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Many research objects are organized under the non-Euclidean structure and often called
irregular data. Irregular data, such as graphs and point clouds, often vary in terms of
the size and scale, making some analytics methods infeasible due to its un-fixed scale and
possible prohibitive cost for some huge cases. To overcome these issues, the study of data
embedding method is essential for irregular data. Among all data embedding methods,
deep learning is the most successful one.

However, it is hard to directly apply neural networks that perform well on the Eu-
clidean domain to the non-Euclidean domain. Compared with regular data under an
Euclidean or grid-like structure, irregular data loses some critical properties like shift
invariance that are one of the key reasons for the success of deep learning. The thesis
will discuss the applications of deep learning models for two representative irregular data
representations, graph and point cloud.

For the graph embedding, we study its applications in multiple patterning lithogra-
phy decomposition (MPLD) problem and the graph coloring problem. MPLD has been
widely investigated, but so far there is no decomposer that dominates others in terms
of both the optimality and the efficiency. This observation motivates us exploring how
to adaptively select the most suitable MPLD strategy for a given layout graph, which
is non-trivial and still an open problem. We propose a layout decomposition framework
based on graph neural networks (GNNs) to obtain the graph embeddings of the layout.
The graph embeddings are used for graph library construction, decomposer selection and
graph matching. Besides the applications in the industrial workflow, we study the power
of GNNs for a pure graph coloring problem from three perspectives. First, we extend the
theoretical analysis of GNNs from tasks under homophily to heterophily, and prove that
previous definitions on the power of GNNs cannot generalize to a task under heterophily
including the coloring problem. Furthermore, we show that any AC-GNN is a local col-
oring method, and any local coloring method is non-optimal by exploring the limits of
local methods over sparse random graphs, thereby demonstrating the non-optimality of
AC-GNNs due to its local property. Moreover, we discuss the color equivariance for the
coloring problem. Following the discussions above, we develop a global GNN-based ap-
proach by un-supervised learning, which proves to enhance the discrimination power and



retain the color equivariance.
For the point cloud embedding, we focus on its application on the routing tree con-

struction problem. In the routing tree construction, both wirelength (WL) and pathlength
(PL) are of importance. Among all methods, PD-II and SALT are the two most prominent
ones. However, neither PD-II nor SALT always dominates the other one in terms of both
WL and PL for all nets. In addition, estimating the best parameters for both algorithms
is still an open problem. We model the pins of a net as point cloud and formalize a set of
special properties of such point cloud. Considering these properties, we propose a novel
deep neural net architecture, TreeNet, to obtain the embedding of the point cloud. Based
on the obtained cloud embedding, an adaptive workflow is designed for the routing tree
construction. In the workflow, the cloud embedding is used to select the algorithm and
predict the balance parameter.



摘要

许多研究对象都是在非欧几里得结构下组织的，因此也被称为不规则数据。不规则数
据，如图和点云，往往在大小和规模上存在差异。这种差异导致数据大小的不固定，甚
至会存在超大数据。这些潜在的问题使得一些分析方法不可行，为了克服这些问题，对
于不规则数据来说，数据嵌入方法的研究变得至关重要。在所有的数据嵌入方法中，深
度学习是最成功的方法。
然而，我们很难将在欧氏领域表现良好的神经网络直接应用到非欧氏领域中。与欧

几里得或网格状结构下的规则数据相比，不规则数据失去了一些关键的特性，如移位不
变性，而这些特性是深度学习发挥作用的关键之一。本论文主要将研究深度学习在两种
代表性的不规则数据表征，图和点云，中的应用。
对于图嵌入，我们分别探讨其在多重图案光刻分解及图着色问题中的应用。多重图

案光刻分解问题已经被广泛研究，然而至今也没有一个分解器可以在性能和效率上都优
于其他的分解器。因此，给定一个布局图，我们试图自适应地选择最合适的分解器。我
们提出了一个基于图神经网络的布局分解框架。首先我们用图神经网络获得布局的图嵌
入，图嵌入接着被用于图库构建、分解器选择以及图匹配。除了在工业流程中的应用，
我们从三个角度研究了 GNNs 在纯图着色问题上的能力。首先，我们将图神经网络的
理论分析从同质性下的任务扩展到异质性下的任务，并证明了之前关于图神经网络能
力的定义不能推广到异质性下的任务。此外，我们通过探索稀疏随机图上的局部方法的
极限，证明任何基于消息传输的图神经网络都是一种局部着色方法，而任何局部着色方
法都是非最优的，从而证明基于消息传输的图神经网络在图着色问题上是非最优的。最
后，我们讨论了着色问题的颜色等值性。根据上述探究，我们通过无监督学习开发了一
种全局的图神经网络，该方法被证明可以提高着色能力并保留颜色的等值性。
对于点云嵌入，我们研究其在布线树问题上的应用。在布线树的构建中，浅度（路径

长度）和轻度（线路长度）都很重要。同时，对于大多数构建布线树的算法，都会存在
一个参数来平衡这两个指标。在所有方法中，PD-II 和 SALT 是最突出的两种。然而，
无论是 PD-II还是 SALT都不能完全打败另一个算法。我们将网的针脚建模为点云，并
证明了这种点云存在一系列特殊属性。利用这些属性，我们提出了新的深度神经网络架
构以获得点云的嵌入。基于获得的点云嵌入，我们设计了一个自适应的工作流程来构建
布线树。在这个流程种，点云嵌入被用于选择算法以及预测平衡参数。
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Chapter 1

Introduction

1.1 Irregular Data and Its Embedding

Although data under a regular Euclidean or grid-like structure seems to be easier and more
straightforward to use for research purpose, we live in a world that is not perfectly regular
most of the time: from natural compositions and interactions to humankind activities
and products such as molecules, proteins, living organisms, integrated circuit (IC), social
networks, planetary systems, and many more examples across a wide range of scales in
the universe [54].

As a result, many scientific fields study data with an underlying structure that is
non-Euclidean [16], where two representative ones are graph and point cloud. A graph
is a classic data structure defined by a collection of discrete objects (nodes), and their
pairwise relationships (edges). Different with the graph, a point cloud only represents a
set of data points in the Euclidean space such as our 3D real world, without containing
any connection information.

The study and analysis of the irregular data becomes increasingly crucial because of
not only its ubiquitousness but also its importance in various research tasks, such as
node classification and graph matching. For example, by analyzing the hidden informa-
tion of previous preferences of users in the website, we can provide a relatively accurate
recommendation based on the preference graph, an graph abstraction of the preference
information.

However, the analytics of irregular data is inhibited by two factors. First, most tra-
ditional analytics methods for irregular data suffer from the high computation and space
cost, especially for large data. Second, irregular data instances usually vary in terms
of size and scale, making them hard to digest for those methods that require fixed-size
input such as Multilayer Perceptron (MLP). To overcome these issues, the data embed-
ding method is discussed and studied widely. Basically, a data embedding method is to
generate an embedding of a data instance such that the original instance with various size
is transformed into a vector space in a lower but unified dimension with maximal repre-
sentation capability, where the obtained embedding can be further used in downstream

1
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Figure 1.1: Examples of graph embeddings 1.1(a) and point cloud embeddings 1.1(b).

tasks. Figure 1.1 shows toy examples of graph embeddings and point cloud embeddings,
where the graphs and point clouds are converted into a vector in the 2-D space, no matter
how large or different the graph/point cloud sizes are.

1.2 Deep Learning

Deep learning refers to learning complicated concepts by building them from simpler
ones in a hierarchical or multi-layer manner [16]. A deep neural network is a widely-
used realization of the abstract multi-layer hierarchies. For a long time, training a deep
learning model is almost impossible due to the lack of training data and the prohibitive
computational complexity caused by deep multilayer hierarchies and the explosion of
data dimensions. However, over the past few years, owing to the advance of big data
technology and the development of Graphic Processing Units (GPUs) and AI-chips which
are highly optimized for parallel computing and neural network computing, a deep neural
network becomes feasible and gains overwhelming success as an effective yet efficient data
embedding method, leading to considerable breakthroughs across many different fields
such as computer vision, natural language processing, medicine, and VLSI design.

One of the crucial reasons for the success of deep learning is their ability to leverage
statistical properties of the data [16], especially for regular data such as images, videos,
and audios. For example, an image can be also regarded as a series of data points sampled
on a grid in the Euclidean space. Following this formalization, some meaningful statis-
tical properties like stationarity, locality, and compositionality correspond to the shift
invariance, local connectivity, and the multi-resolution structure of grid respectively 1.
All of these properties are well-leveraged by convolutional neural networks (CNNs), con-
sisting of the convolution and down-sampling operations. The convolution operation only

1This statement does not indicate that any data under a grid structure has these properties. For example,
stationarity can be found in the natural images but does not exist in a randomly generated pixel sequences.
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contains filters which are usually small spatially. At each step, the convolution compu-
tation is conducted by the dot-product between the filter entries and the input entries in
the corresponding small receptive field, which utilizes the local connectivity. A complete
computation in the convolutional layer is composed of repeated steps above, that is, the
filters will be slidden across the whole image while the filters keep unchanged. Through
this way, the convolutional layer is naturally shift equivariant. Between successive con-
volutional layers, pooling Layer is sometimes inserted to reduce the size of the feature
map, which not only keeps the shift equivariance but also makes the model sensitive to
the multi-resolution structure.

Many neural network e.g., CNNs for images and videos, Recurrent Neural Networks
(RNNs) for sequences show their considerable power by considering some priors about
these data. Nevertheless, most previous models are particularly designed for regular
data, which are organized under the Euclidean structure. When directly transferring
these models for irregular data, most of them will lose the effectiveness since those priors
for regular data do not hold anymore. For example, on non–Euclidean domain, we even
cannot find a suitable definition of the basic convolution operation even though it is very
common on the Euclidean domain. There are some attempts to apply deep learning in the
irregular data, such as Graph Convolutional Network (GCN) [55] for graphs and PointNet
for point clouds [88]. However, unlike regular images which are mostly from nature and
own consistent properties, irregular data usually varies largely based on the subject. For
example, in the recommendation system, the target graph is bipartite, i.e., whose nodes
can be divided into user node set and product node set and usually contains billion of
nodes, moreover, two close user nodes (which may represent a relationship like friends
in the real-world) tend to have a more similar preferences, called homophily. On the
contrary, in the graph coloring problem, the target graph is relatively small in terms of
the size, requiring connected nodes being assigned different colors, known as heterophily.
These tremendous differences among various tasks make it hard to find a universal deep
learning model which performs well for all kinds of irregular data representations. One of
the main targets of this thesis is to provide a general idea on what a good deep learning
model is and how to design such a model for a specific task under the non-Euclidean
sturcture.

1.3 Thesis Overview

Rather than designing models by empirical intuition and experimental trials, we try to
propose solution from a theoretical perspective, e.g., analyzing the structural properties
and proving its limitation bounds. In the thesis, we focus on the key question: What is a
good irregular data embedding for a specific task, and how to obtain it by deep learning? We
try to answer the question by learning two representative irregular data representations,
graph and point cloud. Specifically, for the graph embedding, we study its applications in
multiple patterning lithography decomposition (MPLD) problem and the graph coloring
problem. For the point cloud embedding, we focus on its application on the routing tree
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construction problem.
In Chapter 2, we will review the literature on deep learning methods for graphs and

point clouds. Moreover, we review previous methods for the graph coloring methods.
In Chapter 3, we discuss the applications of graph embeddings in the MPLD problem.

Before stepping into the discussion, we first introduce our proposed open-source layout
decomposition framework: OpenMPL. Then, we introduce how layout graph embedding
is obtained and integrated into our adaptive layout decomposition framework.

In Chapter 4, we analyze the power of GNNs for a pure graph coloring problem from
three perspectives: heterophily, locality, and color equivariance. Following the analysis,
we develop a global GNN-based approach by un-supervised learning, which proves to
enhance the coloring ability and retain the color equivariance.

In Chapter 5, we study point cloud embedding method and its application in the
routing tree construction problem. We model the pins of a net as point cloud and formalize
a set of special properties of such point cloud. Considering these properties, we propose a
novel deep neural net architecture, TreeNet, to obtain the embedding of the point cloud.

In the appendix shown in Chapter 6, we list basic graph terminologies, proofs, more
detailed discussions and analysis, and incremental experimental results of Chapter 4.

2 End of chapter.



Chapter 2

Literature Review

This chapter reviews the literature about deep learning methods for irregular data em-
beddings and previous methods for the graph coloring problem.

2.1 Graph Neural Networks

With the development and further study of Neural Network, Graph Neural Networks, as
a branch of Deep Neural Networks, has shown promising results in many domains such
as the graph embedding. Generally speaking, GNN takes the graph as input and returns
the node embeddings or graph embeddings. Usually, GNN is composed of two modules,
aggregator and encoder, which exploit the neighborhood information and node attributes
respectively. Specifically, for each node u in graph G, the aggregator is to aggregate
neighbor v’s representations hv and obtain an intermediate representation ĥu such that
the final graph embedding is able to contain graph structure information. Especially, one
virtual additional edge is added to each node, i.e. a single self-connection whose weight is
defined as 1 to guarantee that the latter layer’s node representation can also be informed
by the corresponding representation at the previous layer besides neighbors. Encoder is
to multiply the aggregated representation ĥu with a learnable matrix followed with a non-
linear activation function. GNN can be also explained in a message-passing way where the
intermediate representations can be viewed as messages. The aggregation is the actual
message-passing phase and each node passes its message to its neighbors along the edge.
The encoder is served as the integration phase, in which each node integrates received
the message and reduces it into its new message. Each message-pass and integration
phase formulate one GNN layer. The representation after the final layer is called the
node embedding of each node and the graph embedding by GNN is usually obtained by
a summation or mean operation using node embeddings.

2.1.1 Analysis on the power of GNNs.

With the overwhelming success of GNNs in various fields ranging from recommendation
system and VLSI design, recently, the study on the power of GNNs becomes more and

5
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more important and necessary, and has attracted extensive interest. The two recent
papers [82, 117] formalize the power as the capability to map two equivalent nodes to
the same node embedding. They explore the power by establishing a close connection
between GNNs and 1-Weisfeiler-Lehman (WL) test, a classical algorithm for the graph
isomorphism test. More specifically, they independently showed that every time when two
nodes are assigned the same embedding by any GNN, the two nodes will always be labeled
the same by the 1-WL test, which means that GNNs are upper-bounded by 1-WL test in
terms of the representation power. To develop a more powerful GNN that breaks through
the limit by 1-WL test, many attempts are made from different perspectives. Some GNNs
[22, 77, 78, 82] are proposed by mimicking a higher-order-WL test based on higher-order
tensors. Another direction is to introduce more informative features/operations to make
the model sensitive to the substructure [63] or global structure [11, 126, 125]. We leave
the detailed discussion of such a non-local scheme in Appendix .4. Besides the study on
the comparison with WL-test, many other works investigate the power of GNNs from
different angles and a lot of interesting conclusions are obtained. Xu et al. [119] shows
that GNNs align with DP and thus are expected to solve tasks that are solvable by DP.
This interesting conclusion leaves us a future work to study GNN in the coloring problem
by learning previous DP-based coloring algorithms. Loukas et al. [73] concludes that
the product of the GNN’s depth and width must exceed a polynomial of the graph
size to obtain the optimal solution of some problems, e.g., Maximum Independent Set
(MIS) problem, and coloring problem. This conclusion motivates our experiments on the
model depth, which is covered in Appendix .5.3. Another work [127] explores the design
space for GNNs and gives some best parameters in various design dimensions, where
best means the selected parameters make the corresponding GNNs more effective than
others. We follow the guidance of this work to select most hyper-parameters and model
architectures, as shown in Appendix .5.1. GeomGCN [87] points the limits of AC-GNNs
from the perspective of network geometry, the node can only exchange information with
its neighbors, while the long-range dependencies are missed and similar nodes (may be
very distant) are more likely to be proximal. To overcome the issues, a novel geometric
aggregation scheme was proposed. Generally, instead of aggregating information from
graph neighborhoods directly, the original graph is mapped to a latent continuous space
according to pre-calculated node embedding. Then, a structural neighbor relation is
constructed based on the distance and relative direction in the latent space. However,
their motivation is not applicable for the coloring problem: the coloring results are totally
not relevant with the similarity of nodes.

2.1.2 GNNs for NP problem.

Recently, the applications of GNNs on NP problems received great attention. Some works
integrate GNNs to a sophisticated heuristic algorithm designed for a specific NP prob-
lem. Li et al. [69] proposes a GNN-based framework to solve the MIS problem, where
the adopted GNN generates multiple probability maps to represent the likelihood of each
vertex being in the optimal solution. However, the following heuristic algorithm to handle
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the multiple probability maps is time-consuming. In their experiments, a graph with 1,000
vertices will yield up to 100K diverse solutions and the heuristic algorithm is processed up
to 10 minutes. Not saying that the runtime may explode when applied in the k-coloring
problem. Another work [72] uses GNNs to solve the subgraph matching problem, a prob-
lem of determining whether a given query graph is a subgraph of a large target graph.
They designed a particular loss function, to ensure that the subgraph relations are pre-
served in the embedding space. Besides these direct applications, some theoretical works
discussed the power of GNNs to solve the NP problem. If P ≠ NP, GNNs cannot exactly
solve these problems. Under this assumption, Sato [93] demonstrates the approximation
ratios of GNNs for some combinatorial problems such as the minimum vertex cover prob-
lem. They study the ratio by building the connection between GNNs and distributed
local algorithms. Specifically, they show that the set of graph problems that GNN classes
can solve is the same as the one that distributed local algorithm classes can solve. Besides
a pure GNN, Dai et al. [26] develops a framework that combines reinforcement learning
and graph embedding to address some NP problems. Simply speaking, the reinforcement
learning model uses the graph embedding obtained by Structure2Vec [25].

2.1.3 GNNs for tasks under heterophily.

To the best of our knowledge, Zhu et al. [139] is the first and only work that formally ad-
dressed the drawbacks of previous GNNs on tasks under heterophily. Beyond homophily,
they proposed three designs that can be beneficial for the learning under heterophily: 1)
The node embedding and aggregated embeddings should be separated. This statement
aligns with our Proposition 2, addressing the limitation of an integrated AC-GNN in
the coloring problem. Although most previous works focus on the homophily scenario,
some of them [127, 41] also pay attention to the separation of neighbor embeddings and
ego-embedding (i.e., a node’s embedding). 2) The aggregation function should involve
higher-order neighborhoods. The intuition is that higher-order neighborhoods may be
homophily-dominant. Take the coloring problem as an example, if two nodes, say u, v,
are connected with another same node t, then u, v are more likely to be assigned the same
color. This design is also employed in previous works [7, 28] for homophily, considering
that a higher order polynomials of the normalized adjacency matrix indicates a low-pass
filter. 3) The final results should combine intermediate representations from all layers.
The design is originally introduced in jumping knowledge networks [118] and motivated
by the fact that each layers contains information from neighborhoods of different depth.

2.2 Neural Networks for Point Clouds

Point cloud, as its name suggests, is the set of data points in space. Each point in a point
cloud contains its location information, for example, a set of x, y and z coordinates if it is
in a 3D space. The study of point clouds becomes increasingly important mainly because
of the rapid development of 3D acquisition technologies. The emergence of affordable



CHAPTER 2. LITERATURE REVIEW 8

Table 2.1: Summary of existing point-based methods which follow a sampling-grouping-encoding
scheme

Methods Sampling Grouping Encoding

MLP-based
methods

PointNet [88] - - v′ic = σ(θcvi)
PointNet++ [89] FPS Ball query v′ic = maxj∈Ei σ(θcvj)
Yang et al. [122] FPS/GSS - v′ic = σ(θcvi)

Conv-based
methods

PointCNN [68] Random/FPS KNN v′
i = Conv(X × θ(vi − vj))

RS-Conv [71] FPS Ball query v′ic = σ( 1
|Ei|

∑
j∈Ei

vi ×MLP (CONCAT(vi − vj ,vi,vj))),

Graph-based
methods

ECC [100] VoxelGrid KNN v′ic =
1

|Ei|
∑

j∈Ei
F (vj),

FoldingNet [123] Random KNN v′ic = θc ·maxj∈Ei σ(vj),
KCNet [99] Poisson disk KNN v′ic = maxj∈Ei(θc · vj),
DGCNN [111] - KNN v′ic = maxj∈Ei σ(θc · CONCAT(vi − vj ,vi)),

and available sensors brings about various types of data, in which point cloud is one
of the most essential representations since it directly preserves the original geometric
information without any discretization. Due to the increasing importance of point clouds
and the presence of massive data, a great number of works [88, 89, 111, 68, 102, 113, 124,
34, 80, 91, 110] are developed to explore the possibility of deep learning on point clouds.

Guo et al. [39] categorize deep learning based methods for point clouds into three major
types: multi-view based methods, volumetric-based methods, and point-based methods.
We give a simple illustration of these three methods in Figure 2.1, where Figure 2.1(a)
is the original point cloud, and Figures 2.1(b), 2.1(c), 2.1(d) correspond to View-based,
Volumetric-based, and Point-based methods respectively.

2.2.1 Multi-view based Methods.

Multi-view based methods [102, 113, 124, 34] are designed for 3D point cloud. These
methods first transform a 3D point cloud into multiple views through projection and
extract view-wise features. Finally, extracted features are fused together to generate
a cloud embedding. Among these works, the major discrepancy locates in the fusion
of multiple view-wise features, which is also the key challenge. For example, MVCNN
[102] uses a straightforward max-pooling operator to aggregate features; Yang et al. [124]
fuse these features based on a relation network, which includes inter-relationships among
regions and views. GVCNN [34] proposes a hierarchical view-group-shape architecture to
obtain the cloud embedding from the view level, the group level, and the shape level.

2.2.2 Volumetric-based Methods.

Volumetric-based methods also use the idea of transformation to solve the irregularity of
regular data. Instead of views, these methods voxelize a point cloud into regular grids, and
then a conventional CNN is compatible with the volumetric data for feature extraction.
VoxNet [80], one of the pioneer works using volumetric data, uses a volumetric occupancy
grid representation and fed it into a 3D Convolutional Neural Network (3D CNN).
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(a)

View 1

View 2

View N

(b)

(c) (d)

Figure 2.1: Three major kinds of deep learning based methods for point cloud: a) the original
point cloud b) multi-view based method c) volumetric-based method d) point-based method.

2.2.3 Point-based Methods.

Compared to view-based methods and volumetric-based methods, which generate un-
avoidable information loss, point-based methods skip any preprocess techniques such as
voxelization and projection and directly handle with raw point clouds. Typical point-
based methods usually include three procedures to obtain the embedding: Sampling,
Grouping and Encoding. Sampling is to select a set of centroids from the original point
cloud to reduce the memory cost. Grouping is to select a set of neighbors (also called
agglomerates) for each centroid, which represents a local information and works like the
local region constrained by a convolution kernel in the original convolution. Encoding
is to encode the new centroid feature using the original one and the local feature aggre-
gated from the neighbors of the centroid. In Sampling phase, widely used sample rules
include Farthest Point Sampling (FPS) [88, 111, 122, 71], random sampling [68], Poisson
disk sampling [43, 99], and VoxelGrid sampling [92, 100]. In Grouping phase, ball query
grouping [89, 59, 43, 71] and k nearest neighbors (KNN) [68, 111, 121, 37] are the two
dominant methods. As for methods used in Encoding phase, previous survey [39] lists
three main types: MLP-based, convolution-based, and graph-based methods.

MLP-based methods use Multi-Layer Perceptrons (MLPs) as the backbone to extract
hidden features. Among all these methods, PointNet [88] is the pioneering work which
simply calculates point-wise features independently, causing a loss of neighborhood infor-
mation. Following this way, many efforts have been made to further increase its represen-
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tation power. For example, PointNet++ [89], the extension work of PointNet, captures
neighborhood information by a hierarchical model on the basis of MLP. Besides solely
using a MLP module, some works use attention technique to explore the relational infor-
mation, i.e., relations between neighbors and centroid [122], and between local structures
[30].

Convolution-based methods process the centroid along with the neighborhood by a
continuous [71, 14] or discrete [68, 47] convolutional kernel, i.e., a weighted sum over a
given subset related to the centroid and the neighborhood. Among all convolution-based
methods, PointCNN [68] is the most representative one. It does not use a symmetric
function to keep the order invariance property. Instead, the relative coordinates are
adopted to obtain a transformation matrix X, which transforms the relative coordinates
into a latent canonical form and thus achieves the order invariance. Then the transformed
input is processed by a convolution operation.

