.9: Result comparison of two adaptive squish solutions and a baseline CNN
with image-based inputs.

Item JM3 [117] Algorithm 2.4 Algorithm 2.5

Accuracy (%) 98.87 97.51 99.24
False Alarm Rate (%) 4.81 5.05 4.52

Hit 5947 5865 5969
False Alarm 70193 73645 65926
Precision (%) 7.81 7.38 8.30

layers and fully connected layers with a coefficient of 0.001. The trained model is

selected based on standard cross validation with a validation set contains 500 hotspot

samples from the training set. The maximum training step is set to 10000. Table 2.9

lists the detailed hotspot detection results. It can be obviously seen that Algorithm 2.5

outperforms Algorithm 2.4 from both hotspot detection accuracy (by 1.7%) and false

alarm (by 7719 clips), which can be explained by the fact that Algorithm 2.5 achieves

much lower variance of geometric vector values.

Result Comparison with A State-of-the-art CNN Solution

In this experiment, we train another baseline CNN model using the neural networks

proposed in [117]. We train the neural network with exactly the same strategy as dis-

cussed in previous section. The only difference is that the inputs become image/pixel-

based representation with a resolution of 1nm per pixel, and the input size changes

to 320×320 accordingly. As can be seen in the column “JM3 [117]” in Table 2.9, the

image-based input behaves better than Algorithm 2.4 but worse than Algorithm 2.5.

Although the hit count in [121] is quite close to the result of Algorithm 2.5, there are

still significantly larger amount of false alarms.

It can be observed that pixel-based layout is actually a special case of adaptive

squish pattern. If we chose d to be the same as clip size in terms of nm, the matrix

58 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

0.00 0.02 0.04 0.06 0.08 0.10
0.80

0.85

0.90

0.95

1.00

FPR

TP
R

JM3 [117] (AUC=0.9960)
Algorithm 2.4 (AUC=0.9932)
Algorithm 2.5 (AUC=0.9954)

Figure 2.12: Partial receiver operating characteristics of three hotspot detectors.

that represents a clip image will be the optimal solution of Formula (2.45) where all

the entries of δx and δx are one with zero variance. However, larger input size brings

computational cost, requires more storage and equips with redundant information

that are not training friendly.

We also depict the part of the receiver operating characteristic (ROC) of three

models in Figure 2.12. We can observe that three models show good quality in terms

of area under ROC curve (AUC) with Algorithm 2.4 slightly weaker than image-based

solution and Algorithm 2.5, which is coherent with the detection results listed in

Table 2.9. [117] exhibits even better than Algorithm 2.5 in terms of AUC. By analyzing

the detailed data, however, we find that most of the AUC advantages of [117] come

from the region where the decision threshold is above 0.9. That means the model of

[117] shows higher confidence on hotspot patterns that can be correctly predicted by

both classifiers, which explains why [117] does not behave as good as Algorithm 2.5

2.3. MULTI-LAYER HOTSPOT DETECTION 59

in final prediction results as in Table 2.9.

2.3.4 Summary

This section introduces an adaptive layout squish representation which is lossless,

storage friendly, compatible with neural networks and naturally support multilayer

patterns. Such representation is applied in a medium sized convolutional neural net-

works with ResNet blocks. To the best of our knowledge, this is first time multi-

layer layout hotspots are considered in hotspot detector design. Experimental results

show that our framework outperforms a state-of-the-art CNN-based hotspot detector

on both accuracy and false alarm. Future research on reducing false alarms will be

explored to enable the framework to face more challenging EUV design flow.

60 CHAPTER 2. INTELLIGENT HOTSPOT DETECTION

Chapter 3

Intelligent Pattern Sampling

3.1 Introduction

Last chapter shows that although patternmatching-basedmethods andmachine learning-

based methods exhibit different functionalities, they all rely highly on the quality of

reference layout libraries. For example, in-cluster pattern variance directly affects

pattern matching results and pattern diversity contributes to the generality of trained

machine learning models. Layout pattern sampling problems are addressed by sev-

eral works that are, to some extent, related to clustering approaches. Representa-

tive methods include clustering on frequency domain [131, 92], Bayesian clustering

[73], and clustering based on layout topology [13, 14, 92, 41]. However, sampling

and hotspot detection are mostly conducted exclusively which ignores the beneath

integrity between them.

In this chapter, we will introduce an active learning-based framework that can

bridge the gap between the layout pattern sampling procedure and the hotspot de-

tection problem. Active learning targets at machine learning problems with massive

data that is costly and time consuming to label. A major step of active learning is

querying instances to determine whether the instance should be labeled and added

61

62 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

Input Layout Feature extraction
(0, 1, 0, 1.5, …)
(2, 0.5, 1, -1, …)
(1, -1, 0, 0.3, …)
 ……

Training Set Generation

0

1

0 Hotspot
Detection

Figure 3.1: A conventional process of layout hotspot training set and detection model
generation.

into the training set from a perspective of machine learning model generality [87].

Representative querying strategies include uncertainty sampling (US [59]), query by

committee (QBC [29]), and expected model change (EMC [9]). US aims to find the

instances which the prediction model is most uncertain about and have the posterior

probability around 0.5, QBC selects instances based on the disagreement among mul-

tiple classifiers and EMC labels most influential data in terms of the existing model.

A common idea behind these strategies is labeling instances that are hardly distin-

guished by the classifier. However, there are several drawbacks of existing active

learning strategies: (1) only one sample is selected in each iteration in most active

learning flows which is lacking in efficiency; (2) machine learning models have to be

retrained from raw state once the training set is updated; (3) training set diversity

is not considered in sampling flow which might cause serious overfitting problem

[87, 98, 85]. Although Kullback–Leibler (KL) divergence [58] on posterior probabili-

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 63

ties of unlabeled samples can be applied for diversity analysis [12], the effectiveness

is limited on binary classification problems.

To address these concerns, we propose a batch mode active learning method that

considers both model uncertainty and training set diversity for a better hotspot detec-

tion results. We embed the active learning engine into deep neural networks thus data

sampling and incremental model training can be conducted alternatively. Guaranteed

by the on-line property of stochastic gradient descent, we only need to finetune the

neuron weights according to new labeled instances instead of training model from

scratch in each iteration. The rapid development of deep neural networks also makes

it possible to learn representative features from raw image, which becomes another

reason that we pick CNN as our learning engine. We take advantage of this charac-

teristic and construct a diversity matrix of automatically learned features which will

contribute as a partial criterion for data sampling in each iteration.

3.2 Diversity-Aware Layout Pattern Sampling

3.2.1 Preliminaries and Problem Formulation

This section introduces some terminologies and related problem formulation. Through-

out this section, scalers are written as lowercase letters (e.g. x), vectors are bold low-

ercase letters (e.g. x) and matrices are represented as bold uppercase letters (e.g. X).

Particularly, we use Jn(·) to represent the Bessel function of the first kind of order

n. All layout images are with a resolution of 1nm/pixel. The framework evaluation

metrics are defined as follows.

Definition 3.1 (Hit). A hit is defined as when the detector reports hotspot on a clip of

which at least one defect occurs at the core region. We also denote the ratio between

number of hits and total hotpsot clips as detection accuracy.

64 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

Here the detector in this paper refers to a hotspot detector with its input being a

layout clip and its output being a label indicating whether the clip contains manufac-

turing issues.

Definition 3.2 (Extra). An extra is defined as when the detector reports hotspot on a

clip of which no defect occurs at the core region.

Definition 3.3 (Litho-clip). A litho-clip is a pattern in the training set or a pattern that

is labeled hotspot by the machine learning model. The count of litho-clips reflects the

lithography simulation overhead.

According to the evaluation metrics above, we define the problem of layout pat-

tern sampling and hotspot detection (PSHD) as follows.

Problem 3.1 (PSHD). Given a layout design, the objective of PSHD is sampling repre-

sentative clips that will generalize the hotspot pattern space and maximize the machine

learning model generality, i.e., maximizing the detection accuracy while minimizing the

number of litho-clips.

From the definition we can observe that our problem formulation differs from

traditional hotspot detection in previous works. Here we are dealing with a practi-

cal application, where no training set and testing set are given in advance. In short,

we seek to conduct full chip hotspot detection with smallest lithography simulation

overhead. Accordingly, the input of our framework will be full chip layout design

and the outputs include a training set (labeled dataset), a trainedmodel and an un-

labeled dataset. The evaluation metrics of such framework include overall hotspot

detection accuracy (see Equation (3.1))

Acc =
HSTrain +Hits

HSTotal

, (3.1)

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 65

(a) (b) (c)
Sampled Non-Hotspot
Sampled Hotspot
Un-sampled Non-Hotspot
Un-sampled Hotspot

Figure 3.2: Visualization of different layout pattern sampling methods: (a) Pattern
matching; (b) Conventional active learning; (c) Proposed layout pattern sampling.

where HSTrain, Hits and HSTotal denote hotspot number in the training set, cor-

rectly predicted hotspot number in the unlabeled dataset and total hotspot number,

and the lithography overhead as in Equation (3.2),

Litho = Tr + FA, (3.2)

where Tr represents the total number of clips in the training set and FA is the de-

tection false alarm in the unlabeled dataset.

3.2.2 Architectures and Algorithms

In this section, we will discuss the details of our pattern sampling and hotspot de-

tection flow, including initial training set selection, batch active sampling algorithm,

and some mathematical analysis.

Because it is extremely costly to label layout clips, our flow aims to sample as small

number of clips as possible while ensuring good machine learning model generality.

Conventional layout pattern sampling methods conduct clustering on layout clips

and obtain representative patterns based on the results of pattern matching or clus-

tering. Although the clustering can effectively reduce the sample number, it does not

consider the behavior or requirement of, especially, machine learning-based hotspot

detectors. As shown in Figure 3.2(a), pattern matching collects a lot of less critical

66 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

patterns that lie far from the decision boundary while ignoring important patterns.

In conventional active learning-based sampling (see Figure 3.2(b)), prediction uncer-

tainty of each clip is included in the selection criteria. That is, patterns with posterior

probability around 0.5 will be sampled with higher priority. However, in a layout

pattern sampling and hotspot detection task, we care more about hotspot regions.

Therefore, apart from considering diversity of training instances, we tend to select

clips with higher probability being hotspot in our sampling approach, as illustrated

in Figure 3.2(c).

The Flow Summary

The proposed layout pattern sampling and hotspot detection flow is illustrated in

Figure 3.3. To analyze the printability of a full chip design, we dispatch the layout

into clips based on the lithography proximity effect analysis, such that the whole

chip is covered by the core region of each clip that contains enough information to

conduct printability estimation. And then, the training set and the machine learning

model will be updated until convergence, when all the clips will be either labeled or

dropped. Finally, the full chip hotspot detection will be conducted on the dropped

clips with the final learning model. We go through the framework details in the rest

of this section.

Diversity Aware Batch Sampling

Discriminative machine learning models are usually designed to find the optimal hy-

perplane that separates thewhole data space. The quality of amodel ismeasured by its

generative loss which is associated with the prediction error on the future instances.

In this section, we will discuss an instance selection policy considering both model

uncertainty and data diversity, thus the selected instances are expected to contribute

most on the trained model generality. The uncertainty describes how confident of the

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 67

Active Learning
Batch Mode Sample

Selection

Update Training Set

Training Model

Label New Instances

Full Chip Design

Converge? Y
N

Full Chip
Contest Analysis

Figure 3.3: Pattern sampling and hotspot detection flow.

classifier when recognizing new instances. A model is uncertain on a given instance

if the prediction probability draws around 0.5 according to the posterior distribution

or the instance is too close to the hypothesis plane in the feature space. Data diver-

sity corresponds to the instance distribution in the data set. The underneath idea is to

label instances into training set such that the training set entropy is maximized. Most

active learning algorithms, such as US [59], QBC [29] and EMC [9], are designed to

pick one instance in each iteration, which is not efficient as problem sizes grow. Even

these methods are applied for batch selection, samples touch the selection criteria are

labeled into train set, when redundant instance samples are more likely to be chosen.

Here we consider a batch selection mechanism that takes both model uncertainty

and data diversity into account.

Suppose we have a training set Lt and an unlabeled set Ut at time t. Let wt be

the classifier parameters trained on Lt. The objective is to select a batch B with k

points from Ut so that the future learner wk+1, trained on Lt ∪ B, has maximum

generalization capability. Let Y = {0, 1} be the set of possible classes in the problem.

For a given unlabeled layout clip xi, we denote the related posterior probability as

p(y|xi;wt). Usually, the uncertainty of the unlabeled instance xi is defined as the

68 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

entropy of the predicted probabilities, as shown in Equation (3.3).

c(i) = −
∑
j∈Y

p(y = j|xi;wt) log p(y = j|xi;wt). (3.3)

However, in the layout pattern sampling problems, problematic instances are of more

interests. We therefore pick a simple but more practical representation of c(i),

c(i) = p(y = 1|xi;wt), (3.4)

which corresponds to the probability of a given instance being hotspot. Usually, the

redundancy between unlabeled points xi and xj can be calculated through KL di-

vergence, which measures how two training instances differ from each other in a

statistic point of view. In the domain of layout hotspot detection, however, we are

dealing with yes or no problem, which is less informative for diversity analysis. To

benefit the layout analysis problem, we use inner-product of two instances in the

normalized feature space as shown in Equation (3.5).

E(i, j) = x⊤
i xj. (3.5)

We can further formulate the diversity matrix D ∈ Rn×n, whose entries are defined

by Equation (3.5).

Given the matrix D, the batch mode active learning problem is shown in mathe-

matical formulation (3.6), where the objective is to select a batch of points with high

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 69

aggregate uncertainty scores and high divergences among the samples.

min
m

m⊤Dm, (3.6a)

s.t. mi ∈ {0, 1}, ∀i, (3.6b)∑
i

mi = k, ∀i. (3.6c)

Here k is the number of patterns that will be selected into the training set, mi is a

binary variable, andmi = 1 if pattern xi is selected in the batch B. It should be noted

that Formula (3.6) is binary quadratic programming, which is NP-hard. We relax the

integer constrains and derive the following problem,

min
m

m⊤Dm, (3.7a)

s.t. mi ∈ [0, 1], ∀i, (3.7b)∑
i

mi = k, ∀i, (3.7c)

which is a standard quadratic programming problem and can be solved efficiently. It

can be seen here one advantage of the proposed distance metric over KL-divergence

and Euclidean distance is that Equation (3.5) ensures the objectives of (3.6) and (3.7)

to be convex by D ⪰ 0. Finally, the integer solution can be recovered by picking k

largest entries in m.

Layout Pattern Sampling and Hotspot Detection

The rapid development of deep neural networks makes it possible to learn represen-

tative features from raw image and complete effective classification jobs. Therefore,

in this project, we pick up a well designed shallow convolutional neural networks

from [121] as the preferred machine learning model which will be embedded into the

active learning flow. In particular, features obtained from the fully-connected layers

70 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

are fed into Equation (3.5) to calculate the divergence matrix. Most neural networks

are trained with mini-batch gradient descent (MGD), where a random small batch of

training samples are fed into the neural networks to update neuron weights. The on-

line property of MGD makes it easier to update the model on new instances without

retraining the model from scratch compared to traditional support vector machine

or logistic regression. It should be noted that the proposed classification driven ac-

tive learning flow is very general that it can be plugged into any incremental hotspot

detectors.

In most casesD will be extremely large, especially for EUV specific layers, which

makes Formula (3.7) hard to solve. We therefore stochastically sample a subset Ût ⊆

Ut before entering the quadratic programming phase to further reduce the compu-

tational cost. Finally, the neural network can be accordingly updated as wt+1 =

wt +α
∂l

∂wt

. Here α denotes the updating rate and l is the average cross-entropy loss

of sampled instances, defined as follows:

l =
1

k

k∑
i=1

log p(yi = 1|xi;wt). (3.8)

It should be noted that although the neural networks may needmultiple iterations

to finish training, the computational cost is much less than training from a rawmodel.

[121] has shown that biased label is able to provide better trade-offs on hotspot detec-

tion problem during the fine-tune procedure. However, by our observation, stepped

bias significantly disturbs the pre-trained model. We therefore improves this tech-

nique by letting the bias change linearly along with the training step.

Algorithm 3.1 presents the details of the layout pattern sampling flow. The al-

gorithm requires an initial training set L = L0 with labeled patterns, an unlabeled

pattern pool U = U0, number of patterns to be queried n and a standard deviation

σ used to initialize the machine learning models (lines 1–2); we first train an initial

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 71

Algorithm 3.1 Batch Active Sampling
Require: L0,U0, n, σ.
Ensure: w,D.
1: Initialize w ∼ N (0, σ);
2: L ← L0,U ← U0,D ← ∅;
3: w ←Train the machine learning model based on L.
4: while U ̸= ∅ do
5: Û ← Sample n instances with highest probability (predicted with current w)

being hotspot from U ;
6: U ← U\Û ;
7: B ←Select k instances by solving Problem (3.7);
8: L ← L ∪ B;
9: D ← Û\B ∪ D;

10: w ←Update machine learning model based on L;
11: end while
12: return w,D.

machine learning model based on L0 (line 3). In each sampling iteration, we fetch

n instances from U without replacement and form a query set Û (lines 5–6); k in-

stances are sampled into a set B by solving Problem (3.7) (line 7); then k instances

will be added up to the training set and rest n − k instances will be dropped and

accordingly, new training set L, discarded set D and the machine learning model are

updated (lines 7–9). The algorithm ends when the unlabeled instance pool is empty

and returns the trained model and remaining unlabeled patterns to be verified by the

machine learning model.

Initial Training Set Generation

Note that Algorithm 3.1 requires an initial labeled dataset L0 to obtain a pre-trained

model that will be used to extract features for future layout patterns. Thus, L0 is

critical on the performance of the whole flow. Because it is almost impossible to

know which pattern is more likely to have defects at beginning and hotspots are

fetal but rare in layout spaces, we select the initial training set through analyzing

72 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

the distribution of the unlabeled dataset, assuming that hotspots occur with lowest

posterior probabilities.

Details of initial training set generation can be found in Algorithm 3.2 that takes

the unlabeled data set U , the number of principle components nc and the number of

initial sampled instances ni as inputs. We first convert layout patterns into frequency

domain via feature tensor extraction [121] (line 1) followed by one step principle

component analysis for further dimensionality reduction (line 2). A general Gaus-

sian model is established by calculating the mean and the covariance (line 3). We

then calculate the posterior probabilities of the unlabeled data set based on the esti-

mated mean and covariance (lines 4–6). Finally we sample ni instances with smallest

posterior probabilities to form the initial training set (lines 7–9).

Algorithm 3.2 Initial Sampling
Require: U , nc, n, ni.
Ensure: L0,U0.
1: D ←FeatureTensorExtraction(U);
2: F ←PCA(D, nc);
3: µ← 1

n

∑n
i=1 fi,Σ← cov(F);

4: for fi ∈ F , i = 1, 2, ..., n do
5: pi = P (fi;µ,Σ);
6: end for
7: I0 ←Get the indices of ni patterns with smallest posterior probabilities;
8: L0 ← UI0 ,U0 ← U\L0;
9: return L0,U0.

Algorithm Analysis

In this section, we will discuss and analyze some technique details of our proposed

framework. As described in previous section, we relax the integer constraints when

solving the sampling problem Equation (3.6). Because each queried instance will be

sampled or dropped by solving the problem in Equation (3.7), the entries of the op-

timal solution will be rounded into binary values. Here we will analyze the loss of

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 73

optimality of problem Equation (3.7) when reconstructing an integer solution as the

sampling choice, as claimed in Theorem 3.1.

Theorem 3.1. Letm be the optimal solution of Problem (3.7) that is binarized intomb

by setting k largest entries to 1 and rest n− k entries to 0, then

f(m) ≤ f(mb) ≤ 2f(m) + 2λn(k −
k2

n
), (3.9)

where f(x) = x⊤Dx, n is total number of instances in each query iteration, k is the

number of instances that will be sampled into training set and λ1 ≤ λ2 ≤ · · · ≤ λn are

the eigenvalues of D.

Proof. f(m) ≤ f(mb) is trivial, and we will show that f(mb) ≤ 2f(m) + 2λn(k −
k2

n
). According to Equation (3.5), the distance matrixD can be written asD = F⊤F ,

where each column of F is the feature vector of each queried instance, thus D ⪰ 0

and f is convex. By definition,

1

2
f(m) +

1

2
f(mb −m) ≥ f(

1

2
mb), (3.10)

i.e.