Graph-based methods treat each point in the point cloud as the vertex in the graph
and connects each centroid with its selected neighbors. In this way, the original point
cloud is viewed and processed as a graph, in which GNNs can be utilized. Similar with
GNNs, graph-based methods also develop two different directions for feature learning:
spatial domain and spectral domain. Methods in spatial domain obtain point embeddings
following a convolution philosophy, i.e., recursively updating node features by aggregating
information from neighbors repeatedly. The pioneer work [100] simply updates node
feature by calculating the average value of all neighbor features processed by a filter-
generating network F , e.g. MLP. Another work [123] designs an auto-encoder, in which
the graph-based encoder replaces the average term as a max-pooling operation. Evolved
from the static graph, DGCNN [111] proposes a dynamic graph construction method
that updates the neighbors after each layer of the network. Methods in spectral domain
implements the Encoding from a spectra perspective. For example, RGCNN [104] defines
the convolution over graph by Chebyshev polynomial approximation and Wang et al. [107]
update node features by standard unparametrized Fourier kernels.

For a clear comparison, we list most state-of-the-art point-based methods in Table 2.1.
Some methods are not covered in the table since they do not follow a typical sampling-
grouping-encoding scheme. The method shown in the table may only represent a part of
the method. For example, FoldingNet [123] described in Table 2.1 solely stands for the
encoder in the work.

2.3 Graph Coloring Problems

The graph coloring problem is crucial in domains ranging from network science and
database systems to VLSI design. Here, we classify previous coloring methods as learning-
based methods and non-learning-based methods.
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2.3.1 Non-learning-based methods.

As a classical problem in the NP-hard classes and graph theory, graph coloring problem
has received considerable attention in past decades. Here, we only cover some representa-
tive non-learning-based methods that are related to our method from some perspectives.
Braunstein et al. [15] proposed Belief propagation (BP) and Survey propagation (SP) to
solve the k-coloring problem, where both methods belong to a message-passing scheme.
The key idea is that, each node is randomly assigned a probability distribution of colors,
then the probability is updated based on the probabilities of neighbors. Formally, define
ηke→u as the probability that edge e = {u, v} refutes u as the color k, for the k-coloring
problem, ηke→u is updated by:

ηke→u =

∏
v′∈N (v)/ u(1− ηk{v,v′}→v)∑k

r=1

∏
v′∈N (v)/ u(1− ηr{v,v′}→v)

(2.1)

The numerator indicates the possibility that v is colored by the color k (without consid-
ering node u). And the fraction is for normalization, making that the sum equals to one.
The SP procedure is a little different, it did not normalize the probability directly, but
introduced a joker state, η⋆e→u, representing that the edge can not refute any colors, i.e.,
1 = η⋆e→u +

∑k
r=1 η

r
e→u. The method is simple and very close to our non-training version.

However, the method is more theoretical and less practical because it is easy to fall into a
trivial solution, i.e., all edges are assigned into the joker state. Even though a non-trivial
solution can be found, a large number of iterations may be required due to its randomness.
Apart from message passing, Takefuji [103] proposed an Artificial Neural Network (ANN)
based method for the four-coloring problem. The basic conclusion is that the probability
distribution1 can be updated by subtracting the aggregated probability distributions of
neighbors, which aligned with the intuition for our parameter initialization.

2.3.2 Learning-based methods.

Although our work is the first one that tries and analyzes the power of GNNs in the graph
coloring problem, there is a surge of learning-based methods for coloring. Lemos et al. [60]
integrated Recurrent Neural Networks (RNNs) into the message passing framework, i.e.,
two RNNs were employed to computes the embedding update from aggregated messages
for each vertex and color. Finally, the graph embedding was used to predict the chromatic
number, and the node embedding was used to predict exact node color by clustering.
However, the clustering-based method generated a prohibitive conflict number as shown
in Table 1 of our paper, making the method not practical. Huang et al. [48] introduced a
fast heuristics coloring algorithm using deep reinforcement learning. For each step (state),
the model predicts the next node and its best color solution with a win/lose feedback.
The prediction depends on previous coloring results and a graph embedding generated

1In their work, the node attribute is not probability distribution but a binary vector indicating the selected
colors. Nevertheless, the conclusion still holds for a probability case.
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by an LSTM. The method can give relatively accurate coloring results, but still only
comparable with some simple heuristic algorithms such as dynamic order coloring. On
the contrary, our supplementary results in Appendix .5.2 demonstrates that our method
outperforms these simple heuristic algorithms significantly. Zhou et al. [137] also borrowed
the idea of reinforcement learning. However, the proposed method did not use a training
scheme: the actions towards the environment is defined by a deterministic update function
of the coloring probability distributions. The method achieves a state-of-the-art result
quality. However, the framework contains a descent-based local search with a portion of
randomness, which requires a repeated execution with different random seeds. Moreover,
the local search algorithm may require extensive iterations to find a local optimum. Due to
these limitations, the method suffers from the runtime, in their experiments, the coloring
process for a 500-node graph costs more than 100 seconds.

2 End of chapter.



Chapter 3

Multiple Patterning Lithography

3.1 OpenMPL: An Open Source Layout Decomposer

Multiple patterning lithography has been widely adopted in advanced technology nodes
of VLSI manufacturing. As a key step in the design flow, multiple patterning layout
decomposition (MPLD) is critical to design closure. Due to the NP-hardness of the
general decomposition problem, various efficient algorithms have been proposed with high-
quality solutions. However, with increasingly complicated design flow and peripheral
processing steps, developing a high-quality layout decomposer becomes more and more
difficult, slowing down further advancement in this field.

To reduce the repeated effort in the reimplementation of the whole decomposition
framework and lower the bar of research on MPLD, we present OpenMPL as an open
platform for developing MPLD algorithms. OpenMPL contains efficient implementations
of widely adopted graph simplification techniques and state-of-the-art layout decompo-
sition algorithms. We carefully design the software architectures and APIs to decouple
the innovations on the core optimization steps. For example, one can focus on develop-
ing novel graph simplification or decomposition techniques without worrying about the
peripheral processing issues as the platform provides clean and well-defined APIs for the
kernel optimization engines.

Moreover, considering that the framework is well decoupled, which makes each step
separated clearly, we can inspect individual algorithm or technique easily. Through the
inspections, a set of issues are discovered and corresponding solutions to these issues are
proposed in OpenMPL. Specifically, there are three possible issues which can be further
improved: (1) There exist some redundant stitches which can be removed without decom-
position quality loss; (2) The original problem formulation and corresponding ILP method
cannot quantify the cost accurately, which makes the previous ILP-based algorithm sub-
optimal; (3) The original exact cover (EC)-based algorithm fails to obtain the optimal
solution in some cases. All these issues are well described and solved in this paper. Our
contributions are highlighted as follows:

• We present OpenMPL [6], an open-source layout decomposition framework, with
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efficient implementations of various state-of-the-art simplification and decomposition
algorithms.

• We prove the stitch candidate redundancy in the state-of-the-art stitch generation
algorithm and propose a corresponding solution.

• We find the sub-optimality in the widely-adopted ILP formulation and propose an
optimized ILP-based algorithm with improved performance.

• We improve the exact cover (EC)-based algorithm by some techniques which were
not revealed and studied in the previous work.

• We conduct experiments on widely-recognized benchmarks and new large-scale de-
signs derived from the latest ISPD’19 benchmark suites. The results demonstrate
the effectiveness of our proposed algorithms and techniques.

The rest of this section is organized as follows. Section 3.1.2 gives the problem for-
mulation and discusses the design principles, the workflow, and some other properties
of OpenMPL. Section 3.1.3 discusses the redundancy of the stitch candidate and gives
the corresponding stitch redundancy removal algorithm. Section 3.1.4 provides the non-
optimal cases generated by the previous ILP-based algorithm and the updated optimized
ILP-based algorithm is proposed. Section 3.1.5 introduces the drawbacks of the previ-
ous EC-based algorithm in some cases and proposes the optimized EC-based algorithm.
Section 3.1.6 lists comprehensive experimental results.

3.1.1 Preliminary

Multiple patterning layout decomposition (MPLD) has been adopted to enhance the
lithography resolution. The key idea of MPLD is to assign features that are close to each
other to different masks, such that these features are far away enough to be printed with
existing lithography techniques. MPLD can be divided into double patterning layout
decomposition (DPLD), triple patterning layout decomposition (TPLD) and quadruple
patterning layout decomposition (QPLD), according to the number of masks. This prob-
lem is difficult since it is a variation of the graph coloring problem, which is NP-hard for
k ≥ 3, where k is the number of colors (masks).

Figure 3.1 is an example of TPLD, where different colors represent different masks and
the stitch candidates are highlighted in blue.. Figure 3.1(a) is the input layout feature;
Figure 3.1(b) is the constructed layout graph without stitch candidate generation, which is
a 4-clique and therefore not 3-colorable; Figure 3.1(c) is the constructed layout graph with
stitch candidate generation. Two stitch candidates are introduced and the original 4-clique
is dismissed; Figure 3.1(c) is the coloring result on the layout graph with stitch candidate
generation. The final decomposed layout with three masks (each color corresponds to one
mask).
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Figure 3.1: An example of TPLD with stitches.

Unlike the classical graph coloring problem, the MPLD problem has several unique
characteristics. 1) Stitch: a polygon feature is allowed to be split into multiple overlap-
ping segments to resolve coloring conflicts, as shown by the dashed edge in Figure 3.1(c).
2) Special patterns: there are different kinds of special features in a circuit layout, e.g.,
alternative power and ground lines, which may help to simplify the graph. 3) Complex
rules: besides the widely adopted spacing constraint for the same color, there are also
other rules. The different color spacing constraints [20] are related to the ordering of
masks. That is, these constraints pre-determine the colors of some features before de-
composition. All above characteristics impose different challenges to the MPLD problem,
thus specialized algorithms are in demand to solve the MPLD problem effectively and
efficiently.

To achieve high efficiency and to maintain high solution quality, a variety of decom-
position algorithms have been proposed. These algorithms can be roughly categorized
into three types [84, 76]: mathematical programming and relaxation, graph-theoretical
approaches, and search-based approaches. Mathematical programming solves the MPLD
problem by formulating it into a standard optimization model, such as integer linear
programming (ILP) for DPLD [120, 51, 133] and TPLD [131, 128, 130]. Due to the
NP-hardness of TPLD and QPLD, a set of relaxation techniques such as semidefinite
programming (SDP) [131], linear programming (LP) [70], and discrete relaxation method
[67] are proposed based on ILP. Another category is to directly perform color assign-
ment based on a set of graph-theoretical algorithms, e.g., the maximal independent set
(MIS) [32], the shortest-path [23, 105], and fixed-parameter tractable (FPT) algorithms
[58]. Search-based algorithms follow a divide-and-conquer principle with each sub-graph
containing a small number of nodes, e.g., less than 20. Then a search procedure is ap-
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plied to find the optimal solutions for small sub-graphs [57, 32, 135, 131, 17, 33]. Besides
the researches on the single layout decomposition stage, recent work [75, 136] pioneers
a new direction that integrates layout decomposition and mask optimization seamlessly,
achieving compelling results from a global view of the solution space.

No matter how efficient the decomposition algorithm is, the NP-hardness of TPLD
and QPLD still makes the problem suffer from the runtime issue, especially when the
graph size is large. Therefore, many graph simplification techniques have been developed
to reduce problem size. The representative techniques include independent component
computation (ICC) [131], iterative vertex removal (IVR) [57, 131], biconnected component
extraction (BCE) [51, 133] and sub-K4 structure merging for TPLD [70].

3.1.2 The OpenMPL Framework

In this subsection, we first formulate the MPLD problem, which is the target of OpenMPL.
Then, we introduce OpenMPL by covering the design principles, workflows, and function-
alities. Finally, some additional features of OpenMPL are discussed.

Problem Formulation

The general MPLD problem can be formulated as follows:

Problem 1 (MPLD). Given 1) a routed layout which is a set of polygonal features; 2) the
number of masks k; 3) the minimal conflict space d; 4) other constraints like pre-coloring
constraints, the goal is to assign one or more masks (if the stitch is enabled) to each
feature so that the weighted sum of conflict cost and stitch cost is minimized.

Design Principles

OpenMPL is designed for end-users, developers, and researchers as a general platform for
the MPLD algorithms. Therefore, we emphasize usability, efficiency, and extensibility
during development. The core design principles are highlighted as follows. (1) Decou-
pled design stages. The implementation clearly separates different optimization stages,
as shown in Figure 3.2. Therefore, the interdependence between them is minimized. In
this way, developers can focus on verifying individual stages without worrying about
cross-stage impacts. (2) Graph representations throughout the core stages. After
layout graph construction, the graph simplification, decomposition solver, and the sim-
plified graph recovery stages use pure graphs as input/output, without involving mask
data. This design leads to well-defined and highly separable core algorithms, making the
framework highly extensible. (3) Efficiency and generality for different mask data.
As a mask layer can be a contact layer or a metal layer, the processing efficiency varies
significantly for different types of layers. We design a general mask database with sepa-
rate processing routines for contact layers and metal polygon layers for efficiency enabled
by C++ polymorphism since contact layers can be processed in a much simpler way.
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Figure 3.2: The workflow of OpenMPL.

Workflow and Functionalities

The workflow of OpenMPL is illustrated in Figure 3.2. Firstly, one chip layout informa-
tion (in GDS format) file is loaded and transformed into a layout graph (LG), which is
represented by a vector of rectangle pointers, where the rectangles are defined in Boost [1].
Secondly, LG is simplified by some optional graph simplification techniques, where some
of them are implemented in a third-party library Limbo [4]. Then, if stitch is enabled,
the stitch insertion process [131] is executed to generate a decomposed graph (DG) with
stitches. DG is further simplified by several simplification techniques. After the simpli-
fication, a coloring solver is called for each component in DG to solve the component
coloring problem. Finally, our framework recovers nodes removed in the simplification
step and assigns legal color for each removed node. In the following sub-subsections, we
are going to introduce all of the functionalities in two crucial procedures of OpenMPL:
graph simplification and decomposition.

Graph simplification techniques can be used to reduce the graph size and therefore
reduce the computational complexity. Through layout graph simplification, we only need
to deal with the smaller graph without affecting the final result. All of the simplifica-
tion techniques mentioned in Section 3.1.1 are supported in our framework, including
independent component computation (ICC), iterative vertex removal (IVR), biconnected
component extraction (BCE), and sub-K4 structure merging for TPLD (Merge sub-K4).
ICC is proposed based on the fact that there are many isolated clusters in a real layout,
which enables ICC to break down the layout graph into several independent components.
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IVR temporarily removes the nodes whose degree is less than the number of colors in an
iterative manner. BCE simplifies the graph by duplicating the bridge vertices and then
removing the bridge edges. Merge sub-K4 detects and merges specific structures whose
number of edges is exactly one less than four-clique structures and thus is only applicable
for TPLD. Except Merge sub-K4, other implemented simplification techniques support
any number of masks. Besides these simplification methods, we develop a simplifica-
tion method which focuses on the removal of redundant stitches. The details are shown
in Section 3.1.3. Different simplification techniques require different recovery methods.
However, those nodes which are shared among different components may be assigned
different colors after recovery. To tackle this, color rotation [51] is implemented in our
framework. Specifically, color rotation is to rotate the color assignments of the sub-graphs
to avoid unnecessary conflict when coloring the whole layout graph from the sub-graphs.

Graph color assignment is the most crucial step in the flow, which impacts the final
coloring results directly. In the graph color assignment, a simplified graph is provided and
each vertex in the graph should be assigned one color by the specified algorithm. OpenMPL
has supported all of the commonly-used algorithms in the layout decomposition and some
updated algorithms are also implemented. The algorithms are briefly introduced in the
following context:

• Original Integer Linear Programming: The details are covered in Section 3.1.4.
We use Gurobi [40], Lemon [3], and CBC [2] as the ILP solvers.

• Optimized Integer Linear Programming: The details are covered in Sec-
tion 3.1.4.

• Semidefinite Programming: The discrete integer programming solving process of
Equation (3.9) is NP-hard, thus it may suffer from run-time overhead for practical
designs. As shown in [131, 79, 129], the color assignment can be formulated as a
vector programming and then relaxed and solved by semidefinite programming in
polynomial time. Given the solutions of SDP, a mapping process is used to map the
solutions to coloring results. CSDP [13] is used as the SDP solver.

• Backtracking: Backtracking [131] is a DFS fashion algorithm used to find solutions
in the whole solution space. Especially, we use a simple but effective heuristic
technique to speed up the backtracking process. We set the upper bound of the
cost as 0 at the beginning to cut branches more frequently and thus speed up the
process. If no feasible solution is found under such an upper bound constraint, we
relax the constraint by adding the bound to 1 and repeat the procedure until finding
the optimal solution.

• Original Exact cover-based algorithm: The details are covered in Section 3.1.5.
We implement the dancing links data structure and EC solver, instead of calling
the third-party solver like ILP and SDP. Therefore, the runtime of the EC-based
algorithm can be optimized further compared to other algorithms.
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• Flexible Exact cover-based algorithm: The details are covered in Section 3.1.5.

OpenMPL also supports decomposition algorithms like maximal independent set (MIS)
[32], linear programming (LP) [70], etc., which cannot decompose the graph containing
stitch edges while working well on stitch-free graphs. Due to the page limit, we leave the
details on the tool release page [6].

Additional Features

Some additional features are supported for better usability, efficiency and extensibility. 1)
OpenMPL supports multi-threading operations by OpenMP [5] and users can specify the
number of threads. Graph components are solved in parallel and layout decomposition
algorithms also support multi-threading computations; 2) We can identify all the possible
positions of stitches through pattern projections [131] in stitch insertion, which is one of
the most critical steps to parse a layout. One example of the stitch is shown in Figure 3.1.
There are lots of candidate positions to insert a stitch, and only some are chosen as the
final stitches. 3) In practice, a pattern in the layout may be a polygon or rectangle. Con-
sequently, the storage may vary from case to case. OpenMPL provides a shape-friendly
system considering this case and users can specify the shape, POLYGON or RECTANGLE, to
guarantee the performance to avoid unnecessary calculations. For polygonal inputs, to
simplify the storage structure design and save space, OpenMPL first decomposes the poly-
gons to rectangles. After reading the whole input file, DFS is utilized to find connected
components and re-union rectangles into polygons. For rectangle circuits, we directly
store these patterns without further operations.

3.1.3 Stitch Redundancy Removal

In this subsection, we briefly introduce the widely used stitch candidate generation method
and then propose an algorithm for stitch redundancy removal (SRR) with mathematical
proof.

Stitch Candidate Generation

The original layout does not contain stitch information, thus the framework for MPLD
problem should determine the positions to insert stitches. One example of stitch can be
found in Figure 3.1(c), where c1-c2 and d1-d2 are two generated stitch candidates. Previous
works proposed solutions to generate candidate stitches for DPL [51, 120] and TPL [57,
128]. The key idea of stitch candidate generation is to project each feature into its neighbor
features, where the projection results are then used to determine stitch candidates. For
example, [57] proposed a heuristic algorithm to find all legal stitch positions in TPL
using the projection results. Kahng et al. [51] used the projection sequence to directly
carry out stitch candidate generation by some simple rules. One example of the stitch
candidate insertion by projection sequence is shown in Figure 3.3, where the middle
feature a has three conflict features, b, c,and d. Based on the projection indicated by the
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candidate

a

Figure 3.3: Projection results, where the projection sequence is 0121210 and the middle segment
whose label is ”1” should be inserted a stitch for TPLD, which is highlighted by blue.

black dash line in Figure 3.3, the feature a is divided into 7 segments. Each segment
is labeled by the number of projected conflict features, then we can get its projection
sequence: 01212101010. The rules of the projection sequence are different when the
number of masks varies. The general rules of the projection sequence for TPLD can be
summarized as follows [128]: If 1) the projection sequence contains sub-sequences whose
value xyz satisfies x > y, z > y; 2) the sub-sequence is not at the beginning or end of
the projection sequence with form 01010, then the middle positions of y should insert one
stitch candidate. As shown in Figure 3.3, the middle feature a has three conflict features,
b, c, d. According to the rules stated above, one stitch candidate is inserted into a as
shown in the figure. In our implementation, such a stitch candidate generation approach
supports any number of masks and therefore can be used for general MPL. However, when
the mask number is larger than three, the stitch candidates may be redundant or missed
since we haven’t considered special properties for larger mask numbers.

Stitch Redundancy Removal

Although the current stitch candidate generation algorithm is able to find all possible
stitches [131, 57], there are a few stitch candidates that are redundant after further graph
simplification. One example is shown in Figure 3.4(a), where the edge a-b is redundant,
i.e., a, b can be assigned with the same color without additional cost. To clarify the
phenomenon, we define C(u) as the cost of node u and compute as:

C(u) =
∑

i∈Nc(u)

c(i, u) + α
∑

i∈Ns(u)

s(i, u), (3.1a)

s.t. c(i, u) = min{
∑
rj∈pi

(xj == xu), 1}, ∀pi ∈ N c(u), (3.1b)

s(i, u) = (xi ̸= xu), ∀ri ∈ N s(u), (3.1c)
xi, xu ∈ {1, . . . , k}, (3.1d)



CHAPTER 3. MULTIPLE PATTERNING LITHOGRAPHY 21

a

b c

d

e

(a)

ab

c

d

e

(b)

ab

c

d

e

(c)

ab

cd

e

(d)

Figure 3.4: An TPLD example of stitch redundancy removal (SRR). The conflict edge is marked
with black and the stitch edge is blue. Dotted edges/nodes are removed. (a) The decomposed
graph before SRR. (b) Nodes a and b are merged into node ab. (c) Node ab and node e are
further removed by IVR. (d) Node c and node d are merged into node cd.

where N c(u) is the neighbor feature set of u connected by conflict edges, N s(u) is the
neighbor node set of u connected by stitch edges, the node/feature is defined by r/p
respectively and xi is a variable for the k available colors of the node ri. xj == xu

represents 1 if xi equals to xu and 0 if they are inequivalent. xi ̸= xu is defined in an
opposite way. Take Figure 3.4(a) as an example, for the node a, N c(a) = {cd, e}, N s(a) =
{b}, where cd represents the original feature divided by the stitch edge c-d.

Given a coloring solution f : V → {1, ..., k}, where {1, ..., k} is the index set of the k
colors. Cf (u) is the cost of node u when u is colored by f and computed by:

Cf (u) =
∑

i∈Nc(u)

cf (i, u) + α
∑

i∈Ns(u)

sf (i, u), (3.2)

where cf (i, u) and sf (i, u) are defined similarly to c(i, u) and s(i, u) in Equation (3.1).
The color xu for node u when calculating Cf (u) is given by f , i.e., xu = f(u). We have
the following theorem about stitch redundancy:

Theorem 1. Given a decomposed graph G, if there exists a stitch edge es = {u, v} and
the node pair {u, v} satisfies three constraints:

1. N c(u) = N c(v);

2. |N s(u)\v| ≤ 1;

3. |N s(v)\u| ≤ 1,

then at least one optimal coloring solution will assign the two nodes with the same color.

Proof. The proof can be finished by contradiction. Assume that all of the optimal coloring
solutions assign u, v into two different colors. Let f ∗ be one of the optimal coloring
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solutions and we have f ∗(u) ̸= f ∗(v). We will show that there is another coloring solution
f ′, which assigns u, v into the same color and has at least the same cost with f ∗ and thus
makes f ′ be the optimal coloring solution. Without loss of generality, we assume:∑

i∈Nc(u)

cf∗(i, u) ≤
∑

i∈Nc(v)

cf∗(i, v), (3.3)

Then f ′ is defined as follows:

f ′(i) =

{
f ∗(u), if i = v;

f ∗(i), otherwise.
(3.4)

Since the only difference between f ∗ and f ′ is the color of v, the cost difference △
between f ∗ and f ′ on G is given by:

△ = Cf∗(v)− Cf ′(v). (3.5)

By Equation (3.2) and Equation (3.5), △ can be further interpreted as:

△ = (
∑

i∈Nc(v)

cf∗(i, v)−
∑

i∈Nc(v)

cf ′(i, v))

+ α(
∑

i∈Ns(v)

sf∗(i, v)−
∑

i∈Ns(v)

sf ′(i, v)).
(3.6)

For the first conflict term, combining the first constraint, Equation (3.3) and Equa-
tion (3.4), we have: ∑

i∈Nc(v)

cf∗(i, v) ≥
∑

i∈Nc(v)

cf ′(i, v). (3.7)

For the second stitch term, the third constraint |N s(v)\u| ≤ 1 indicates that:
∑

i∈Ns(v)\u
sf∗(i, v) ≤

1 and
∑

i∈Ns(v)\u
sf ′(i, v) ≤ 1. Moreover, we have sf∗(u, v) = 1 > sf ′(u, v) = 0 since the

colors of u, v by f ∗ are different. Therefore, we have:∑
i∈Nc(v)

sf∗(i, v) ≥ 1 ≥
∑

i∈Nc(v)

sf ′(i, v). (3.8)

Combining Equation (3.6), Equation (3.7) and Equation (3.8), it is clear to see that
△ ≥ 0 always holds, which means that we can color G by f ′ without additional cost
compared with the optimal solution f ∗ and thus complete the proof.