1

2
m⊤

b Dmb −m⊤Dm ≤ (mb −m)⊤D(mb −m). (3.11)

By Rayleigh-Ritz theorem [36],

(mb −m)⊤D(mb −m) ≤ λn||mb −m||22. (3.12)

74 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

Claim that

||mb −m||22 ≤ max
y∈T
||mb − y||22

= max
y∈T

min
x∈Tb,y∈T

||x− y||22,
(3.13)

where T = {x ∈ Rn|
∑n

1 xi = k, xi ∈ [0, 1],∀i} and Tb = {x ∈ Rn|
∑n

1 xi =

k, xi ∈ {0, 1},∀i}. Without loss of generality, we assume all the entries of a given y

are placed in an order

1 ≥ yδ1 ≥ yδ2 ≥ · · · ≥ yδn ≥ 0, (3.14)

thus according to the rounding strategy, mb is defined as follows,

mb,i =

1, ∀i ∈ {δ1, δ2, . . . , δk},

0, otherwise.
(3.15)

Then as claimed in Equation (3.13):

||mb − y||22 =
k∑

i=1

(1− yδi)
2 +

n∑
i=k+1

y2δi

= k +
n∑

i=1

y2δi − 2
k∑

i=1

yδi

≤ k +
n∑

i=1

y2δi − 2
k∑

i=1

yηi

= ||x− y||22,∀x ∈ Tb,y ∈ T ,

(3.16)

Consider a right pyramids with a regular base, which has its apex at the origin, Ck
n

edges defined by the vectors defined in Tb and a regular polygon base A lies in the

hyperplane
∑n

i=1 xi = k. As shown in Figure 3.4, ||mb −m||22 reaches its maximum

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 75

P1

P2

(a)

P2

P1

(b)

Figure 3.4: Geometric view ofmb−m. P1 and P2 denote the end points ofm, and in
particular, P2 lies in the center of the base polygon. The solid segments in each figure
represents ||mb −m||22 for a given m.

value when m lies in the center of the pyramid base. That is m = [
k

n
,
k

n
, . . . ,

k

n
]⊤,

and

max
mb,m

||mb −m||22 = k(1− k

n
)2 + (n− k)(

k

n
)2

= k − k2

n
,

(3.17)

which, combined with Equation (3.12), justifies the theorem.

Theorem 3.1 provides a theoretical guidance on choosing proper n and k in the

batch sampling procedure, which can also be intuitively explained by the fact that if

we sampling all or one instances in each querying iteration, we have no risk on the

integer relaxation error, however, at the cost of diversity loss.

3.2.3 Experiments

Our layout pattern sampling and hotspot detection flow is tested on two industrial

benchmark sets: ICCAD12 [101] and ICCAD16 [100].

Table 3.1 lists the benchmark details. To verify the efficiency of our proposed

76 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

method on EUV oriented designs, we shrink ICCAD16 layouts to reach a CD under

7nm technology node as indicated in the column “CD (nm)”. Columns “HS #” and

“NHS #” are numbers of hotspot and non-hotspot clips in each benchmark and “Tech

(nm)” is the technology nodes of each design. ICCAD12 contains five benchmark

sets from [101] with labels which can be directly input to our flow. To verify the

scalability of our algorithm, we also merge all 28nm designs from ICCAD12 into a

much larger dataset ICCAD12-28 with 3728 hotspot patterns and 0.15M non-hotspot

patterns. Very recently, Reddy et al. [80] find that the designs from ICCAD12 may

lack truly never seen before and hard to classify patterns, and hence the dataset is

less effective as an evaluation of machine learning models. Derived from designs

in ICCAD12, they synthesized a new challenging benchmark suit that contains both

28nm and 32nm designs with ∼40% hotspot patterns. Statistics of the new bench-

mark suit are shown as ICCAD19 in Table 3.1. ICCAD16 contains four layouts that

are original designed for fuzzy matching tasks. To locate defects in those layouts, we

apply ASML Tachyon optical proximity correction (OPC) and layout manufactura-

bility checker (LMC) tools on scaled layouts using EUV lithography models for 7nm

Table 3.1: Benchmark Details

Benchmarks CD (nm) HS # NHS # Tech (nm)

ICCAD12-1 45 325 5019 32
ICCAD12-2 45 672 46583 28
ICCAD12-3 45 2717 50976 28
ICCAD12-4 45 272 36342 28
ICCAD12-5 45 67 22043 28
ICCAD12-28 45 3728 155944 28

ICCAD19 - 65778 163680 28/32
ICCAD16-1 16 0 63 7
ICCAD16-2 16 56 967 7
ICCAD16-3 16 1100 3916 7
ICCAD16-4 16 157 1678 7

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 77

1 2 3
90.00

92.00

94.00

96.00

98.00

100.00

(200nm,98.9%)

Clip Size (×D)

Ac
cu

ra
cy

(%
)

(a) Influence of clip size

Clip A Clip B

Core A Core B
230nm

690nm

(b) Clip-based scan

Figure 3.5: Dispatching layouts based on estimated D. Because there is no spacing
and overlapping between adjacent core regions of adjacent clips, each layout is fully
scanned in the sampling and detection flow. Particularly, exact matching has a de-
tection rate of 98.9% with the clip size in the original contest setting.

metal layer. In the LMC stage, we only consider three types of defects that are edge

placement error, bridge and neck which contribute most to circuit failures. Then all

the locations where edge placement error, bridging and necking occur are marked as

defects. To perform efficient and parallel testing, clip-based scan is usually applied in

classic hotspot detection flow, where the clip size and scanning stride are empirically

determined according to the optical diameter (D=230nm) under given lithography

specifications. Figure 3.5(a) shows that fail detected hotspot count of exact pattern

matching reduces to zero as clip size increases to around 3 × D = 690nm that will

be chosen as the clip size in our experiment. It should also be noted that, original

ICCAD16 contains predefined marker layer covering a fraction of the layouts. To con-

duct full chip detection, we manually replaced the original marker layer with a new

layer that contains uniformly distributed markers that cover whole layouts.

According to the estimatedD of 7nm EUV lithography system, we adopt an over-

lapped dispatching method that covers the whole layout with reasonably small clip

size that contains enough information to determine whether the center core region is

hotspot or not. Figure 3.5(b) illustrates the details of the dispatching procedure. We

78 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

use a 690nm× 690nm sliding window to scan the whole layout with scanning stride

being 1
3
of the clip size, which ensures that center 230×230 core regions of each clips

are exactly covering the whole chip. Note that to ensure that clips contain more than

96% information to estimate the printability of their core region, the smallest distance

from the core boundary to the clip boundary is intentionally selected as 230nm. Fur-

thermore, each clip will be marked as hotspot clip if defects occur at its core region as

shown in Figure 3.5(b). Statistics of ICCAD16 benchmarks are also listed in columns

“HS #” and “NHS #”. We can notice that the smallest layout ICCAD16-1 is defect-

free, therefore the case ICCAD16-1 is ignored in following experiments. For the rest

of ICCAD16 cases, ICCAD16-2 has 56 hotspots out of 1023 clips, ICCAD16-3 has 1100

hotspots out of 5016 clips and ICCAD16-4 has 157 hotspots out of 1835 clips. It should

be noted that although layout ICCAD16-4 is much larger than other cases. However,

it is much more regular and a large fraction of the patterns violate EUV direct print

metal layer design. We therefore only extract clips from DRC-clean regions and that

is why the total clip count is less than ICCAD16-3. We can also see the out of expected

behaviors on ICCAD16-4 in the experiments in the following sections.

To accommodate the shallow neural networks and the computational require-

ments, we conduct feature tensor extraction [121] on each clips in all benchmark

cases that convert layout images into reduced frequency domain.

In the first experiment, we will compare the batch active sampling method with

fuzzy matching under different area constraints. The procedures of Algorithm 3.1

on four benchmark sets are depicted in Figure 3.6, where the x-axis represents the

total number of patterns sampled into training set and the y-axis denotes the detec-

tion accuracy. According to the analysis, we avoid choosing the k
n
that results in big

rounding error (i.e. 0.5). Considering that sample count also affects the training per-

formance and the lithography simulation overhead, we pick k = 30, n = 90 in all

benchmarks. On the other hand, because ICCAD12/19 are much larger benchmark

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 79

5,000 10,000 15,000
70.00

85.00

100.00

of Samples

Ac
cu

ra
cy

(%
)

Fuzzy Matching
Active Sampling

(a) ICCAD12-28

400 600 800 1,000

60.00

80.00

100.00

of Samples

Ac
cu

ra
cy

(%
)

(b) ICCAD16-2

1,500 3,000 4,500
80.00

85.00

90.00

95.00

100.00

of Samples

Ac
cu

ra
cy

(%
)

(c) ICCAD16-3

0 500 1,000

0.00

50.00

100.00

of Samples

Ac
cu

ra
cy

(%
)

(d) ICCAD16-4

Figure 3.6: Learning model performance v.s. sampling count. The blue curve is the
reference performance obtained from fuzzy matching with different area constrains
reflected as different sampling count. The red curve shows the sampling results based
on Algorithm 3.1.

80 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

Ta
bl
e
3.2

:F
ul
lc

hi
p
pa

tte
rn

sa
m
pl
in
g
an

d
ho

ts
po

td
et
ec

tio
n
on

IC
CA

D
12

be
nc

hm
ar
ks

.

Be
nc

hm
ar
ks

PM
-e
xa

ct
[1
4]

PM
-a
95

1
2
[1
4]

PM
-a
90

1
2
[1
4]

PM
-e
22

[1
4]

FT
[9
1]

Gr
ee

dy
[1
30

]
O
ur

s
Ac

c(
%)

Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

IC
CA

D1
2-

1
10

0.0
38

39
93

.17
73

2
81

.66
39

8
10

0.0
38

28
68

.31
12

26
99

.08
11

40
99

.70
14

36
IC

CA
D1

2-
2

10
0.0

31
81

2
99

.54
13

09
1

93
.84

57
20

10
0.0

32
60

1
5.9

5
30

24
2.3

6
10

36
97

.42
26

48
IC

CA
D1

2-
3

10
0.0

31
51

3
98

.54
20

90
4

91
.79

93
35

10
0.0

30
76

9
93

.95
92

44
96

.22
10

57
9

96
.55

44
84

IC
CA

D1
2-

4
10

0.0
29

43
8

90
.46

45
27

62
.00

14
11

10
0.0

28
06

7
8.8

2
55

11
82

.35
27

23
95

.64
68

42
IC

CA
D1

2-
5

10
0.0

14
98

8
91

.20
30

45
84

.91
12

04
10

0.0
14

84
9

8.1
5

12
27

91
.30

14
86

94
.12

12
27

IC
CA

D1
2-

28
10

0.0
12

77
46

96
.83

38
87

9
73

.38
15

92
3

10
0.0

12
43

20
32

.14
20

00
0

24
.57

26
94

5
96

.99
82

10
IC

CA
D1

9
99

.93
15

72
38

-
-

-
-

-
-

63
.66

65
16

8
82

.01
86

91
7

96
.30

69
74

3
Av

er
ag

e
99

.99
56

65
3

-
-

-
-

-
-

29
.38

14
98

6
68

.27
18

68
9

96
.67

13
51

2
Ra

tio
1.0

34
4.1

93
-

-
-

-
-

-
0.3

04
1.1

09
0.7

68
1.0

20
1.0

00
1.0

00

1
Ex

pe
rim

en
ts

on
al
lI

CC
AD

12
ca

se
s
ar
e
co

nd
uc

te
d

on
th
e
ce

nt
er

60
0
×

60
0
re
gi
on

of
ea

ch
cl
ip

be
ca

us
e
th
e
ar
ea

co
ns

tra
in
ed

fu
zz
y
m
at
ch

in
g
ca

nn
ot

be
fin

ish
ed

w
ith

in
on

e
w
ee

k
us

in
g
or

ig
in
al

cl
ip

siz
e
of

12
00
×

12
00

.
2
Ex

pe
rim

en
ts

on
IC

CA
D1

9
ca

se
ca

nn
ot

fin
ish

w
ith

gi
ve

n
tim

e
lim

it
ev

en
on

th
e
ce

nt
er

60
0
×

60
0
re
gi
on

of
ea

ch
cl
ip
.

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 81

Ta
bl
e
3.3

:F
ul
lc

hi
p
pa

tte
rn

sa
m
pl
in
g
an

d
ho

ts
po

td
et
ec

tio
n
on

IC
CA

D
16

be
nc

hm
ar
ks

.

Be
nc

hm
ar
ks

PM
-e
xa

ct
[1
4]

PM
-a
95

[1
4]

PM
-a
90

[1
4]

PM
-e
2
[1
4]

FT
[9
1]

Gr
ee

dy
[1
30

]
O
ur

s
Ac

c(
%)

Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

Ac
c(

%)
Li
th
o#

IC
CA

D1
6-

2
10

0.0
10

22
92

.86
71

7
48

.21
32

8
10

0.0
10

22
91

.07
78

2
51

.79
47

5
10

0.0
88

1
IC

CA
D1

6-
3

10
0.0

48
38

99
.64

44
20

96
.73

37
17

99
.91

47
77

86
.18

18
54

73
.82

24
96

99
.74

35
89

IC
CA

D1
6-

4
95

.54
11

34
2.5

5
65

1.9
1

20
78

.34
84

2
50

.32
57

3
50

.32
66

8
98

.09
16

08
Av

er
ag

e
98

.51
23

25
65

.01
17

30
48

.95
13

43
92

.75
21

99
77

.13
98

3
58

.64
12

13
99

.27
20

26
Ra

tio
0.9

92
1.1

47
0.6

55
0.8

54
0.4

93
0.6

63
0.9

34
1.0

85
0.7

77
0.4

85
0.5

91
0.5

99
1.0

00
1.0

00

82 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

Table 3.4: Result comparisonwith conventional active learning solutions on ICCAD12
benchmarks.

Benchmarks US [59] EMC [9] Ours
Acc (%) Litho Acc (%) Litho Acc (%) Litho

ICCAD12-1 98.46 788 98.15 1542 99.70 1436
ICCAD12-2 2.340 1601 2.330 2812 97.42 2648
ICCAD12-3 85.50 2938 75.12 3229 96.55 4484
ICCAD12-4 73.72 2913 90.28 4798 95.64 6842
ICCAD12-5 76.47 908 81.71 2325 94.12 1227
ICCAD12-28 95.92 8642 96.33 11010 96.99 8210

ICCAD19 74.24 32958 69.14 30299 96.30 69743

Average 71.54 7296 72.93 8055 96.67 13512
Ratio 0.684 0.540 0.754 0.596 1.000 1.000

sets that contain more than 150, 000 clips, early stopping is applied in the batch active

sampling procedure, where we pick the maximum sampling number to be 5% of total

instance number in each dataset.

The discrete dots in Figure 3.6 correspond to fuzzy matching results with area

constraints 90%, 95% and 100%, respectively. It can be seen that our batch sampling

converges at a reasonably high detection accuracy on both DUV and EUV specific

layers while requiring much less training instances than exact pattern matching. In

other words, our proposed method can significantly reduce lithography simulation

overhead. Particularly for the case ICCAD12, exact matching samples more than 105

clips among the whole data set, while our method achieves similar results with only

6200 clips. Because our framework adopts CNN as the learning engine, uncertainty

behavior will be introduced byweight initialization and batching sampling. However,

with the help of good weight initialization, reasonable sampling ratio in diversity-

aware sampling (see Section 3.2.2) and dynamic learning rate, we are able to attain a

±5 hits variation cross multiple runs.

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 83

Table 3.5: Result comparisonwith conventional active learning solutions on ICCAD16
benchmarks.

Benchmarks US [59] EMC [9] Ours
Acc (%) Litho Acc (%) Litho Acc (%) Litho

ICCAD16-2 71.43 543 73.21 546 100.0 881
ICCAD16-3 84.60 1939 87.30 1958 99.74 3589
ICCAD16-4 66.03 870 57.69 875 98.08 1608

Average 74.02 1117 72.73 1126 99.27 2026
Ratio 0.746 0.551 0.733 0.556 1.000 1.000

We compare the sampling results on ICCAD12/16/19 with exact/fuzzy match-

ing methods and two recent sampling methods, as listed in Table 3.2 and Table 3.3.

Columns “PM-exact”, “PM-a95”, “PM-a90”, “PM-e2” correspond to the results derived

from pattern matching using a state-of-the-art pattern analysis tool [14], where “PM-

exact” denotes only exactly same patterns can be clustered together, “PM-a95” and

“PM-a90” refer to any clips that satisfy 95% and 90% area constraints are clustered

together and “PM-e2” groups clips with less than 2nm edge displacements. Here the

area and edge constraints are defined following [100]. Column “FT” lists the result of

clustering on frequency domain of layout patterns that is similar to the flow proposed

in [91]. Column “Litho#” denotes the number of clips being labeled according to the

lithography simulation results, including the clips sampled into training sets and all

the detection extras.

“PM-exact”, as the reference method, shows 100% accuracy on all test cases ex-

cept for ICCAD16-4. According to the lithography simulation results of the layout in

ICCAD16-4, we notice all defects appear at the patterns belong to a different design

space, which possibly makes the lithography model and optical proximity analysis

inaccurate. Therefore, we observe minor prediction error and extra on ICCAD16-4.

The result also shows exact pattern matching can achieve extremely high verification

84 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

accuracy, however, at the cost of simulating and labeling a large fraction clip patterns

in the whole dataset. On the contrary, the proposed batch sampling method achieves

similar detection accuracy querying only 7% of total layout clips for ICCAD-12 and

300 less clips on average for ICCAD-16 compared to the best baseline “PM-exact”.

In particular, our method shows even higher detection accuracy on ICCAD16-4 than

exact pattern matching because of the effective gaussian initial sampling, which also

demonstrates our assumption holds in Algorithm 3.2. It should be noted that it is nor-

mal that the instances in a training set is not completely separable, which explains

why our method behaves even better than exact pattern matching. We can also ob-

serve that our algorithm behaves much better on ICCAD12 than ICCAD16, which can

be explained by the fact that ICCAD12 contains more than 10× sample candidates that

fits our algorithm better.

For three fuzzy matching options, varies area or edge constraints offers differ-

ent level of trade-offs between verification performance and lithography overhead.

“PM-a95” and “PM-e2” can still maintain good prediction accuracy on ICCAD16-2 and

ICCAD16-3 with slightly less litho count, but the total number of labeled instances is

still much larger than our method. Moreover, fuzzy matching fails to extract prob-

lematic instances on a more difficult testcase ICCAD16-4 with looser constraints that

they all reach less than 50% prediction accuracy. Experiments on ICCAD19 also man-

ifest the scalability issue of fuzzy matching solutions. As can be seen, area or edge

displacement constrained fuzzy matching cannot be done within days when the de-

sign pool is extremely large and with complicated patterns. It should be noted that

we did not further narrow down the matching window, because matching on regions

much smaller than the estimated optical diameter does not make sense for hotspot

detection purpose.

[91] proposes to use frequency domain representation to sample layout patterns

with similar property and detect hotspots. Here we conduct additional experiments

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 85

10 50 100 200 300 400

75

100
Ac

cu
ra
cy

(%
)

(a) Accuracy (%)

10 50 100 200 300 400

3.5

4

·103

Li
th
o
#

(b) Litho #

Figure 3.7: Influence of initial sampling size.

by clustering layout clips based on their Fourier Transform results. Clips closest to

a cluster center will be selected as the representative clip that indicates the prop-

erty of the whole cluster. By the results in the column “FT”, we can observe that

with similar sampling number, batch active sampling exhibits much better than fre-

quency domain clustering. We also conduct an experiment using greedy sampling

method [130] where each instance being predicted as hotspot will be incrementally

added into the training set. Although greedy sampling method can successfully select

partial hotspot clips in some test cases, the performance is highly affected by the ini-

tial learning model, where prediction error will be gradually amplified in the greedy

sampling procedure. As listed in “Greedy”, the greedy method [130] only achieves

∼60% average detection accuracy on ICCAD16, ∼74% average detection accuracy on

ICCAD12, and ∼80% on ICCAD19.

To show that the proposed sampling solution is efficiently and carefully designed

for layout printabilility estimation purpose, we also compare the pattern sampling

and hotspot detection results with two popular active learning solutions US [59] and

EMC [9]. Both algorithms are implemented and integrated into our deep learning

framework. As shown in Table 3.4 and Table 3.5, our method exhibits obvious ad-

86 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

PM
-ex

act
PM

-a9
5
PM

-a9
0
PM

-e2 FT
Gre

edy US EM
C

Ou
rs

0

1

2

3

·105

se
co

nd
s

Figure 3.8: Runtime comparison among different solutions. “PM-xx”s are conducted
on 10-core Intel E7-4830v2 with 512GB memory. “FT”, “Greedy”, “US”, “EMC” and
“Ours” are deep learning based flows that are tested on a GPU platform with one
GeForce GTX 1080Ti, one Intel i9-7900X and 64GB memory.

vantage on detection accuracy on ICCAD12, ICCAD16 and ICCAD19 cases over US and

EMC, and the weak accuracy behavior makes the lithography overhead advantage

of US and EMC trivial. We can also observe that the performance gap is narrowed

on the ICCAD12. It can be explained by that the ICCAD12 benchmark is not a full

chip design and are delivered with clips that are diverse in hotspot and non-hotspot

patterns. Thus, most sampling methods will work and the deep learning model domi-

nates the performance. Different trade-offs of US and EMC on ICCAD12 is a reflection

of sampling mechanisms in two methods. Although US and EMC behave reasonably

good on ICCAD12-28, their drawbacks can be easily seen when patterns are becom-

ing complicated, which is consistent with the results on ICCAD19 (72.4% of US and

69.14% of EMC compared to 96.3% of our approach). We did not implement QBC [29]

in this work, because QBC requires ensemble learning engines which is not directly

compatible with our deep learning-based framework.

Intuitively, the final prediction results are to be also sensitive to the number of

instances sampled in the initial sampling stage. In this experiment, we study the

3.2. DIVERSITY-AWARE LAYOUT PATTERN SAMPLING 87

influence of different initial sampling sizes. Here we use ICCAD16-3 as an example

and conduct our PSHDflowwith different initial sampling size, as shown in Figure 3.7.

It can be seen that initial sampling size does not cause much variations in prediction

accuracy due to our diversity-aware sampling strategy. The only difference comes

from lithography overhead that a reasonably large initial sampling size will efficiently

reduce the lithography overhead.

In real backend layout verification flow, almost all the computation and runtime

overhead come from lithography simulation. Here we assume a 10s penalty on each

litho-clip in our framework as in [130]. The overall runtime is then evaluated by

the summation of simulation penalty and PSHD overhead. As shown in Figure 3.8,

the proposed framework is much more efficient than existing solutions without any

performance degradation.

3.2.4 Summary

A layout pattern sampling and hotspot detection flow is proposed to adaptively sam-

ple layout patterns into a pattern library that is used to train a machine learning

model for layout hotspot detection. The diversity-aware batch sampling and the in-

teractive optimization of learningmodel can efficiently select interesting patterns and

ensure a better model generality. Experiments show that the proposed framework is

able to achieve similar detection accuracy requiring much smaller number of labeled

patterns, which reduces lithography simulation overhead by a significant amount.

88 CHAPTER 3. INTELLIGENT PATTERN SAMPLING

Chapter 4

Intelligent Pattern Generation

4.1 Introduction

VLSI layout patterns provide critic resources in various design for manufacturability

(DFM) researches, from (1) early technology node development to (2) back-end design

and sign-off flows [97]. The former includes perfection of design rules [108], OPC

recipes [97], lithography models [62] and so on, which require design patterns. The

latter covers, but is not limited to, layout hotspot detection and correction [117, 53,

120, 93, 119, 32, 115], linking to both design and mask patterns.

Design patterns usually come from long logic-to-chip design cycle that results in

shortage of pattern libraries for DFM researches/solutions. Even some test layouts

can be synthesized within a short period, they are usually restricted by certain design

rules and the generated pattern diversity is limited [114, 62]. One state-of-the-art in-

dustrial pattern generation solution is migration from older technology node designs

[133], where seed patterns are selected from the process weak points in older designs

and shrunk by a scale factor to match current design rules. However, such flow is

no longer applicable when there are large gaps between design nodes. An example is

that 7nm EUV designs contain all unidirectional shapes while patterns are still 2D in

89

90 CHAPTER 4. INTELLIGENT PATTERN GENERATION

previous design nodes [10]. Monte Carlo shape generation is another approach that is

typically applied industry-wide to generate metal layer patterns for lithography and

OPC research. In this method, shapes are randomly created and placed on a given

region according to certain geometry constraints, which, to some extent, limits the

pattern library diversity created with the flow [111].

Mask patterns are generated with mask optimization flows, aiming at compen-

sating lithography proximity effects when transferring design patterns on silicon

wafers. Mask optimization methodologies include model-based techniques [5, 57,

96, 125, 76, 126, 96, 6] and inverse lithography-based technique (ILT) [77, 30, 67, 107].

In model-based OPC flows, pattern edges are fractured into segments which are then

shifted/corrected according to mathematical models. A high printability mask can

then be obtained with sub-resolution assist features (SRAF) [102]. Awad et al. [5] pro-

pose a pattern fidelity aware mask optimization algorithm that optimizes core poly-

gons by simultaneously shifting adjacent segmentation. Su et al. [96] significantly

accelerate the OPC flow by extracting representative process corners while main-

taining a good wafer image quality. However, model-based OPC flows are highly

restricted by their solution space and hence lacking in reliability for complicated de-

signs. On the other hand, ILTs minimize the error between the wafer image and the

target with lithography constraints. Because ILTs conduct pixel-based optimization

on layout masks, they are expected to offer better lithography contour quality, which

although comes with additional challenges on mask manufacturability problems in-

cluding manufacturing cost and mask design rules. Recently, Ma et al. [67] adopt

ILT to simultaneously perform mask optimization and layout decomposition that

brings a better solution of multiple patterning mask design. Although the model-

based method and the ILT-based method behave well on a variety of designs, they

take the wafer image as a mask update criterion in each iteration of the OPC process.

In other works, multiple rounds of lithography simulation are indispensable in the

4.2. TEST LAYOUT GENERATION 91

Pitch T2T Width Length

Figure 4.1: Layout geometry and critical dimensions.

optimization flow which is drastically time consuming.

Generative machine learning models have been widely studied on computer vi-

sion related tasks like image synthesis [38, 64] and scene transformation [132, 74]

by extracting and understanding feature distributions. In EDA area, such architec-

ture and its variations have also been successfully applied in lithography simulation

[123], mask optimization [113, 33, 2] and on-chip sensor placement [63]. In this chap-

ter, we will introduce two series of generative machine learning models for pattern

generation: the TCAE family for design pattern generation and the GAN-OPC family

for mask optimization.

4.2 Test Layout Generation

4.2.1 Preliminaries and Problem Formulation

In this section, we introduce some geometry concepts to accommodate layout design

rules and the pattern generation flow. Because in this paper we focus on 7nm EUV

metal layer designs which contains only unidirectional on-track shapes, following

terms are accordingly adopted to quantize pattern shapes and positions, as depicted

in Figure 4.1. Pitch, denoted as p, measures the distance between two adjacent tracks

that contain shapes. T2T, denoted as t, measures the line-end-to-line-end distance

between two adjacent shapes in a track. Wire length l and width w measure the

shape size along and against the design track, respectively. In order for a pattern to

92 CHAPTER 4. INTELLIGENT PATTERN GENERATION

be DRC-clean, these measurements will be constrained by some design rules.

All shape edges in a fixed-sizewindow are alignedwith x-axis and y-axis. If we ex-

tend all horizontal and vertical edges infinitely into scan lines, more non-overlapping

scan lines always come with more complex patterns. We hence define the complexity

of a layout pattern as follows.

Definition 4.1 (Pattern Complexity). The complexity of a pattern in x and y directions

(denoted as cx and cy) are defined as the number of scan lines subtracted by one along

x-axis and y-axis, respectively.

We also introduce the concept of pattern diversity (denoted asH) to measure how

are the pattern complexities distributed in a given library. A larger H implies the

library contains patterns that are more evenly distributed, as in the following defini-

tion.

Definition 4.2 (Pattern Diversity). The diversity of a pattern library is given by the

Shannon Entropy [89] of the pattern complexity sampled from the library, as shown in

Equation (4.1),

H = −
∑
i

∑
j

P (cxi, cyj) logP (cxi, cyj), (4.1)

where P (cxi, cyj) is the probability of a pattern sampled from the library has complexi-

ties of cxi and cyj in x and y directions respectively.

With above definitions, the pattern generation problem can be formulated as fol-

lows.

Problem 4.1 (Pattern Generation). Given a set of layout design rules, the objective of

pattern generation is to generate a pattern library such that the pattern diversity and the

number of unique DRC-clean patterns in the library is maximized.

4.2. TEST LAYOUT GENERATION 93

4.2.2 Architectures and Algorithms

Generating layout patterns is extremely challenging for learning machines as design

rules are usually not friendly to most machine learningmodels. We therefore simplify

the problem into two stages with the aid of squish patterns [34]. We first deal with

the topology generation problem and then establish a linear system to finalize the

pattern generation flow with proper geometry vectors.

Squish Pattern Simplifies Pattern Generation

Let recall that squish pattern is a scan line-based representation that each layout clip

is cut into grids aligned at all shape edges, as illustrated in Figure 2.11. From the

squish pattern extraction procedure, we can also easily obtain the following lemma.

Lemma 4.1. Squish pattern representation is lossless.

Now the problem becomes generating legal topologies and solving associated δxs

and δys that are much easier than directly generating DRC-clean patterns. The ad-

vantages of squish patterns are two-fold: (1) Squish patterns are storage-efficient and

supports neural networks and other machine learning models. (2) Squish patterns

are naturally compatible with the simplified pattern generation flow that will be dis-

cussed in following sections.

Topology Generation

In this paper, we propose a TCAE architecture that aims at efficient pattern topology

T generation. The TCAE is derived from original transforming auto-encoders (TAEs)

[46] which are a group of densely connected auto-encoders and each individual, re-

ferred as a capsule, is targeting on certain image-to-image transformations. Each

capsule employs a recognition unit and a generation unit to capture a pose position

and re-synthesize the translated object, respectively. The translation is defined on a

94 CHAPTER 4. INTELLIGENT PATTERN GENERATION

conv, 5x5x128

conv, 5x5x256

fc, 1024

fc, 32

fc, 1024

fc, 4x4x256

dconv, 5x5x128

dconv, 5x5x1

recognition:f
generation:g

latent

l1, l2, ..., l32
<latexit sha1_base64="MLoGtKeplcJNPVOJta2hQkYo2Bk=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksQhclJKmgy4IblxXsBdoQJtNpO3RyYWYilFDwVdy4UMStz+HOt3HSZqGtPwx8/Occzpk/SDiTyra/jdLG5tb2Tnm3srd/cHhkHp90ZJwKQtsk5rHoBVhSziLaVkxx2ksExWHAaTeY3ub17iMVksXRg5ol1AvxOGIjRrDSlm+ecd+pI+67dWRZVk5Zw537ZtW27IXQOjgFVKFQyze/BsOYpCGNFOFYyr5jJ8rLsFCMcDqvDFJJE0ymeEz7GiMcUulli/Pn6FI7QzSKhX6RQgv390SGQylnYaA7Q6wmcrWWm//V+qka3XgZi5JU0YgsF41SjlSM8izQkAlKFJ9pwEQwfSsiEywwUTqxig7BWf3yOnRcy2lY7v1VtVkr4ijDOVxADRy4hibcQQvaQCCDZ3iFN+PJeDHejY9la8koZk7hj4zPHyjKkvY=</latexit>

(a) Training

conv, 5x5x128

conv, 5x5x256

fc, 1024

fc, 32

fc, 1024

fc, 4x4x256

dconv, 5x5x128

dconv, 5x5x1

recognition:f
generation:g

perturbed
latent

�l
<latexit sha1_base64="bZO23oMug5L5l5ANNi4OXqU9LJo=">AAACO3icbVC7SgNBFJ31GeMzWljYDAYhVdhVQUtBC8sIRoXsKrOzN8mQeSwzs5Gw7H/Y6n/4IdZ2YmvvbJLCqAcGDufcy5x74pQzY33/zZubX1hcWq6sVFfX1jc2t2rbN0ZlmkKbKq70XUwMcCahbZnlcJdqICLmcBsPzkv/dgjaMCWv7SiFSJCeZF1GiXXSfXgB3BIcDoHmvHjYqvtNfwz8lwRTUkdTtB5q3m6YKJoJkJZyYkwn8FMb5URbRjkU1TAzkBI6ID3oOCqJABPl49gFPnBKgrtKuyctHqs/N3IijBmJ2E0KYvvmt1eK/3rMqFlPg4RHqoQgMsnLY4tOEOVhrHhSfqB4Xg+KAs/Gtd3TKGcyzSxIOknbzTi2CpdF4oRpoJaPHCFUM3cwpn2iCbWu7qqrMvhd3F9yc9gMjpqHV8f1s8a01AraQ/uogQJ0gs7QJWqhNqJIoyf0jF68V+/d+/A+J6Nz3nRnB83A+/oGN96tnw==</latexit>

l1, l2, ..., l32
<latexit sha1_base64="MLoGtKeplcJNPVOJta2hQkYo2Bk=">AAAB/nicbZDLSsNAFIZP6q3WW1RcuRksQhclJKmgy4IblxXsBdoQJtNpO3RyYWYilFDwVdy4UMStz+HOt3HSZqGtPwx8/Occzpk/SDiTyra/jdLG5tb2Tnm3srd/cHhkHp90ZJwKQtsk5rHoBVhSziLaVkxx2ksExWHAaTeY3ub17iMVksXRg5ol1AvxOGIjRrDSlm+ecd+pI+67dWRZVk5Zw537ZtW27IXQOjgFVKFQyze/BsOYpCGNFOFYyr5jJ8rLsFCMcDqvDFJJE0ymeEz7GiMcUulli/Pn6FI7QzSKhX6RQgv390SGQylnYaA7Q6wmcrWWm//V+qka3XgZi5JU0YgsF41SjlSM8izQkAlKFJ9pwEQwfSsiEywwUTqxig7BWf3yOnRcy2lY7v1VtVkr4ijDOVxADRy4hibcQQvaQCCDZ3iFN+PJeDHejY9la8koZk7hj4zPHyjKkvY=</latexit>

(b) Testing

Figure 4.2: Architecture of transforming convolutional auto-encoder in (a) training
phase and (b) testing phase.

regular coordination system that will be added up to the original pose position before

fed into the generation unit. In the training phase, neuron weights are updated by

backpropagating the differences between the output image and the actual translated

image given the translation information. After the neural network is trained, it takes

inputs of an image and translation information and outputs the image with desired

shifts. Such architecture agrees with the pattern generation tasks in the following

aspects. (1) Feature instantiation attains data set domain properties. (2) All capsules

contribute together to produce variations of any input objects. Although such archi-

tecture can capture the feature characteristics from original object pixel intensities,

TAEs cannot be directly applied for pattern generation due to the fact that transfor-

mations are restricted by layout design rules and only very simple pose transformations

4.2. TEST LAYOUT GENERATION 95

are supported by original TAEs, which does not satisfy our pattern generation objectives.

Observe that each capsule unit functions similarly as independent receptive field

in convolutional layers, we develop the TCAE architecture for feature learning and

pattern reconstruction, as shown in Figure 4.2. The detection unit in TCAE consists of

multiple convolutional layers for hierarchical feature extraction, followed by several

densely connected layers as an instantiation of the input pattern in the latent vector

space, as in Equation (4.2).

l = f(T ;Wf), (4.2)

where l is the latent vector, T represents the input topology and Wf contains all the

trainable parameters associated with the recognition unit. The latent vector works

similarly as a group of capsule units with each node being an low level feature repre-

sentation. We will show each latent vector node contributes to pattern shape globally

or locally in the experiment section.

The generation unit contains deconvolutional layers [25] that cast the pattern ob-

ject from the latent vector space back to the original pattern space, as in Equation (4.3).

T ′ = g(l +∆l;Wg), (4.3)

where∆l is the perturbation applied on the latent vector that allows inputs to conduct

transformations. During training, we force the TCAE to learn an identity mapping

with the following objectives.

min
Wf ,Wg

||T − T ′||2, s.t. ∆l = 0. (4.4)

The TCAE-based framework differs from TAEs in the following aspects.

96 CHAPTER 4. INTELLIGENT PATTERN GENERATION

Bow-tie 2D Shape Cross tracks

Figure 4.3: Illegal topology examples.

• We replace the group capsules with a simpler latent vector that contains feature

nodes that connect to different receptive fields in the early convolutional layers

and hence can represent certain part-whole feature instantiation.

• The transformation in our framework applies directly on the latent vector space

that promises a much larger diversity of the generated patterns compared to the

limited transformation on the coordinate system only in TAEs.

• Identity mapping in the training phase helps the TCAE capture the design rule

properties of existing patterns.

Once the TCAE is trained, we can adopt the flow in Figure 4.2(b) to generate pat-

tern topologies from perturbed latent vector space of existing layout patterns. During

the inference phase, we feed a group of squish topologies into the trained recognition

unit that extract latent vector instantiations of existing topologies. Perturbation on

the latent vector space is expected to expand the existing pattern library with legal

topologies. We claim the following assumption.

Assumption 4.1. The latent vector space offers richer information and each latent vec-

tor node represents patten geometry locally or globally, e.g., some vector nodes may con-

trol shape sizes while some others may control shape positions.

A straightforward perturbation approach is combining existing topologies in the

latent vector space, which is expected to fill certain region of a given pattern library.

4.2. TEST LAYOUT GENERATION 97

T1
<latexit sha1_base64="Rc3Gi5Q36BarX7gTPL4E1b63urs=">AAACEnicbZDNSsNAFIVv/K31r+rSzWARXEhJRNBlwY3LCv2DNpbJdNIOnUzCzI1QQt/ChVt9DHfi1hfwKXwFp20WtvXCwMc598KZEyRSGHTdb2dtfWNza7uwU9zd2z84LB0dN02casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo7up33ri2ohY1XGccD+iAyVCwSha6bEbURwGocCsPul5vVLZrbizIavg5VCGfGq90k+3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdywqGnHjZ7PUE3JulT4JY22fQjJT/15kNDJmHAV2c5rSLHtT8V9PmHjBW4yB4a2fCZWkyBWbpwhTSTAm035IX2jOUI4tUKaF/QhhQ6opQ9ti0TbkLfexCs2rimf54bpcvcy7KsApnMEFeHADVbiHGjSAgYYXeIU359l5dz6cz/nqmpPfnMDCOF+/XLOd/Q==</latexit><latexit sha1_base64="Rc3Gi5Q36BarX7gTPL4E1b63urs=">AAACEnicbZDNSsNAFIVv/K31r+rSzWARXEhJRNBlwY3LCv2DNpbJdNIOnUzCzI1QQt/ChVt9DHfi1hfwKXwFp20WtvXCwMc598KZEyRSGHTdb2dtfWNza7uwU9zd2z84LB0dN02casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo7up33ri2ohY1XGccD+iAyVCwSha6bEbURwGocCsPul5vVLZrbizIavg5VCGfGq90k+3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdywqGnHjZ7PUE3JulT4JY22fQjJT/15kNDJmHAV2c5rSLHtT8V9PmHjBW4yB4a2fCZWkyBWbpwhTSTAm035IX2jOUI4tUKaF/QhhQ6opQ9ti0TbkLfexCs2rimf54bpcvcy7KsApnMEFeHADVbiHGjSAgYYXeIU359l5dz6cz/nqmpPfnMDCOF+/XLOd/Q==</latexit><latexit sha1_base64="Rc3Gi5Q36BarX7gTPL4E1b63urs=">AAACEnicbZDNSsNAFIVv/K31r+rSzWARXEhJRNBlwY3LCv2DNpbJdNIOnUzCzI1QQt/ChVt9DHfi1hfwKXwFp20WtvXCwMc598KZEyRSGHTdb2dtfWNza7uwU9zd2z84LB0dN02casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo7up33ri2ohY1XGccD+iAyVCwSha6bEbURwGocCsPul5vVLZrbizIavg5VCGfGq90k+3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdywqGnHjZ7PUE3JulT4JY22fQjJT/15kNDJmHAV2c5rSLHtT8V9PmHjBW4yB4a2fCZWkyBWbpwhTSTAm035IX2jOUI4tUKaF/QhhQ6opQ9ti0TbkLfexCs2rimf54bpcvcy7KsApnMEFeHADVbiHGjSAgYYXeIU359l5dz6cz/nqmpPfnMDCOF+/XLOd/Q==</latexit><latexit sha1_base64="Rc3Gi5Q36BarX7gTPL4E1b63urs=">AAACEnicbZDNSsNAFIVv/K31r+rSzWARXEhJRNBlwY3LCv2DNpbJdNIOnUzCzI1QQt/ChVt9DHfi1hfwKXwFp20WtvXCwMc598KZEyRSGHTdb2dtfWNza7uwU9zd2z84LB0dN02casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo7up33ri2ohY1XGccD+iAyVCwSha6bEbURwGocCsPul5vVLZrbizIavg5VCGfGq90k+3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdywqGnHjZ7PUE3JulT4JY22fQjJT/15kNDJmHAV2c5rSLHtT8V9PmHjBW4yB4a2fCZWkyBWbpwhTSTAm035IX2jOUI4tUKaF/QhhQ6opQ9ti0TbkLfexCs2rimf54bpcvcy7KsApnMEFeHADVbiHGjSAgYYXeIU359l5dz6cz/nqmpPfnMDCOF+/XLOd/Q==</latexit>