According to the theorem, we can conclude that all stitch edges satisfying constraints
specified in Theorem 1 are redundant and corresponding node pairs can be merged to
further simplify the graph. Motivated by this conclusion, we propose Algorithm 1 to
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Algorithm 1 StitchRedundancyRemoval
Input: S → Decomposed graph set.
1: for DG ∈ S do
2: NeedSimplification ← False;
3: for si,j ∈ DG do
4: if {i, j} satisfies constraints in theorem 1 then
5: DG′ ← Merge i, j in DG;
6: NeedSimplification ← True;
7: end if
8: end for
9: if NeedSimplification then

10: S′ ← Simplified sub-graph set by simplifying DG′;
11: StitchRedundancyRemoval(S′);
12: end if
13: end for

remove redundant stitch candidates. The algorithm is simply described as follows: after
the stitch insertion and the graph simplification, the layout is divided and simplified into
a decomposed graph set S. For each decomposed graph (DG) in S, the algorithm detects
all stitch edges which satisfy the constraints specified in the theorem 1 (line 4) and merges
all valid stitch edges (line 5). If DG can be further simplified (line 10) after the removal of
redundant stitch edges, the simplified graph set (S ′) can be processed again (line 11) by
Algorithm 1. One simple TPLD example is given in Figure 3.4. As shown in the example,
the stitch edge a-b is redundant and thus the node pair {a, b} is merged (Figure 3.4(b)).
After the removal of a-b, the graph can be further simplified by IVR (Figure 3.4(c)).
Then, the stitch edge c-d in the simplified graph is also redundant, and thus the node
pair {c, d} is merged (Figure 3.4(d)).

3.1.4 Optimized ILP-based algorithm

In this subsection, we first introduce the previous cost formulation and corresponding
ILP-based algorithm proposed in [131], then the non-optimal case of such formulation
is provided and discussed, followed by a new cost formulation and the corresponding
optimized ILP-based algorithm proposed by us.

Original ILP-based Algorithm

Given an input layout specified by features in polygonal shapes, the layout can be trans-
lated into an undirected layout graph G = (V,E), where every node vi ∈ V corresponds
to one feature/sub-feature in the layout and each edge eij ∈ E is used to characterize
relationships between features. E is composed of both conflict and stitch relationship,
denoted by E = {CE ∪ SE}, where SE is the set of stitch edges and CE is the set of
conflict edges. One example is shown in Figure 3.1(c), where the stitch edges are orange
and the conflict edges are black. Previous work [131] formulates the MPLD problem as
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below:

min
x

∑
cij + α

∑
sij, (3.9a)

s.t. cij = (xi == xj), ∀eij ∈ CE, (3.9b)
sij = (xi ̸= xj), ∀eij ∈ SE, (3.9c)
xi ∈ {0, 1, . . . , k}, ∀xi ∈ x, (3.9d)

where xi is defined as in Equation (3.1), cij is a binary variable representing the conflict
edge eij ∈ CE, sij stands for the stitch edge eij ∈ SE, α, which is a user-defined parameter
indicating the relative importance between the conflict cost and the stitch cost and set as
0.1 by default, If two nodes, vi and vj, within the minimal coloring distance are assigned
the same color, i.e., xi = xj, then cij = 1. On the contrary, sij = 1 when two nodes
connected by the stitch edge are assigned different colors, i.e., xi ̸= xj. The objective
function is to minimize the weighted sum of the conflict number and the stitch number.

Based on the objective function shown in Equation (3.9), the problem can be solved by
ILP [51, 131], where xi is represented by 1-bit 0-1 variable(s). The ILP model for TPLD
can be formulated as in Formula equation 3.10, where the objective function of MPLD in
Equation (3.9) can be directly applied in ILP-based formula, as shown in Equation (3.10a),
constraints Equation (3.10c)–Equation (3.10g) play the same role as Equation (3.9b),
where 0–1 variable cij is true only if two nodes connected by the conflict edge eij are
assigned the same color.

min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (3.10a)

s.t. xi1 + xi2 ≤ 1, (3.10b)
xi1 + xj1 ≤ 1 + cij1, ∀eij ∈ CE, (3.10c)
(1− xi1) + (1− xj1) ≤ 1 + cij1, ∀eij ∈ CE, (3.10d)
xi2 + xj2 ≤ 1 + cij2, ∀eij ∈ CE, (3.10e)
(1− xi2) + (1− xj2) ≤ 1 + cij2, ∀eij ∈ CE, (3.10f)
cij1 + cij2 ≤ 1 + cij, ∀eij ∈ CE, (3.10g)
|xj1 − xi1| ≤ sij1, ∀eij ∈ SE, (3.10h)
|xj2 − xi2| ≤ sij2, ∀eij ∈ SE, (3.10i)
sij ≥ sij1, sij ≥ sij2, ∀eij ∈ SE, (3.10j)
xij ∈ {0, 1}. (3.10k)

In Equation (3.10), cij is true when both cij1 and cij2 are true by the constraint
Equation (3.10g). 0–1 variable cij1(cij2) demonstrates whether xi1(xi2) equals to xj1(xj2).
Therefore, cij is true only when xi = xj, i.e., vi and vj are assigned the same color.
Similarly, constraints Equation (3.10h) - Equation (3.10j) correspond to Equation (3.9c),
where 0–1 variable sij is true only if vi and vj are assigned different colors.
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(a) (b)

Figure 3.5: An example of the non-optimality of the original ILP-based algorithm. (a) The
solution of the original ILP-based algorithm, where one stitch (blue line) happens at the top of
the conflict (red line). (b) The solution of our ILP-based algorithm, where no stitch is introduced
and can obtain the optimal solution.

New ILP-based Algorithm

It is no doubt that the cost of the MPLD problem is the weighted sum of the conflict
cost and the stitch cost. However, the previous ILP-based algorithm [131] measures the
conflict cost by a summation of the binary variables representing conflict edges eij ∈ CE,
i.e,

∑
cij. Such a measurement method is not accurate and ignores a simple but important

fact: conflict happens between features instead of nodes. In other words, If the stitch
candidate divides one feature into two sub-features, which are represented by two nodes
v1, v2 in the graph, and both nodes have a conflict edge with the third node v3, i.e.,
e12, e13 ∈ CE, then the previous conflict cost shown in Equation (3.10) will count both
e13 and e23 while they represent the same conflict between features. Figure 3.5 illustrates
one example, where the result of the original ILP, as shown in Figure 3.5(a), introduces
one more stitch. The reason is: if the stitch edge e12 is ignored as shown in Figure 3.5(b),
i.e, the two connected nodes, v1 and v2, are assigned the same color and thus x1 = x2,
the original cost function shown in Equation (3.10) will calculate the cost as 2 since both
e13 and e23 are true. Therefore, ILP with the original problem formulation prefers to
assign v1 and v2 with different colors, which results in a 1.1 cost value for the original cost
function. However, it is easy to see that when this stitch is ignored, the conflict should
be 1 instead of 2 since only one conflict between features happens.

Based on this observation, we present a new formulation shown in Equation (3.11). The
objective function of the new formulation is the weighted sum of conflict cost (

∑
Cmn) and

stitch cost (
∑

sij), which exactly matches the objective of the color assignment problem.
The modified part is highlighted in blue. P indicates the feature set before stitch insertion,
ri and rj are the sub-features after stitch insertion and belong to pm and pn respectively.
For example, d1 and d2 are the sub-features of the original feature d in Figure 3.1.

Given the new formula for MPLD, the problem can also be solved by ILP. The ILP
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min
x

∑
Cmn + α

∑
sij , (3.11a)

s.t. Cmn = min{
∑

ri∈pm,
rj∈pn,
cij∈CE

(xi == xj), 1}, ∀pm, pn ∈ P, (3.11b)

sij = (xi ̸= xj), ∀eij ∈ SE, (3.11c)
xi ∈ {0, 1, 2}, ∀xi ∈ x. (3.11d)

model for TPLD is formulated in Equation (3.12): here the conflict cost is calculated

min
∑

cij∈CE,ri∈pm,rj∈pn

Cmn + α
∑

eij∈SE
sij , (3.12a)

s.t. xi1 + xi2 ≤ 1, (3.12b)
xi1 + xj1 ≤ 1 + Cmn1,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (3.12c)
(1− xi1) + (1− xj1) ≤ 1 + Cmn1,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (3.12d)
xi2 + xj2 ≤ 1 + Cmn2,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (3.12e)
(1− xi2) + (1− xj2) ≤ 1 + Cmn2,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (3.12f)
Cmn1 + Cmn2 ≤ 1 + Cmn,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn. (3.12g)

by
∑

Cmn between the feature m and n instead of
∑

cij between node i and j. In
Equation (3.12), Cmn is true when both Cmn1 and Cmn2 are true by the constraint for-
mulated in Equation (3.12g). 0–1 variable Cmn1(Cmn2) demonstrates whether there exists
ri ∈ pm, rj ∈ pn, s.t., xi1(xi2) = xj1(xj2). By considering Cmn, the conflict cost between
features instead of nodes, our new ILP-based algorithm is able to capture the conflict cost
accurately.

3.1.5 Flexible Exact cover-based algorithm

In this subsection, we first introduce the exact cover (EC)-based algorithm proposed by
[17], and then some non-optimal examples are discussed. Finally, we propose a flexible
EC-based algorithm, which achieves a trade-off between quality and runtime and therefore
outperforms the previous algorithm on the quality with a sacrifice in the runtime.
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Algorithm 2 ExactCoverSolver
Input: Gp ← No-stitch graph;
Ourput: Coloring solution;
1: Convert Gp into exact cover matrix M ;
2: Call X∗ with Gp and M ;
3: if X∗ exits with a solution then
4: return the found solution;
5: else
6: Construct the stitch-inserted graph G′

p based on Gp;
7: Construct the new exact cover matrix M ′ based on M ;
8: while no solution is found do
9: Call X∗ with G′

p and M ′;
10: if X∗ exits without a solution then
11: Remove the exact conflict edge in G′

p and M ′;
12: end if
13: end while
14: return the found solution;
15: end if

Exact Cover (EC)-based Algorithm

Though our ILP is able to obtain the optimal solution of the objective function, it suffers
from runtime for large graphs. EC-based algorithm [17] models the MPLD problem as
an exact cover problem, which can be efficiently solved by a customized and augmented
combination of dancing links data structure and Algorithm X∗ (DLX). Generally speaking,
the layout is represented by a homogeneous graph. The graph is further translated into
a 0-1 matrix and then can be solved as an exact cover problem of the obtained matrix.
Each column index in the matrix can be viewed as the element of a universe U to be
covered, and each row can be viewed as a subset of the universe. The final solution (a
set of rows) of the exact cover problem is then translated back to the solution (coloring
results of each node) of the graph coloring problem.

The details of the EC-based algorithm are shown in Algorithm 2. The input of the
algorithm is a no-stitch graph Gp = {Vp, Ep}, which is obtained from the layout features
and each feature represents exactly one node in Gp. The algorithm first tries to solve the
exact cover problem induced by the graph coloring problem on Gp, in which no stitch
is introduced (lines 1–4). To be more specific, the target graph Gp is translated into
a corresponding exact cover matrix M (line 1). Then, algorithm X∗ is called to solve
M (line 2). The details of algorithm X∗ are illustrated in [17]. If one feasible solution
is found by X∗, then the solution is returned (lines 3–4). Otherwise, the algorithm is
going to solve the exact cover problem induced by the graph coloring problem on the
stitch-inserted graph G′

p (lines 5–15). Here, G′
p = {V ′

p , E
′
p} is obtained by splitting the

nodes in Gp whose corresponding features have stitch candidates and new edges are added
following the distance constraints (line 6). The algorithm then builds up the new matrix
M ′ based on M (line 7) and calls algorithm X∗ to solve M ′ (line 9). Furthermore, if graph
G′

p is still un-colorable, the detected exact conflict edge will be remarked as the reason for
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Figure 3.6: Double patterning instance with its exact cover matrix.

un-colorability and removed in G′
p and M ′ (line 11). Such a procedure is repeated until

G′
p is colorable and the final coloring solution is found (lines 8–13).

In the exact cover matrix M translated from Gp, all nodes in Vp are inserted into the
universe U . In addition, for each edge e ∈ Ep, k elements ec, s.t. c ∈ {1, ..., k} are inserted
into U for the k-coloring problem. Therefore, the total size of U (also the column size of
M) is O(|Vp|+k|Ep|). For each node v ∈ Vp, k subsets Sv

c , s.t. c ∈ {1, ..., k} corresponding
to k available colors are created, where each subset contains the node element v ∈ U and
ec for each edge e = {u, v} ∈ Ep. ec is inserted into both Sv

c and Su
c and thus prevents u, v

from being assigned to the same color, which represents the conflict constraint between u
and v. Therefore, the total size of the subsets (also the row size of M) is O(k|Vp|+k|Ep|).
One DPLD example of the translation from Gp to M is shown in Figure 3.6, where row
1,4,6 are selected as the final solution of the exact cover problem so that the corresponding
coloring solution is given and shown in Figure 3.6.

In the converted matrix with stitch insertion, M ′, besides the original rows (subsets)
in M , additional rows are added below the original rows. Specifically, for each stitch
candidate ec, which splits the parent node v ∈ Vp into two nodes v′1, v

′
2 ∈ V ′

p , k(k − 1)
subsets Sv

c1c2
, s.t., c1, c2 ∈ {1, ..., k}, c1 ̸= c2 corresponding to k(k − 1) available coloring

solutions of v′1 and v′2 are created, where each subset contains the node element v ∈ U and
ec1 , ec2 for each edge ec1 = {v′1, v′} ∈ E ′

p, ec2 = {v′2, v′} ∈ E ′
p. ec1(ec2) inserted in Sv

c1c2
is to

prevent v′1(v′2) and v′ from being assigned to the same color. Therefore, the total number
of newly-added rows is O(k2|Es|), where |Es| is the number of stitch candidates in all
features of Gp. Figure 3.7 gives an example of G′

p and M ′, where the 7th row is selected
as the part of the final solution so that one stitch candidate is used to avoid the conflict.
When graph G′

p is still un-colorable, the exact conflict edge detected by algorithm X∗

is marked and removed. Such procedure is repeated until G′
p is colorable and the final

coloring solution is found.



CHAPTER 3. MULTIPLE PATTERNING LITHOGRAPHY 29

b

a a

a

b

b

c

c

a b c ab ab ac ac

a

a

b

b

c

c

ab

ab

ab

ab

ac

ac

ac

ac

Picked row

bc bc

bc

bc

bc

bc

c

c

ac bc

ac bc

Figure 3.7: Double patterning instance containing stitch edge with its exact cover matrix.

Flexible Exact Cover-based algorithm

The exact cover-based algorithm shows impressive performance improvement due to the
efficient augmenting DLX. However, the algorithm cannot always guarantee the optimal-
ity of the results. Here, we propose two techniques to improve the exact cover-based
algorithm.

Flexible Stitch Handling The first possible reason for the non-optimality is the han-
dling rules for stitch cases. Although the exact cover-based algorithm considers all stitch
candidates on features concurrently, the example demonstrated in [17] uses at most one
stitch to resolve conflict in a single feature since the rows in M ′ are added in the unit of
stitch candidate. However, there are some features in which multiple stitch candidates
are able to resolve multiple conflicts. One example is shown in Figure 3.8, where our
algorithm uses two stitches in the feature d and generates a result with cost 0.2, while
the original EC-based algorithm only uses one stitch and generates a coloring result with
cost 1.1. Although some commercial decomposition tools based on [17] have considered
multiple stitch cases to improve the solution quality, related techniques are not detailed
in [17]. In OpenMPL, we formalize the flexible stitch handling method by introducing
a maximally usable stitch candidate number n and quantifying the complexity of the
EC-based algorithm with different n.
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Figure 3.8: (a) The non-optimal case of original EC-based algorithm. (b) The same case by our
flexible EC-based algorithm, in which the result is optimal.
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The direct reason for the non-optimality in the stitch handling is, the rows are added
in the unit of the stitch candidate, which constrains at most one stitch candidate to be
selected for each node. To overcome such constraint, i.e., to use an arbitrary number of
stitch candidates in one feature, we handle the stitch in the unit of node element. We
present our optimal stitch handling method as follows: denote the maximal number of
usable stitch candidates as n, which is a controllable parameter. For each node element
v ∈ Vp, if the corresponding feature of v contains tv stitch candidates and thus the feature
is divided into tv +1 sub-features, the original stitch handling approach is going to insert
tv(k

2− k) rows while we insert Cm
tv (k

m+1− k) rows, where m is the number of used stitch
candidates, which split the feature of v into m + 1 sub-features and is calculated by the
minimum value between n and tv, i.e., m = min{n, tv}. In our flexible algorithm, each
row indicates one possible coloring solution for the divided m + 1 sub-features. Clearly,
when n equals one, the algorithm is the same as the previous one, i.e., only one stitch
candidate is used in each feature and the space complexity is also O(tvk2). When n
becomes large enough, i.e., m = tv, the algorithm will use all stitch candidates at the
same time, which is more possible to be optimal. However, the large n increases the
space complexity to O(ktv+1) and thus exponentially worsens the runtime. One DPLD
example is shown in Figure 3.8, where Figure 3.8(a) is the matrix and corresponding
coloring solution following the original stitch handling approach. (d1, d2), (d3, d4) are the
sub-features divided by two stitch candidates respectively and one conflict is introduced.
Figure 3.8(b) shows the results for our flexible stitch handling, where d1, d2, and d3 are the
sub-features divided by two stitch candidates at one time, and all conflicts are resolved by
stitches. Although the proposed stitch handling approach can obtain optimal results, it
suffers from efficiency due to the explosion of the number of newly-added rows, especially
when n and tv are large. To speed up our algorithm without additional quality loss, we
further use a heuristic technique. Firstly, the graph follows the original stitch handling
approach, i.e., n = 1. If all conflicts are resolved by stitches or the graph contains no
features whose number of stitch candidates is more than one, then the coloring procedure
completes and the optimal stitch handling is not used. Otherwise, the graph is further
handled by our flexible algorithm with n as the maximal number of stitch candidates in
the features, which is closer to the optimal solution.
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Figure 3.9: The non-optimal case of the original EC-based algorithm due to the traversal order.
(a) The exact conflict(s) selected by the original rule (red) and ours (orange). (b) The coloring
results by the original rule. (c) The coloring results by our optimized rule.

Optimized Traversal Order Another possible reason for the non-optimality is the
traversal order of nodes for the conflict-overlapping cases. Here, we formallly define such
a case as the overlapping k-clique:

Definition 1. For a homogeneous graph G = {V,E}, where V = {Vs, v1, v2}, G is called
an overlapping k-clique if (v1, v2) /∈ E and the subgraphs G1 = G\v1 and G2 = G\v2
are both k-cliques where k > 2.

One example of the overlapping 4-clique is given in Figure 3.9, where Vs = {a, b, c},
v1 = d and v2 = e. With the definition, the following theorem shows the cost of the
optimal solution for an overlapping k-clique in the |Vs|-coloring problem.

Theorem 2. The optimal solution for an overlapping k-clique in the |Vs|-coloring problem
has exactly one conflict.

Proof. It is obvious that the optimal solution for a k-clique in the |Vs|-coloring problem
has exactly one conflict since |Vs| = k − 1. Therefore, the optimal solution for both G1

and G2 has exactly one conflict, which results in a lower bound of the conflict number for
graph G as one. We then prove that there exists a feasible solution f : V → {1, ..., k− 1}
which colors G within one conflict. Let’s define f as follows: Given any two different
nodes in Vs, vs1 and vs2 , f first assigns color 1 to vs1 and vs2 and color 2 to v1 and v2,
which generates one conflict. Then f assigns colors {3, ..., |Vs|} to the left nodes in Vs,
i.e., Vs\{vs1, vs2}. Since the size of Vs\{vs1, vs2} is |Vs| − 2, which is the same as the size of
available colors, this coloring procedure is conflict-free. Totally, the number of conflicts
is one under this coloring scheme and such completes the proof.

Although the minimum conflict of an overlapping k-clique is 1 as stated in Theorem
2, the quality of the results by algorithm X∗ is highly dependent on the traversal order.
Original algorithm X∗ in [17] traverses the node in the BFS order unless one uncovered
node has only one possible color. The root of BFS is the node whose corresponding feature
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has the largest area. If there are multiple available nodes, nodes will be selected following
a numerical order in the implementation. However, such BFS-based traversal order may
fail to obtain the optimal solution in some overlapping k-cliques as mentioned in [17].
Such a situation can be formally described as:

Claim 1. The solution for an overlapping k-clique in the |Vs|-coloring problem by algorithm
X∗ with the BFS-based traversal order proposed in [17] cannot guarantee optimality.

Proof. The proof can be finished by a simple non-optimal case. Assume that k > 2, the
corresponding feature of node v1 has the largest area, which makes v1 the root of BFS,
and v2 is the node at the end of the numerical order, then the detected exact conflict edge,
i.e., the last reported conflict edge, must be the edge between v2 and vsi , where vsi is the
node in Vs. Therefore, edge {v2, vsi } is removed and one conflict happens. However, the
sub-graph G2 is still a k-clique and contributes to one conflict in the |Vs|-coloring problem
besides the edge {v2, vsi }. Therefore, such a traversal order finally results in at least two
conflicts totally, which is not optimal.

One example of non-optimality is shown in Figure 3.9(b). The edge c-e is first marked
as an exact conflict and then one more conflict c-d is introduced because the left sub-
graph a-b-c-d still forms a 4-clique. Considering the non-optimal case of original traversal
order, we propose a heuristic traversal order which is nearer to the optimal solution. The
differences of our optimized traversal order are organized as follows: (1) The root of BFS
is the node with the largest degree; (2) If nodes are in the same depth in the BFS, the
node with the smallest degree is selected; (3) If there are multiple uncovered nodes that
have only one possible color, the node with the maximal degree is selected. Through
these special treatments, the new traversal order is optimal for the k-clique and can be
formally described as:

Theorem 3. The solution for an overlapping k-clique in the |Vs|-coloring problem by
algorithm X∗ with the new traversal order guarantees optimality.

Proof. Let vsi be the root, vsi ∈ Vs since the root has the largest degree. Because both
v1 and and v2 have the smallest degree, which will be selected firstly, the last detected
conflict is {vsi , vsj}, where vsj ∈ Vs. After the edge {vsi , vsj} is removed, both G1 and G2 are
not k-cliques and can be colored by algorithm X∗ without additional conflict. Therefore,
the total number of conflicts by algorithm X∗ with the new traversal order is one, which
is optimal according to the Theorem 2 and completes the proof.

One example of the new traversal order is shown in Figure 3.9(c), where our new
traversal order marks b-c as the exact conflict and thus achieves optimality.