T2
<latexit sha1_base64="DzZuMFMIutEhnNMA8oEMc2NeNso=">AAACEnicbZDNSgMxFIUz9a/Wv6pLN8EiuJAyUwRdFty4rNA/aMeSSTNtaCYZkjtCGfoWLtzqY7gTt76AT+ErmGlnYVsvBD7OuRdOThALbsB1v53CxubW9k5xt7S3f3B4VD4+aRuVaMpaVAmluwExTHDJWsBBsG6sGYkCwTrB5C7zO09MG65kE6Yx8yMykjzklICVHvsRgXEQckibs0FtUK64VXc+eB28HCoon8ag/NMfKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnkVJImb8dJ56hi+sMsSh0vZJwHP170VKImOmUWA3s5Rm1cvEfz1u1JK3HAPCWz/lMk6ASbpIESYCg8JZP3jINaMgphYI1dx+BNMx0YSCbbFkG/JW+1iHdq3qWX64rtSv8q6K6Aydo0vkoRtUR/eogVqIIo1e0Ct6c56dd+fD+VysFpz85hQtjfP1C15Unf4=</latexit><latexit sha1_base64="DzZuMFMIutEhnNMA8oEMc2NeNso=">AAACEnicbZDNSgMxFIUz9a/Wv6pLN8EiuJAyUwRdFty4rNA/aMeSSTNtaCYZkjtCGfoWLtzqY7gTt76AT+ErmGlnYVsvBD7OuRdOThALbsB1v53CxubW9k5xt7S3f3B4VD4+aRuVaMpaVAmluwExTHDJWsBBsG6sGYkCwTrB5C7zO09MG65kE6Yx8yMykjzklICVHvsRgXEQckibs0FtUK64VXc+eB28HCoon8ag/NMfKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnkVJImb8dJ56hi+sMsSh0vZJwHP170VKImOmUWA3s5Rm1cvEfz1u1JK3HAPCWz/lMk6ASbpIESYCg8JZP3jINaMgphYI1dx+BNMx0YSCbbFkG/JW+1iHdq3qWX64rtSv8q6K6Aydo0vkoRtUR/eogVqIIo1e0Ct6c56dd+fD+VysFpz85hQtjfP1C15Unf4=</latexit><latexit sha1_base64="DzZuMFMIutEhnNMA8oEMc2NeNso=">AAACEnicbZDNSgMxFIUz9a/Wv6pLN8EiuJAyUwRdFty4rNA/aMeSSTNtaCYZkjtCGfoWLtzqY7gTt76AT+ErmGlnYVsvBD7OuRdOThALbsB1v53CxubW9k5xt7S3f3B4VD4+aRuVaMpaVAmluwExTHDJWsBBsG6sGYkCwTrB5C7zO09MG65kE6Yx8yMykjzklICVHvsRgXEQckibs0FtUK64VXc+eB28HCoon8ag/NMfKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnkVJImb8dJ56hi+sMsSh0vZJwHP170VKImOmUWA3s5Rm1cvEfz1u1JK3HAPCWz/lMk6ASbpIESYCg8JZP3jINaMgphYI1dx+BNMx0YSCbbFkG/JW+1iHdq3qWX64rtSv8q6K6Aydo0vkoRtUR/eogVqIIo1e0Ct6c56dd+fD+VysFpz85hQtjfP1C15Unf4=</latexit><latexit sha1_base64="DzZuMFMIutEhnNMA8oEMc2NeNso=">AAACEnicbZDNSgMxFIUz9a/Wv6pLN8EiuJAyUwRdFty4rNA/aMeSSTNtaCYZkjtCGfoWLtzqY7gTt76AT+ErmGlnYVsvBD7OuRdOThALbsB1v53CxubW9k5xt7S3f3B4VD4+aRuVaMpaVAmluwExTHDJWsBBsG6sGYkCwTrB5C7zO09MG65kE6Yx8yMykjzklICVHvsRgXEQckibs0FtUK64VXc+eB28HCoon8ag/NMfKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnkVJImb8dJ56hi+sMsSh0vZJwHP170VKImOmUWA3s5Rm1cvEfz1u1JK3HAPCWz/lMk6ASbpIESYCg8JZP3jINaMgphYI1dx+BNMx0YSCbbFkG/JW+1iHdq3qWX64rtSv8q6K6Aydo0vkoRtUR/eogVqIIo1e0Ct6c56dd+fD+VysFpz85hQtjfP1C15Unf4=</latexit>

(a) Origin
↵ = 0.8

<latexit sha1_base64="VYRAylFGV5NgPkPu8A9mEECKXIA=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGRHsRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0K0HKRJwYKsg8RT/hrpHutBu3xxQlho8tIFHMfsQlQ1RIjG2wYBvyl/tYhcZl2bd8f1WqXmRd5eEETuEcfLiGKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv7C+bgw==</latexit><latexit sha1_base64="VYRAylFGV5NgPkPu8A9mEECKXIA=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGRHsRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0K0HKRJwYKsg8RT/hrpHutBu3xxQlho8tIFHMfsQlQ1RIjG2wYBvyl/tYhcZl2bd8f1WqXmRd5eEETuEcfLiGKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv7C+bgw==</latexit><latexit sha1_base64="VYRAylFGV5NgPkPu8A9mEECKXIA=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGRHsRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0K0HKRJwYKsg8RT/hrpHutBu3xxQlho8tIFHMfsQlQ1RIjG2wYBvyl/tYhcZl2bd8f1WqXmRd5eEETuEcfLiGKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv7C+bgw==</latexit><latexit sha1_base64="VYRAylFGV5NgPkPu8A9mEECKXIA=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGRHsRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0K0HKRJwYKsg8RT/hrpHutBu3xxQlho8tIFHMfsQlQ1RIjG2wYBvyl/tYhcZl2bd8f1WqXmRd5eEETuEcfLiGKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv7C+bgw==</latexit>

↵ = 0.6
<latexit sha1_base64="uovXqrsSC9IKsd7dop/bvOng/aM=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QSL4ELKjIi6EQpuXFawP9gO5U6aaUMzmSHJCKX0HVy41cdwJ259BZ/CVzBtZ2FbLwQ+zrkXTk6QCK6N6347uZXVtfWN/GZha3tnd6+4f1DXcaooq9FYxKoZoGaCS1Yz3AjWTBTDKBCsEQxuJ37jiSnNY/lghgnzI+xJHnKKxkqPbRRJH2/c8mWnWHLL7nTIMngZlCCbaqf40+7GNI2YNFSg1i3PTYw/QmU4FWxcaKeaJUgH2GMtixIjpv3RNPGYnFilS8JY2ScNmap/L0YYaT2MArsZoenrRW8i/utxHc958zFMeO2PuExSwySdpQhTQUxMJt2QLleMGjG0gFRx+xFC+6iQGttgwTbkLfaxDPXzsmf5/qJUOcu6ysMRHMMpeHAFFbiDKtSAgoQXeIU359l5dz6cz9lqzsluDmFunK9f6O2bgQ==</latexit><latexit sha1_base64="uovXqrsSC9IKsd7dop/bvOng/aM=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QSL4ELKjIi6EQpuXFawP9gO5U6aaUMzmSHJCKX0HVy41cdwJ259BZ/CVzBtZ2FbLwQ+zrkXTk6QCK6N6347uZXVtfWN/GZha3tnd6+4f1DXcaooq9FYxKoZoGaCS1Yz3AjWTBTDKBCsEQxuJ37jiSnNY/lghgnzI+xJHnKKxkqPbRRJH2/c8mWnWHLL7nTIMngZlCCbaqf40+7GNI2YNFSg1i3PTYw/QmU4FWxcaKeaJUgH2GMtixIjpv3RNPGYnFilS8JY2ScNmap/L0YYaT2MArsZoenrRW8i/utxHc958zFMeO2PuExSwySdpQhTQUxMJt2QLleMGjG0gFRx+xFC+6iQGttgwTbkLfaxDPXzsmf5/qJUOcu6ysMRHMMpeHAFFbiDKtSAgoQXeIU359l5dz6cz9lqzsluDmFunK9f6O2bgQ==</latexit><latexit sha1_base64="uovXqrsSC9IKsd7dop/bvOng/aM=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QSL4ELKjIi6EQpuXFawP9gO5U6aaUMzmSHJCKX0HVy41cdwJ259BZ/CVzBtZ2FbLwQ+zrkXTk6QCK6N6347uZXVtfWN/GZha3tnd6+4f1DXcaooq9FYxKoZoGaCS1Yz3AjWTBTDKBCsEQxuJ37jiSnNY/lghgnzI+xJHnKKxkqPbRRJH2/c8mWnWHLL7nTIMngZlCCbaqf40+7GNI2YNFSg1i3PTYw/QmU4FWxcaKeaJUgH2GMtixIjpv3RNPGYnFilS8JY2ScNmap/L0YYaT2MArsZoenrRW8i/utxHc958zFMeO2PuExSwySdpQhTQUxMJt2QLleMGjG0gFRx+xFC+6iQGttgwTbkLfaxDPXzsmf5/qJUOcu6ysMRHMMpeHAFFbiDKtSAgoQXeIU359l5dz6cz9lqzsluDmFunK9f6O2bgQ==</latexit><latexit sha1_base64="uovXqrsSC9IKsd7dop/bvOng/aM=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QSL4ELKjIi6EQpuXFawP9gO5U6aaUMzmSHJCKX0HVy41cdwJ259BZ/CVzBtZ2FbLwQ+zrkXTk6QCK6N6347uZXVtfWN/GZha3tnd6+4f1DXcaooq9FYxKoZoGaCS1Yz3AjWTBTDKBCsEQxuJ37jiSnNY/lghgnzI+xJHnKKxkqPbRRJH2/c8mWnWHLL7nTIMngZlCCbaqf40+7GNI2YNFSg1i3PTYw/QmU4FWxcaKeaJUgH2GMtixIjpv3RNPGYnFilS8JY2ScNmap/L0YYaT2MArsZoenrRW8i/utxHc958zFMeO2PuExSwySdpQhTQUxMJt2QLleMGjG0gFRx+xFC+6iQGttgwTbkLfaxDPXzsmf5/qJUOcu6ysMRHMMpeHAFFbiDKtSAgoQXeIU359l5dz6cz9lqzsluDmFunK9f6O2bgQ==</latexit>

↵ = 0.4
<latexit sha1_base64="9eUcA35XlMWHNHJ1chf5eYjD0pI=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGSnoRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0r4OUiTgxVJB5in7CXSPdaTdujylKDB9bQKKY/YhLhqiQGNtgwTbkL/exCo3Lsm/5vlKqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv5aubfw==</latexit><latexit sha1_base64="9eUcA35XlMWHNHJ1chf5eYjD0pI=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGSnoRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0r4OUiTgxVJB5in7CXSPdaTdujylKDB9bQKKY/YhLhqiQGNtgwTbkL/exCo3Lsm/5vlKqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv5aubfw==</latexit><latexit sha1_base64="9eUcA35XlMWHNHJ1chf5eYjD0pI=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGSnoRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0r4OUiTgxVJB5in7CXSPdaTdujylKDB9bQKKY/YhLhqiQGNtgwTbkL/exCo3Lsm/5vlKqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv5aubfw==</latexit><latexit sha1_base64="9eUcA35XlMWHNHJ1chf5eYjD0pI=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUGSnoRii4cVnB/mA7lDtp2oZmkiHJCGXoO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww5kwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaIIrRPJpWqFqClngtYNM5y2YkUxCjlthqPbqd98okozKR7MOKZBhAPB+oygsdJjB3k8xBuvXOkWS17Zm427Cn4GJcim1i3+dHqSJBEVhnDUuu17sQlSVIYRTieFTqJpjGSEA9q2KDCiOkhniSfumVV6bl8q+4RxZ+rfixQjrcdRaDcjNEO97E3Ffz2m5YK3GMP0r4OUiTgxVJB5in7CXSPdaTdujylKDB9bQKKY/YhLhqiQGNtgwTbkL/exCo3Lsm/5vlKqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv5aubfw==</latexit>

↵ = 0.2
<latexit sha1_base64="GgDez9hUrLanGjbStvKSML32RnE=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUmSLoRii4cVnB/mA7lDtppg3NJEOSEUrpO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww4Uwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaoIrRPJpWqFqClngtYNM5y2EkUxDjlthsPbqd98okozKR7MKKFBjH3BIkbQWOmxgzwZ4I1XrnSLJa/szcZdBT+DEmRT6xZ/Oj1J0pgKQzhq3fa9xARjVIYRTieFTqppgmSIfdq2KDCmOhjPEk/cM6v03Egq+4RxZ+rfizHGWo/i0G7GaAZ62ZuK/3pMywVvMYaJroMxE0lqqCDzFFHKXSPdaTdujylKDB9ZQKKY/YhLBqiQGNtgwTbkL/exCo1K2bd8f1mqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv4mmbfQ==</latexit><latexit sha1_base64="GgDez9hUrLanGjbStvKSML32RnE=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUmSLoRii4cVnB/mA7lDtppg3NJEOSEUrpO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww4Uwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaoIrRPJpWqFqClngtYNM5y2EkUxDjlthsPbqd98okozKR7MKKFBjH3BIkbQWOmxgzwZ4I1XrnSLJa/szcZdBT+DEmRT6xZ/Oj1J0pgKQzhq3fa9xARjVIYRTieFTqppgmSIfdq2KDCmOhjPEk/cM6v03Egq+4RxZ+rfizHGWo/i0G7GaAZ62ZuK/3pMywVvMYaJroMxE0lqqCDzFFHKXSPdaTdujylKDB9ZQKKY/YhLBqiQGNtgwTbkL/exCo1K2bd8f1mqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv4mmbfQ==</latexit><latexit sha1_base64="GgDez9hUrLanGjbStvKSML32RnE=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUmSLoRii4cVnB/mA7lDtppg3NJEOSEUrpO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww4Uwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaoIrRPJpWqFqClngtYNM5y2EkUxDjlthsPbqd98okozKR7MKKFBjH3BIkbQWOmxgzwZ4I1XrnSLJa/szcZdBT+DEmRT6xZ/Oj1J0pgKQzhq3fa9xARjVIYRTieFTqppgmSIfdq2KDCmOhjPEk/cM6v03Egq+4RxZ+rfizHGWo/i0G7GaAZ62ZuK/3pMywVvMYaJroMxE0lqqCDzFFHKXSPdaTdujylKDB9ZQKKY/YhLBqiQGNtgwTbkL/exCo1K2bd8f1mqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv4mmbfQ==</latexit><latexit sha1_base64="GgDez9hUrLanGjbStvKSML32RnE=">AAACDnicbZDNSgMxFIXv1L9a/6ou3QwWwYWUmSLoRii4cVnB/mA7lDtppg3NJEOSEUrpO7hwq4/hTtz6Cj6Fr2DazsK2Xgh8nHMvnJww4Uwbz/t2cmvrG5tb+e3Czu7e/kHx8KihZaoIrRPJpWqFqClngtYNM5y2EkUxDjlthsPbqd98okozKR7MKKFBjH3BIkbQWOmxgzwZ4I1XrnSLJa/szcZdBT+DEmRT6xZ/Oj1J0pgKQzhq3fa9xARjVIYRTieFTqppgmSIfdq2KDCmOhjPEk/cM6v03Egq+4RxZ+rfizHGWo/i0G7GaAZ62ZuK/3pMywVvMYaJroMxE0lqqCDzFFHKXSPdaTdujylKDB9ZQKKY/YhLBqiQGNtgwTbkL/exCo1K2bd8f1mqXmRd5eEETuEcfLiCKtxBDepAQMALvMKb8+y8Ox/O53w152Q3x7Awztcv4mmbfQ==</latexit>

(b) g(αf(T1) + (1− α)f(T2))

Figure 4.4: Combination of existing patterns with latent vectors.

The combination rule can be defined as Equation (4.5).

Tg = g(
∑
i

αif(Ti)), (4.5)

where 0 < αi < 1, ∀i are combination coefficients and satisfy
∑

i αi = 1. How-

ever, the diversity topologies generated by such approach might be limited by the

existing pattern complexity. We randomly pick two patterns from existing designs

and combine them in the latent vector space using TCAE. As shown in Figure 4.4,

even we adjust the combination coefficient with a large step, there are still repeating

topologies in the reconstructed topology set.

Another approach is introducing random perturbations in the latent vectors. We

takeAssumption 4.1 into considerationwhen generating perturbation vectors to avoid

illegal topologies as many as possible. We introduce the concept of feature sensitivity

s that statistically defines how easily an legal topology can be transformed to illegal

when manipulating the latent vector node with everything else unchanged.

Definition 4.3 (Feature Sensitivity). Let l =
[
l1 l2 ... ln

]⊤
be the output of the

layer associated with the latent vector space. The sensitivity si of a latent vector node li

is defined as the probability of reconstructed pattern being invalid when a perturbation

∆li ∈ [−t, t] is added up on li with everything else unchanged.

It can be seen from Definition 4.3 that a larger si indicates the corresponding

latent vector node li is more likely to create invalid topologies if a large perturba-

98 CHAPTER 4. INTELLIGENT PATTERN GENERATION

tion is applied. We therefore avoid manipulating such nodes when sampling random

perturbation vectors from a Gaussian distribution. The sis are estimated following

Algorithm 4.1, which requires a set of legal topologies and trained TCAE. The sensi-

tivity of each latent vector node is estimated individually (lines 1–2). We first obtain

the latent vectors of all topologies in T and feed them into the reconstruction unit

along with certain perturbation on one latent vector node (lines 3–5). Reconstructed

patterns are appended in the corresponding set Ri (line 6). The sensitivity of the

latent vector node i is given by the fraction of invalid topologies inRi (line 8).

Algorithm 4.1 Estimating feature sensitivity. T = {T1,T2, ...,TN} is a set of valid
pattern topologies, f and g are trained recognition unit and generation unit respec-
tively, t determines the perturbation range, and s is the estimated feature sensitivity.
Require: T , f, g, t.
Ensure: s.
1: Ri ← ∅,∀i = 1, 2, ..., N ;
2: for i = 1, 2, ..., n do
3: for λ = −t : t do
4: ∆l← 0,∆li ← λ;
5: Ti ← g(f(T) + ∆l);
6: Ri ←Ri + Ti;
7: end for
8: si ← fraction of invalid topologies inRi;
9: end for

10: return s.

Afterwe get the estimated sensitivity of all latent vector nodes, we are able to sam-

ple perturbation vectors whose elements are sampled independently from N (0,
1

si
).

These perturbation vectors will be added up to the latent vectors of existing pattern

topologies to formulate perturbed latent vectors which will be fed into the generation

unit to construct new topologies. Because we focus on EUVmetal layers in this work,

a topology is illegal if and only if it contains any patterns in Figure 4.3. That is, illegal

topologies can be filtered out by checking whether shapes appear at any two adjacent

tracks.

4.2. TEST LAYOUT GENERATION 99

Why Not Variational Auto-Encoders?

The encode-decoder architecture for data generation will possibly remind readers

a very similar generative model called variational auto-encoder (VAE) [23], which

shares almost the same architecture as TCAE. A VAE also consists of an encoder

(recognition unit) and a decoder (reconstruction unit) which are trained with the fol-

lowing loss function:

L(We,Wd) =− Ez∼qWe (z|x)(log pWd
(x|z)) (4.6)

+KL(qWe(z|x)||p(z)),

where the first term aims to train the neural network to generate latent vectors z

that can be reconstructed into data instances following the distribution of the train-

ing dataset, and the second term makes z follow a distribution p(z) via K-L Diver-

gence. Usually, p(z) is specified as normal distribution N (0, 1). In the inference

stage, the decoder can create data instances following the training set by taking in-

puts of z ∼ p(z). Equation (4.6) tells us that a VAE focuses on the generation of some

data that follows certain (known) distribution, which shares the same beneath idead

as GANs. However, in the task of test layout pattern generation, we expect genera-

tion of patterns that are not exist before, which explains why TCAEs are trained with

identity mapping without any perturbation information.

Legal Pattern Assessment

To generate DRC clean patterns, we need legal δxs and δys of all generated topologies.

We first detect all critical dimensions listed in Figure 4.1 in each valid topology and

then formulate a linear system combining all associated constraints, as in Formula

100 CHAPTER 4. INTELLIGENT PATTERN GENERATION

(4.7).

yi+1 − yi =
p

2
, ∀i, (4.7a)

xi − xj = tmin, ∀(i, j) ∈ CT2T , (4.7b)

xi − xj = lmin, ∀(i, j) ∈ CW , (4.7c)

xi+1 − xi > 0, ∀i, (4.7d)

xmax − x0 = dx,ymax − y0 = dy. (4.7e)

where dx, dy, tmin and lmin denote clip width, clip height, minimum tip-to-tip distance

and wire length (refer to Figure 4.1), respectively. Each index pair (i, j) ∈ CT2T in-

dicates that there exists at least one tip-to-tip pattern at scan lines xi and xj in the

clip. CW is defined similarly for wire patterns. x0 and y0 define the origin of each

clip that can be any value and do not affect pattern complexities. Certain constraint

values correspond to the minimum critical dimensions when no defects are found in

EUV simulation under a given process window [43]. Note that the system in Equa-

tion (4.7) can be efficiently solved with vast linear programming algorithms or nu-

merical methods. Because, as discussed previously, all shapes will occupy the entire

track in y direction, pitch and wire width are both covered by fixed track width and

so is δy. We only need to consider constraints on δx track by track. With the aid of

squish representation, the problems of finding line-end-to-line-end patterns (for T2T

constraints) and floating wires (for in-clip wire length constraints) become finding

100...001︸ ︷︷ ︸
continuous zeros

and 011...110︸ ︷︷ ︸
continuous ones

respectively. A solution of δx and δy in together with the

associated topology matrix T formulates a complete squish pattern representation.

Overall Flow

We summarize the pattern generation flow as in Figure 4.5, where key steps include

squish pattern extraction, topology generation and pattern generation. In the topol-

4.2. TEST LAYOUT GENERATION 101

Existing Design

Pattern Library

Squish Pattern
Extraction

Topology
Generation

Legal Pattern
Assessment

Detecting
Critical

Dimensions

Applying
Constraints

Solving
Linear Sys.

Training
TCAE

Perturbing
Latent Vec.

Filtering
Illegal

Topology

Figure 4.5: TCAE flow.

ogy generation phase, we force the TCAE to learn an identity mapping that can cap-

ture simple but important design rules. Such strategy also allows us to create a large

fraction of new legal topologies by perturbing the latent vectors. In the final pattern

generation stage, we search critical dimensions that are defined in the design rules in

all generated topologies and formulate corresponding linear systems to obtain legal

δxs and δys.

4.2.3 Experiments

The Dataset and Configurations

We implement the pattern generation flow using Python and Tensorflow [1] library.

The framework is tested on a platform with one Tesla P100 Graphic Card. We adopt

five industry benchmark groups that contains metal-2 layout clips under 7nm EUV

design node. The clip size is 192 × 192nm2 and the corresponding squish topology

size is zero-padded to 24 × 24 that will be the input size of the neural networks.

The initial learning rate is set to 0.001 and decays by 0.7 every 2000 iterations. The

maximum number of training steps is 10000 with a mini-batch size of 64. All neuron

weights are initialized with Xavier [35] initializer and regularized with l2 regularizer.

102 CHAPTER 4. INTELLIGENT PATTERN GENERATION

The regularization coefficients for convolution layers are 0.001 and we chose 0.01

for densely connected layers. No data augmentation strategies are employed during

training and the model at last training step is picked during inference stage. Note

that we mark topologies with cx > 12 and cy > 12 as illegal such that the linear

systems associated to legal topologies always admit at least one solution under the

given window size, which ensures the quantity and quality of the generated pattern

libraries. We adopt industrial solver when generating geometry information with

Equation (4.7) for new topologies and only one solution is kept for each topology.

Regarding the GAN component, the generator is initialized with Xavier without any

regularization and the discriminator is l2 regularized with coefficient of 0.01. The

learning rate for GAN is set to be 0.001 and decayed by 0.05 every 10,000 iterations.

Understanding Features in TCAE

In the first experiment, we study the relationship between auto-learned features and

human understandable layout space. Because the TCAE is trained to reconstruct in-

put topologies as accurate as possible, feature vectors derived from the latent vector

layer must attain all geometry informations that include wire tracks, line-end align-

ments, tip-to-tip distances, shape directions and so on. To show exactly how these

auto-learned features affect the topology space, we conduct simple transformations

on each individual entry of the latent vector and keep everything else unchanged. The

transformed feature vectors are then fed into the reconstruction unit for topology re-

construction. We visualize part of the reconstructed patterns in Table 4.1, where each

row corresponds to the transformation on certain nodes in the latent vector with ev-

erything else unchanged. In our case, a small perturbation is added up to a specific

entry. We can easily observe that some features extend or pull back line-ends, some

features create or destroy geometries and some features controls the directions of

shapes. Unlike traditional design rules, auto-learned features control layout patterns

4.2. TEST LAYOUT GENERATION 103

Table 4.1: Visualizing how are convolutional features reflected in original topology
space.

Transformations Reconstructed Topologies

Extend or pull back line-ends

Create or destroy shapes

Control shape directions

Origin TCAE-Random

…

:

Figure 4.6: Contribution of Gaussian perturbation on topology reconstruction. 1000
topologies (∼400 legal) are created from one topology randomly picked from the ex-
isting pattern library.

in a more global point of view that some feature determines spacing, wire length and

sometimes geometry direction as a whole.

Here we show how random perturbations on the latent vectors contribute to

topology generation. We randomly take one topology from the training set and obtain

its feature vector through the trained encoder network. 1000 noise vectors sampled

104 CHAPTER 4. INTELLIGENT PATTERN GENERATION

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

(a) Existing Design
0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

(b) Industry Tool
0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

(c) DCGAN

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

(d) TCAE-Combine
0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

(e) TCAE-Random

Figure 4.7: Visualization of the distribution of layout libraries: (a) Existing layout
pattern dataset. (b) Industrial layout generator; (c) Patterns generated by DCGAN;
(d) Patterns generated by TCAE-Combine; (e) Patterns generated by TCAE-Random.

from Gaussian are added up to the feature vector before it is fed into the decoder net-

work for pattern reconstruction. We visualize the generated topologies in Figure 4.6.

We can observe that perturbations create significantly amount of new topologies

where a large fraction of them are consistent with EUV pattern rules (e.g. no bow-tie

shapes and unique direction single track polygons). Such results also show that de-

convolution layers have the ability to learn simple design rules during training. On

the contrary, no valid topology will be generated if the noise are directly applied on

pattern space.

4.2. TEST LAYOUT GENERATION 105

Table 4.2: Statistics of generated patterns.

Method Pattern # Pattern Diversity (H)
Existing Design - 3.101
Industry Tool 55408 1.642

DCGAN ≤10 0
TCAE-Combine 1738 2.665
TCAE-Random 286898 3.337

Evaluation of TCAE

We have shown the manipulation in the latent vector space can generate new topolo-

gies. In the last experiment, we will make use of the flow above to augment the pat-

tern space. Pattern library statistics are listed in Table 4.2, where we randomly pick

one pattern group to show the advantage of TCAE-Random. Column “Method” de-

notes the approach used to generate layout patterns, column “Pattern #” denotes the

number of DRC clean patterns that are different from others, and column “Pattern

Diversity” corresponds to the Shannon Entropy of each pattern library in terms of

pattern complexity. Row “TCAE-Random” corresponds to the details of 1M patterns

generated by perturbing the features of 1000 patterns in existing design with Gaus-

sian noise. Row “TCAE-Combine” represents patterns generated from 1M different

combinations of 10 test layout clip features. “Industry Tool” shows the cataloged re-

sults of a test layout generated from a state-of-the-art industry layout generator. The

test layout has similar total chip area (10000 µm2) as “TCAE-Random” (14807 µm2).

We also implement a DCGAN [78] that has similar number of trainable parameters

as the TCAE designed in this paper. 1M patterns are generated by feeding random

latent vectors in the trained generator networks.

“Existing Design” lists the statistics of a pattern library extracted from an industry

layout. Perturbation with Gaussian exhibits greatest pattern generation power with

around 30% generated patterns are unique and DRC clean. Combination of patterns

106 CHAPTER 4. INTELLIGENT PATTERN GENERATION

in feature space shows much less unique pattern count because the generation proce-

dure are restricted by existing pattern space. Combine more patterns will not affect

the result much which will significantly reduce the count of DRC clean patterns if

any two candidate patterns contain unaligned wires. Most GAN generated patterns

fail with bow-tie or 2D wires even the training procedure has reached the equilib-

rium point because it is very hard to learn layout track information with randomly

generated latent vectors.

Figure 4.7 compares the distributions of generated patterns and existing layout

data set with similar pattern count, where x-axis and y-axis denote pattern complexity

in each direction and the heatmap value is the total count (log-scale) of the pattern

with that complexity. We employ Pattern Diversity to measure the pattern library

distribution. We observe that Random perturbation can efficiently expand the weakly

distributed pattern library (large fraction of patterns falls in certain complexities) with

H = 3.337 while the industrial layout generator are still weakly distributed with

H = 1.642 compared to existing designs.

Evaluation of GAN-Guided TCAE

We will evaluate the performance of G-TCAE in two aspects: (1) massive pattern

generation and (2) context-specific pattern generation.

In themassive pattern generation experiments, we train the TCAE model with the

same settings as previous experiments. We dump out perturbation vectors that are

used to create new valid patterns in TCAE-test phase that will serve as training source

of the GAN. 1M of patterns are then created with GAN-generated perturbations. The

results are listed in Table 4.3, where columns “Pattern Diversity (H)” are calculated

dataset pattern diversity in terms of Equation (4.1), columns “Pattern #” are unique

DRC-clean pattern count amount 1M generated patterns. column “Benchmarks” lists

five benchmark groups directprint1-directprint5, column “Training Set” corre-

4.2. TEST LAYOUT GENERATION 107

Ta
bl
e
4.3

:R
es
ul
tc

om
pa

ris
on

be
tw

ee
n
TC

A
E
an

d
G-

TC
A
E.

Be
nc

hm
ar
ks

Tr
ai
ni
ng

Se
t

TC
A
E

G-
TC

A
E

Pa
tte

rn
D
iv
er
sit

y
(H

)
Pa

tte
rn

#
Pa

tte
rn

D
iv
er
sit

y
(H

)
Pa

tte
rn

#
Pa

tte
rn

D
iv
er
sit

y
(H

)
di

re
ct

pr
in

t1
2.2

8
47

22
59

3.
48

49
19

01
3.4

1
di

re
ct

pr
in

t2
2.2

9
45

28
92

3.6
7

49
47

84
3.
72

di
re

ct
pr

in
t3

3.1
6

30
00

19
3.8

3
31

36
79

3.
84

di
re

ct
pr

in
t4

3.1
8

34
62

33
3.
69

38
20

69
3.
69

di
re

ct
pr

in
t5

3.6
2

40
87

38
3.8

3
41

30
60

3.
84

Av
er
ag

e
2.9

1
39

60
28

3.
70

41
90

98
3.
70

Ra
tio

0.7
86

1.0
00

1.
00

0
1.
05

8
1.
00

0

108 CHAPTER 4. INTELLIGENT PATTERN GENERATION

(a
)L

ow
c x

an
d
c y

(b
)M

id
iu
m

c x
an

d
c y

(c
)H

ig
h
c x

an
d
c y

Fi
gu

re
4.8

:C
on

te
xt

sp
ec

ifi
cp

att
er
n
ge

ne
ra
tio

n
fo
rd

iff
er
en

tc
om

pl
ex

iti
es

(c
x
’s

an
d
c y
’s)

.

4.2. TEST LAYOUT GENERATION 109

sponds to the statistics of the data used to training G-TCAE, column “TCAE” lists the

performance of the original TCAE framework on five benchmarks, column “G-TCAE”

corresponds to the performance of the proposed G-TCAE framework.

From the table we can observe that both “TCAE” and “G-TCAE” successfully en-

larges the layout pattern space by increasing the pattern diversity from 2.91 to 3.70,

which gives the validness of TCAE-family. By comparing the results of G-TCAE and

TCAE, we show that G-TCAE offers much batter unique DRC-clean pattern count,

with the help of GAN that transforms random perturbation vectors into design-rule-

preserving vectors. On average, G-TCAE offers ∼ 5.8% more DRC-clean patterns

than TCAE.We also observe that G-TCAE exhibits similar pattern diversity compared

to TCAE, which can be explained by the fact that the GAN component is trained

with perturbation vectors that are used for TCAE pattern generation. Similar pat-

tern diversity will hence be expected when the GAN is trained well to optimal states

(px = pdata).

Regarding the context-specific pattern generation, we choose directprint1 as an

example for performance evaluation. The first step still comes with training of TCAE,

after which latent vectors are divided into groups according to their pattern complexi-

ties. The GAN is then trained with these different latent vector groups and yields new

vectors for certain complexity generation. We visualize our results in Figure 4.8, that

contains mixes of low, medium and high pattern complexities in x and y directions.

4.2.4 Summary

In this section, we address the pattern library requirements in DFM flows/researches

under advanced technology nodes. We propose a transforming convolutional auto-

encoder framework that can capture layout design rule characteristics. We show in-

dividual element in latent vector instantiation contributes to form the pattern space

locally or globally, which inspires a pattern generation flow with perturbation of the

110 CHAPTER 4. INTELLIGENT PATTERN GENERATION

latent vector space. For the perspective of massive diverse DRC-clean pattern genera-

tion and context specific pattern generation, we also propose the GAN-guided TCAE

framework that further enhances the performance and functionality of TCAE-family.

The experimental results show that our framework outperforms a state-of-the-art in-

dustrial layout generation tool in terms of pattern library diversity, which is promis-

ing to facilitate early technology node development and the back-end and sign-off

flows.

4.3 Generative Mask Optimization

4.3.1 Preliminaries and Problem Formulation

In this section, we will discuss some preliminaries of mask optimization and the gen-

erative adversarial nets. Major math symbols with their descriptions are listed in

Table 4.4. In order to avoid confusion, all the norms || · || are calculated with respect

to flattened vectors.

Hopkins theory of the partial coherence imaging system has been widely applied

to mathematically analyze the mask behavior of lithography [48]. Because the Hop-

kins diffraction model is complex and not computational-friendly, [18] adopts the sin-

gular value decomposition (SVD) to approximate the original model with a weighted

summation of coherent systems.

I =
N2∑
k=1

wk|M ⊗ hk|2, (4.8)

where hk and wk are the kth kernel and its weight. As suggested in [30], we pick the

4.3. GENERATIVE MASK OPTIMIZATION 111

Table 4.4: Symbols and notations used throughout the section.

Symbols Description
Zt Matrix representing the target layout pattern
M Matrix representing the mask pattern
I Matrix representing the aerial image
Ith Threshold used for constant threshold resist model
Z Matrix representing the wafer image

G(·) The generator function
D(·) The discriminator function
hk The kth convolution kernel of the simple lithography model
wk The coefficient associated with hk

|| · ||2 L2 norm, calculated with respect to flattened vectors
E Expectation

x ∼ p Random vector x with its elements drawn from distribution p
⊗ Matrix convolution
⊙ Entrywise product

N th
h order approximation to the system. Equation (4.8) becomes,

I =

Nh∑
k=1

wk|M ⊗ hk|2. (4.9)

The lithography intensity corresponds to the exposure level on the photo resist that

controls the final wafer image. In real design and sign-off flow, it is far from enough

to use constant threshold model to analyze resist images, especially for advanced

technology node. For the methodology verification purpose only and for simplicity,

we still adopt the simple constant threshold resist model throughout the experiments,

which is consistent with the ICCAD 2013 CAD contest settings [8]. In the constant

threshold resist model [52], only area with intensity greater than a certain threshold

will contribute to the final wafer image, as shown in Equation (4.10).

Z(x, y) =

 1, if I(x, y) ≥ Ith,

0, if I(x, y) < Ith.
(4.10)

112 CHAPTER 4. INTELLIGENT PATTERN GENERATION

Bad EPE Good EPE

Bridge

Neck

Figure 4.9: Different types of defects. Same lithography images result in different
EPE violation counts due to different choices of measurement points. Some defects
are not detectable through merely checking edge placement errors.

Mask quality is evaluated through the fidelity of its wafer image with respect

to the target image. Edge placement error (EPE), bridge and neck are three main

types of defect detectors that are adopted in a layout printability estimation flow. As

shown in Figure 4.9, EPE measures horizontal or vertical distances from given points

(i.e. EPE measurement sites) on target edges to lithography contours. Neck detector

checks the error of critical dimensions of lithography contours compared to target

patterns, while bridge detector aims to find unexpected short of wires. Note that

unlike EPE violations, bridge and neck defects can appear in any directions. Because

EPE violations could happen with good critical dimension and neck or bridge occurs

with small EPE, none of these defect types individually can be an ideal representation

of mask printability. Considering the objective of mask optimization is to make sure

the remaining patterns after lithography process are as close as target patterns, we

pick the squared L2 error as the metric of lithography quality since a smaller L2

indicates a better wafer image quality.

Definition 4.4 (Squared L2 Error). Let Zt and Z as target image and wafer image

respectively, the squared L2 error of Z is given by ||Zt −Z||22.

In real manufacturing scenario, lithography conditions (e.g. focus, dose) are usu-

ally not fixed as we expected, which results in variations of wafer images. To measure

4.3. GENERATIVE MASK OPTIMIZATION 113

the robustness of the designed mask, process variation (PV) bands are proposed [81].

The mathematical definition can be found as follows.

Definition 4.5 (PV Bands). Given the lithography simulation contours under a set of

process conditions, the PV Bands is the area among all the contours under these condi-

tions.

In this work, for simplicity, we use the XOR between the innermost and the out-

ermost images as an approximation of the PV Bands. Following above terminologies,

we define the mask optimization problem as follows.

Problem 4.2 (Mask Optimization). Given a target image Zt, the objective of the prob-

lem is generating the corresponding mask M such that remaining patterns Z after

lithography process is as close as Zt or, in other word, minimizing the squared L2 error

of lithography images.

4.3.2 Architectures and Algorithms

GAN-OPC

A classical GAN architecture comprises a generator and a discriminator. The genera-

tor accepts random vectors z ∼ pz as the input and generates samplesG(z;Wg) that

follows some distribution pg, where G is a convolutional neural networks parame-

terized byWg. The discriminator acts as a classifier that distinguishesG(z;Wg) and

the instance drawn from a data distribution pd. The output D(x;Wd) represents the

probabilities of x drawn from pd and pg. It should be noted that the original settings

are not well suitable for the mask optimization problem. In this section, we will in-

troduce the details of our framework including OPC-oriented GAN architecture and

advanced training strategies.

From the previous discussion we can notice that the generator learns a distribu-

tion of a given dataset, which is originally designed as a mapping function G : pz →

114 CHAPTER 4. INTELLIGENT PATTERN GENERATION

…

0.2 0.8
Fake Real

D
iscrim

inator

1.62 3.83 … 3.15

…G
enerator

Figure 4.10: Conventional GAN architecture.

pg, where pz is a distribution that input vectors are drawn and pg denotes the distri-

bution of the training set. The objective of the generator is to generate samples that

deceive the discriminator as much as possible, as in Equation (4.11):

maxEz∼pz [log(D(G(z)))], (4.11)

which maximizes the log-likelihood of the discriminator giving predictions that gen-

erated samples are real. Correspondingly, the generator comprises a deconvolutional

architecture that casts 1D vectors back to 2D images through stacked deconvolution

operations, as shown in Figure 4.10. Our framework, however, is expected to per-

form mask optimization on given target circuit patterns and obviously violates the

deconvolutional architecture. To resolve this problem, we design a generator based

on auto-encoder [69] which consists of an encoder and a decoder subnets. As depicted

in Figure 4.11, the encoder is a stacked convolutional architecture that performs hi-

erarchical layout feature abstractions and the decoder operates in an opposite way

4.3. GENERATIVE MASK OPTIMIZATION 115

that predicts the pixel-based mask correction with respect to the target based on key

features obtained from the encoder.