3.1.6 Experimental Results

We implement OpenMPL in C++ and use Boost [1] as the basic graphics library. All of the
experiments are tested on an Intel Core 2.9 GHz Linux machine. We conduct experiments



CHAPTER 3. MULTIPLE PATTERNING LITHOGRAPHY 34

Table 3.1: Effective of stitch redundancy removal (SRR)

Circuit Our EC w/o. SRR Our EC w. SRR
time (s) cost time (s) cost

test1_100 2.163 385.9 2.866 385.9
test5_101 0.013 625.3 0.008 625.3
test6_102 1.441 352.8 1.331 352.8
test8_100 2.889 6238.1 2.254 6238.1
test9_100 5.064 9651.2 3.877 9651.2
test10_100 11.716 11129.3 9.783 11129.3

average 3.881 4730.433 3.353 4730.433
ratio 1.000 1.000 0.864 1.000

Table 3.2: Our ILP vs. Original ILP [131] on ISCAS benchmarks

Circuit Original ILP[131] Our ILP
time (s) st# cn# cost time (s) st# cn# cost

C432 0.050 4 0 0.4 0.054 4 0 0.4
C499 0.029 0 0 0 0.017 0 0 0
C880 0.045 7 0 0.7 0.039 7 0 0.7
C1355 0.045 3 0 0.3 0.038 3 0 0.3
C1908 0.078 1 0 0.1 0.063 1 0 0.1
C2670 0.049 6 0 0.6 0.055 6 0 0.6
C3540 0.055 8 1 1.8 0.059 8 1 1.8
C5315 0.065 9 0 0.9 0.060 9 0 0.9
C6288 0.961 205 1 21.5 1.075 204 1 21.4
C7552 0.105 23 0 2.3 0.146 23 0 2.3
S1488 0.030 2 0 0.2 0.031 2 0 0.2
S38417 0.581 54 19 24.4 0.635 54 19 24.4
S35932 1.641 40 44 48 1.478 40 44 48
S38584 1.540 116 36 47.6 1.541 116 36 47.6
S15850 1.604 97 34 43.7 1.479 97 34 43.7
average 0.459 38.333 9.000 12.833 0.451 38.267 9.000 12.827

ratio 1.000 1.000 1.000 1.000 0.984 0.998 1.000 0.999

under two series of benchmarks. The first smaller benchmarks are the scaled-down and
modified versions of ISCAS benchmarks, which are widely used in previous works. The
minimum coloring spacing is set to 120 nm for the first ten cases and 100 nm for the last
five cases, as in [32, 131, 17]. The second larger benchmarks are the ISPD‘19 benchmarks
for detailed routing. We use the metal layers in the benchmark obtained by Dr.CU 2.0 [62]
and set the minimum coloring spacing as k ·s+(k−1) ·w, where k is the number of colors
and set as 3 in our experiments, s is the minimum spacing between two features and w is
the standard width of one feature. Here, we only show the results of metal layers which
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Table 3.3: Our ILP vs. Original ILP [131] on ISPD benchmarks

Circuit Original ILP[131] Our ILP
time (s) st# cn# cost time (s) st# cn# cost

test1_100 122.249 299 243 272.9 115.075 239 219 242.9
test5_101 118.029 232 466 489.2 149.040 190 433 452
test6_102 235.359 482 115 163.2 398.106 454 108 153.4
test8_100 19.025 4616 5683 6144.6 17.277 4389 5567 6005.9
test9_100 28.365 6969 8739 9435.9 25.534 6643 8559 9223.3
test10_100 110.479 9594 9775 10734.4 99.529 8945 9555 10449.5

average 105.584 3698.667 4170.167 4540.033 134.094 3476.667 4073.500 4421.167
ratio 1.000 1.000 1.000 1.000 1.270 0.940 0.977 0.974

can be decomposed by our ILP within three hours (6 cases in total). Each selected layer
with id n on benchmark m is represented by m_n. For example, test1_100 represents
the layer with id 100 on the test1 benchmark of ISPD2019. We only focus on the results
of different decomposition algorithms on the TPLD problem due to page limit, which is
more difficult to obtain optimal results compared with DPLD. More detailed results and
discussions can be found in [6]. The stitch weight α is set to 0.1, the thread number is 8
and the graph simplification level is 3 which represents that the framework enables three
simplification techniques:ICC, IVR, and BCE. Especially, SDP is set to one thread due to
no maintenance of CSDP now. Figure 3.10 shows the decomposition results for the case
C432 of ISCAS benchmarks and the case test1_100 of ISPD benchmarks.
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(a)

(b)

Figure 3.10: An example of the decomposition results. (a) Decomposition result of the circuit
C432 in the ISCAS benchmarks. (b) Decomposition result of the 100th layer in the circuit test1
in the ISPD benchmarks.
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Table 3.4: Our EC vs. Original EC [17] on ISCAS benchmarks

Circuit Original EC[17] Our EC
time (s) st# cn# cost time (s) st# cn# cost

C432 0.005 4 0 0.4 0.008 4 0 0.4
C499 0.004 0 0 0 0.006 0 0 0
C880 0.005 7 0 0.7 0.007 7 0 0.7
C1355 0.007 3 0 0.3 0.018 3 0 0.3
C1908 0.008 1 0 0.1 0.022 1 0 0.1
C2670 0.014 6 0 0.6 0.021 6 0 0.6
C3540 0.029 8 1 1.8 0.035 8 1 1.8
C5315 0.019 9 0 0.9 0.033 9 0 0.9
C6288 0.114 203 8 28.3 0.142 204 1 21.4
C7552 0.028 21 1 3.1 0.055 21 1 3.1
S1488 0.008 2 0 0.2 0.007 2 0 0.2
S38417 0.127 54 19 24.4 0.175 54 19 24.4
S35932 0.286 48 44 48.8 0.299 40 44 48
S38584 0.291 117 36 47.7 0.323 117 36 47.7
S15850 0.285 100 34 44 0.342 100 34 44
average 0.082 38.867 9.533 13.42 0.1 38.4 9.067 12.907

ratio 1.000 1.000 1.000 1.000 1.220 0.988 0.951 0.962

Table 3.5: Our EC vs. Original EC [17] on ISPD benchmarks

Circuit Original EC[17] Our EC
time (s) st# cn# cost time (s) st# cn# cost

test1_100 1.772 236 383 406.6 11.521 279 358 385.9
test5_101 3.229 282 615 643.2 21.052 303 595 625.3
test6_102 7.209 560 327 383 57.525 558 297 352.8
test8_100 5.585 4236 5994 6417.6 10.269 4561 5782 6238.1
test9_100 9.042 6329 9270 9902.9 17.139 6852 8966 9651.2
test10_100 15.14 8697 10621 11490.7 67.149 9433 10186 11129.3

average 6.996 3390 4535 4874 30.776 3664.333 4364 4730.433
ratio 1.000 1.000 1.000 1.000 4.399 1.081 0.962 0.971

Effectiveness of Stitch Redundancy Removal

Firstly, we demonstrate the effectiveness of the proposed stitch redundancy removal (SRR)
technique. Through stitch redundancy removal, some redundant stitch candidates can be
removed and the two connected nodes are merged into one node. Therefore, the graph
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size for the decomposition is reduced and thus the decomposition runtime is decreased
without decomposition quality loss theoretically. We only conducted SRR on the graphs
whose sizes are larger than 8. Table 3.1 compares the performance and runtime on the
target graphs. Column “time (s)” is the total simplification and decomposition runtime
of graphs which have redundant stitches to be removed. The “cost” column is the total
decomposition cost of our EC. When the case is sparse, i.e., the case can be easily simplified
such that the total number of simplified graphs is huge while the size of each graph is
usually small, our SRR may harm the runtime since the number of redundant stitches
is not very much while the runtime for scanning all stitches in SRR cannot be avoided.
For example, the runtime for graphs on test1_100 is increased from 2.163 seconds to
2.866 seconds when SRR is used. Despite such a sparse case, which may not be the major
bottleneck due to its low complexity, our SRR shows a considerable runtime improvement
in most cases. We can see that compared with decomposing the graph by our EC directly,
further applying SRR can reduce the average runtime by 13.6% without any performance
loss.

Original ILP Versus Our ILP

Secondly, we compare our ILP with the original ILP proposed by [131] on both small
ISCAS benchmarks and large ISPD benchmarks. The results are shown in Table 3.2 for
ISCAS benchmarks and Table 3.3 for ISPD benchmarks. The column “time (s)” is the real
time of decomposition in seconds instead of CPU time. Columns “st#” and “cn#” are
the stitch number and the conflict number, “cost” is the decomposition cost calculated by
Equation (3.12). On the small benchmarks, our ILP shows a slight improvement in both
the runtime and the quality. The time is reduced by 1.6% and the stitch number is reduced
by 1 on circuit C6288 while the costs on other circuits are not changed, which indicates
that such re-count case in the small benchmarks is not frequent. On the large benchmarks,
Our ILP reduces 222 stitches and 96.67 conflicts averagely, i.e., from 3698.667 to 3476.667
and from 4170.167 to 4073.5. Therefore, the average cost is significantly reduced by
118.867 while the runtime is increased by 27%. However, such runtime loss is acceptable
considering the unignorable quality improvement.

Original EC Versus Our EC

Thirdly, we compare our EC with the original EC proposed by [17] on both small and
large benchmarks. The results are listed in Table 3.4 for ISCAS benchmarks and Table 3.5
for ISPD benchmarks. As discussed in Section 3.1.5, the original EC assumes exactly one
stitch candidate to be activated for each feature, which reduces the matrix size and thus
reduces the time complexity with a potential quality loss. Our EC assumes that at most
n stitch candidates are activated for each feature, where n is a dynamic parameter and
therefore we can achieve a flexible balance between runtime and quality by changing n.
The results in both the small and large benchmarks demonstrate our analysis, where n
is set to 2 in our EC, i.e., at most two stitch candidates are activated for each feature.
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Table 3.6: Non-stitch Decomposition Cost Comparison on ISCAS benchmarks
Circuit Our ILP LP[70] MIS[32] SDP[131] EC[17] Back. [56]
C432 4 4 4 4 4 4
C499 0 0 0 0 0 0
C880 7 7 7 7 7 7
C1355 3 3 3 3 3 3
C1908 1 1 1 1 1 1
C2670 6 6 6 6 6 6
C3540 9 9 9 9 9 9
C5315 9 9 9 9 9 9
C6288 205 205 205 205 205 205
C7552 22 22 22 22 22 22
S1488 2 2 2 2 2 2
S38417 95 97 95 95 97 95
S35932 157 166 157 159 163 157
S38584 230 233 230 231 231 230
S15850 212 215 212 212 215 212
average 64.133 65.267 64.133 64.333 64.933 64.133

ratio 1.000 1.018 1.000 1.003 1.012 1.000

Table 3.7: Decomposition Cost Comparison on ISCAS benchmarks

Circuit Our ILP SDP[131] Our EC Back. [56] MIS [32] LUT [57]
st# cn# cost st# cn# cost st# cn# cost st# cn# cost st# cn# cost st# cn# cost

C432 4 0 0.4 4 0 0.4 4 0 0.4 4 0 0.4 6 0 0.6 4 0 0.4
C499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C880 7 0 0.7 8 0 0.8 7 0 0.7 7 0 0.7 8 1 1.8 7 0 0.7
C1355 3 0 0.3 3 0 0.3 3 0 0.3 3 0 0.3 4 1 1.4 3 0 0.3
C1908 1 0 0.1 1 0 0.1 1 0 0.1 1 0 0.1 1 0 0.1 1 0 0.1
C2670 6 0 0.6 6 0 0.6 6 0 0.6 6 0 0.6 11 2 3.1 6 0 0.6
C3540 8 1 1.8 8 1 1.8 8 1 1.8 8 1 1.8 11 3 4.1 8 1 1.8
C5315 9 0 0.9 9 0 0.9 9 0 0.9 9 0 0.9 11 3 4.1 9 0 0.9
C6288 204 1 21.4 203 7 27.3 204 1 21.4 205 1 21.5 243 20 44.3 191 14 33.1
C7552 23 0 2.3 23 0 2.3 21 1 3.1 23 0 2.3 37 3 6.7 22 0 2.2
S1488 2 0 0.2 2 0 0.2 2 0 0.2 2 0 0.2 4 0 0.4 2 0 0.2
S38417 54 19 24.4 46 27 31.6 54 19 24.4 54 19 24.4 82 20 28.2 55 19 24.5
S35932 40 44 48 20 64 66 40 44 48 40 44 48 63 46 52.3 41 44 48.1
S38584 116 36 47.6 105 48 58.5 117 36 47.7 116 36 47.6 176 36 53.6 116 36 47.6
S15850 97 34 43.7 83 48 56.3 100 34 44 97 34 43.7 146 36 50.6 100 34 44
average 38.27 9.00 12.83 34.73 13 16.47 38.4 9.07 12.91 38.33 9.00 12.83 53.48 11.47 16.75 37.67 9.87 13.63

ratio 1.00 1.00 1.00 0.91 1.44 1.28 1.00 1.01 1.01 1.00 1.00 1.00 1.39 1.27 1.31 0.98 1.10 1.06

∗ The results of MIS [32] and LUT [57] are directly quoted from their papers.

Our EC reduces the average cost by 3.8% on the small benchmarks and 2.9% on the
large benchmarks. As a tradeoff, the average runtime is increased from 0.082s to 0.1s on
the small benchmarks and from 6.996s to 30.776s on the large benchmarks, which is not
trivial and demonstrates one of the drawbacks for the EC-based algorithm: the increase
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Table 3.8: Decomposition comparison on ISPD benchmarks

Circuit Our ILP SDP [131] Our EC
st# cn# cost time st# cn# cost time st# cn# cost time

test1_100 239 219 242.9 115.075 287 269 297.7 4.929 279 358 385.9 11.521
test5_101 190 433 452 149.04 228 527 549.8 10.52 303 595 625.3 21.052
test6_102 454 108 153.4 398.106 477 144 191.7 67.856 558 297 352.8 57.525
test8_100 4389 5567 6005.9 17.277 4547 5750 6204.7 22.526 4561 5782 6238.1 10.269
test9_100 6643 8559 9223.3 25.534 6880 8842 9530 35.01 6852 8966 9651.2 17.139
test10_100 8945 9555 10449.5 99.529 9457 9963 10908.7 76.583 9433 10186 11129.3 67.149

average 3476.667 4073.5 4421.167 134.094 3646 4249.167 4613.767 26.237 3664.333 4364 4730.433 30.776
ratio 1.000 1.000 1.000 1.000 1.049 1.043 1.044 0.270 1.054 1.071 1.070 0.230

Table 3.9: Decomposition Runtime (s) Comparison on ISCAS benchmarks

Circuit Our ILP SDP[131] Our EC Back. [56]
C432 0.054 0.027 0.008 0.003
C499 0.017 0.016 0.006 0.004
C880 0.039 0.046 0.007 0.004
C1355 0.038 0.024 0.018 0.005
C1908 0.063 0.028 0.022 0.01
C2670 0.055 0.05 0.021 0.015
C3540 0.059 0.076 0.035 0.163
C5315 0.06 0.085 0.033 0.022
C6288 1.075 0.615 0.142 1.308
C7552 0.146 0.209 0.055 0.02
S1488 0.031 0.031 0.007 0.007
S38417 0.635 1.673 0.175 0.262
S35932 1.478 5.118 0.299 0.299
S38584 1.541 4.99 0.323 0.281
S15850 1.479 4.416 0.342 0.63
average 0.451 1.16 0.1 0.202

ratio 1.000 2.572 0.222 0.448

of n results in an exponentially increasing on the runtime.

Comparison of Different Decomposers

Fourthly, we compare different decomposers in both stitch-enabled cases and no-stitch
cases. The quality results without stitch for ISCAS benchmarks are listed in Table 3.6.
Column “Back.” is the result of the backtracking algorithm introduced in [56]. As shown
in Table 3.6, our ILP, MIS [32], and backtracking [56] in our implementation obtain the
optimal solution while other relaxation-based or heuristic methods degrade the result
quality.
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For the stitch-enabled cases, the quality comparison is shown in Table 3.7 and Ta-
ble 3.8; The runtime comparison is shown in Table 3.9 and Table 3.8. Especially, back-
tracking is not shown in Table 3.8, since it cannot be processed within three hours for
any layout in ISPD benchmarks. The results of MIS [32] and LUT [57] in Table 3.7 are
directly quoted from their papers. The ratio is calculated based on the results of our
ILP. For the decomposition cost, our optimized ILP outperforms other algorithms and
achieves the best cost performance as expected. On the small benchmarks, SDP is the
worst and increases the cost by 28.4% while the cost of our EC and backtracking are close
to the ILP. On the large benchmarks, SDP only increases the cost by 4.4% and is better
than our EC, which increases the cost by 7%. For the runtime, the original EC is the
best due to the efficient augmenting DLX technique. Backtracking shows a good runtime
performance on the small benchmarks due to our heuristic algorithm but fails to obtain
the results on the large benchmarks within three hours. The runtime of SDP is much
worse than our ILP on the small benchmarks, i.e., 2.572× runtime, while much better on
the large benchmarks, whose ratio is close to our EC, i.e., 0.27 vs. 0.23.

3.2 Adaptive Layout Decomposition with Graph Embedding Neu-
ral Networks

The semiconductor industry nowadays is greatly challenged by extreme scaling which
imposes severe issues on circuits manufacturing. Among various advanced lithography
techniques, multiple patterning lithography (MPL) is one of the most practical solutions
to enhance the manufacturability and has been widely adopted in industry [85].

The core problem of multiple patterning lithography is the layout decomposition which
assigns features on a layout to separate masks for printability improvement and is also
called multiple patterning lithography decomposition (MPLD). If two features located
closer than minimum coloring distance are assigned to the same mask, a coloring conflict
is introduced. Additionally, stitches can be inserted to assist conflict resolving, at a cost of
potential yield loss though. Therefore, the objective of MPLD is to find a mask assignment
for features such that the number of conflicts and stitches are minimized.

Due to the NP-hardness of the general layout decomposition problem, a variety of
decomposition approaches have been proposed to achieve high quality and efficiency.
These approaches can be roughly categorized into three types: mathematical program-
ming, graph-theoretical approaches and heuristic approaches. The mathematical pro-
gramming approach formulates the problem into integer linear programming (ILP) [120,
51, 133, 131, 128, 130], and its relaxations such as semi-definite programming (SDP) [131],
linear programming (LP) [70] and discrete relaxation method [67]. Besides mathemati-
cal programming, graph-theoretical approaches resolve the problem with graph theories,
e.g., the maximal independent set (MIS) [32], the shortest-path [23, 105], and the fixed-
parameter tractable (FPT) [58] algorithms. Some heuristic approaches are also proposed
in [57, 32, 131, 49], which are generally efficient but may have low quality. A recent work
formulated MPLD into an exact cover problem and achieved high quality and efficiency
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with algorithm X [49]. Another extremely fast solution is based on graph matching [57],
in which a coloring solution library for small graphs is constructed, and then graphs are
colored efficiently by graph matching.

…

Figure 3.11: An example of graph embeddings of layout graphs, where the graphs are trans-
formed into vector space.

Although many decomposition algorithms have been developed, there is no conclu-
sion that one decomposer is always better than another. ILP-based method ensures the
optimality but suffers from runtime overhead for large layouts. Exact-cover (EC) based
method demonstrates high efficiency for large layouts at a cost of marginal degradation
on the solution quality. The graph matching based method shows good performance in
both efficiency and quality for small graphs. But the library size of this method cannot
be too large and only non-stitch graphs are supported, which is not applicable to large
layouts or layouts with stitches. This observation motivates that it is worth exploring
how to adaptively select the most suitable MPLD strategies for a given layout, which is
non-trivial and still an open problem so far.

<d
<d <d

(a) (b) (c)

Figure 3.12: An example of the routed layout and its graph representations. (a) The input
routed layout; (b) The homogeneous graph representation, where the black line represents the
conflict relation; (c) The heterogeneous graph representation considering stitches, where the
stitch candidate is marked by the black dotted line, and the stitch edge is highlighted in blue.
Here, the relationship between p and v is: p1 = {v1}, p2 = {v2}, p3 = {v3, v4}.
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With successful deep learning applications in various fields by learning from historical
data, we can naturally cast the problem into a classification task and leverage learning-
based approaches. We need to investigate as much information of the graphs as possible
and let our framework learn to adaptively utilize proper decomposition algorithms. How-
ever, graphs usually vary in terms of scale, making them hard to digest for learning
models. Therefore, we need to obtain graph embedding under unified shape to represent
the graph as shown in Figure 3.11. Specifically, we use some techniques to generate the
graph embedding such that the graph is transformed into a vector space in a lower but
unified dimension with maximal representation capability and the powerful graph embed-
ding helps us to adaptively select the best decomposer, where the best refers to the best
solution quality at the lowest runtime.

Among different graph embedding methods, graph neural networks (GNN) are widely
used for irregular graph representations. In this paper, we develop several GNN variations
to obtain graph embeddings for different usages. First, we propose a non-stitch layout
decomposer that purely depends on the graph embedding obtained by a specifically-
designed GNN. Second, The graph embeddings are used as representations to select ILP-
based decomposer (optimal but slow), EC-based decomposer (efficient but may not be
optimal), or GNN-based decomposer (efficient and nearly optimal but does not support
stitch). Besides decomposer selection, the graph embedding helps us to avoid isomorphic
graphs during library construction. After that, it is used for matching graphs efficiently
in the library and predict whether the stitch edges in the layout graph are needed or not.

The main contributions are summarized as follows:

• We point the redundancy of stitch candidates in the layout graph, and develop a
stitch redundancy prediction method based on graph embeddings.

• We design a non-stitch layout decomposer that purely depends on message passing
GNN.

• We design a graph library construction algorithm based on graph embeddings for
small graphs excluding isomorphic ones.

• We propose an adaptive workflow for efficient decomposer selection and graph match-
ing using graph embeddings.

• We conduct experiments on widely used benchmarks and experimental results demon-
strate that our framework can reduce the runtime by 97.5% while still preserving
the optimality compared with optimal but slow ILP-based decomposer.

The rest of this section is organized as follows. Section 3.2.1 lists basic terminologies
related to this work and covers. Section 3.2.2 introduces existing state-of-the-art decom-
posers and proposes a pure GNN-based decomposer, which is specifically designed for
the non-stitch layout graphs. Section 3.2.3 shows details of the GNN-based framework,
including graph library construction and GNN model construction. Section 3.2.4 covers
experimental results.
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3.2.1 Preliminaries

Conflict and stitch A conflict happens when two features whose relative distance is
less than d are assigned different masks. Sometimes, the conflict can be resolved by
dividing the feature using two masks, i.e., assigning two different masks. Such a division
by different masks is called a stitch. The polygonal feature p is split by stitch(es) into
sub-features, i.e., p = {..., ri, ...}. To find effective stitches, many works [131, 17] generate
a series of stitch candidates in the features before decomposition. These stitch candidates
indicate possible locations of stitches to prevent the occurrence of conflicts. Previous
works have shown that current stitch candidates are able to cover all possible stitches
[131, 51].

Graph format of MPLD The problem formulation of MPLD can be found in Sec-
tion 3.1.2. Moreover, MPLD problem can be modeled as a variation of a pure graph-based
problem, since the input layout can be translated into an undirected graph G = (V,E)
without any information loss. When we consider the stitch candidates, i.e., pre-define
possible stitch locations, G is a heterogeneous graph where the node vi corresponds to the
subfeature ri, and the the edge set E is composed of two subsets: the conflict edge set
CE and the stitch edge set SE. Otherwise, G is a simple homogeneous graph, where the
node corresponds to one polygonal feature, i.e., vi → pi, and the edge only represents the
conflict relation. One example of the two representations are shown in Figure 3.12. In our
paper, we focus on the heterogeneous layout graph that is more complex but practical.

In the heterogeneous layout graph, if one feature is split into multiple sub-features by
stitch candidate(s), it will be translated into multiple nodes in the graph. To be more
specific, one node is either 1) one polygonal feature if there is no stitch candidates in the
feature or 2) one sub-feature split by the stitch candiate(s) in the polygonal feature. The
edge set E = {CE, SE} models the relations between nodes. Two nodes are connected
by the conflict edge e ∈ CE if their relative distance is less than d and they do not belong
to the same feature; Two nodes are connected by the stitch edge e ∈ SE if they belong
to the same feature and split by one stitch candidate.

The objective of MPLD problem is to assign masks to (sub)features so that the
weighted sum of conflicts and stitches are minimized. From the perspective of a graph
coloring problem, the objective is to assign colors to each node so that the weighed
sum of conflict cost and stitch cost is minimized. Let f : v → {1, ..., k} be the col-
oring(decomposition) function and f(v) be the color assigned to v by f . Given two
features, pm, pn, the conflict cost adds to one if at least one corresponding node pair con-
nected by the conflict edge is assigned different colors, i.e., ∃ri ∈ pm, rj ∈ pn : {vi, vj ∈
CE, f(vi) = f(vj)}. The stitch cost adds to one if the two nodes connected by one stitch
edge is assigned the same color. Formally, the objective can be formulated as shown in
Equation (3.13),
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min
f

∑
pm,pn∈P ;m̸=n

Cmn + α
∑

{vi,vj}∈SE

sij , (3.13a)

s.t. Cmn = min{
∑

ri∈pm,
rj∈pn,

{vi,vj}∈CE

cij , 1} (3.13b)

sij =

{
1, if f(vi) ̸= f(vj);

0, otherwise.
(3.13c)

cij =

{
1, if f(vi) = f(vj);

0, otherwise.
(3.13d)

where α is a parameter indicating the relative importance between the conflict cost C
and the stitch cost s, which is usually set as 0.1.

Graph Isomorphism and Graph Matching Intuitively, graph isomorphism problem
is to decide whether two ordered graphs are identical after they are un-ordered. Graph
matching is not only to decide whether they are identical or not, but also to give an order
map of nodes if they are identical.

The formal definition of graph isomorphism and graph matching is stated as follows
[12]: Given two graphs G1 = (V1, E1), G2 = (V2, E2) with |V1| = |V2|, where V1, V2 and
E1, E2 are corresponding node sets and edge sets, respectively. The object of graph
matching is to find a node-to-node mapping f : V1 → V2 such that (u, v) ∈ E1 if and only
if (f(u), f(v)) ∈ E2. This is called an isomorphism if such a mapping f exists, and G1 is
said to be isomorphic to G2.

In the graph library construction, graph isomorphism is one of the most critical factors
because n! − 1 isomorphic graphs of any valid graph will be re-collected in the library if
no isomorphism-free techniques are used, where n is the number of nodes. Also, graph
matching is inevitable when extracting the corresponding node coloring results stored in
the graph library for the matched graph.

Graph Neural Networks (GNN) With the development and further study of Neural
Network, GNN, as a branch of Neural Network, has shown promising results in many
domains such as the graph embedding.

GNN takes the graph as input and returns the node embeddings or graph embed-
ding. Nowadays, most widely-used GNNs adopt an iterative manner that is composed of
two repeated steps: aggregation and combination, which exploit the neighborhood infor-
mation and ego-information respectively. Specifically, for each node u in graph G, the
aggregation step aggregates neighbor v’s representations hv and obtain an intermediate
representation ĥu such that the final graph embedding is able to contain graph structure
information. During the combination, GNN combine the aggregated representation ĥu
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with the ego-feature, and the result feature becomes the input of next layer. GNN can
be also explained in a message-passing way where the intermediate representations can
be viewed as messages. The aggregation is the actual message-passing phase and each
node passes its message to its neighbors along the edge. The combination is served as the
integration phase, in which each node integrates received the message and reduces it into
its new message. Each message-pass and integration phase formulate one GNN layer. A
general GNN layer can be described as follows:

h(i)
v = COM(i)(h(i−1)

v ,AGG(i)({h(i−1)
u : u ∈ N (v)})), (3.14)

where hi
v is the feature of node v after ith layer, COM is the combination function, and

The representation after the final layer is called the node embedding of each node and
the graph embedding by GNN is usually obtained by some node invariant operations on
node embeddings such as summation or mean.

Problem Formulation Given a set of layout graphs and two state-of-the-art decom-
posers, ILP-based decomposer and EC-based decomposer, our objective is to train several
GNN variations to obtain the graph embeddings such that 1) the embedding can help
to directly color the homogeneous layout graph, i.e., layout that does not contain any
stitch candidate; 2) the embedding can be used to build a graph library for small graphs,
recording the coloring solutions; 3) any new graph can find the best decomposer using its
embedding; 4) any new small graph can find the coloring solution directly through graph
matching with graphs in the library.

3.2.2 Layout Decomposition Algorithms
State-of-the-art Decomposers

Among the past few years, lots of decomposers are developed to solve the MPLD problem.
We compare all state-of-the-art decomposers in terms of four perspectives: 1) Result
quality; 2) Efficiency; 3) Flexibility on multi-thread, GPU-acceleration, larger layout, and
more masks; 4) Whether the method supports the stitch insertion. A general comparison
is shown in Table 3.10. In the following paragraphs, we simply introduce these existing
decomposers and discuss the performance on the four listed perspectives.

Integer Linear Programming(ILP) Given the objective function in the form of graph
as shown in Equation (3.13), the problem can be naturally solved by ILP [51, 131], where
the node color f(vi) can be represented by 1-bit 0-1 variable(s). The ILP model for TPLD
is decribed in Formula equation 3.12.

ILP-based method gives the optimal solution and supports the stich scheme with only
a trivial modification of the modeling process. However, the poor efficiency impedes its
employment on large layout, which becomes more and more important with the develop-
ment of semiconductor industry.
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Semi-definite Programming (SDP) Solving Equation (3.12) using ILP is NP-hard,
as an alternative solver, SDP can approximately solve Equation (3.12) in linear time.
The basic idea is to program the colors by vectors so that the inner product between
two vectors give different values based on whether the two vectors are the same or not.
For example, in the TPLD problem [131, 79, 129], the three colors are assigned to three
2-dimension vectors, (1, 0), (−1/2,

√
3/2), and (−1/2,−

√
3/2) respectively. Then, given

any two vectors vi,vj, which represents the colors of node i and node j, we have the
following properties:

vi · vj =

{
1, f(vi) = f(vj)

−1/2, f(vi) ̸= f(vj)
(3.15)

Therefore, the MPLD problem can be solved by semidefinite programming in polynomial
time if we relax the discrete values of v to a continuous one. Given the solutions of SDP,
a fast heuristic mapping process is used to map the solutions to coloring results.

SDP based method makes a good balance on the efficiency and performance, and
can be applied to the stitch case by simply adjusting the cost function. Nevertheless,
the vector programming process for the node color in [131] is specifically designed for the
TPLD problem, when extended to the quadruple patterning problem or even more masks,
the dimension of the vector will also increase, which harms the efficiency.

Exact cover (EC) based method EC-based method [17] transforms the MPLD problem
to an exact cover problem, and solves it by a customized and augmented combination
of dancing links data structure and Algorithm X∗ (DLX). Here, the routed layout is
translated into a 0-1 matrix. In the matrix, each row index represents one possible
coloring solution of a single feature p. If there is no stitch candidate in p, there will be k
rows, representing k different color assignments of p. Otherwise, there will be more than
k rows to represent different color combinations of subfeatures split by stitch candidates.
The column index models the conflict relation to make sure that two nodes connected by
the conflict edge are not assigned the same color. Finally, the EC-based method returns a
set of rows, which can be translated back to the decomposition result of MPLD problem.

The EC-based method demonstrates excellent efficiency, also, it is applicable for the
stitch scheme and multi-thread. Moreover, it show an relatively fast execution time for
very large case. However, for some cases, it cannot be optimal, and the result quality may
vary largely depending on the structure of the layout graph.

Graph matching based method The basic idea of graph matching is to build a graph
library which contains graphs and corresponding solutions. Each time when we try to
decompose the layout, the system will match the target layout graph to graphs in the
library. If a match is found, the corresponding decomposition solution is returned. Gen-
erally, since the library can be constructed offline, i.e., before any decomposition, the
decomposition runtime only depends on the efficiency of the matching algorithm and the
size of the library. However, the graph library size explodes when increasing the graph
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Figure 3.13: The histogram of the number of graphs (orange) and graphs that need not stitches
(gray) in (a) small layouts and (b) large layouts.

size or considering the stitch. In [57], the graph library does not support stitch scheme and
only contains graphs with size less than six. Therefore, the flexibility is poor compared
with other decomposers.

Non-stitch Layout Decomposer by GNNs

Given the overwhelming success of GNNs, we may attempt to solve the MPLD problem
by GNNs directly. However, as a heterogeneous variation of the pure coloring problem,
the MPLD problem which contain both stitch edge and conflict edge is more difficult.
On the other hand, there exists lots of redundant stitch edges which are not working in
the final decomposition results, i.e., no stitches are introduced. The histogram shown in
Figure 3.13 empirically states the phenomenon: Over more than 80% layout graphs do not
have stitches in the final results while most of them contain stitch edges. Although it is
not easy to decompose the layout graph by GNNs directly, the stitch redundancy provides
a vision of GNNs applying to the no-stitch layout decomposition. In the following section,
we will first introduce how graph embedding is used for the stitch redundancy prediction,
and then propose a pure GNN-based method for the decomposition of non-stitch graphs.

Stitch Redundancy Prediction Despite the fact that the state-of-the-art stitch can-
didate generation algorithm is able to enumerate all stitches, there are a huge number
of stitch candidates that do not influence the final coloring results, i.e., the two nodes
split by the stitch candidates are assigned the same color in any optimal solutions. One
example of such a redundancy is given in Figure 3.14, where each stitch candidate splits
the corresponding feature into two subfeatures and generate two nodes connected by the
stitch edge. Since both nodes are assigned the same color in the optimal solution, these
redundant stitch candidates have no influence to the coloring quality.

However, useless candidates will increase the problem complexity largely and result in
significant drops in efficiency performance. The layout statistics in Figure 3.13 demon-
strates that there exists a large portion of layout graphs that totally need not stitches.
To avoid the waste of computation resources and further improve the efficiency of our
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Figure 3.14: The example of redundant stitch candidates. In this layout graph, both stitch
candidates (highlighted in blue) finally do not generate any stitch.

(a) (b)

Figure 3.15: The example of alterative solutions for stitches. The activated stitch is {v5, v6} in
(a) and {v3, v4} in (b) respectively.

decomposition framework, we propose a graph embedding based method to remove these
redundant and useless stitch candidates. Since the graph embedding is already obtained
for the graph matching and the merge operation can be finished in a constant time, the ad-
ditional time cost can be ignored in light of the huge benefit from removing the redundant
stitches.

Although the successful prediction can bring about a free efficiency improvement, it
is not easy to accurately predict which stitch candidate can be removed. The optimal
solution is usually not unique: one stitch candidate can be redundant in one optimal
solution while not in another one. The stitch candidate {v3, v4} shown in Figure 3.15 is
a representative example caused by the partial symmetry between d − e and f − g. In
Figure 3.15(a), edge {v3, v4} is redundant since node v3 and v4 are assigned the same
color. On the contrary, the two nodes have different color in another optimal solution
shown in Figure 3.15(b), indicating that the stitch edge {v3, v4} cannot be removed.

Considering the non-uniqueness of stitches as illustrated in Figure 3.15, we regard
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Algorithm 3 Pure GNN-based Layout Decomposer
Input: A ← GNN trained for predict whether stitch candidates are needed;
Input: A′ ← GNN trained for graph coloring;
Input: g ← Target graph;
Input: iter ← Number of repetitive executions;
Ourput: x → The coloring results for each node in g;
1: hs ← A(g);
2: confidence ←MLP (hs);
3: if confidence ≤ b then
4: Decompose g by other decomposer;
5: return the decomposition solution;
6: else
7: g ← Remove all stitch edges in g and merge related nodes;
8: end if
9: for i ∈ {1, ..., iter} do

10: x← Randomly initialized probability distribution of colors for each node;
11: h ← A(g,x);
12: end for
13: return the best solution in {h1, ...,hiter};

the problem as a graph classification problem rather than a edge classification problem.
That is, the algorithm predicts whether the graph contains at least one redundant stitch
candidate instead of whether the stitch edges in the graph are redundant. Therefore, the
redundancy prediction can be implemented as a 2-class classifier on graph-level and simply
modeled by a multi-layer perceptron (MLP) that uses the graph embedding as input. A
detailed illustration can be found on Algorithm 3. After obtaining corresponding graph
embedding hs (line 1), hs is fed into the implemented MLP and predicts a confidence
value (line 2). After prediction, if the confidence of the graph is larger than a specific bar,
say b (lines 6–7), the graph will merge all stitch candidates in the graph, which results in
a non-stitch graph.

Non-stitch Layout Decomposer by GNNs We use the message passing GNN as a
backbone, and give a prior that the node embedding represents the probability (belief)
of color assignments. The detail is described as follows: Given a non-stitch graph G =
{V,E}, where E = {CE}, we first randomly assign each node v ∈ V a discriminative
attribute xv ∈ Rk that represents the probability distribution of k masks.

In the aggregation step, we simply sum up the features from all neighbors. Formally,
let m

(i)
v ∈ Rk be the result returned by AGG(i) for the node v in the i-th layer, the

aggregation layer can be represented by: m
(i)
v =

∑
u∈N ′(v) h

(i−1)
u , where N (v) is defined

as the subset of N (v).
In the combination function, we define the COM(i) as a simple trainable weighted

summation between ego-featre and features from neighbors:

h(i)
v = h(i−1)

v λ
(i)
C +m(i)

v λ
(i)
A . (3.16)
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(a)

{ }COM ,AGG { },

(b) (c)

Figure 3.16: A toy example on how AC-GNN gives the coloring results directly. (a) The ran-
domly initialized color distribution; (b) The message passing procedure finished by trainable
AC-GNN; (c) Final results (color distribution) of AC-GNN.

Table 3.10: Comparsion among different decomposers

Methods Quality Efficiency Flexibility Stitch
ILP Optimal Poor Medium Yes
SDP Near optimal Medium Medium Yes
EC Near optimal Fast Strong Yes
Graph Matching Optimal Fast Poor No
Our GNN decomposer Near optimal Very fast Strong No

Here, both λ
(i)
C and λ

(i)
A are trainable variables. After obtaining the node embedding

hi, the color of each node is assigned based on the hi that represents the color belief. A
figure illustration of the whole process is shown in Figure 3.16. In our implementation,
we iteratively execute the GNN multiple times (lines 9–13 in Algorithm 3) by setting
different initializations. Finally, we select the best solution among all iterations.

3.2.3 Adaptive Decomposition Framework

In this section, we first briefly present the workflow of our proposed framework. Then we
describe the GNN used for graph embedding, and how the graph embedding is used for
graph library construction, graph matching, and decomposer selection.

Overview

Combining with the pure GNN-based decomposer described in Section 3.2.2, we further
propose an decomposition framework that selects the decomposition methods adaptively.
Our framework can be divided into two modules by whether the operation is needed in
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the decomposition (online) or not (offline). The offline module is prepared before any
decomposition, including graph library construction and GNN model training.

Graph Simplification

Graph Simplification RGCN

Selection Selected Decomposer

Graph Matched?Node num < k?Stitch Insertion
Y Y

NN
Return 
Results

Figure 3.17: The workflow of our framework. Purple blocks are executed in our framework while
the yellow blocks are directly executed in OpenMPL [64].

Firstly, we train the RGCN model, then we use graph embeddings obtained by the
trained RGCN model to build the isomorphism-free graph library. When the above offline
steps are finished, we can execute layout decomposition following the workflow shown in
Figure 3.17. The input is transformed into a graph first and is simplified by several simpli-
fication techniques such as Independent Component Computation (ICC) [131], Hide Small
Degrees [57, 131], Biconnected Component Analysis [51, 133]. Next, stitch candidates are
inserted by pattern projection [131]. After stitch insertion, the simplified homogeneous
graphs are transformed into heterogeneous graphs which contain both conflict and stitch
edges and then these simplified heterogeneous graphs are fed into the RGCN model to
obtain the graph embeddings. For a graph whose graph size is under the size constraint
max_size, the corresponding graph embedding is first used to determine whether there
is an isomorphism between the target graph and graphs in the library. If the isomor-
phic graph is found in the library, the corresponding node embeddings of two graphs are
used to get the node-to-node mapping and directly return the final coloring result by the
mapping in the library. If no isomorphic graph is found or the graph size is larger than
max_size, the graph embedding is followed by a fully connected layer for decomposer
selection and the graph is then decomposed by the selected decomposer. Especially, an-
other graph embedding is obtained and used for the stitch redundancy prediction, if it is
predicted as redundant, all stitches are merged and the simplified graph is decomposed
by our proposed GNN decomposer. After all graphs are decomposed, a color recovery
process is executed to get the final layout decomposition results.

Graph Embedding Neural Network

Graph embedding neural network is one of the most critical parts in our framework
since the graph embedding obtained by the neural network is the basis for every module,
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e.g. graph matching, algorithm selection, and stitch redundancy prediction. Considering
that the simplified graph is heterogeneous, which contains both conflict and stitch edges,
we applied Relational Graph Convolutional Networks (RGCN) similar to [96] to obtain
the graph embedding. The process for graph embedding is shown in Figure 3.18. The
original layout is transformed into multiple heterogeneous graphs by graph simplification
and stitch insertion. Those simplified graphs are the input of the model and the model
is composed of two neural network layers. For each node vi in a graph G = {V,E} , E =

{Ec, Es}, the node representation h
(l+1)
i ∈ RD(l+1) at the (l + 1)th layer of the neural

network can be calculated by the following formula:

h
(l+1)
i = ReLU

∑
e∈E

∑
j∈Ne

i

W (l)
e h

(l)
j + h

(l)
i

 , (3.17)

where D(l) is the dimension of node representation at the lth layer, W (l)
e ∈ RD(l+1)×D(l) is

a learnable weight matrix of edge type e ∈ E and N e
i denotes the set of neighbor nodes

of node vi connected by e. Intuitively, RGCN specified in Equation (3.17) works like
the classical GCN, as both neural network layers contain two phases, aggregation and
encoding. The difference is that edges in GCN share the same learnable weight in each
layer on the encoding phase while only edges in the same edge type share the weight
matrix for RGCN, which means that the message integration for different kinds of edges
is independent. One central issue resulted from the different weight matrixes strategy
is that the number of parameters rapidly grows with the number of the edge categories
in the graph. Also, this kind of strategy can easily lead to overfitting due to a large
number of parameters. The issue is solved by regularization of weight and we adopt a
basis decomposition [96], in which each weight matrix W

(l)
e is a linear combination of

basis transformations V (l) and defined by:

W (l)
e =

B∑
b=1

δ
(l)
rb V

(l)
b , (3.18)

where V
(l)
b ∈ RD(l+1)×D(l) is one of the multiple basis transformations and δ

(l)
rb is the

learnable coefficient.
In our implementation, we also adopt widely-used ReLU as the activation function,

the input feature of node vi is defined as:

h
(0)
i =

∑
j∈Ni

I{ei,j∈Ec} + αI{ei,j∈Es}, (3.19)

where I{·} is an indicator function and α = −0.1 is a user-defined parameter following
the general stitch cost. After obtaining the node embeddings by RGCN model, for the
algorithm selection, we calculate the graph embedding by the summation of the node
embeddings considering that graph size influences the decomposition quality of EC-based
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decomposer. Formally, we have h =
∑

i∈V h
(out)
i , where h

(out)
i is the node embedding of

node vi. As for the stitch redundancy prediction, we use a max-pooling because it is some
subgraph structures that determine whether there exists redundant stitch edges or not.
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Figure 3.18: Overview of the process for graph embedding

Graph Library Construction

Generally speaking, it is possible to enumerate all the valid graphs under the size con-
straint such that we can build up a graph library to accelerate decomposition by simply
matching the graph with graphs in the library and collect the coloring information stored
in the library.

Previous work [57] constructed a graph library that contains all homogeneous graphs
(23 in total) with node number less than seven following the algorithm described in
[101, 81]. However, the graph in the previous library does not contain stitch edge, which
means that one heuristic stitch insertion and coloring method should be used if the no-
stitch graph is not colorable. Therefore, we propose an isomorphism-free heterogeneous
graph library construction algorithm that contains all the possible graphs with both stitch
edges and conflict edges.

We first define the target heterogeneous graph as G = {V,E}, where V,E are the
node set and the edge set respectively. Furthermore, we define a corresponding parent
graph Gp = {V p, Ep}, which is the no-stitch form of G by merging nodes connected by
stitch edges. Different from the general 2-connected graph described in [101], the graph
transformed by circuit layout has some specific rules, especially after stitch insertion. The
rules are stated as follows:

• Gp is a 3-connected graph instead of 2-connected.

• The degree of each node in G is at least two.

• One node pair {u, v} cannot be connected if u, v are in the stitch relation. Stitch
relation of two nodes means that there is a path connecting them and only go through
stitch edges with length larger than one.
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Algorithm 4 Graph Library Construction
Input: max_size → Maximal graph size.
Ourput: L → The isomorphism-free library of valid graphs;
1: L← {};
2: Sp ← Generate graphs following method in [101];
3: Sp ← Remove invalid Graphs in Sp;
4: S ← Enumerate graphs containing stitches from graphs in Sp;
5: for G ∈ S do
6: if G satisfies layout graph rules then
7: h← normalize(RGCN(G));
8: Lh ← Extract graph embeddings stored in the library;
9: if max(Lh × h) < 1 then

10: Decompose G with ILP-based decomposer;
11: Insert G into L;
12: end if
13: end if
14: end for

• The neighbors connected by conflict edge cannot be totally the same for two nodes
in stitch relation.

The pseudocode of our library construction algorithm is illustrated in Algorithm 4.
Firstly, we enumerate Gp by the method in [101] (line 2), which generates isomorphism-free
2-connected graph set and removes all graphs which are not 3-connected (line 3). Then
for each Gp, we enumerate valid G which satisfies the size constraint and all the rules
above by splitting nodes in Gp and insert stitch edges (lines 4–6). Note that there may be
multiple isomorphic graphs in the enumeration of G such that we use graph embedding
to avoid isomorphism. Specifically, every time when the enumerated G is going to put
into the library, G will be fed into the RGCN model (line 7) and obtain a corresponding
normalized graph embedding h ∈ RD, where D is the dimension of the graph embedding.
Then the normalized graph embeddings Lh ∈ Rk×D stored in the library are extracted
(line 8) and a vector-matrix multiplication is performed i.e., m ∈ Rk = Lh × h, where
k is the number of graphs stored in the library temporarily. Then whether there is an
isomorphic graph in the library or not is determined by checking the maximum element in
m (line 9) because two unit vectors are equal if and only if their product is 1. The idea is
based on the fact that a GCN-based model is insensitive to the node order, which means
that the graph embeddings of all isomorphic graphs by a GCN-based model are totally
the same. After isomorphism determination, G won’t be inserted into the library if there
is an isomorphic graph. Otherwise, G will be decomposed by ILP-based decomposer for
optimal solution (line 10), then graph G with its optimal coloring result, corresponding
graph embedding and node embeddings will be stored in the library (line 11).
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Graph Matching and Decomposer Selection

Graph Matching When the graph embedding is obtained by our model and the graph
size is under the limitation, we directly match the graph with graphs in the library. We
use the obtained graph embedding to find isomorphic graphs in the library, then we use
the corresponding node embeddings to find the node-to-node mapping and return the
solution directly.

To illustrate the process clearly, we provide a simple example and explain the details
step by step. The graph library L in this example is composed of three graphs, in which
each graph has four nodes and the dimension of graph embedding is two. The library
stores all information of graphs needed by our framework including its node embeddings
Lu ∈ R3×4×2, graph embeddings Lh ∈ R3×2 and optimal solutions Ls ∈ R4×3:
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Different colors represent different graphs in the library. Take a target graph G with
four nodes for example, we use RGCN model to obtain the corresponding node embedding
u ∈ R4×2 and graph embedding h ∈ R2, where h =

∑
i ui:

u =


0.3 −1.0
−0.2 0.8
0.4 0.4
0.1 0.6

 ,h =

[
0.6
0.8

]
. (3.20)

We first multiply the graph embedding h with graph embeddings Lh in the library,
i.e., m ∈ R3 = Lh × h:
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Then the matched graph index i in the library is defined by:

i =

{
arg max(m), if max(m) = 1;

−1, otherwise,
(3.21)
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where −1 means there is no isomorphic graph matched in the library such that the graph
matching process is terminated and redirected to decomposer selection, otherwise, the
ith node embedding in the library is extracted and compared with the target graph’s
node embedding to get the final node-to-node mapping. This comparison method is
also based on the node order insensitivity of the GCN-based model, if the input feature
doesn’t contain any information related to the node order such as a one-hot vector of
the node order, the final graph embedding is then order-invariant because the message
passing process is only related to the neighbors instead of the node order. In this example,
m[0] = 1 such that i = 0, which means that the first node embedding Lu[0] is used to
compare with u.

The node-to-node mapping f is executed by comparing two node embeddings and
formulated by:

f(j) = k, if u[j] = Lu[i][k] for j, k in {0, . . . , |G| − 1}, (3.22)

where |G| means the number of nodes in the graph. In this example, |G| is exactly 4 and
f is then defined by: f({0, 1, 2, 3}) = {1, 3, 0, 2}.

After f is found, the solution s can be matched quickly by:

s[j] = Ls[f(j)][i], for j in {0, . . . , |G| − 1}, (3.23)

so the final solution of G in this example is mapped as [2, 1, 1, 0].

MPL Decomposer selection When the size is larger than the size limitation or no
mapping is found in the library, the graph embedding is used to select the decomposer.
Therefore, the decomposer selector can be regarded as a 2-class classifier and simply
modeled by a summation of one trainable weight matrix Ws ∈ R2×D and a bias vector
bs ∈ R2 combined with arg max function, which can be formulated as:

y = arg max(Wsh+ bs), (3.24)

where h ∈ RD is the graph embedding obtained by RGCN model with dimension D. The
final decomposition result is then generated by the selected decomposer.