The discriminator is usually an ordinary convolutional neural networks that per-

form classification to distinguish the generated samples from the given data samples

as shown in Equation (4.12):

maxEx∼pd [log(D(x))] + Ez∼pz [log(1−D(G(z)))]. (4.12)

In this work, the discriminator predicts whether an input instance is the generated

maskM or the referencemaskM ∗ which is the ground truthOPC’edmask generated

by a state-of-the-art academic OPC tool [30]. However, the discriminator in Equa-

tion (4.12) is necessary but not sufficient to ensure generator to obtain a high quality

mask (Figure 4.10). Consider a set of target patterns Z = {Zt,i, i = 1, 2, . . . , N} and

a corresponding reference mask setM = {M ∗
i , i = 1, 2, . . . , N}. Without loss of

generality, we use Zt,1 in the following analysis. Suppose the above GAN structure

has enough capacity to be well trained, the generator outputs a mask G(Zt,1) that

optimizes the objective function as in Equation (4.11). Observe that log(D(G(Zt,1)))

reaches its maximum value as long as

G(Zt,1) = M ∗
i ,∀i = 1, 2, . . . , N. (4.13)

Therefore, a one-to-one mapping between the target and the reference mask cannot

be guaranteed with current objectives. To address above concerns, we adopt a clas-

sification scheme that predicts positive or negative labels on target-mask pairs that

inputs of the discriminator will be either (Zt,G(Zt)) or (Zt,M
∗), as illustrated in

Figure 4.11. Claim that G(Zt) ≈ M ∗ at convergence with new discriminator. We

still assume enough model capacity and training time for convergence. The discrim-

inator now performs prediction on target-mask pairs instead of masks. Because only

116 CHAPTER 4. INTELLIGENT PATTERN GENERATION

…

0.2 0.8
Bad
Mask

Good
Mask

D
iscrim

inator

G
enerator

…

Encoder
D

ecoder

Target

Mask

Target & Mask

Figure 4.11: The proposed GAN-OPC architecture.

pairs {Zt,i,M
∗
i } are labeled as data, the generator can deceive the discriminator if

and only ifG(Zt,i) ≈M ∗
i ,∀i = 1, 2, . . . , N , whereN is the total number of training

instances.

Based on the OPC-oriented GAN architecture in our framework, we tweak the

objectives of G as follows,

max
G

EZt∼Z [log(D(Zt,G(Zt)))], (4.14)

and for the discriminator D we have,

max
D

EZt∼Z [log(D(Zt,M
∗))] + EZt∼Z [1− log(D(Zt,G(Zt)))]. (4.15)

4.3. GENERATIVE MASK OPTIMIZATION 117

In addition to facilitate the training procedure, we minimize the differences be-

tween generatedmasks and referencemasks when updating the generator as in Equa-

tion (4.16).

min
G

EZt∼Z ||M ∗ −G(Zt)||n, (4.16)

where || · ||n denotes the ln norm. Combining (4.14), (4.15) and (4.16), the objective of

our GAN model becomes

min
G

max
D

EZt∼Z [1− log(D(Zt,G(Zt))) + ||M ∗ −G(Zt)||nn]

+ EZt∼Z [log(D(Zt,M
∗))]. (4.17)

Previous analysis shows that the generator and the discriminator have different

objectives, therefore the two sub-networks are trained alternatively, as shown in Fig-

ure 4.12(a) and Algorithm 4.2. In each training iteration, we sample a mini-batch

of target images (line 2); Gradients of both the generator and the discriminator are

initialized to zero (line 3); A feed forward calculation is performed on each sampled

instances (lines 4–5); The groundtruth mask of each sampled target image is obtained

from OPC tools (line 6); We calculate the loss of the generator and the discriminator

on each instance in the mini-batch (lines 7–8); We obtain the accumulated gradient

of losses with respect to neuron parameters (lines 9–10); Finally the generator and

the discriminator are updated by descending their mini-batch gradients (lines 11–12).

Note that in Algorithm 4.2 we convert the min-max problem in Equation (4.17) into

two minimization problems such that gradient ascending operations are no longer

required to update neuron weights. Algorithm 4.2 differs from traditional GAN opti-

mization flow on the following aspects. (1)The generator plays as a mapping function

from target to mask instead of merely a distribution, therefore the gradient of L2 loss

is back-propagated along with the information from the discriminator. (2) The dis-

118 CHAPTER 4. INTELLIGENT PATTERN GENERATION

Algorithm 4.2 GAN-OPC Training
1: for number of training iterations do
2: Sample m target clips Z ← {Zt,1,Zt,2, . . . ,Zt,m};
3: ∆Wg ← 0,∆Wd ← 0;
4: for each Zt ∈ Z do
5: M ← G(Zt;Wg);
6: M ∗ ← Groundtruth mask of Zt;
7: lg ← − log(D(Zt,M)) + α||M ∗ −M ||22;
8: ld ← log(D(Zt,M))− log(D(Zt,M

∗));
9: ∆Wg ← ∆Wg +

∂lg
∂Wg

; ∆Wd ← ∆Wd +
∂ld
∂Wg

;

10: end for
11: Wg ←Wg −

λ

m
∆Wg; Wd ←Wd −

λ

m
∆Wd;

12: end for

criminator functions as an alternative of ILT engine that determines only the quality

of generated masks without any calibration operations. Besides, our combined input

ensures that the discriminator will make positive prediction if and only if the gen-

erated mask is much close to the ground truth, which also helps train the generator

better.

ILT-guided Pre-training

Although with OPC-oriented techniques, GAN is able to obtain a fairly good per-

formance and training behavior, it is still a great challenge to train the complicated

GAN model with satisfactory convergence. Observing that ILT and neural network

training stage share similar gradient descent techniques, we develop an ILT-guided

pre-training method to initialize the generator, after which the alternative mini-batch

gradient descent is discussed as a training strategy of GAN optimization. The main

objective in ILT is minimizing the lithography error through gradient descent.

E = ||Zt −Z||22, (4.18)

4.3. GENERATIVE MASK OPTIMIZATION 119

where Zt is the target and Z is the wafer image of a given mask. Because mask and

wafer images are regarded as continuously valued matrices in the ILT-based opti-

mization flow, we apply translated sigmoid functions to make the pixel values close

to either 0 or 1.

Z =
1

1 + exp[−α× (I − Ith)]
, (4.19)

Mb =
1

1 + exp(−β ×M)
, (4.20)

where Ith is the thresholdmatrix in the constant resist model with all the entries being

Ith, Mb is the incompletely binarized mask, while α and β control the steepness of

relaxed images.

Combine Equations (4.8)–(4.10), Equations (4.18)–(4.20) and the analysis in [77],

we can derive the gradient representation as follows,

∂E

∂M
=2αβ ×Mb ⊙ (1−Mb)⊙

(((Z −Zt)⊙Z ⊙ (1−Z)⊙ (Mb ⊗H∗))⊗H+

((Z −Zt)⊙Z ⊙ (1−Z)⊙ (Mb ⊗H))⊗H∗),

(4.21)

whereH∗ is the conjugate matrix of the original lithography kernelH . In traditional

ILT flow, the mask can be optimized through iteratively descending the gradient until

E is below a threshold.

The objective of mask optimization problem indicates the generator is the most

critical component in GAN. Observing that both ILT and neural network optimiza-

tion share similar gradient descent procedure, we propose a jointed training algo-

rithm that takes advantages of ILT engine, as depicted in Figure 4.12(b). We initialize

the generator with lithography-guided pre-training to make it converge well in the

GAN optimization flow thereafter. The key step of neural network training is back-

120 CHAPTER 4. INTELLIGENT PATTERN GENERATION

G Real
Fake

 Feed-forward Back-propagetion

D

(a)

LithoG

(b)

Figure 4.12: (a) GAN-OPC training and (b) ILT-guided pre-training.

propagating the training error from the output layer to the input layer while neural

weights are updated as follows,

Wg = Wg −
λ

m
∆Wg, (4.22)

where ∆Wg is accumulated gradient of a mini-batch of instances and m is the mini-

batch instance count. Because Equation (4.22) is naturally compatible with ILT, if we

create a link between the generator and ILT engine, the wafer image error can be

back-propagated directly to the generator as presented in Figure 4.12.

The generator pre-training phase is detailed in Algorithm 4.3. In each pre-training

iteration, we sample a mini-batch of target layouts (line 2) and initialize the gradients

of the generator ∆Wg to zero (line 3); The mini-batch is fed into the generator to

obtain generated masks (lines 5). Each generated mask is loaded into the lithography

engine to obtain a wafer image (line 6); The quality of wafer image is estimated by

Equation (4.18) (lines 7); We calculate the gradient of lithography errorE with respect

to the neural networks parameter Wg through the chain rule, i.e., ∂E

∂M

∂M

∂Wg

(line 8)

; Finally, Wg is updated following the gradient descent procedure (line 10).

4.3. GENERATIVE MASK OPTIMIZATION 121

Algorithm 4.3 ILT-guided Pre-training
1: for number of pre-training iterations do
2: Sample m target clips Z ← {Zt,1,Zt,2, . . . ,Zt,m};
3: ∆Wg ← 0;
4: for each Zt ∈ Z do
5: M ← G(Zt;Wg);
6: Z ← LithoSim(M) ▷ Equations (4.9)–(4.10)
7: E ← ||Z −Zt||22;
8: ∆Wg ← ∆Wg +

∂E

∂M

∂M

∂Wg

; ▷ Equation (4.21)

9: end for
10: Wg ←Wg −

λ

m
∆Wg; ▷ Equation (4.22)

11: end for

Enhanced GAN-OPC Framework

In this section, we will introduce the enhanced GAN-OPC framework, which signifi-

cantly improves the training efficiency in amore elegant way compared to pretraining

with ILT engine. The enhanced GAN-OPC framework includes a U-Net structure that

allows gradients to be easily back-propagated to early layers and a sub-pixel super-

resolution architecture for better generated mask quality.

We have noticed the GANs are typically deeper than traditional neural networks,

which brings more challenges due to a longer gradient back-propagation path. A

common solution is creating shortcut links that allow addition or stacking of fea-

ture maps in different layers [83, 45, 51], such that gradients can be more efficiently

back-propagated from output layer to early layers. Here we enhance our generator

design with a U-Net-like structure where intermediate feature maps in the encoder

are stacked at corresponding layers in the decoder, as shown in Figure 4.13. Such

architecture has two good properties: (1) The inevitable information loss in strided

convolution layer can be drastically reduced. (2) The gradient vanishing problem can

be alleviated with multiple shortcut links bypassing intermediate feature maps.

In previous designs, low level features in intermediate generator layers are cast

122 CHAPTER 4. INTELLIGENT PATTERN GENERATION

…

Target Mask

Convolution SPSR

Figure 4.13: New generator architecture with concatenation of intermediate feature
maps and an SPSR structure.

⌦
Convolution Shu!ing

(a)

Padding

⌦
Convolution

(b)

Figure 4.14: Visualization of (a) standard deconvolution operation and (b) SPSR.

back to mask images by standard strided deconvolution operation that can be visual-

ized as in Figure 4.14(a). In detail, zeros are inserted among existing pixels such that

the output dimension after a convolution operation reaches the desired value. How-

ever, such mechanism requires multiple convolution operations on high resolution

space which is not computational efficient and might induce additional noises.

4.3. GENERATIVE MASK OPTIMIZATION 123

SPSR [90] is another upsampling solution that has been widely used in super-

resolution tasks. It conducts convolution operations in lower resolution space and

generates additional featuremaps such that the number of featuremap entriesmatches

the desired size of target image, as shown in Figure 4.14(b). The major step of SPSR

is called periodic shuffling that casts a tensor with shape H ×W × r2C into shape

rH × rW × C as defined in Equation (4.23).

thri,j,k = tlri′,j′,k′ , (4.23a)

i′ = ⌊ i
r
⌋, (4.23b)

j′ = ⌊j
r
⌋, (4.23c)

k′ = C · r ·mod(j, r) + C ·mod(i, r) + k, (4.23d)

where ⌊·⌋ is the math floor operator, mod(x, y) finds the remainder of x divided by

y, thri,j,k and tlri′,j′,k′ denotes the (i, j, k) and (i′, j′, k′) entry of high resolution images

(or feature maps) and low resolution images (or feature maps) respectively. It should

be noted that Equation (4.23) represents only a reshape operation which is still dif-

ferentiable as other convolution layers. SPSR has several advantages compared to

Figure 4.14(a). (1) SPSR is ideally r2 times faster than the strided deconvolution op-

eration. As shown in Figure 4.14, same convolution kernels have to scan over a r2

larger feature maps in traditional deconvolution layers to achieve same output tensor

size as SPSR layers. (2) SPSR layers reduce noises in generated masks by a signif-

icant amount, as can be seen in Figure 4.15. Such results can be explained by the

fact that explicit interpolations are removed in SPSR structure, where the upscaling

and rendering are automatically learned during the network training. Traditional

deconvolution layers, on the other hand, have to apply padding or zero insertion to

increase the feature map size before feeding them into next level convolution layer

for rendering, which in turn results in noises (as empty dots) in the generated masks

124 CHAPTER 4. INTELLIGENT PATTERN GENERATION

(a) (b)

Figure 4.15: Patterns generated from (a) deconvolution layers and (b) SPSR layers.

because it is hard for limited number of convolution layers to smooth such noise. On

the contrary, SPSR directly organizes the low resolution feature maps into the high

resolution space, where every pixels are informative, compared to manually inserted

zeros in deconvolution layers.

We follow the basic convolutional auto-encoder architecture for the generator de-

sign with additional shortcut links for U-Net feature map sharing and SPSR layers for

upscaling. The detailed architecture can be found in Table 4.5, where column “Layer”

includes layer types and layer ID, columns “Filter” and “Stride” list configurations for

convolution layers, “Output” lists the output tensor shape of corresponding layers

and “Parameter” represents the total number of trainable parameters of a given layer.

The proposed generator architecture contains five regular convolution layers for fea-

ture extraction and five SPSR layers for mask image construction. It should be noted

that the input tensor of the ith SPSR layer has 2× channel numbers as the output

tensor of the (i− 1)th SPSR layer, because of the existence of U-Net concatenation.

The discriminator design is detailed in Table 4.6. The neural network architecture

resembles VGG [94] with more layers and smaller kernels. “repeat2” and “repeat3”

indicate two and three consecutive convolution layers with the same configurations.

We replace all the pooling layers with strided convolution layers to attain information

as much as possible. Three densely connected layers are connected following the last

convolution layer for final class prediction. The total number of trainable parameters

4.3. GENERATIVE MASK OPTIMIZATION 125

Table 4.5: The generator configuration.

Layer Filter Stride Output Parameter
conv-1 5×5×16 2 128×128×16 400
conv-2 5×5×64 2 64×64×64 25600
conv-3 5×5×128 2 32×32×128 204800
conv-4 5×5×512 2 16×16×512 1638400
conv-5 5×5×1024 2 8×8×1024 13107200
spsr-5 3×3×2048 1 16×16×512 18874368
spsr-4 3×3×512 1 32×32×128 4718952
spsr-3 3×3×256 1 64×64×64 589824
spsr-2 3×3×64 1 128×128×16 73728
spsr-1 3×3×4 1 256×256×1 1152

Summary - - - 39234064

Table 4.6: The discriminator configuration.

Layer Filter Stride Output Parameter
repeat2-1 3×3×64 1 256×256×64 38016
conv-1 3×3×64 2 128×128×64 36864

repeat2-2 3×3×128 1 128×128×128 221184
conv-2 3×3×128 2 64×64×128 147456

repeat3-1 3×3×256 1 64×64×256 1474560
conv-3 3×3×256 2 32×32×256 589824

repeat3-2 3×3×512 1 32×32×512 5898240
conv-4 3×3×512 2 16×16×512 2359296

repeat3-3 3×3×512 1 16×16×512 7077888
conv-5 3×3×512 2 8×8×512 2359296
fc-1 - - 2048 67108864
fc-2 - - 512 1048576
fc-3 - - 2 1024

Summary - - - 88361088

of the discriminator are intentionally designed much larger than the generator (88M

vs. 39M) in case of model collapsing.

126 CHAPTER 4. INTELLIGENT PATTERN GENERATION

Training Data

Generator

S1-III-A
GAN-OPC

S2-III-B
PGAN-OPC

S3-III-C
EGAN-OPC

U-Net

SPSR

GAN-OPC

ILT-guided
Pretraining

GAN-OPC

Model Training

Layout ILT-re!nement

Mask

Figure 4.16: The framework summary.

Overall Flow and Discussion

The proposed GAN-OPC family is summarized in Figure 4.16. With the given train-

ing data that includes target patterns and mask patterns, we propose three alternative

solutions to obtain a trained generator that include direct GAN-OPC proposed in Sec-

tion 4.3.2, GAN-OPCwith ILT-guided pretraining as in Section 4.3.2 and the enhanced

GAN-OPC solution with U-Net and SPSR techniques as in Section 4.3.2.

Although ILT engines are, to some extent, sufferingmaskmanufacturability (e.g vi-

olation of mask notch rule and mask spacing rule [6, 96] which are not considered in

this work) and runtime issues compared to traditional model-based OPC, our frame-

work still takes advantage of such methodology with the following reasons. Our

framework is built upon the structure of conditional GAN that learns a pixel-to-pixel

mapping from the target pattern to the OPCed pattern. The optimization scheme is

in a continuous form that compensation patterns can appear in any shapes and any

places within the clip. Thus the patterns generated by GAN are inconsistent with the

model-based OPC results (e.g. [57, 96]) where compensations are made by moving

polygon segments inward or outward. However, we observe that the mask patterns

4.3. GENERATIVE MASK OPTIMIZATION 127

are naturally compatible with the process of ILT, which becomes one reason that we

choose ILT for our refinement tasks. As can be seen in previous works [30, 67], ILT is

associated with a highly non-convex optimization problems that means the mask ini-

tialization affects the final results. The ILT refinement results outperform direct ILT

optimization and also experimentally demonstrate the effectiveness of the proposed

GAN-OPC framework. Another reason that we choose ILT is that theoretically and

intuitively ILT provides a larger solution space in mask optimization problems and

tends to offer better mask quality. There are two major advantages of our proposed

framework:

• Compared to ILT itself, the GAN-OPC family offers a better starting point for

ILT optimization that promises faster convergence and better mask quality.

• Compared to model-based OPC, the proposed framework attains good proper-

ties of ILT, i.e., a lager solution space that has the potential to generate better

pattern compensation for better mask printability.

Although we did not consider the mask notch and spacing rule in our framework,

it is straightforward to conduct mask manufacturability rule check on the generated

masks, and fix the violated region by making minor pixel changes in the generated

masks. Actually, if the ground truth masks used for training can meet the mask

manufacturability requirements, the GAN-OPC framework is supposed to capture

these rules during training, because the discriminator is specifically designed to tell

whether the generated masks are good or not. Here a “good” mask refers to the mask

that has good printability and good manufacturability.

4.3.3 Experiments

The generative adversarial network for mask optimization is implemented based on

Tensorflow [1] library and tested on single Nvidia Titan X. The lithography engine

128 CHAPTER 4. INTELLIGENT PATTERN GENERATION

Table 4.7: The design rules used.

Item Min Size (nm)
M1 Critical Dimension 80

Pitch 140
Tip to tip distance 60

(a) Target (b) Reference Mask

Figure 4.17: An example of a target and a reference mask pair.

is based on the lithosim_v4 package from ICCAD 2013 CADContest [8], which also

provides ten industrial M1 designs on 32nm design node. We pick Nh = 24, α = 50

and β = 4 for the lithography simulation procedure. The ILT refinement will be

stopped if the average gradient per pixel as calculated in Equation (4.21) is smaller

than 5 × 10−4. Related parameters are chosen according to the experimental results

on one test case. The OPC framework applies 8nm resolution during the initial mask

generation stage and 1nm resolution for refinement.

Synthesizing Training Data

As a type of deep neural networks, GAN can be hardly well trained with only ten

instances. To verify our framework, we synthesize a training layout library with 4000

ILT
Engine

G

Figure 4.18: GAN-OPC flow: generator inference and ILT refinement.

4.3. GENERATIVE MASK OPTIMIZATION 129

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0.00

50.00

100.00

Training Step

L
2
L
os
s

GAN-OPC
PGAN-OPC

Figure 4.19: Training curves of GAN-OPC and PGAN-OPC.

instances based on the design specifications from existing 32nmM1 layout topologies.

We adjust the wire sizes to make sure the shapes in synthesized layouts are similar

to those in the given benchmark. To generate experimental cells, all the shapes are

randomly placed together based on simple design rules, as detailed in Table 4.7. An

example of such synthesized target-reference mask pair can be found in Figure 4.17.

In addition, most generative models have shown obvious weakness in image details,

which makes it extremely hard to optimize images with size 2048×2048. Therefore,

we perform 8 × 8 average pooling on layout images before feeding them into the

neural networks. In the generation stage we adopt simple linear interpolation to

convert the layout images back to their original resolution.