3.2.4 Experimental Results

The experiments are performed on the scaled-down and modified ISCAS benchmarks,
which are widely used in previous works [49, 131, 57]. The framework is mainly imple-
mented in Python with PyTorch [86] and DGL [108] and integrated into the open-source
layout decomposition framework OpenMPL [64]. Figure 3.17 specifies the detailed task
execution platform of the workflow. It should be noted that our graph embedding as
well as the whole framework is very general that they can be naturally extended to other
decomposition tasks under different lithography constraints. We follow the same settings
in [131, 49, 57] on the minimum color space, where the first ten cases are set to 120 nm
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and the last five cases are set to 100nm. The cost of stitch is set to 0.1 such that the
decomposition cost is calculated by cn#+0.1st#, mask number is set to 3 and the graph
simplification level in OpenMPL is 3. In the training phase of our model, we concate-
nate the graph embedding network with the following MPL decomposer selector such
that the cross-entropy loss function can be adopted. In the algorithm selection, the label
of each simplified graph for training is set as 0 (ILP) if the cost by ILP-based decom-
poser is smaller than EC-based decomposer and 1 (EC) for other cases. In the stitch
redundancy prediction, each layout graph is labeled as positive if there exists at least one
stitch in the optimal solution. Generally, we prepare and train three independent GNN
models for 1) graph matching and decomposer selection (RGCN); 2) stitch redundancy
prediction (RGCN), and 3) non-stitch GNN decomposer (Equation (3.16)). The RGCN
model contains two layers whose output dimensions are 32, 64 respectively such that the
dimension of graph embedding is 64. The training strategy follows the idea of K-fold
cross-validation, specifically, each time two of the 15 layouts in the benchmark are used
as the test/validation set separately, and the other 13 layouts are put together to form
a training set. Therefore, there are 15 trained models for 15 layouts following the same
model configurations. The layout is first preprocessed by graph simplification and stitch
insertion such that the dataset is composed of multiple graphs. Considering that our
dataset is significantly unbalanced since EC-based decomposer is optimal and also the
fastest in most cases, we set the training epoch to 1 and use a weighted random sampling
strategy with weight ratio 300:1 to avoid overfitting. In all GNN-related operations such
as the non-stitch GNN solver, algorithm selection, and stitch redundancy prediction, the
simplified graphs of the target layout are batched together for efficient inference. All the
experiments are conducted on an Intel Core 2.9 GHz Linux machine with one NVIDIA
TITAN Xp GPU.

Effectiveness of model selection

In the first experiment, we compare the effectiveness of our proposed RGCN model with
conventional GCN model. The classical GCN model only supports homogeneous graphs
while there are two kinds of edges in this task. Therefore, we slightly modify the message
passing function by multiplying the edge weight αe for different edge types:

u
(l+1)
i = ReLU

∑
e∈E

∑
j∈Ne

i

αeW
(l)u

(l)
j + u

(l)
i

 , (3.25)

where αe is 1 for conflict edge and -0.1 for stitch edge following the weighted cost setting,
the negative sign is due to the fact the stitch edge and conflict edge play different roles
in decomposition: nodes connected by a conflict edge are assigned different colors while
stitch edge indicates same color. The result is illustrated by the confusion matrix shown in
Table 3.11, where each row contains the number of graphs selected to be decomposed by
the corresponding decomposer while each column contains the number of graphs labeled
by the corresponding decomposer. For example, the element (0,0) in the confusion matrix
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Table 3.11: F1 score comparison of (a) proposed RGCN and (b) conventional GCN.

(a)

Label
ILP EC

Predicted ILP 13 682
EC 0 5900

Recall 100.0%
F1-score 0.0367

(b)

Label
ILP EC

Predicted ILP 2 244
EC 11 6338

Recall 15.4%
F1-score 0.0154

Table 3.12: Decomposition Cost Comparison

Circuit ILP SDP EC [66] [66] + GNN decomposer
st# cn# cost st# cn# cost st# cn# cost st# cn# cost st# cn# cost

C432 4 0 0.4 4 0 0.4 4 0 0.4 4 0 0.4 4 0 0.4
C499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C880 7 0 0.7 7 0 0.7 7 0 0.7 7 0 0.7 7 0 0.7
C1355 3 0 0.3 3 0 0.3 3 0 0.3 3 0 0.3 3 0 0.3
C1908 1 0 0.1 1 0 0.1 1 0 0.1 1 0 0.1 1 0 0.1
C2670 6 0 0.6 6 0 0.6 6 0 0.6 6 0 0.6 6 0 0.6
C3540 8 1 1.8 8 1 1.8 8 1 1.8 8 1 1.8 8 1 1.8
C5315 9 0 0.9 9 0 0.9 9 0 0.9 9 0 0.9 9 0 0.9
C6288 205 1 21.5 203 4 24.3 203 5 25.3 205 1 21.5 205 1 21.5
C7552 21 1 3.1 21 1 3.1 21 1 3.1 21 1 3.1 21 1 3.1
S1488 2 0 0.2 2 0 0.2 2 0 0.2 2 0 0.2 2 0 0.2
S38417 54 19 24.4 48 25 29.8 54 19 24.4 54 19 24.4 54 19 24.4
S35932 40 44 48 24 60 62.4 46 44 48.6 40 44 48 40 44 48
S38584 117 36 47.7 108 46 56.8 116 37 48.6 117 36 47.7 117 36 47.7
S15850 97 34 43.7 85 46 54.5 100 34 44 97 34 43.7 97 34 43.7
average 12.893 15.727 13.267 12.893 12.893

ratio 1.000 1.220 1.029 1.000 1.000

indicates the number of graphs which is labeled as positive (ILP) and also selected to
be decomposed by ILP-based decomposer. In the experiment, we use two more metrics,
recall and F1 score. Recall is used to measure the proportion of ILP-labeled graphs that
are correctly identified and influences the decomposition quality directly. F1-score is a
general metric for the model’s accuracy. According to Table 3.11, we can see that the
F1-score of our model is more than 2× of that in conventional GCN, which demonstrates
the powerful representation capability of our model compared with conventional GCN.
Another important point is that our model classifies all the graphs labeled as positive
correctly such that our recall achieves 100% while conventional GCN only classifies 15.4%
correctly.

Comparison with other state-of-the-art methods

In the second experiment, we compare our results with state-of-the-art decomposers. All
the decomposers are implemented and measured in OpenMPL under one thread such that
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Table 3.13: Decomposition Runtime Comparison

Circuit ILP SDP EC [66] [66] + GNN decomposer
C432 0.486 0.016 0.005 0.007 0.024
C499 0.063 0.018 0.011 0.015 0.023
C880 0.135 0.021 0.010 0.014 0.032
C1355 0.121 0.024 0.011 0.015 0.025
C1908 0.129 0.024 0.017 0.031 0.023
C2670 0.158 0.044 0.035 0.046 0.040
C3540 0.248 0.086 0.032 0.038 0.043
C5315 0.226 0.106 0.039 0.049 0.027
C6288 5.569 0.648 0.151 0.154 0.775
C7552 0.872 0.157 0.071 0.111 0.108
S1488 0.147 0.031 0.013 0.016 0.023
S38417 7.883 1.686 0.329 0.729 0.140
S35932 13.692 5.130 0.868 1.856 0.373
S38584 13.494 4.804 0.923 1.840 0.310
S15850 11.380 4.320 0.864 1.792 0.328
average 3.640 1.141 0.225 0.448 0.153

ratio 1.000 0.313 0.062 0.123 0.042

Table 3.14: F1 score of stitch redundancy prediction. The results include (a) all instances (b)
instances whose prediction confidence are above the bar.

(a)

Label
No Need Need

Pred. No Need 5962 46
Need 55 498

Recall 99.23%
F1-score 0.9916

(b)

Label
No Need Need

Pred. No Need 5730 0
Need 2 185

Recall 100.0%
F1-score 0.9998

we can keep the preprocess procedure the same and compare the results without potential
bias due to different simplification method or stitch insertion techniques. Table 3.12
lists the decomposition cost of all decomposers. Table 3.13 lists all the decomposition
runtime regardless of graph simplification and stitch insertion for better comparison. As
expected, there is no one existing decomposer which can dominate others among existing
decomposers. EC-based decomposer outperforms others on runtime while causing some
additional costs. ILP-based decomposer obtains the optimal results while the runtime
is significantly worse than others. SDP-based decomposer shows a runtime improvement
compared with ILP-based decomposer but cannot compete with EC-based decomposer on
both runtime and quality. If our proposed non-stitch GNN decomposer is not integrated,
our framework [66] still obtains the optimal results in all cases since the selector selects
all graphs labeled as ILP correctly and such avoid optimality loss. The average runtime
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is reduced to 12.3% compared with ILP-based decomposer because of the efficient graph
matching technique and EC-based decomposer which is selected as the decomposer in
most cases. Moreover, when we integrate the GNN decomposer into our framework,
the runtime can be further reduced to 4.2% with the results being optimal. The main
reasons for the large improvement is because of 1) the existence of considerable graphs
that need not stitches, 2) the efficiency of our proposed purely GNN decomposer under
GPU acceleration.

9.41%

GNN Coloring Solver

3.21%

Alg. Selection

12.84%

DL

71.47%

ILP

3.07%

Redundancy Pred.

Figure 3.19: Runtime breakdown of our framework.

Runtime analysis

In the third experiment, we compare the runtime distribution in our framework. The
decomposition runtime of our framework is mainly composed of five parts: decomposition
runtime by our GNN decomposer, decomposition runtime by ILP-based decomposer, de-
composition runtime by DL-based decomposer, algorithm selection time, and the runtime
for the stitch redundancy prediction. The runtime for graph matching and graph embed-
ding are counted in the decomposer selection since the 2-class classifier is integrated into
the graph embedding network for fast inference. Figure 3.19 shows the result, where the
metric is the total decomposition runtime of 15 layouts as before. From the figure, we
can clearly see that the decomposition runtime by the selected decomposer (ILP and DL)
is the major bottleneck and occupies 84.31% of the total runtime. The result indicates
that the RGCN inference and graph matching runtime of our framework are actually triv-
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Table 3.15: Layout statistics and results by GNN decomposer

Circuit |G| |nsc-G| |ns-G| |pred. ns-G| ILP cost GNN cost ILP time GNN time
C432 4 0 0 0 0 0 0 0.0135
C499 4 0 4 1 0 0 0.0041 0.0134
C880 8 0 1 0 0 0 0 0.0135
C1355 6 0 3 2 0 0 0.0045 0.0136
C1908 3 0 2 0 0 0 0 0.0135
C2670 9 0 3 0 0 0 0 0.0136
C3540 14 0 6 0 0 0 0 0.0140
C5315 16 0 7 2 0 0 0.0619 0.0135
C6288 200 0 25 17 0 0 0.0051 0.0143
C7552 39 1 16 3 0 0 0.0045 0.0135
S1488 8 0 6 6 0 0 0.0339 0.0135
S38417 670 3 613 584 16 16 2.8480 0.0169
S35932 2010 12 1958 1869 22 22 8.6960 0.0164
S38584 1936 3 1817 1735 22 22 8.1550 0.0171
S15850 1657 4 1556 1510 22 22 6.8680 0.0153
average 440.27 1.533 401.13 381.93 5.467 5.467 1.778 0.0152

ratio 1.000 0.003 0.911 0.867 1.000 1.000 1.000 0.008

ial such that our method has strong scalability and can be applied to select other more
efficient decomposers in the future. The inference runtime of algorithm selection and
redundancy prediction are very close because both of them use RGCN as the backbone
with the same parameters.

Effectiveness of Redundant Stitch Prediction

In the fourth section, we demonstrate the effectiveness of our GNN-based stitch redun-
dancy predictor empirically. The results are presented in Table 3.14 in the form of con-
fusion matrix. Table 3.14 (a) counts all instances, and (b) only counts instances whose
prediction score is larger than 0.99 are selected. According to the results, we can see that
our GNN-based predictor successful predicts most redundancy, which larges improves the
efficiency. More importantly, benefit from the bar constraint, the prediction avoids any
false prediction that predicts a graph with a “need-stitch” label as “no-need stitch”. A
more detailed result for each circuit is shown in Table 3.15, where |pred. ns-G| is the
number of successful predictions among all instances.

Effectiveness of Non-Stitch Decomposer by GNN

In the final experiment, we separately study the effectiveness of our proposed GNN-based
decomposer which is specifically for non-stitch graphs. The results are shown in Ta-
ble 3.15, where G is the graph set after simplification and stitch insertion. nsc-G (no
stitch candidate graph) is a subset of G in which graphs contain no stitch edges. ns-G
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(no stitch graph) is a subset of G in which the optimal decomposition results contain
no stitches. pred. ns-G (predicted no stitch graph) is a subset of G in which our pro-
posed stitch redundancy predictor predicts that these graphs do not need stitch edges.
ILP(GNN) cost represents the total cost decomposed by ILP method (Our proposed GNN
decomposer) for graphs in pred. ns-G, ILP time is the total decomposition time by ILP
method for graphs in pred. ns-G. GNN time is the total execution time by our GNN
decomposer. Since we implement the decomposer in a batch-process manner, we use the
GNN decomposer to decompose all graphs even before the stitch redundancy prediction
rather than waiting the prediction result of each case (note that the additional runtime
is trivial for the fast inference). Therefore, in some layouts, such as C432, our GNN de-
composer still decomposes some graphs even there is no redundant graphs according to
the prediction, i.e., |pred. ns-G| = 0.

According to Table 3.15, we can observe some statistical properties in the layout
dataset. First, existing stitch candidate generation algorithm will insert stitch candidates
into most graphs. Among over 6,000 graphs, only 23 graphs are free of stitch edges.
However, we observe that most of these inserted stitches edges are not useful: in the
final optimal results, 91.1% graphs contain no stitches, meaning that considerable gen-
erated stitch candidates are redundant. Our predictor can predict the redundancy with
a high accuracy (381.93 over 401.13). Then, for graphs whose stitch edges are predicted
as redundant, we can employ our GNN based decomposer, which is specifically for the
homogeneous graphs, i.e., graphs only containing conflict edges. As shown in the table,
our GNN decomposer achieves the same result quality with the optimal ILP solver, with
a large improvement on the efficiency (reduce to 0.8%).

2 End of chapter.



Chapter 4

Graph Coloring

Graph neural networks (GNNs) have shown overwhelming success in various fields, such
as molecules, social networks, and web pages[42]. The main idea behind GNNs is a
neighborhood aggregation scheme (or called message passing), where each node aggregates
feature vectors from its neighbors and combines them with its own feature vector to
produce a new one. GNNs following such a scheme are also called aggregation-combination
GNNs (AC-GNNs) [11]. After finite iterations of such aggregation and combination, the
corresponding feature vector of each node is called node embedding to represent the node.

The development of GNNs stimulated the interest in their applications to the NP-hard
problems (MIS [69], graph coloring [48], graph matching [72]), while most works apply
GNNs for NP-hard problems by empirical intuition and experimental trials. In this work,
we focus on solving the graph coloring problem using GNNs by investigating the power
of GNNs for the graph coloring problem. Some recent works [73, 11, 117, 35, 74, 29]
study the power of a GNN by analyzing when a GNN maps two nodes to the same
node embedding. In their study, a maximally powerful GNN with depth L should map
two L-local equivalent nodes to the same node embedding [117, 73]. However, when
applied in the graph coloring problem, such a definition raises some problems. First,
the coloring task is not under homophily but heterophily. Graphs under heterophily are
the ones where connected nodes are assigned different labels/features/colors instead of
a similar one (homophily). Therefore, two local equivalent nodes are not necessarily
assigned the same node embedding, which contradicts with previous study. One example
can be found in Figure 4.1(a), where the node pair {c, d} is local equivalent but should
assigned different colors to avoid the conflict. Second, every AC-GNN is bounded by its
depth L. Therefore, the maximally powerful GNN is identified by L-local equivalence
instead of a global equivalence. This constraint makes an AC-GNN possible to be a local
method, which has been demonstrated to be non-optimal in many NP-hard problems such
as MIS [90, 36].

Motivated by these limitations, we define the power of AC-GNNs in the coloring
problem as its ability to assign nodes different colors. We then observe and theoretically
prove a set of conditions that make AC-GNNs powerful in the graph coloring problem.
Based on these observations, we develop a series of rules to design powerful AC-GNNs

64
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specifically for the graph coloring problem. Besides the study on the power of GNNs, we
aslo explore the color equivariance of GNNs to satisfy the requirement for pre-fixing colors
of some nodes. We make the following contributions: (1): We discuss the limitations of
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Figure 4.1: Examples of graph structures in which some AC-GNNs fail to discriminate the
equivalent node pair {c, d}. (a) left: the input graph with the same node attribute; right: the
coloring results by the most powerful AC-GNN. (b) left: the input graph with different node
attributes (represented by the gray scale); right: the coloring results by the most powerful
integrated AC-GNN. The aggregation for any integrated AC-GNN in both c and d are the same
since N (c) ∪ {c} = N (d) ∪ {d}. Here, the most powerful refers to the discrimination power,i.e.,
the ability to assign nodes different colors.

main-stream AC-GNNs for the graph coloring problem from two perspectives: the coloring
task is under heterophily, resulting in a contradiction in the definition of the power of
GNNs; AC-GNNs are shown to be local methods, and the further proof demonstrates
that any local methods (including AC-GNNs) cannot be optimal in the coloring problem.
We also prove the positive correlation between model depth and its power in the coloring
problem. (2) We give a necessary and sufficient condition for a simple AC-GNN to be
color equivariant. (3) We summarize and theoretically prove a series of rules that make a
GNN color equivariant and powerful in the coloring problem. Combining these rules, we
develop a simple GNN-based approach by un-supervised learning, which proves to enhance
the discrimination power and retain the color equivariance. (4) We validate our findings
by extensive empirical evaluation including five datasets from different subjects. Our
method shows substantially superior performance compared with other existing AC-GNN
variations and even outperforms state-of-the-art heuristic algorithms with a significant
efficiency improvement.
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4.1 Preliminaries

Local graph teminology. Here, we introduce terms used in local graph analysis and
follow the same definition in [36]. We leave other graph terminologies in Appendix A. For
every positive integer r and every node u ∈ V , we define BG(u, r) as the subgraph of G
induced by node u with distance at most r from u. One example is given in Figure 4.1(a).
Consider two nodes u, v ∈ V , we say {u, v} is r-local equivalent if it is r-local topologically
equivalent by πr and xw = xπr(w) holds for every w ∈ BG(u, r).

Graph coloring. Let k be the number of available colors, G = (V , E) be the input
graph and each vertex v ∈ V be associated with an attribute xv, a coloring function
fk : (v,G,xv) → {1, ..., k} returns a color of v indexed by colv ∈ {1, ..., k}. In the
following pages, k follows the same definition if not specified and f(G) represents the
coloring solution on G by f for simplification. Given a graph G colored by fk, a conflict
function c : (u, v, fk)→ {0, 1} is used to measure the performance of fk on G. Specifically,
c(u, v, fk) = 1 when u and v are connected and assigned the same color:

c(u, v, fk) =


1, if fk(v,G,xv) = fk(u,G,xu)

and {u, v} ∈ E ;
0, otherwise.

(4.1)

The edge e = {u, v} is called a conflict if c(u, v, f) = 1. The objective of the graph coloring
problem is widely formulated in two ways: 1) k-coloring problem: Given k, minimize the
number of conflicts as in Equation (4.2); 2) Given a conflict constraint cmax, minimize the
number of used colors as in Equation (4.3).

min
∑

{u,v}∈E

c(u, v, fk). (4.2)

min k, s.t.
∑

{u,v}∈E

c(u, v, fk) ≤ cmax. (4.3)

When we set cmax as 0, i.e., no conflict is introduced by fk, we call the obtained
minimum color number as the chromatic number of G, X . In the following pages, we
say a coloring function is optimal if it colors the graph without conflict in the X -coloring
problem.

Graph neural networks (GNNs). GNNs are to learn the embedding of a node or the
entire graph based on the graph G = (V , E) and node features {xv : v ∈ V}. We follow
the same notations in a previous work [11] to formally define the basics for GNNs. Let
{AGG(i)}Li=1 and {COM(i)}Li=1 be two sets of aggregation and combination functions. An
aggregation-combine GNN (AC-GNN) computes the feature vectors h

(i)
v for every node
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v ∈ V by:

h(i)
v = COM(i)(h(i−1)

v ,AGG(i)({h(i−1)
u : u ∈ N (v)})), (4.4)

where N (v) denotes the neighborhood of v, i.e., N (v) = {u : {u, v} ∈ E} and h
(0)
v is

the node attribute xv. Finally, each node v is classified by a node classification CLS(·)
applied to the node embedding h

(L)
v . When the AC-GNN is used for the graph coloring

problem, CLS(·) returns a colv ∈ {1, ..., k}. Then, an AC-GNN A with L layers is also
called L-AC-GNN and defined as A = ({AGG(i)}Li=1, {COM(i)}Li=1, CLS(·)). Here, we
define A(v,G,xv) as the color of v assigned by A.

simple AC-GNN : The properties of aggregation, combination and classification func-
tions are widely studied in recent years [11, 117, 63, 82, 55, 115] and many variations of
these functions are proposed. Among various function architectures, we say an AC-GNN
is simple as in [11] if the aggregation and combination functions are defined as follows:

AGG(i)(X) =
∑
x∈X

x, (4.5)

COM(i)(x,y) = σ(xC(i) + yA(i) + b(i)), (4.6)
where C(i), A(i), and b(i) are trainable parameters, σ is an activation function.

integrated AC-GNN : The aggregation and combination functions can also be integrated
such as networks explored in [55, 73]. We say that such AC-GNN is integrated when
aggregation and combination functions are integrated as follows:

h(i)
u = COM(i)(AGG(i)({h(i−1)

w : w ∈ N (u) ∪ {u}})). (4.7)

In integrated AC-GNNs, aggregation functions aggregate features from neighborhood and
the node itself simultaneously, which means they treat the neighborhood information and
ego-information (information from the node itself) equally.

4.2 Powerful GNNs for Graph Coloring

In this section, we focus on the question: What kinds of designs make a GNN more/less
powerful in the graph coloring problem? Although GNNs demonstrate their power in
various tasks, most of them even cannot beat the simplest heuristic algorithms in the
coloring problem. One motivating experiment is shown in Table 4.1, where the solved
ratio is one minus the ratio between the number of conflicts and the number of edges. For
example, given a graph with 100 edges, if a coloring function colors the graph with 10
conflicts, then the solved ratio is calculated by 1− 10/100 = 0.9. The Greedy represents
the greedy algorithm that colors nodes in the order of node IDs. We observe that all
tested GNNs do not work at all in the coloring problem. We analyze the reasons from
two perspectives.
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Table 4.1: Solved ratio of existing GNNs and
the simplest greedy algorithm on layout dataset
over three runs. The node attributes are set to
all-one vectors. d: depth.

d = 2 d = 10
GCN [55] 0.55 ±0.01 0 ±0

SAGE [41] 0 ±0 0 ±0
GIN [117] 0.59 ±0.01 0.58 ±0.01
GAT [106] 0 ±0 0 ±0

Greedy 0.962

First, the graph coloring problem is
under heterophily instead of homophily.
That is, linked nodes are more likely from
different color classes rather than a same
one. However, previous studies define the
power of GNNs as the capability to maps
two equivalent nodes to the same embed-
ding. Under the heterophily, it is critical
to rethink the definition of a GNN’s power
specifically for the coloring problem. After
the power is formalized, the next question
is: What factors may enhance or harm the
power?

Besides the concern on heterophily, every AC-GNN is bounded by its depth L. This
constraint makes an AC-GNN possible to be a local method, which has been demonstrated
to be non-optimal in many NP-hard problems such as MIS [90, 36]. Then, we try to figure
out whether AC-GNNs are local methods and, if they are, whether a local method can be
optimal for the graph coloring problem?

Here, we discuss the power of GNNs for graph coloring by answering the questions
raised above. We leave all proofs in Appendix B due to the page limit.

4.2.1 Discrimination power under heterophily

Q: How to determine whether a GNN is powerful in coloring problem?
In the graph coloring problem, connected nodes are assigned to different colors. There-

fore, a powerful GNN should map the two connected nodes to node embeddings as differ-
ently as possible. Intuitively, we can study the power of a GNN in the coloring problem
by analyzing its ability to assign nodes different colors. Here, we refer the power
as the discrimination power of GNNs to differ with previous expressive power under ho-
mophily. Formally, we define that a coloring method f discriminates a node pair (u, v)
as follows:

Definition 2 (discriminate). A coloring method f discriminates a node pair (u, v) if f
assigns u and v different colors, i.e., f(u,G,xu) ̸= f(v,G,xv).

Definition 3 (distinct node pair). A node pair (u, v) is a distinct node pair if the colors
of u and v are different in any optimal solution.

Following the definitions, we can answer the question above: more powerful a GNN
is, more distinct node pairs it will discriminate. Ideally, an optimal GNN should be able
to discriminate all distinct node pairs.

Given the definitions above, one may try to build an optimal AC-GNN which colors
all graphs without conflict through discriminating all distinct node pairs:

Q: Can we design an AC-GNN which discriminates any distinct node pair?
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The following Proposition 1 refutes the existence of such a “perfect” AC-GNN:

Property 1. All AC-GNNs cannot discriminate any equivalent node pair.

The equivalent (and also distinct) node pair {c, d} in Figure 4.1(a) is one example
of such node pair. Since the equivalent node pair have the the same subgraph structure
and the same node attribute distributions, the AC-GNN always return the same results
in each layer. Hence, AC-GNNs are not optimal for any graph that contains these node
pairs, i.e., connected and also equivalent pairs.