Evaluation of GAN-OPC and PGAN-OPC

The proposed GAN-OPC flow is illustrated in Figure 4.18, where we first feed target

patterns into the generator and obtain the quasi-optimal masks, followed by refine-

ment through an ILT engine. In the first experiment, to verify the effectiveness of ILT-

guided pre-training algorithm, we record training behaviors of two GANs which are

denoted by GAN-OPC and PGAN-OPC. Here “GAN-OPC” and “PGAN-OPC” denote

130 CHAPTER 4. INTELLIGENT PATTERN GENERATION

Ta
bl
e
4.8

:C
om

pa
ris

on
w
ith

st
at
e-
of
-th

e-
ar
t.

Be
nc

hm
ar
ks

IL
T
[3
0]

M
od

el
-B

as
ed

[5
7]

GA
N
-O

PC
PG

A
N
-O

PC
EG

A
N
-O

PC
L2

PV
B
(n
m

2
)

L2
PV

B
(n
m

2
)

L2
PV

B
(n
m

2
)

L2
PV

B
(n
m

2
)

L2
PV

B
(n
m

2
)

1
49

89
3

65
53

4
53

81
6

66
21

8
54

97
0

64
16

3
52

57
0

56
26

7
55

42
5

58
04

3
2

50
36

9
48

23
0

41
38

2
53

43
4

46
44

5
56

73
1

42
25

3
50

82
2

40
21

1
53

02
0

3
81

00
7

10
86

08
79

25
5

14
67

76
88

89
9

84
30

8
83

66
3

94
49

8
93

09
0

75
64

4
4

20
04

4
28

28
5

21
71

7
33

26
6

18
29

0
29

24
5

19
96

5
28

95
7

22
87

7
26

40
1

5
44

65
6

58
83

5
48

85
8

65
63

1
42

83
5

59
72

7
44

73
3

59
32

8
42

65
0

59
76

5
6

57
37

5
48

73
9

46
32

0
62

06
8

44
31

3
52

62
7

46
06

2
52

84
5

39
77

6
54

87
8

7
37

22
1

43
49

0
31

89
8

51
06

9
24

48
1

47
65

2
26

43
8

47
98

1
22

76
1

49
15

6
8

19
78

2
22

84
6

23
31

2
25

89
8

17
39

9
23

76
9

17
69

0
23

56
4

16
29

6
24

44
1

9
55

39
9

66
33

1
55

68
4

75
38

7
53

63
7

66
76

6
56

12
5

65
41

7
52

15
7

66
49

2
10

24
38

1
18

09
7

19
72

2
18

53
6

96
77

20
69

3
99

90
19

89
3

97
65

21
33

8
Av

er
ag

e
44

01
2.7

50
89

9.5
42

19
6.4

59
82

8.3
40

09
4.6

50
56

8.1
39

94
8.9

49
95

7.2
39

50
0.8

48
91

7.8
Ra

tio
1.0

1.0
0.9

59
1.1

75
0.9

11
0.9

93
0.9

08
0.9

81
0.
89

8
0.
96

1

4.3. GENERATIVE MASK OPTIMIZATION 131

ILT
[30

]

Mode
l-Ba

sed
[57

]

GA
N-O

PC

PG
AN

-OP
C

EG
AN

-OP
C

0

200

400

600

800

Ru
nt
im

e
(s)

Figure 4.20: Average runtime comparison of different methods.

GAN-OPC flow without generator pre-training and GAN-OPC flow with ILT-guided

pre-training, respectively. “ILT” corresponds to MOSAIC_fast in [30]. The training

procedure is depicted in Figure 4.19, where x-axis indicates training steps and y-axis

is L2 loss between generator outputs and ground truth masks, as in Equation (4.16).

The training time for both GAN and PGAN are around 10 hours on our platform.

AlthoughL2 loss of GAN-OPCdrops slightly faster before 3000 iterations, the training

curve shows that PGAN-OPC is a more stable training procedure and converges to a

lower loss. Besides, it takes much more efforts for GAN-OPC to search a direction to

descending the gradient fast, while the training loss of PGAN-OPC drops smoothly

and converges at a lower L2 loss than GAN-OPC, which indicates ILT-guided pre-

training indeed facilitates mask-optimization-oriented GAN training flow. We will

also show that PGAN-OPC exhibits better mask optimization results in the following

section.

In the second experiment, we optimize the ten layout masks in ICCAD 2013 con-

test benchmark [8] and compare the results with previous work, as listed in Table 4.8.

Here the wafer images are calculated from the simulation tool (lithosim_v4) in the

132 CHAPTER 4. INTELLIGENT PATTERN GENERATION

(a) (b)

Figure 4.21: Some wafer image details of (a) ILT [30] and (b) PGAN-OPC.

0 2,000 4,000 6,000 8,000 10,000
0.00

2.00

4.00

Training Step

L
2
L
os
s

Orignal
w. U-Net

w. U-Net+SPSR

Figure 4.22: Training behavior of the EGAN-OPC framework with faster and better
convergence.

contest [8]. Note that all the GAN-OPC and PGAN-OPC results are refined by an

ILT engine which generates final masks to obtain wafer images. Column “L2” is the

squared L2 error between the wafer image and the target image under nominal con-

dition. Column “PVB” denotes the contour area variations under± 2% dose error and

defocus range of ±25nm settings as in the contest. It is notable that GAN-OPC sig-

nificantly reduces squared L2 error of wafer images under the nominal condition by

9% and with the ILT-guided pre-training, squared L2 error is slightly improved and

PVB is further reduced by 1%. We also compared our work with one academic state-

of-the-art Model-based OPC engine [57], which exhibits larger L2 error (42196.4) and

worse PVB (59828.3nm2) compared to GAN-OPCs.

4.3. GENERATIVE MASK OPTIMIZATION 133

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

Fi
gu

re
4.2

3:
Re

su
lt
vi
su

al
iz
at
io
n
of

PG
A
N
-O

PC
,E

nh
an

ce
d
GA

N
-O

PC
an

d
IL
T.

Co
lu
m
ns

co
rr
es
po

nd
to

te
n
te
st

ca
se
sf

ro
m

IC
CA

D
20

13
CA

D
co

nt
es
t.

Ro
w
sf

ro
m

to
p
to

bo
tto

m
ar
e:

(a
)m

as
ks

of
[3
0]
;(
b)

w
af
er

im
ag

es
by

m
as
ks

of
[3
0]
;(
c)

m
as
ks

of
PG

A
N
-O

PC
;(
d)

w
af
er

im
ag

es
by

m
as
ks

of
PG

A
N
-O

PC
;(
e)

m
as
ks

of
En

ha
nc

ed
GA

N
-O

PC
(f)

w
af
er

im
ag

es
by

m
as
ks

of
En

ha
nc

ed
GA

N
-O

PC
;(
g)

ta
rg

et
pa

tte
rn

s.

134 CHAPTER 4. INTELLIGENT PATTERN GENERATION

Because we only focus on the optimization flow under the nominal condition

and no PVB factors are considered, our method only achieves comparable PVB ar-

eas among ten test cases. Additionally, feed-forward computation of GAN only takes

0.2s for each image which is ignorable, therefore runtime of our flow is almost de-

termined by ILT refinements. Runtime of different frameworks are illustrated in

Figure 4.20. Items “ILT”, “Model-Based”“GAN-OPC”, “PGAN-OPC” list the average

mask optimization time of [30], [57], GAN-OPC and PGAN-OPC, respectively. For

most benchmark cases, GAN-OPC and PGAN-OPC show a earlier stop at a smaller

L2 error and, on average, reduce the optimization runtime by more than 50%. We

also observe that model-based OPC engine shows advantages on execution time at

the cost of wafer image quality as well as PVB area, as shown in Table 4.8. For most

test cases, [30] exhibits a smaller PV band area possibly because the printed images

are more likely to have large wafer image CD and shorter wire length, which makes

masks suffer less proximity effects while inducing bridge or line-end pull back defects,

as shown in Figure 4.21.

Evaluation of Enhanced GAN-OPC

Herewe show the effectiveness and the efficiency of the EnhancedGAN-OPC (EGAN-

OPC) framework. In the first experiment, we illustrate the training behavior of PGAN-

OPC and the EGAN-OPC frameworks as shown in Figure 4.22. Red curve stands for

the original PGAN-OPC model, which fluctuates fiercely around a large value. Dark

curve refers to the results with U-Net generator. Blue curve represents the complete

version of enhanced GAN model with both U-net structure and the embedded SPSR

structure. It’s encouraging to see that U-net alone can already ensure a good con-

vergence in terms of L2 loss. As we have pointed out in algorithm section, such

structure attains the neural network capacity with significantly lower computational

cost, which is consistent with the trends of L2 error during training.

4.3. GENERATIVE MASK OPTIMIZATION 135

In the second experiment, we compare themask optimization results of the EGAN-

OPC with original GAN-OPC and PGAN-OPC, as depicted in Figure 4.23. The quanti-

tative results can also be found in column “EGAN-OPC” of Table 4.8. EGAN-OPC out-

performs PGAN-OPC and GAN-OPC on most test cases with better L2 error (39500

vs. 39948) and smaller PVB area (48917nm2 vs. 49957nm2) with only 70% average

runtime of PGAN-OPC (see Figure 4.20), which demonstrates the efficiency of EGAN-

OPC framework. It should be also noted that EGAN-OPC can be trained end-to-end

without any interaction with the lithography engine which induces a large amount

of computational cost in PGAN-OPC.

On the Scalability of GAN-OPC Family

In order to verify the scalability of our frameworks, we conduct further experiments

on 10 additional testcases that contain more patterns and larger total pattern areas.

Similar to [96], these 10 testcases are created from the original IBM benchmarks with

additional geometries. The results of one example can be found in Figure 4.24. It can

be seen that our framework generalizes to more complex patterns. We also visualize

the ILT convergence in terms of different mask initialization in Figure 4.25. Here

we use testcase 18 as an example. It can be seen that ILT converges much faster

when using the mask initialized by EGAN-OPC as input, with only ignorable PV

Band penalty. We did not compare the performance with model-based OPC as the

binary release in [57] encounters unknown failure on the new benchmarks.

We list the detailed optimization results in Table 4.9, where columns are defined

exactly the same as Table 4.8. It can be seen that GAN-OPC exhibits trade-offs on

nominal image quality and PVB compared to pure ILT, while both PGAN-OPC and

EGAN-OPC show significant advantages on L2 error (86105.7 v.s. 90486.3) with sim-

ilar or slightly better PVB (108690.7nm2 v.s.109842.7nm2). Besides, competitive re-

sults of our framework are also achieved with shorter optimization time thanks to the

136 CHAPTER 4. INTELLIGENT PATTERN GENERATION

(a) (b) (c)

Figure 4.24: A larger-case example of (a) a mask pattern, (b) its wafer image and (c)
the corresponding target pattern.

2 4 6 8 10
0.5

1.0

1.5

2.0

·105

Step

L
2
Lo

ss

EGAN-OPC

(a) L2

2 4 6 8 10
0.5

1.0

1.5

2.0

·105

Step

PV
Ba

nd
(n
m

2
)

ILT

(b) PV Band

Figure 4.25: Visualization of convergence during ILT refinement.

good initialization offered by the generator, as shown in Figure 4.26.

4.3.4 Summary

In this section, we have proposed a GAN-based mask optimization flow that takes

target circuit patterns as input and generates quasi-optimal masks for further ILT

refinement. We analyze the specialty of mask optimization problem and design OPC-

4.3. GENERATIVE MASK OPTIMIZATION 137

Ta
bl
e
4.9

:E
xp

er
im

en
ts

on
la
rg

er
be

nc
hm

ar
ks

.

Be
nc

hm
ar
ks

IL
T
[3
0]

GA
N
-O

PC
PG

A
N
-O

PC
EG

A
N
-O

PC
L2

PV
B
(n
m

2
)

L2
PV

B
(n
m

2
)

L2
PV

B
(n
m

2
)

L2
PV

B
(n
m

2
)

11
94

79
2

12
55

78
90

54
7

13
71

07
89

22
9

12
12

76
93

70
4

11
99

28
12

94
60

4
12

83
06

97
96

9
13

29
29

93
45

4
12

75
51

96
63

4
12

20
60

13
13

68
61

16
03

27
13

79
81

17
53

90
13

43
97

15
55

11
13

12
20

15
35

27
14

69
09

0
79

33
7

62
58

2
94

56
2

58
77

6
85

64
4

57
32

9
85

56
0

15
96

96
1

11
60

39
10

27
59

12
61

57
99

83
0

11
67

28
99

92
6

11
39

71
16

98
15

9
11

51
07

98
07

0
12

37
07

96
33

5
11

39
81

93
75

5
11

11
86

17
79

19
2

91
98

9
76

80
7

98
74

4
71

52
2

94
84

1
70

86
4

94
87

7
18

65
57

2
81

50
3

63
57

3
93

21
9

60
37

2
83

71
8

58
38

3
83

56
8

19
10

70
95

12
19

22
10

37
53

13
64

93
10

59
73

12
27

70
10

29
94

12
23

71
20

62
53

7
78

31
9

61
52

4
90

51
4

57
08

6
81

28
5

56
24

8
79

85
9

Av
er
ag

e
90

48
6.3

10
98

42
.7

89
55

6.5
12

08
82

.2
86

69
7.4

11
03

30
.5

86
10

5.7
10

86
90

.7
Ra

tio
1.0

0
1.0

0
0.9

90
1.1

01
0.9

58
1.0

04
0.
95

2
0.
99

0

138 CHAPTER 4. INTELLIGENT PATTERN GENERATION

ILT
[30

]

GA
N-O

PC

PG
AN

-OP
C

EG
AN

-OP
C

0

100

200

300

400

500

Ru
nt
im

e
(s)

Figure 4.26: Average runtime comparison on larger benchmarks.

oriented training objectives of GAN. Inspired by the observation that ILT proce-

dure resembles gradient descent in back-propagation, we develop an ILT-guided pre-

training algorithm that initializes the generator with intermediate ILT results, which

significantly facilitates the training procedure. We also enhance the GAN-OPC flow

by integrating U-Net and SPSR layers in the generator that ensures better model con-

vergence and mask quality. Experimental results show that our framework not only

accelerates ILT but also has the potential to generate better masks through offering

better starting points in ILT flow.

Chapter 5

Conclusion and Future Works

In this thesis, we have proposed and discussed a series of machine learning/deep

learning solutions for critic challenges in modern chip design for manufacturibility

flows. The major contributions include:

• In Chapter 2, we deal with challenging layout hotspot detection problem with

dedicated discriminative deep learning technologies. In Section 2.2, we pro-

posed an efficient frequency domain layout representation that compresses

layouts into neural network compatible format with minor information loss.

Considering the main objectives in hotspot detection problems, we also intro-

duced a provably good training algorithm called biased-learning that seeks bet-

ter trade-off between detection accuracy and false alarms. The compact rep-

resentation, the efficient learning algorithm and the equipped shallow neural

networks contribute to the state-of-the-art machine learning-based hotspot de-

tection solution. In light of non-lithographic layout hotspot detection, in Sec-

tion 2.3, we study the the defect type of metal-to-via failure, where an adaptive

squish representation is proposed for multi-layer layouts. The adaptive squish

pattern ensures an evenly distributed layout feature representation which is

necessary for neural network applications, while attains the advantage of orig-

139

140 CHAPTER 5. CONCLUSION AND FUTURE WORKS

inal squish pattern that is lossless and highly compressed.

• In Chapter 3, we view the hotspot detection challenges from a deeper perspec-

tive andwe discussed the importance and the overhead obtaining a high quality

layout library. In Section 3.2, we formulate a pattern sampling and hotspot de-

tection problem that seeks to optimize the training set (labeled layout pattern

library) and the machine learning model simultaneously. We propose an ac-

tive learning-based solution that considers both the posterior probabilities of

pattern instances and the pattern library diversity, which lead to better model

generality. The proposed sample-to-sample distance makes the diversity-aware

sampling problem convex and hence provides a provable integer relaxation

bound that can guide batch active learning configurations. Experiments show

the proposed flow can effectively achieve high hotspot detection accuracy with

a much smaller group of labeled pattern library.

• In Chapter 4, we discuss the layout pattern generation with generative ma-

chine learning models. Section 4.2 covers design pattern generation to benefit

early technology node developments. We proposed a TCAE family with a hy-

brid GAN-TCAE architecture, where the TCAE targets to capture simple design

rules and the relationships between auto-learned latent features and layout ge-

ometric properties. The GAN, on the other hand, learns legal perturbations that

can be applied on latent vectors and generate new layout topology. Different

configurations of data flow in GAN-TCAE enables two major functionalities of

the framework: massive pattern generation and context-specific pattern gen-

eration. Section 4.3 deals with mask pattern generation, which is a key step

in chip manufacturing flows. We proposed GAN-OPC family to facilitate ILT-

based mask optimization flow. The generator is trained to offer better initial-

ization for legacy OPC engines that can effectively narrows iterations required

141

to generate an optimal mask.

Researches in this thesis have demonstrate the importance and the potential of

emergingmachine learning techniques being an alternative solution in VLSI back-end

design and sign-off flows. New solutions always come along with new challenges:

• In the long logic-to-chip design cycle, there are many more challenges we are

facing today to keep the technology on track with Moore’s Law. Bringing

emerging techniques like deep learning and AI to deal with these challenges

is and will be of great interests in both academic and industrial research. Ex-

ample topics and open problems include (1) how to fix lithography hotspots,

(2) how machine learning assist placement and routing in physical design, etc.

• Another research direction comes from machine learning solution itself. An

example is the robustness and reliability of machine learning models. Most

vision-based deep learning frameworks suffer from heavy performance degra-

dation when exposed to adversarial examples, so will the deep learning models

in VLSI design. How to identify adversarial examples in layouts and make the

model free from adversarial attacks will be a continuously open topic in future

researches.

142 CHAPTER 5. CONCLUSION AND FUTURE WORKS

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, et al. TensorFlow: A
system for large-scale machine learning. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 265–283, 2016.

[2] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z. Pan. GAN-SRAF:
Sub-resolution assist feature generation using conditional generative adversar-
ial networks. In Proceedings of the 56th Annual Design Automation Conference
2019, pages 1–6, 2019.

[3] M. Arjovsky and L. Bottou. Towards principledmethods for training generative
adversarial networks. In International Conference on Learning Representations
(ICLR), 2016.

[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial
networks. In International Conference on Machine Learning (ICML), pages 214–
223, 2017.

[5] A. Awad, A. Takahashi, S. Tanaka, and C. Kodama. A fast process variation and
pattern fidelity aware mask optimization algorithm. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 238–245, 2014.

[6] A. Awad, A. Takahashi, S. Tanaka, and C. Kodama. A fast process-variation-
aware mask optimization algorithm with a novel intensity modeling. IEEE
Transactions on Very Large Scale Integration Systems (TVLSI), 25(3):998–1011,
2017.

[7] S. Banerjee, K. B. Agarwal, and M. Orshansky. Simultaneous OPC and decom-
position for double exposure lithography. In Proceedings of SPIE, volume 7973,
2011.

[8] S. Banerjee, Z. Li, and S. R. Nassif. ICCAD-2013 CAD contest in mask optimiza-
tion and benchmark suite. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 271–274, 2013.

143

144 BIBLIOGRAPHY

[9] W. Cai, Y. Zhang, and J. Zhou. Maximizing expected model change for active
learning in regression. In IEEE International Conference on DataMining (ICDM),
pages 51–60, 2013.

[10] J. P. Cain, M. Fakhry, P. Pathak, J. Sweis, F. E. Gennari, and Y.-C. Lai. Pattern-
based analytics to estimate and track yield risk of designs down to 7nm. In SPIE
Advanced Lithography, volume 10148, 2017.

[11] J. P. Cain, Y.-C. Lai, F. Gennari, and J. Sweis. Methodology for analyzing and
quantifying design style changes and complexity using topological patterns. In
Proceedings of SPIE, volume 9781, 2016.

[12] S. Chakraborty, V. Balasubramanian, Q. Sun, S. Panchanathan, and J. Ye. Ac-
tive batch selection via convex relaxations with guaranteed solution bounds.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(10):1945–
1958, 2015.

[13] W.-C. Chang, I. H.-R. Jiang, Y.-T. Yu, and W.-F. Liu. iClaire: A fast and gen-
eral layout pattern classification algorithm. In ACM/IEEE Design Automation
Conference (DAC), pages 64:1–64:6, 2017.

[14] K.-J. Chen, Y.-K. Chuang, B.-Y. Yu, and S.-Y. Fang. Minimizing cluster num-
ber with clip shifting in hotspot pattern classification. In ACM/IEEE Design
Automation Conference (DAC), pages 63:1–63:6, 2017.