To avoid such a non-optimal case, we can break the equivalence between two nodes
by assigning different node attributes such as random features [94] or one-hot vectors
[11]. The solution also aligns with the conclusion in [73], which proves that with different
attributes GNNs become significantly more powerful. Indeed, making nodes different
purposely strengthens the AC-GNN by eliminating the equivalent node pairs (although
the topological equivalence is preserved). However, the superficial methods on the node
attributes cannot influence and solve the underlying defects of some specific AC-GNNs,
for example, integrated AC-GNN. Considering that an integrated AC-GNN treats the
node feature and features of its neighbors equally, i.e., all of them are aggregated into
the same multi-set, it is more difficult for integrated AC-GNNs to discriminate the node
with its neighbors. Property 2 points out that an integrated AC-GNN cannot be optimal
since there always exists a set of graphs which at least one distinct node pair is not
discriminated by the integrated AC-GNN:

Property 2. If nodes u and v in a graph G is connected and share the same neighborhood
except each other, i.e., N (u)\{v} = N (v)\{u}, then an integrated AC-GNN cannot
discriminate {u, v}.

The property points the deficiency of integrated AC-GNN even if nodes are differen-
tiable by their attributes. One example is given in Figure 4.1(b), where the distinct node
pair {c, d} cannot be discriminated by any integrated AC-GNN even the node attributes
are different.

4.2.2 Locality

Local methods are widely used in the combinatorial optimization problems such as max-
imum independent set (MIS) and graph coloring. The formal definition of local method
for the coloring problem is described as follows, which is a direct rephrasing in [36]:

Definition 4 (local method [36]). A coloring method f is r-local if it fails to discriminate
any r-local equivalent node pair. A coloring method f is local if f is r-local for at least
one positive integer r.

Along with the study of the local methods, the upper bound of a local method for the
MIS problem is investigated. David et al. [36] gives an upper bound 1/2+1/(2

√
2) of the

size of an MIS produced by any local method in the random d-regular graph as d → ∞
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and [90] strengthens the bound to 1/2. A random d-regular graph is a graph with n nodes
and the nodes in each node pair are connected with a probability d/n. Starting from the
upper bound of any local method for the MIS problem, we may try to figure out:

Q: Whether a local method is also non-optimal in the graph coloring problem?
The answer is yes. we finish the proof by making use of the upper bound studied in

the MIS problem and bridging the connection between a local method for MIS problem
and coloring problem. Corollary 1 states the non-optimality of a local method for the
graph coloring problem:
Corollary 1. A local coloring method is non-optimal in the random d-regular tree as
d→∞.

Due to the localized nature of the aggregation function in GNNs, an AC-GNN with a
fixed number of layers, say L layers, cannot detect the structure or information of nodes
at a distance further than L. Considering the non-optimality of a local coloring method
stated in Corollary 1 and the localized nature of GNNs, we can reduce our analysis of
whether there exists an optimal AC-GNN for graph coloring to whether an AC-GNN is a
local coloring method? Corollary 2 answers the question as yes:
Corollary 2. L-AC-GNN is a L-local coloring method and thus a local coloring method.

Corollary 1 and Corollary 2 directly lead to the following theorem:
Theorem 4. AC-GNN is not optimal, specifically for the random d-regular tree as d→∞.

Based on the analysis above, we can see that the locality of AC-GNN makes it in-
feasible to to be an optimal coloring function. To solve the problems raised by locality
of AC-GNNs, which inhibits AC-GNNs from detecting the global graph structure, many
efforts have been made to devise a global scheme such as global readout functions [11],
randomness [126, 27] and deeper networks [61, 21, 118]. Among all global techniques, a
deep architecture is believed to be global as long as it covers the full graph. Given a graph
with diameter R, a R-AC-GNN is indeed able to detect the information from the whole
graph. However, it is impossible to find an AC-GNN which is able to cover all graphs: it is
always bounded by its depth. Then, if we cannot develop an optimal AC-GNN by simply
stacking layers, does this method contribute to the discrimination power? Formally:

Q: Is deeper AC-GNN more powerful in the coloring problem?
We answer the question as yes, and gives a more specific statement:

Property 3. Let {u, v} be a node pair in any graph G, and L be any positive integer. If
a L-AC-GNN discriminates {u, v}, a L+-AC-GNN also discriminates it.

A L+-AC-GNN is an AC-GNN by stacking injective layers after L-AC-GNN (before
CLS(·)). An injective layer includes a pair of injective aggregation function and injective
combination function.

Besides deeper networks, we also review and discuss other mainstream global tech-
niques, and proves whether they are truly global following Definition 4 [36]. All details
are leaved in Appendix E.
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4.3 Color Equivariance

In the coloring problem, the node attribute and the final features can be set as the
probability distribution of colors, i.e., color beliefs, as in [15, 60, 138]. For example, the
node attribute (probability distribution) of u: u =[0.5 (red), 0.2 (blue), 0.3 (green)] means
that the node u initially has 50% probability to be colored as red, 20% as blue, and 30%
as green. Under this assumption, not only should we consider the order equivariance, but
also the color equivariance.

Equivariance [134, 88, 78, 117, 35] is an important property for a function if it is
defined on the input elements that are equivariant to the permutation of the elements.
Color equivariance is not relevant to the discrimination power, whereas its importance
emerges in practical applications such as the layout decomposition problem [50], where
each color represents a mask and some metal features (nodes) are pre-assigned to some
specific masks (colors). Let’s continue with the example u: u =[0.5 (red), 0.2 (blue),
0.3 (green)]. If we are required to pre-color node u to be red color and one solution for
an AC-GNN is to modify the node attribute of u to u =[1.0, 0, 0], i.e., predefine the
possibility of red color as 100%. In this case, if the AC-GNN is not color equivariant, the
final feature of u obtained by AC-GNN may not set red as u’s color. That is, only color
equivariant AC-GNN knows the differences of colors.

To investigate conditions of functions to be color equivariant, we first formalize the
definition of an equivariant function:

Definition 5 (equivariance [78, 134]). A function f : Rk → Rk is equivariant if f(h)P =
f(hP ) for any permutation matrix P ∈ Rk×k and feature vector h ∈ Rk.

Similarly, color equivariant follows the definition above, where h ∈ Rk is the color
belief. A simple AC-GNN A with L layers is color equivariant if and only if all functions in
{COM(i) = σ(xC(i)+yA(i)+b(i)) : i ∈ 1, ..., L} are color equivariant. Then, the following
theorem states the sufficient and necessary conditions for A to be color equivariant:

Theorem 5. Let A be a simple AC-GNN and both input and output be the probability
distribution of k colors, A is color equivariant if and only if the following conditions hold:

• For any layer i, all the off-diagonal elements of C(i) are tied together and all the
diagonal elements are equal as well. That is,

C(i) = λ
(i)
C I + γ

(i)
C (11⊤)

λ
(i)
C , γ

(i)
C ∈ R ;1 = [1, ..., 1]⊤ ∈ Rk. (4.8)

• For any layer i, all the off-diagonal elements of A(i) are also tied together and all
the diagonal elements are equal as well. That is,

A(i) = λ
(i)
A I + γ

(i)
A (11⊤)

λ
(i)
A , γ

(i)
A ∈ R 1 = [1, ..., 1]⊤ ∈ Rk. (4.9)
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• For any layer i, all elements in b(i) are equal. That is,

b(i) = β(i)1 β(i) ∈ R 1 = [1, ..., 1]⊤ ∈ Rk. (4.10)

The theorem above is actually an extension of Lemma 3 in [134] from a standard neural
network layer f = ϵ(Θx) to a simple AC-GNN. Based on Theorem 5, a simple AC-GNN
is color equivariant when the trainable matrices/vectors C,A, b in Eq. equation 4.6 are
calculated by several scalars, i.e., λ, γ, β.

4.4 Our Method

Based on the discussions above, we summarize a series of rules that make a GNN A
color equivariant and enhance its discrimination power as follows: (1) The input graph
contains no equivalent node pair (Property 1); (2) A does not integrate the aggregation
and combination function (Property 2); (3) A should be as deep as possible (Property
3); (4) Layers in A should be injective (Property 3) (5) If A follows the form of a simple
AC-GNN, it should satisfy the conditions in Theorem 5 to make it color equivariant.

With the guidance of the rules above, we propose a very simple architecture, Graph
Discrimination Network (TreeNet) based on simple AC-GNN, Note that there are not
solely one architecture that satisfies all the rules above. We select TreeNet as an example
considering the balance between efficiency and performance. The discussion and experi-
mental results of other models that satisfy the rules above are given in the Appendix. We
describe TreeNet for the graph coloring problem as follows:

Forward Computation For a k-coloring problem, the node attribute is the centered
probability distribution of k colors and is initialized randomly to eliminate the equivalent
node pairs (rule 1). Formally, the node attribute x ∈ Rk is calculated by:

x = x′ − 1

k
(4.11)

where x′ is the random probability distribution.
The aggregation function is the same with Equation 4.5 (rule 2,4). Let m

(i)
v ∈ Rk be

the result returned by AGG(i) for the node v in the i-th layer, the aggregation layer is
organized as follows:

m(i)
v =

∑
u∈N (v)

h(i−1)
u (4.12)

In the combination function, we define the COM(i) following Theorem 5 to make
TreeNet color equivariant (rule 3,4,5):

h(i)
v = h(i−1)

v λ
(i)
C + h(i−1)

v γ
(i)
C (11⊤) +m(i)

v λ
(i)
A +m(i)

v γ
(i)
A (11⊤) + β(i)1
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where λ, γ, β are trainable scalars. Finally, the classification function CLS(·)) in TreeNet
is defined as an argmax function, since the final node embedding is still a probability
distribution of colors.

Loss Function Considering that an optimal color solution keeps optimal regardless of
the permutation of colors, it is not an easy job to develop a supervised training scheme
since there is not only a single optimal solution. Li et al. [69] uses supervised learning
followed by a heuristic tree search to alleviate the multi-solution issue in the MIS problem.
However, the complexity of the tree search explodes when the number of colors k and the
number of nodes n become large. Here, we use a un-supervised margin loss, motivated by
the fact that final node embeddings of connected nodes should be as different as possible,
and formulated by:

min
∑

{u,v}∈E

max{m− d(hu,hv), 0}. (4.13)

where hu ∈ Rk is the probability distribution obtained by A. d is the Euclidean distance
between the node pair. m is the pre-defined margin.

Preprocess & Postprocess Our method also contains preprocess and postprocess pro-
cedures, which are widely used in other coloring methods [137, 66]. In the preprocess
part, the node with degree less than k is removed iteratively. In the postprocess part, we
iteratively detect 1) whether a color change in a single node will decrease the cost or 2)
whether a swap of colors between connected nodes will decrease the cost. We implement
the two additional steps by tensor operations, which significantly boost the efficiency.
The experiments on the two steps and detailed algorithms are shown in the Appendix D.

Why training? In our proposed GDN, only these scalars (λ, γ, β) need to be trained.
Indeed, it is viable to design a training-free version, i.e., pre-define these scalars. For
example, by following the intuition that the feature of each node should be as different as
its neighbor, we can directly set λ, γ as positive and negative values respectively without
training. However, it is not easy to find a “best” value for λ, γ, β by theoretical anal-
ysis or by intuition. Therefore, we prefer a learning-based method, which learns these
relationships through training. At the same time, the training scheme has a strong inter-
pretability. For example, the ratio between λ1

A and λ1
C indicates the relative importance

between the features of each node and its neighbors, and the ratio between scalars of
different layers (λ1

A and λ2
A) is the relative importance between neighbors of different

depths. A detailed comparison and introduction of previous coloring works including
non-training one and training one are covered in Appendix C. The experiments about
different selection schemes of λ, γ, β are covered in the Appendix.
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4.5 Experiments

4.5.1 Experimental setup

Detailed settings, more experiments and analysis are shown in the Appendix. We evaluate
our models and baselines on four datasets here, the basic information on these datasets
are shown in Table 4.2, where the column X (k) is the chromatic number except layout
dataset, which is set to 3 in real-world circuit design. The chromatic number in random
dataset is not static due to its random nature. More information about dataset is shown
in the supplement.
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Figure 4.2: (a) Solved ratio by different AC-GNN variations; (b) Fixed color ratio by different
AC-GNN variations.

We mainly compare our models with two previous works which focus on the graph
coloring problem: (1) GNN-GCP [60], combing GNN, RNN, and MLP to obtain the node
embedding and using a k-means method to color the node. We obtain models from the
author and directly obtain the results. (2) Tabucol [44], a well-known heuristic algorithm
using Tabu search. We follow the original setting with iteration limit of 1000 (or the time
limit of 24 hours) and the number of uncolored node pairs is returned if the algorithm
fails to find a perfect coloring assignment within the limit. We also compare different
variants of AC-GNN in previous works: GCN [55], GIN [117] and GraphSAGE [41]. All
AC-GNN variations are only tested in layout dataset since AC-GNN variations require a
fixed number of colors to make output shape keep the same, More details on the datasets
and baseline model configurations can be found in Appendix.
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4.5.2 Comparison with other AC-GNN variations

The comparison with other trainable AC-GNN variations is conducted on the layout
dataset. The results are shown in Figure 4.2(a). “GDN-k” represents TreeNet with a
depth of k. According to the results, we observe the following: (1) GCN, the most repre-
sentative integrated AC-GNN, is much worse than other AC-GNNs, which demonstrates
our rule 1. (2) Most AC-GNNs benefit from a deeper network, which aligns with our rule
3. (3) Although other non-integrated AC-GNN, such as GIN and GraphSAGE, achieve
an acceptable solved ratio, our method is far more better than other AC-GNNs.

We also validate the color equivariance of models by simulating the pre-color constraint
in the layout decomposition problem. For each instance, we randomly select one node
and set its color by changing the node attribute, known as the color distribution. We
measure the color equivariant capability by checking the fixed color ratio, defined as the
ratio between the number of successfully fixed graph and the number of total graphs. A
successfully fixed graph is the graph whose selected node (metal feature) is colored as
expected with the pre-assigned one by A. From the results shown in Figure 4.2(b), we
can see that the fixed color ratio of our TreeNet is much higher than other variations,
matching with our analysis before,

4.5.3 Comparison with other graph coloring methods

The comparison with other graph coloring methods is conducted on all collected datasets.
The results are shown in Table 4.2, where k is the number of available colors and cost
is the number of conflicts in the coloring result. GNN-GCP gives “-” if it fails to find a
chromatic number prediction, while Tabucol gives “-” if it fails to color the graph within
24 hours. According to the results, we observe the following: (1) Our model is much more
powerful than GNN-GCP, also with a better efficiency. (2) Our model outperforms the
state-of-the-art heuristic algorithm with a slightly better result quality and 500× speedup.
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Table 4.2: Graph datasets information and results by different coloring methods.

Dataset Graph |V| |E| d% X (k) GNN-GCP Tabucol Ours
Cost Time Cost Time Cost Time

Layout 35158 641202 787242 - 3 386009 3896 2392 82301 1557±45 5.84 ±0.23
ratio 247.9 667.1 1.54 14092 1.0 1.0

Citation
Cora 2708 5429 0.15 5 1291 3.90 31 15410 0 ±0 0.81 ±0.08
Citeseer 3327 4732 0.09 6 1733 2.74 6 44700 0 ±0 1.42 ±0.15
Pubmed 19717 44338 0.03 8 4393 4.50 - >24h 21 ±4 1.41 ±0.12

ratio 353.2 3.06 - - 1.0 1.0

Random
Power Law Tree 7956 7756 2.8 - 4519 10.47 33 4417 0 ±0 6.95 ±0.12
Small World 7956 29716 10.7 - 5563 7.56 64 2021 29 ±2 7.73 ±0.12
Holme and Kim 7956 15712 5.7 - 8443 7.99 87 5317 456 ±26 5.64 ±0.12

ratio 38.20 1.28 0.38 578.5 1.0 1.0

COLOR

jean 80 254 8 10 76 0.06 0 0.95 0 ±1 0.13 ±0.02
anna 138 493 5 11 87 0.08 0 3.23 0 ±0 0.17 ±0.03
huck 74 301 11 11 117 0.05 0 0.15 0 ±0 0.13 ±0.04
david 87 406 11 11 - - 0 4.83 1 ±0 0.19 ±0.01
homer 561 1628 1 13 1628 1.09 0 274 1 ±0 0.29 ±0.02
myciel5 47 236 22 6 35 0.04 0 0.20 0 ±0 0.12 ±0.01
myciel6 95 755 17 7 94 4.33 0 0.79 0 ±0 0.21 ±0.02
games120 120 638 9 9 301 0.07 0 0.93 0 ±1 0.08 ±0.01
Mug88_1 88 146 4 3 146 0.33 0 0.12 0 ±0 0.01 ±0
1-Insertions_4 67 232 10 2 42 0.05 0 0.16 0 ±0 0.07 ±0
2-Insertions_4 212 1621 7 4 360 0.09 1 255 2 ±0 0.08 ±0.01
Queen5_5 25 160 53 5 37 0.03 0 0.13 0 ±0 0.05 ±0.01
Queen6_6 36 290 46 6 290 0.38 0 4.93 4 ±0 0.05 ±0
Queen7_7 49 476 40 7 126 0.04 10 36.9 11 ±1 0.06 ±0
Queen8_8 64 728 36 8 188 0.05 8 61.3 7 ±2 0.06 ±0.01
Queen9_9 81 1056 33 9 296 0.07 5 97.8 10 ±1 0.09 ±0.01
Queen8_12 96 1368 30 12 260 0.10 10 139 7 ±0 0.09 ±0
Queen11_11 121 3960 55 11 396 0.10 33 213 24 ±3 0.07 ±0.01
Queen13_13 169 6656 47 13 728 0.20 42 401 42 ±4 0.08 ±0.01

ratio - - 1.0 736.17 1.0 1.0

2 End of chapter.



Chapter 5

Routing Tree Construction

5.1 Introduction

In VLSI routing, wirelength (WL) and pathlength (PL) are the two fundamental metrics
for the routing tree construction. Here, WL is directly related to power consumption,
routing resource usage, cell delay and wire delay. Meanwhile, a long PL from the root
(i.e., the source pin) implies high wire delay. However, optimizing either one of them does
not necessarily benefit the other one.

The minimization of WL and PL has been investigated for a long history. Various
approaches have been proposed to construct the routing tree by optimizing both WL and
PL. These approaches can be roughly categorized into two types. The first type starts
the construction from a tree that consists only of the source pin and iteratively adds the
node into the tree with a newly-added edge. The two most influential and representative
approaches of this type are the Prim-Dijkstra (PD) [10] construction and its improved
version PD-II [9]. The second type [31, 95, 19] starts the construction from an initial
topology with small WL such as FLUTE [24], and iteratively finds and reroutes the node
whose PL is out of the bound. Among all the approaches above, PD-II [9] and SALT [19]
are the two most prominent ones which demonstrate a superior trade-off between WL and
PL compared with other state-of-the-art approaches. However, neither PD-II nor SALT
always dominates the other one in terms of both WL and PL for all nets. Specifically, given
a maximal WL constraint, although the PL of SALT is better than PD-II in most cases,
there is still a considerable proportion on which PD-II is better, especially when the size of
the net is large. The statistics shown in Table 5.2 demonstrate such a phenomenon, where
PD-II outperforms SALT in 10.4% of huge nets when the WL degradation constraint is
0. Here the PL is measured by the normalized PL. Besides the uncertainty of deciding
the best approach for any single case, there is another concern about the best parameter
in PD-II and SALT. Both PD-II and SALT use a parameter to help decide whether one
update should happen or not. For example, α in PD-II is included in the cost function
to balance WL and PL. Correspondingly, ϵ in SALT is used to decide whether one node
should be rerouted or not. Given any single case, i.e., a set of pins, the estimation of the

77
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Figure 5.1: Cloud embeddings for tree construction, where point clouds are transformed into
unified 2-D Euclidean space.

best parameter is still non-trivial and also an open problem to achieve the best PL given
one WL constraint.

The recent overwhelming success of deep learning applications in various fields suggests
that we can naturally cast the problems into the classification task (approach selection)
and the regression task (parameter prediction). However, the set of 2-D points, which
is the original input of the tree construction and also called the point cloud, usually
varies in terms of the number of points, making it hard to be fed into a learning model.
Therefore, we first need to transform a point cloud with unfixed size into a vector with
a fixed size, where the vector is also called cloud embedding. The cloud embedding
should be in a unified vector space with maximal representation capability such that the
cloud embedding can help us to determine the best routing tree construction approach
and predict the best parameter. One example of the point clouds for the routing tree
construction and corresponding cloud embeddings are shown in Figure 5.1.

Although many works [88, 89, 111, 68] adapt the powerful deep learning-based meth-
ods for cloud embedding, none of them handles the point cloud specifically for the tree
construction quite well due to some special properties in the tree construction. Through
comprehensive analysis and consideration of these properties, we propose a deep learning-
based model, TreeNet, to obtain the cloud embedding specifically for the tree construction.
The obtained cloud embedding is then used as a representation to help select the best
routing tree construction approach and predict the best parameter for the selected ap-
proach. Finally, we use the selected approach and corresponding parameter to construct
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(a) (b)
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Figure 5.2: Examples of the down-sampling: (a) The general point cloud without the down-
sampling; (b) The general point cloud with the down-sampling; (c) The constructed tree without
the down-sampling; (d) The constructed tree with the down-sampling.

the routing tree. The main contributions are summarized as follows: 1) We formalize spe-
cial properties of the point cloud for the routing tree construction; 2) We design TreeNet,
a novel deep net architecture to obtain the cloud embedding for the tree construction; 3)
We propose an adaptive flow for the routing tree construction, which uses the cloud em-
bedding obtained by TreeNet to select the best approach and predict the best parameter;
4) Experiments on widely used benchmarks and demonstrate the effectiveness of our em-
bedding representation, compared with all other deep learning models; 5) Experimental
results show that our methods outperform other state-of-the-art routing tree construction
methods in terms of both quality and runtime.

5.2 Preliminaries

5.2.1 Routing Tree

The routing tree is constructed by a set of terminals. Assume a input net V = {v0,Vs}, v0
is the source and Vs is the set of sinks. Let G = {V ,E} be the connected weighted routing
graph. The edge weight of G is the distance between vertices. A routing tree T = {V ′,E′}
is a spanning/Steiner tree that is constructed from V with v0 as the root. A Steiner tree
inserts new points from V , i.e., V ′ ⊇ V , where the newly inserted points are called steiner
points. The objective of the routing tree is to minimize both WL and PL. The WL metric
is called the lightness or normalized WL, which is computed by the WL ratio with that
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of minimum spanning tree (MST), i.e., lightness =
w(T )

w(MST (G))
, where w(·) is the total

weight. The PL metric is controversial and there are two widely used metrics. The first
one is called the shallowness [18], which is computed by the maximal PL ratio with the

shortest-path tree (SPT) among all vertices, i.e., shallowness = max{
dT (v0, v)

dG(v0, v)
|v ∈ Vs}.

The second one is called the normalized path length [9], which is computed by the total

PL normalized by the total shortest-path distance, i.e., normPL =

∑
v∈V dT (r, v)∑
v∈V dG(r, v)

. Note

that d(·) mentioned above denotes as the Manhattan distance.

5.2.2 Point Cloud

Point Cloud is defined as a set of scattered points in a 2D plane or 3D space. Therefore, the
input of the routing tree construction, i.e., a set of 2-D points, can be modeled as a point
cloud. Typical deep learning-based methods obtain the embedding of a general point
cloud by a similar philosophy of the convolution layer. The convolution-like operation
is usually composed of three procedures: Sampling, Grouping and Encoding. Sampling
selects a set of centroids from the original point cloud. Grouping selects a set of neighbors
for each centroid, which is like the local region constrained by a convolution kernel in the
original convolution. Encoding is to encode the new centroid feature using the original
one and the local feature aggregated from the neighbors of the centroid.

5.2.3 Problem Formulation

Given a set of 2-D pins and two routing tree construction algorithms, SALT [18] and
PD-II [9], our objective is to obtain the embedding of the given point cloud by TreeNet
such that 1) the embedding can be used to select the best algorithms for the given point
cloud; 2) the embedding can be used to estimate the best parameter ϵ of SALT for the
given point cloud; 3) the embedding can be used to estimate the best parameter α of
PD-II for the given point cloud.

5.3 The Proposed Approaches

In this section, we first formalize a set of special properties of the point cloud specifically
for the routing tree construction. Then we propose TreeNet for cloud embedding by con-
sidering these properties. Finally, an adaptive workflow for the routing tree construction
based on the cloud embedding is introduced.