[15] Y. Chen, Y. Lin, T. Gai, Y. Su, Y. Wei, and D. Z. Pan. Semi-supervised hotspot
detection with self-paced multi-task learning. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2019.

[16] P. Chien and M. Chen. Proximity effects in submicron optical lithography. In
Optical microlithography VI, volume 772, pages 35–41. International Society for
Optics and Photonics, 1987.

[17] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun. The
loss surfaces of multilayer networks. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 192–204, 2015.

[18] N. B. Cobb. Fast optical and process proximity correction algorithms for integrated
circuit manufacturing. PhD thesis, University of California at Berkeley, 1998.

[19] V. Dai, E. K. C. Teoh, J. Xu, and B. Rangarajan. Optimization of complex high-
dimensional layout configurations for IC physical designs using graph search,
data analytics, and machine learning. In SPIE Advanced Lithography, volume
10148, 2017.

BIBLIOGRAPHY 145

[20] D. Ding, A. J. Torres, F. G. Pikus, and D. Z. Pan. High performance lithographic
hotspot detection using hierarchically refined machine learning. In IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC), pages 775–780,
2011.

[21] D. Ding, X. Wu, J. Ghosh, and D. Z. Pan. Machine learning based lithographic
hotspot detection with critical-feature extraction and classification. In IEEE
International Conference on IC Design and Technology (ICICDT), pages 219–222,
2009.

[22] D. Ding, B. Yu, J. Ghosh, and D. Z. Pan. EPIC: Efficient prediction of IC manu-
facturing hotspots with a unified meta-classification formulation. In IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC), pages 263–270,
2012.

[23] C. Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[24] D. G. Drmanac, F. Liu, and L.-C. Wang. Predicting variability in nanoscale
lithography processes. In ACM/IEEE Design Automation Conference (DAC),
pages 545–550, 2009.

[25] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2018.

[26] A. Erdmann, T. Fuehner, T. Schnattinger, and B. Tollkuehn. Toward automatic
mask and source optimization for optical lithography. In Optical Microlithog-
raphy XVII, volume 5377, pages 646–657. International Society for Optics and
Photonics, 2004.

[27] L. Francisco, R. Mao, U. Katakamsetty, P. Verma, and R. Pack. Multilayer
cmp hotspot modeling through deep learning. In Design-Process-Technology
Co-optimization for Manufacturability XIII, volume 10962, page 109620U. Inter-
national Society for Optics and Photonics, 2019.

[28] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, 1997.

[29] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the
query by committee algorithm. Machine Learning, 28(2):133–168, 1997.

[30] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan. MOSAIC: Mask optimizing solution with
process window aware inverse correction. In ACM/IEEE Design Automation
Conference (DAC), pages 52:1–52:6, 2014.

146 BIBLIOGRAPHY

[31] W. A. Gardner. Learning characteristics of stochastic-gradient-descent algo-
rithms: A general study, analysis, and critique. Signal Processing, 6(2):113–133,
1984.

[32] H. Geng, H. Yang, Y. Ma, J. Mitra, and B. Yu. SRAF insertion via supervised
dictionary learning. In IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), pages 406–411, 2019.

[33] H. Geng, H. Yang, B. Yu, X. Li, and X. Zeng. Sparse VLSI layout feature ex-
traction: A dictionary learning approach. In IEEE Annual Symposium on VLSI
(ISVLSI), pages 488–493, 2018.

[34] F. E. Gennari and Y.-C. Lai. Topology design using squish patterns, Sept. 9 2014.
US Patent 8,832,621.

[35] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 9, pages 249–256, 2010.

[36] G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. JHU Press,
2012.

[37] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Conference on
Neural Information Processing Systems (NIPS), pages 2672–2680. 2014.

[39] J. E. Greivenkamp. Field Guide to Geometrical Optics. SPIE Press Bellingham,
WA, 2004.

[40] A. Gu and A. Zakhor. Optical proximity correction with linear regression. IEEE
Transactions on Semiconductor Manufacturing (TSM), 21(2):263–271, 2008.

[41] J. Guo, F. Yang, S. Sinha, C. Chiang, and X. Zeng. Improved tangent space based
distance metric for accurate lithographic hotspot classification. In ACM/IEEE
Design Automation Conference (DAC), pages 1173–1178, 2012.

[42] M. Gupta, K. Jeong, and A. B. Kahng. Timing yield-aware color reassignment
and detailed placement perturbation for double patterning lithography. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
607–614, 2009.

[43] P. Gupta. What is process window? ACM SIGDA Newsletter, 40(8):1–1, 2010.

http://www.deeplearningbook.org

BIBLIOGRAPHY 147

[44] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[45] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[46] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In
International Conference on Artificial Neural Networks (ICANN), pages 44–51,
2011.

[47] S. Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[48] H. Hopkins. The concept of partial coherence in optics. In Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol-
ume 208, pages 263–277. The Royal Society, 1951.

[49] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[50] S. Hu and J. Hu. Pattern sensitive placement for manufacturability. In ACM
International Symposium on Physical Design (ISPD), pages 27–34, 2007.

[51] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.Weinberger. Densely connected
convolutional networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4700–4708, 2017.

[52] W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. Huang, J. Lin, J.-H. Chen, R.-G. Liu, Y. C.
Ku, and B.-J. Lin. Two threshold resist models for optical proximity correction.
In Optical Microlithography XVII, volume 5377, pages 1536–1544. International
Society for Optics and Photonics, 2004.

[53] B. Jiang, H. Zhang, J. Yang, and E. F. Young. A fast machine learning-based
mask printability predictor for OPC acceleration. In IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC), pages 412–419, 2019.

[54] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations (ICLR), 2015.

148 BIBLIOGRAPHY

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classificationwith deep
convolutional neural networks. In Conference on Neural Information Processing
Systems (NIPS), pages 1097–1105, 2012.

[56] J. Kuang, W.-K. Chow, and E. F. Y. Young. Triple patterning lithography aware
optimization for standard cell based design. In IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 108–115, 2014.

[57] J. Kuang, W.-K. Chow, and E. F. Y. Young. A robust approach for process vari-
ation aware mask optimization. In IEEE/ACM Proceedings Design, Automation
and Test in Eurpoe (DATE), pages 1591–1594, 2015.

[58] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[59] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers.
In ACM SIGIR Conference, pages 3–12, 1994.

[60] X. Li, G. Luk-Pat, C. Cork, L. Barnes, and K. Lucas. Double-patterning-friendly
OPC. In Proceedings of SPIE, volume 7274, 2009.

[61] T. Lin, F. Robert, A. Borjon, G. Russell, C. Martinelli, A. Moore, and Y. Rody.
Sraf placement and sizing using inverse lithography technology. In Optical Mi-
crolithography XX, volume 6520, page 65202A. International Society for Optics
and Photonics, 2007.

[62] Y. Lin, M. Li, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, and D. Z. Pan.
Data efficient lithography modeling with transfer learning and active data se-
lection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2019.

[63] J. Liu, Y. Ding, J. Yang, U. Schlichtmann, and Y. Shi. Generative adversarial
network based scalable on-chip noise sensor placement. In IEEE International
System-on-Chip Conference (SOCC), pages 239–242, 2017.

[64] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Conference
on Neural Information Processing Systems (NIPS), pages 469–477, 2016.

[65] R. Luo. Optical proximity correction using a multilayer perceptron neural net-
work. Journal of Optics, 15(7):075708, 2013.

[66] N. Ma, J. Ghan, S. Mishra, C. Spanos, K. Poolla, N. Rodriguez, and L. Capodieci.
Automatic hotspot classification using pattern-based clustering. In Proceedings
of SPIE, volume 6925, 2008.

BIBLIOGRAPHY 149

[67] Y. Ma, J.-R. Gao, J. Kuang, J. Miao, and B. Yu. A unified framework for simulta-
neous layout decomposition andmask optimization. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 81–88, 2017.

[68] C. Mack. Fundamental Principles of Optical Lithography: The Science of Micro-
fabrication. John Wiley & Sons, 2008.

[69] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-
encoders for hierarchical feature extraction. In International Conference on Ar-
tificial Neural Networks (ICANN), pages 52–59, 2011.

[70] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan. A new lithography hotspot detec-
tion framework based on AdaBoost classifier and simplified feature extraction.
In Proceedings of SPIE, volume 9427, 2015.

[71] T.Matsunawa, S. Nojima, and T. Kotani. Automatic layout feature extraction for
lithography hotspot detection based on deep neural network. In SPIE Advanced
Lithography, volume 9781, 2016.

[72] T. Matsunawa, B. Yu, and D. Z. Pan. Optical proximity correction with hierar-
chical bayes model. In Proceedings of SPIE, volume 9426, 2015.

[73] T. Matsunawa, B. Yu, and D. Z. Pan. Laplacian eigenmaps-and bayesian
clustering-based layout pattern sampling and its applications to hotspot de-
tection and optical proximity correction. Journal of Micro/Nanolithography,
MEMS, and MOEMS (JM3), 15(4):043504–043504, 2016.

[74] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[75] G. E. Moore. Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp. 114 ff. IEEE solid-state
circuits society newsletter, 11(3):33–35, 2006.

[76] J.-S. Park, C.-H. Park, S.-U. Rhie, Y.-H. Kim, M.-H. Yoo, J.-T. Kong, H.-W. Kim,
and S.-I. Yoo. An efficient rule-based OPC approach using a DRC tool for
0.18 µm ASIC. In IEEE International Symposium on Quality Electronic Design
(ISQED), pages 81–85, 2000.

[77] A. Poonawala and P. Milanfar. Mask design for optical microlithography–an
inverse imaging problem. IEEE Transactions on Image Processing, 16(3):774–788,
2007.

150 BIBLIOGRAPHY

[78] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In International Con-
ference on Learning Representations (ICLR), 2016.

[79] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In International Conference on Learn-
ing Representations (ICLR), 2017.

[80] G. R. Reddy, K. Madkour, and Y. Makris. Machine learning-based hotspot de-
tection: Fallacies, pitfalls and marching orders. In IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2019.

[81] J. A. T. Robles. Integrated circuit layout design methodology with process vari-
ation bands, Aug. 5 2014. US Patent 8,799,830.

[82] N. Rodriguez, L. Song, S. Shroff, K. H. Chen, T. Smith, and W. Luo. Hotspot
prevention using cmp model in design implementation flow. In IEEE Interna-
tional Symposium on Quality Electronic Design (ISQED), pages 365–368. IEEE,
2008.

[83] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[84] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

[85] G. Schohn and D. Cohn. Less is more: Active learning with support vector
machines. In International Conference on Machine Learning (ICML), pages 839–
846, 2000.

[86] R. A. Servedio. Smooth boosting and learning with malicious noise. Journal of
Machine Learning Research, 4:633–648, 2003.

[87] B. Settles. Active learning literature survey. Technical report, 2010.

[88] S. Shang, Y. Granik, and M. Niehoff. Etch proximity correction by integrated
model-based retargeting and opc flow. In Photomask Technology 2007, volume
6730, page 67302G. International Society for Optics and Photonics, 2007.

[89] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE
mobile computing and communications review, 5(1):3–55, 2001.

BIBLIOGRAPHY 151

[90] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1874–1883, 2016.

[91] S. Shim, W. Chung, and Y. Shin. Synthesis of lithography test patterns through
topology-oriented pattern extraction and classification. In Proceedings of SPIE,
volume 9053, 2014.

[92] S. Shim and Y. Shin. Topology-oriented pattern extraction and classification
for synthesizing lithography test patterns. Journal of Micro/Nanolithography,
MEMS, and MOEMS (JM3), 14(1):013503–013503, 2015.

[93] M. Shin and J.-H. Lee. Accurate lithography hotspot detection using deep
convolutional neural networks. Journal of Micro/Nanolithography, MEMS, and
MOEMS (JM3), 15(4):043507, 2016.

[94] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. International Conference on Learning Representations
(ICLR), 2015.

[95] Z. Song, X. Ma, J. Gao, J. Wang, Y. Li, and G. R. Arce. Inverse lithography source
optimization via compressive sensing. Optics express, 22(12):14180–14198, 2014.

[96] Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee. Fast litho-
graphic mask optimization considering process variation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 35(8):1345–
1357, 2016.

[97] C. Tabery, Y. Zou, V. Arnoux, P. Raghavan, R.-h. Kim, M. Côté, L. Mattii, Y.-
C. Lai, and P. Hurat. In-design and signoff lithography physical analysis for
7/5nm. In SPIE Advanced Lithography, volume 10147, 2017.

[98] S. Tong and D. Koller. Support vector machine active learningwith applications
to text classification. Journal ofMachine Learning Research, 2(Nov.):45–66, 2001.

[99] R. O. Topaloglu. ICCAD-2016 CAD contest in pattern classification for inte-
grated circuit design space analysis and benchmark suite. In IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pages 41:1–41:4, 2016.

[100] R. O. Topaloglu. ICCAD-2016 CAD contest in pattern classification for inte-
grated circuit design space analysis and benchmark suite. In IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pages 41:1–41:4, 2016.

152 BIBLIOGRAPHY

[101] A. J. Torres. ICCAD-2012 CAD contest in fuzzy pattern matching for physical
verification and benchmark suite. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 349–350, 2012.

[102] R. Viswanathan, J. T. Azpiroz, and P. Selvam. Process optimization through
model based SRAF printing prediction. In SPIE Advanced Lithography, volume
8326, 2012.

[103] G. K. Wallace. The JPEG still picture compression standard. IEEE Transactions
on Consumer Electronics (TCE), 38(1):xviii–xxxiv, 1992.

[104] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang. A fuzzy-matching
model with grid reduction for lithography hotspot detection. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
33(11):1671–1680, 2014.

[105] T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning deep feature representations
with domain guided dropout for person re-identification. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1249–1258, 2016.

[106] Z. Xiao, Y. Du, H. Tian, M. D. F. Wong, H. Yi, H.-S. P. Wong, and H. Zhang. Di-
rected self-assembly (DSA) template pattern verification. In ACM/IEEE Design
Automation Conference (DAC), pages 55:1–55:6, 2014.

[107] W. Xiong, J. Zhang, Y. Wang, Z. Yu, and M.-C. Tsai. A gradient-based inverse
lithography technology for double-dipole lithography. In International Con-
ference on Simulation of Semiconductor Processes and Devices, pages 1–4. IEEE,
2009.

[108] J. Xu, K. N. Krishnamoorthy, E. Teoh, V. Dai, L. Capodieci, J. Sweis, and Y.-C.
Lai. Design layout analysis and dfm optimization using topological patterns.
In Proceedings of SPIE, volume 9427, 2015.

[109] X. Xu, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, and D. Z. Pan. A ma-
chine learning based framework for sub-resolution assist feature generation. In
ACM International Symposium on Physical Design (ISPD), pages 161–168, 2016.

[110] F. Yang, S. Sinha, C. C. Chiang, X. Zeng, and D. Zhou. Improved tangent
space based distance metric for lithographic hotspot classification. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
36(9):1545–1556, 2017.

[111] H. Yang, W. Chen, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu. Automatic layout
generation with applications in machine learning engine evaluation. arXiv
preprint arXiv:1912.05796, 2019.

BIBLIOGRAPHY 153

[112] H. Yang, S. Li, Z. Deng, Y.Ma, B. Yu, and E. F. Young. GAN-OPC:Mask optimiza-
tion with lithography-guided generative adversarial nets. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2019.

[113] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young. GAN-OPC: Mask optimization
with lithography-guided generative adversarial nets. In ACM/IEEE Design Au-
tomation Conference (DAC), pages 131:1–131:6, 2018.

[114] H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu. Bridging the gap between layout
pattern sampling and hotspot detection via batch active sampling. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2020.

[115] H. Yang, Y. Lin, B. Yu, and E. F. Y. Young. Lithography hotspot detection:
From shallow to deep learning. In IEEE International System-on-Chip Confer-
ence (SOCC), pages 233–238, 2017.

[116] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu. Imbalance aware lithography hotspot
detection: A deep learning approach. In SPIE Advanced Lithography, volume
10148, 2017.

[117] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu. Imbalance aware lithography hotspot
detection: a deep learning approach. Journal of Micro/Nanolithography, MEMS,
and MOEMS (JM3), 16(3):033504, 2017.

[118] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu. Deepattern: Layout pattern
generationwith transforming convolutional auto-encoder. InACM/IEEEDesign
Automation Conference (DAC), pages 1–6, 2019.

[119] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu. Detecting multi-layer
layout hotspots with adaptive squish patterns. In IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC), pages 299–304, 2019.

[120] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young. Layout hotspot detection
with feature tensor generation and deep biased learning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 38(6):1175–
1187, 2019.

[121] H. Yang, J. Su, Y. Zou, B. Yu, and E. F. Y. Young. Layout hotspot detection
with feature tensor generation and deep biased learning. In ACM/IEEE Design
Automation Conference (DAC), pages 62:1–62:6, 2017.

[122] W. Ye, M. B. Alawieh, M. Li, Y. Lin, and D. Z. Pan. Litho-GPA: Gaussian process
assurance for lithography hotspot detection. In IEEE/ACM Proceedings Design,
Automation and Test in Eurpoe (DATE), pages 54–59. IEEE, 2019.

154 BIBLIOGRAPHY

[123] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan. LithoGAN: End-to-end lithog-
raphy modeling with generative adversarial networks. In ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2019.

[124] W. Ye, Y. Lin, M. Li, Q. Liu, and D. Z. Pan. LithoROC: lithography hotspot
detection with explicit ROC optimization. In IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC), pages 292–298, 2019.

[125] P. Yu, S. X. Shi, and D. Z. Pan. Process variation aware OPC with variational
lithography modeling. In ACM/IEEE Design Automation Conference (DAC),
pages 785–790, 2006.

[126] P. Yu, S. X. Shi, and D. Z. Pan. True process variation aware optical proximity
correction with variational lithography modeling and model calibration. Jour-
nal of Micro/Nanolithography, MEMS, and MOEMS (JM3), 6(3):031004–031004,
2007.

[127] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and C. Chiang. Accurate process-
hotspot detection using critical design rule extraction. In ACM/IEEE Design
Automation Conference (DAC), pages 1167–1172, 2012.

[128] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang. Machine-learning-based
hotspot detection using topological classification and critical feature extrac-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 34(3):460–470, 2015.

[129] C. Zhang, Q. Liao, A. Rakhlin, K. Sridharan, B. Miranda, N. Golowich, and
T. Poggio. Theory of deep learning III: Generalization properties of SGD. Tech-
nical report, Center for Brains, Minds and Machines (CBMM), 2017.

[130] H. Zhang, B. Yu, and E. F. Y. Young. Enabling online learning in lithogra-
phy hotspot detection with information-theoretic feature optimization. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
47:1–47:8, 2016.

[131] W. Zhang, X. Li, S. Saxena, A. Strojwas, and R. Rutenbar. Automatic clustering
of wafer spatial signatures. In ACM/IEEE Design Automation Conference (DAC),
pages 71:1–71:6, 2013.

[132] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In IEEE International Conference
on Computer Vision (ICCV), 2017.

BIBLIOGRAPHY 155

[133] L. Zhuang, J. Xu, M. Tsai, Q. W. Liu, E. Yang, Y. Zhang, J. Sweis, C. Lai, and
H. Ding. A novel methodology of process weak-point identification to acceler-
ate process development and yield ramp-up. In IEEE International Conference
on Solid-State and Integrated Circuit Technology (ICSICT), pages 852–855, 2016.

	Abstract
	摘要
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Introduction
	VLSI Manufacturing Challenges
	Literature Review
	Legacy Mask and Layout Optimization
	Mask and Layout Learning

	Thesis Outline

	Intelligent Hotspot Detection
	Introduction
	Lithography Hotspot Detection
	Preliminaries and Problem Formulation
	Architectures and Algorithms
	Experiments
	Summary

	Multi-Layer Hotspot Detection
	Preliminaries and Problem Formulation
	Architectures and Algorithms
	Experiments
	Summary

	Intelligent Pattern Sampling
	Introduction
	Diversity-Aware Layout Pattern Sampling
	Preliminaries and Problem Formulation
	Architectures and Algorithms
	Experiments
	Summary

	Intelligent Pattern Generation
	Introduction
	Test Layout Generation
	Preliminaries and Problem Formulation
	Architectures and Algorithms
	Experiments
	Summary

	Generative Mask Optimization
	Preliminaries and Problem Formulation
	Architectures and Algorithms
	Experiments
	Summary

	Conclusion and Future Works
	Bibliography