5.3.1 Property Analysis

Given the input net V = {v0,Vs}. Let f : V → T be the function for routing tree
construction and T is the target routing tree. Here, we say T = T ′ if and only if T
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(a)

source pin
sink pin
steiner points

(b)

Figure 5.3: Examples of the routing trees with the same node distribution but different root
(highlighted by red).

and T ′ have the same node coordinates and the same topology. Ideally, a powerful neural
network maps nets with different (same) routing trees to embeddings which are as different
(similar) as possible. Therefore, we may design the cloud embedding method by learning
the behavior of f .

Property 1. Let d : V → V ′ be a function for down-sampling, where V ′ is a proper
subset of V . f(V ) ̸= f(d(V )) holds if there exists v ∈ V − d(V ) so that v is not the
steiner point in f(d(V )) .

Property 1 points the deficiency of down-sampling. Actually, the inequality holds
for most cases even without the condition. One down-sampling example is shown in
Figure 5.2. With down-sampling, the skeleton of the general point cloud is still easy to
classify as shown in Figure 5.2(b). However, given the point cloud for the routing tree
construction, the routing tree with down-sampling (Figure 5.2(d)) is totally different from
the one without down-sampling (Figure 5.2(c)). Here,

Property 2. Let V p
s be the permutation of the sink set Vs. f({v0,V p

s }) = f({v0,Vs})
holds for any V = {v0,Vs}.

Property 3. Let V p be the permutation of the input net V . f(V p) ̸= f(V ) holds if the
source in V p is different from the source in V .

Property 2 shows the permutation invariance of the point cloud and Property 3 states
the sensitivity of the root. One example is shown in Figure 5.3, where the space distri-
butions of point locations are totally the same while only the root is assigned differently.
A typical method may regard the two point clouds as a similar pair while they actually
represent completely different trees.
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Figure 5.4: Examples of the node with the same coordinates and local neighbors but different
parent-child relationships. Here root is highlighted in red.

(a) ball (b) k-nn (c) k-bbox (d) routing tree

Figure 5.5: Comparison among ball query (a) k-nn (b) and k-bbox (c) grouping methods (k = 2
in this example). The orange regions represent the query ball in (a) and bounding boxes in (c).
The centroid is highlighted by black and the root is by red.

Property 4. For any sink set Vs with |Vs| > 1, there exists two different pins, v0 and v′0
in the 2-D plane so that f({v0,Vs}) ̸= f({v′0,Vs}). Moreover, the inequality holds when
we only consider the topology.

As an extension of Property 3, Property 4 states the possible inequality even when
the sink set Vs is not changed. It not only demonstrates the sensitivity of the root, but
also shows the deficiency of only considering local information, i.e, information stored in
Vs. One example is shown in Figure 5.4, where the node B in both Figure 5.4(a) and
Figure 5.4(b) have the same coordinates and local neighbors (C,D) but the parent-child
relationships B − C and B −D are clearly different.

Property 5. Let Gball, Gknn and Gbbox be the graph constructed from V by ball query, k
nearest neighbor and bounding box respectively. The minimum spanning tree, T may not
be the subgraph of Gball or Gnn, but always the subgraph of Gbbox.

Property 5 states that Gbbox [9] is more likely to capture the structure of the routing
tree, compared to Gball [89] and Gknn [111, 68]. Gbbox is the graph whose nodes are
connected with their bbox-neighbors. We call the node uj as the bbox-neighbor of ui if
there is no other node in the smallest bounding box containing ui and uj. One example
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of the comparison is shown in Figure 5.5, Gball and Gknn fail to find the correct neighbors
of the selected centroid.

5.3.2 Cloud embedding by TreeNet

Considering all these properties discussed above, we propose a specialized model, TreeNet,
to obtain the embedding of the point cloud for the routing tree construction. Basically,
TreeNet is a hierarchical model and composed of a number of convolution-like operations.
We refer to this operation as TreeConv. The comparison between TreeConv and other
methods [88, 89, 68, 111] are summarized in Table 5.1.

Our TreeConv (see Figure 5.6) leverages the local correlation information and the
root information with two key procedures: Grouping and Encoding. Different from some
typical works, TreeConv omits the Sampling phase considering Property 1. Therefore,
each node is selected as the centroid. Given a point cloud H ∈ RN×D, where N is the
number of points and D is the dimension of each point, our Grouping selects k neighbors
for each centroid ui to represent the local point cloud structure based on Gbbox [9]. One
example is shown in Figure 5.5(c). We first select k nearest bbox-neighbors of ui as the
neighbors. If the number of bbox-neighbors for ui is less than k, we then select other nearest
nodes to fill up k neighbors. Therefore, Grouping returns a list of neighbors Ei ∈ Rk

for each centroid ui. After Grouping, our Encoding outputs a new feature v′
i ∈ RD′

for each node ui such that the new point cloud H ′ = {v′
0, ...,v

′
N−1} ∈ RN×D′ . For each

element v′ic in v′
i, our Encoding leverages the global position information [88], the ”local”

neighborhood information [111, 68], and the root information considering Property 4. The
computation can be formulated as:

v′ic = max
j∈Ei

σ(θc · CONCAT(vi − vj,vi − vr,vi)), (5.1)

where vr is the input feature of the root, σ is the LeakyReLU activation function and
θc ∈ R3D is the trainable weight of cth filter. Finally, the new feature v′

i is processed by
a Squeeze-and-Excitation (SE) block [46] for exploiting channel dependencies.

The network architecture used for the cloud embedding is shown in Figure 5.7. The
input of the first layer is the point cloud H0 ∈ RN×2, in which each node has a 2-D
normalized coordinate feature. The normalization of each node ui is based on the root ur

(Property 3, Property 4) and can be formulated as:

ṽi =
vi − vr

dmax

, (5.2)

where vi is the original 2-D coordinate feature of node ui and vr is the feature of the root.
dmax is the maximal distance between the root and any other nodes.

We stack four TreeConvs and include shortcut connections from each layer to the out-
put to extract multi-scale features which are finally concatenated. Then, two permutation-
invariant operations (Property 2), max pooling and average pooling, are used to get the
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Figure 5.6: Illustration of TreeConv. Brighter blocks indicate Grouping and darker blocks
indicate Encoding.
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Figure 5.7: Illustration of TreeNet Architecture for the cloud embedding.

cloud embedding, which can be formulated as

Hc = CONCAT(max(CONCAT(H̃1, H̃2, H̃3, H̃4)),

mean(CONCAT(H̃1, H̃2, H̃3, H̃4))),
(5.3)

where Hc ∈ R2×(D1+D2+D3+D4) is the final cloud embedding and H̃i ∈ RN×Di is the scaled
output of ith TreeConv.

5.3.3 Routing Tree Construction based on Point Cloud Embedding

Given the cloud embedding Hc ∈ RD obtained by TreeNet, we can cast the algorithm
selection and the parameter prediction problem into classification and regression problem,
respectively. The workflow of our framework is shown in Figure 5.8.

Firstly, we use the obtained cloud embedding to determine whether the SALT algo-
rithm is at least as good as the PD-II algorithm, where ”good” means that the best PL
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Table 5.1: Comparison to existing methods.

Sampling Grouping Encoding

PointNet [88] - - v′ic = σ(θcvi)
PointNet++ [89] Fathest Point Sampling (FPS) ball query’s local neighborhood v′ic = maxj∈Ei σ(θcvj)
PointCNN [68] Random/FPS k nearest neighbor v′

i = Conv(X × θ(vi − vj))
DGCNN [111] - k nearest neighbor v′ic = maxj∈Ei σ(θc · CONCAT(vi − vj ,vi)),
Our work - k bounding box neighbor v′ic = maxj∈Ei σ(θc · CONCAT(vi − vj ,vi − vr,vi)),

SALT selector

Confidence > b?

SALT

PD-II

Point cloud

Y

N

SALT parameter 
predictor

PD-II parmeter 
predictor

TreeNet

Figure 5.8: The workflow of our framework. Dotted arrows represent that TreeNet generates
cloud embeddings and use them to select the algorithm or to predict parameters. The yellow
blocks are executed in our framework while the purple blocks are executed by the selected
algorithms.

of SALT is at least the same as that of PD-II under the given WL constraint and the PL
metric. Therefore, the problem can be regarded as a 2-class classification problem, where
one class indicates that the result of SALT is at least as good as PD-II while another
one indicates its opposite. Given the cloud embedding Hc ∈ RD, the 2-class classifier
is implemented by three fully connected layers followed by a softmax layer and can be
formulated as:

y = softmax(W3σ(W2σ(W1Hc + b1) + b2)), (5.4)
where σ is the LeakyReLU activation function, Wi and bi are the weight matrix and
bias vector, respectively. y ∈ R2 is the final classification confidence. Since each wrong
selection directly harms the quality of the result, we raise the bar to select SALT algorithm:
We directly use SALT algorithm to construct the routing tree only when the confidence of
”SALT is at least as good as PD-II” is larger than a specified confidence bar b. Otherwise,
we will use both SALT and PD-II to construct the routing tree and use the better result.

After algorithm selection, corresponding parameter is predicted by the obtained cloud
embedding and guides the parameter selection. The regression target of the parameter
prediction is the ”best” parameter, where ”best” means the result using such parameter
achieves the best PL under the WL degradation constraint. We follow a similar approach
used in the age prediction [97]. Take the parameter prediction of SALT for example. We
set 20 valid parameter ϵi, i ∈ {1, ..., 20} candidates for SALT and each valid parameter is
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Algorithm 5 ParameterGuidanceConstruction
Input: ϵ → Predicted parameter;
Input: f → Routing tree construction algorithm;
1: results ← Run f using the parameters in (ϵ− σ, ϵ+ σ) ∪ S;
2: if no result in results satisfies the WL constraint then
3: return ParameterGuidanceConstruction(ϵ+ 2σ, f);
4: else
5: return the result with the best PL in results satisfying the WL constraint under the PL metric;
6: end if

treated as a separate class. Therefore, the structure for the parameter prediction is similar
with the one for the algorithm selection formulated in Equation (5.4) with y ∈ R20. Given
the output y, the predictied parameter ϵ is calculated by an element-wise summation and
can be formulated as:

ϵ =
20∑
i=1

ϵi · yi. (5.5)

Given the predicted parameter, the guidance follows a simple but effective heuristic rule
specified in Algorithm 5. Generally speaking, the selected approach constructs the routing
tree using the predicted parameter and other parameters in a set (line 1), where σ and S
are hyper-parameters. S defines an initial set of parameters that achieve almost the best
PL while also almost the worst WL. If the results of all tested parameters fail to satisfy
the WL constraint, the range is widened along the direction which decreases the WL (line
2-3); Otherwise, we directly use the best parameter among these tested candidates (line
4-5).

5.4 Experimental Results

We implement TreeNet in Python with PyTorch. Other models (PointNet [88], Point-
Net++ [89], PointCNN [68], DGCNN [111] ) are also implemented. The results of SALT
[19] are generated by the source code and the results of PD-II [9] are provided by the
authors. The experiments are conducted on the widely used benchmarks of ICCAD 2015
Contest [52]. All the two-pin and three-pin nets are removed. All the experiments are
conducted on an Intel Core 2.9 GHz Linux machine with one NVIDIA TITAN Xp GPUs.

Data Preparation. We first assign labels to each net in the benchmarks according
to the routing tree results of SALT and PD-II. Specifically, given the constraint of WL
degradation percentage with respect to MST WL and the PL metric type (the shallowness
metric and the normalized PL metric), the net is assigned three labels: 1) best algorithm;
2) best ϵ for SALT and 3) best α for PD-II. The best algorithm is labeled as one of
{SALT, PDII}. Here, the net is labeled as SALT (PDII) when the routing tree by
SALT (PD-II) achieves the best PL under the chosen PL metric and the WL degradation
constraint. Especially, if both SALT and PD-II construct the same routing tree, the best
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Table 5.2: ICCAD 2015 Benchmark Label Statistics (part)

WL deg. PL metric Label Small Med. Large Huge Total

0 Nor. PL SALT 99.9% 98.8% 93.5% 89.6% 1273012 (98.3%)
PD-II 0.1% 1.2% 6.5% 10.4% 21529 (1.7%)

0 Shallow. SALT 99.9% 99.1% 95.6% 93.1% 1279428 (98.8%)
PD-II 0.1% 0.9% 4.4% 6.9% 15113 (1.2%)

10% Shallow. SALT 99.8% 97.0% 93.6% 91.4% 1269095 (98.0%)
PD-II 0.2% 3.0% 6.4% 8.6% 25446 (2.0%)

algorithm is labeled as SALT . The best ϵ for SALT is defined by:

ȳi =

{
1
k
, if ϵi is one of the “best” candidates;

0, otherwise.
(5.6)

where k is the number of those ”best” candidates, i ∈ {1, ..., 20} and ϵi = 0.05 × 1.5i

as defined in [19]. Similarly, the best α for PD-II also follows Equation (5.6) with i ∈
{1, ..., 19} and αi = 0.05 · i as defined in [9]. Note that, increasing the number of data
points also improves the quality of our model since the noise label is reduced. Given such
label rules, the label distribution of nets in the benchmarks are clearly different based
on the WL degradation constraint and PL metric type. A part of the best algorithm
label statistics for the benchmarks is shown in Table 5.2, where “WL deg.” denotes the
percentages of permissible WL degradation with respect to MST WL.

Architecture. The output point dimension of four TreeConvs is (32, 32, 64, 128) and
such the final embedding dimension is (32 + 32 + 64 + 128) × 2 = 512. Then, three
fully connected layers (128, 64, c) are used, where c is the number of classes in the label.
Dropout is applied and the keep probability is set to 0.5. The number of selected neighbors
k is set to 3, which is the maximal neighbor number for a 4-point net. The confidence
bar b is set as 0.99. The range σ in Algorithm 5 is set to 1 for SALT and -1 for PD-II.
The set S is set to {1,2} in SALT and {18,19} in PD-II.

Training & Testing. During training, we minimize the binary cross-entropy loss for
the algorithm selection and the soft cross-entropy loss for the parameter prediction. We
use SGD with an initial learning rate 0.001 and momentum 0.9, and the learning rate is
reduced by 30% every 20 epochs. We follow the idea of K-fold cross-validation to set up
the test. Specifically, each design in the benchmark is tested using the model trained by
other designs following the same configurations.

5.4.1 Comparison with other DL models

In this section, we compare TreeNet with other baseline models for the algorithm selection
task. Due to the page limit, the result of the parameter prediction task is not shown since
it is also formulated as a classification task. The WL degradation is set as 5% and the PL
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Table 5.3: Algorithm selection results

Method Accuracy Precision Recall∗
PointNet [88] 54.13 53.95 1.91
PointNet++ [89] 81.31 82.50 2.65
PointCNN [68] 62.18 64.24 1.16
DGCNN [111] 92.24 94.62 11.84
TreeNet w.o. Nor 87.22 88.62 15.69
TreeNet w.o. global 92.40 94.63 25.53
TreeNet w. knn 92.58 94.79 26.76
TreeNet 94.09 95.38 50.74

metric is set as the normalized PL. Formally, we mark the SALT label as positive and
the PDII as negative.

The result for the algorithm selection is shown in Section 5.4, where ”Accuracy” and
”Precision” are defined as usual. ”Recall∗” is slightly different and defined as the fraction
of the total amount of positive instances that were also predicted as positive with the
confidence larger than the bar b. Therefore, the updated recall is directly related to the
runtime performance. We use SALT to construct the routing tree for the predicted positive
instances, and use both SALT and PD-II for the predicted negative instances. We compare
four state-of-the-art models with our TreeNet and three variations: 1) Remove the root-
sensitive normalization and use the original normalization (property 1); 2) Remove the
root-related global information in Encoding phase (property 3, 4); 3) Use k-nn grouping
method instead of k-bbox (property 5). According to Section 5.4, we can see that our
TreeNet outperforms other state-of-the-art models on all three metrics. Besides, the
comparison with other variations demonstrates the effectiveness of our considerations on
the properties of the point cloud for the tree construction.

5.4.2 Comparison with routing tree constructors

In this section, we compare our adaptive workflow with SALT and PD-II in terms of both
effectiveness and efficiency.

Effectiveness: We follow the same result comparison way in [9]: We first select
different WL degradation constraints (0%, 5%, 10%, 15%, 20%) and then find the best
shallowness and the normalized PL. Each entry in the table is the averaged shallowness
(see Table 5.4) and the averaged normalized PL (see Table 5.5) across all test nets.
Especially, SALT∗ executes SALT in a binary search manner, which results in better
efficiency but may harm the quality. We also measure the improvement compared with
SALT (Imp. (%)) and SALT∗ (Imp.∗ (%)). The improvement is calculated by the
percentage improvement after subtracting the lower bound 1. For example, a reduction
from 1.10 to 1.09 results in an improvement of 10%, i.e., (1−(1.09−1.0)/(1.10−1.0))·100%.
As Table 5.4 and Table 5.5 show, our adaptive workflow outperforms SALT and PD-II
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for all classes of nets under all WL constraints and PL metrics. In general, the overall
improvement over SALT ranges from 1.97% to 12.16%, depending on the selected WL
constraint and PL metric. The improvement over SALT∗ is more significant, ranging
from 2.89% to 19.11%.

Small Med. Large Huge All
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im
e
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SALT [19]
SALT ∗

Ours

Figure 5.9: Runtime comparison with SALT and SALT∗.

Efficiency: Since the source code of PD-II is not provided, we only compare the
runtime performance of our adaptive workflow with SALT [19]. The runtime of our
framework is composed of three parts: 1) The inference time of TreeNet; 2) The execution
time of SALT on the input net; 3) The execution time of PD-II on the input net when
the algorithm selector does not select SALT as the only tree constructor. Especially, the
execution time of PD-II is estimated form the runtime analysis in [9], where PD-II costs
361s and SALT costs 2762s. Therefore, we estimate the runtime of PD-II by SALT with
a runtime ratio 361/2762 = 0.1307. Figure 5.9 shows the average runtime comparison
with SALT and SALT∗, where adaptive workflow is more efficient than both of them on
any size scale. We further profile the runtime of the framework, as shown in Figure 5.10.
The inference time of TreeNet only occupies 24.39% of the total runtime.
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Table 5.4: Results on shallowness

|V| Method WL deg.
0% 5% 10% 15% 20%

Small

PD-II 1.0606 1.0369 1.0240 1.0161 1.0114
SALT 1.0462 1.0216 1.0078 1.0022 1.0006
SALT∗ 1.0462 1.0216 1.0079 1.0023 1.0006
Ours 1.0461 1.0210 1.0074 1.0021 1.0005

Imp. (%) 0.28 2.62 4.40 5.42 8.25
Imp.∗ (%) 0.32 3.04 5.14 6.75 9.94

Med.

PD-II 1.3849 1.2518 1.1688 1.1176 1.0851
SALT 1.3456 1.1775 1.0838 1.0391 1.0181
SALT∗ 1.3463 1.1815 1.0868 1.0410 1.0192
Ours 1.3435 1.1689 1.0790 1.0370 1.0172

Imp. (%) 0.62 4.85 5.72 5.57 5.41
Imp.∗ (%) 0.80 6.95 8.98 9.92 10.41

Large

PD-II 1.9093 1.5584 1.3595 1.2473 1.1805
SALT 1.7976 1.3549 1.1568 1.0727 1.0358
SALT∗ 1.8083 1.3689 1.1648 1.0771 1.0382
Ours 1.7755 1.3339 1.1481 1.0690 1.0341

Imp. (%) 2.77 5.91 5.53 5.11 4.78
Imp.∗ (%) 4.06 9.50 10.12 10.52 10.77

Huge

PD-II 2.1660 1.7169 1.4771 1.3438 1.2603
SALT 2.0111 1.4398 1.2083 1.0987 1.0466
SALT∗ 2.0291 1.4567 1.2183 1.1039 1.0489
Ours 1.9793 1.4152 1.1975 1.0941 1.0444

Imp. (%) 3.15 5.61 5.17 4.69 4.64
Imp.∗ (%) 4.85 9.09 9.50 9.47 9.20

All

PD-II 1.2921 1.1822 1.1193 1.0827 1.0604
SALT 1.2531 1.1175 1.0524 1.0236 1.0110
SALT∗ 1.2555 1.1210 1.0546 1.0248 1.0117
Ours 1.2481 1.1114 1.0495 1.0223 1.0104

Imp. (%) 1.97 5.18 5.43 5.21 5.08
Imp.∗ (%) 2.89 7.98 9.23 9.95 10.38
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Table 5.5: Results on normalized PL

|V| Method WL deg.
0% 5% 10% 15% 20%

Small

PD-II 1.0156 1.0099 1.0065 1.0044 1.0031
SALT 1.0113 1.0055 1.0020 1.0006 1.0002
SALT∗ 1.0113 1.0055 1.0020 1.0006 1.0002
Ours 1.0112 1.0053 1.0019 1.0005 1.0001

Imp. (%) 0.25 2.86 4.88 6.57 10.55
Imp.∗ (%) 0.29 3.38 5.83 8.29 12.75

Med.

PD-II 1.0897 1.0579 1.0373 1.0248 1.0170
SALT 1.0778 1.0428 1.0204 1.0096 1.0044
SALT∗ 1.0780 1.0440 1.0214 1.0102 1.0048
Ours 1.0773 1.0396 1.0185 1.0086 1.0040

Imp. (%) 0.63 7.35 9.45 10.01 10.00
Imp.∗ (%) 0.82 9.90 13.70 15.74 16.65

Large

PD-II 1.1968 1.1146 1.0671 1.0413 1.0267
SALT 1.1665 1.0815 1.0365 1.0172 1.0086
SALT∗ 1.1690 1.0854 1.0390 1.0187 1.0095
Ours 1.1616 1.0726 1.0318 1.0150 1.0076

Imp. (%) 2.95 10.92 12.81 12.91 12.49
Imp.∗ (%) 4.35 15.02 18.29 19.70 20.35

Huge

PD-II 1.2472 1.1415 1.0830 1.0513 1.0328
SALT 1.2120 1.1054 1.0489 1.0224 1.0105
SALT∗ 1.2160 1.1106 1.0522 1.0242 1.0112
Ours 1.2045 1.0917 1.0413 1.0190 1.0088

Imp. (%) 3.54 13.03 15.54 15.54 16.25
Imp.∗ (%) 5.31 17.12 20.97 21.52 21.87

All

PD-II 1.0658 1.0398 1.0244 1.0157 1.0105
SALT 1.0550 1.0278 1.0125 1.0056 1.0026
SALT∗ 1.0555 1.0289 1.0132 1.0061 1.0029
Ours 1.0538 1.0253 1.0111 1.0050 1.0023

Imp. (%) 2.05 9.17 11.35 11.94 12.16
Imp.∗ (%) 3.01 12.43 16.04 17.98 19.11
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Figure 5.10: Runtime breakdown of the routing tree construction framework.

2 End of chapter.



Chapter 6

Appendix

.1 Graph Terminology

Here we list the following graph theoretic terms encountered in our work:
Let G = (V , E) and G ′ = (V ′, E ′) be graphs on vertex set V and V ′, we define

• isomorphism: we say that a bijection π : V → V ′ is an isomorphism if any two vertices
u, v ∈ V are adjacent in G if and only if π(u), π(v) ∈ V ′ are adjacent in G ′, i.e.,
{u, v} ∈ E iff {π(u), π(v)} ∈ E ′.

• isomorphic nodes: If there exists the isomorphism between G and G ′, we say that G
and G ′ are isomorphic.

• automorphism: When π is an isomorphism of a vertex set onto itself, i.e., V = V ′, π is
called an automorphism of G.

• topologically equivalent: We say that the node pair {u, v} is topologically equivalent if
there is an automorphism mapping one to the other, i.e., v = π(u).

• equivalent: {u, v} is equivalent if it is topologically equivalent by π and xw = xπ(w)

holds for every w ∈ V , where xw is the node attribute of node w.

• r-local isomorphism: A bijection πr is an r-local isomorphism that maps u to v if πr is
an isomorphism that maps BG(u, r) to BG(v, r).

.2 Proofs in Chapter 4

.2.1 Proof of Property 1

We first recall the property.

Property 1. All AC-GNNs cannot discriminate any equivalent node pair.

Proof. Let π be the automorphism mapping u to v, here, we propose a stronger property:

93
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Property 4. Given an AC-GNN and an equivalent node pair {u, v} by π, hi
w = hi

π(w)

holds for any iteration i and any node w ∈ V.
This apparently holds for i = 0 since xw = xπ(w),∀w ∈ V . Suppose this holds for

iteration j, i.e., hj
w = hj

π(w),∀w ∈ V . By definition, AC-GNN A produces the feature
vector hj+1

v of node v in the (j + 1)th iteration as follows:

h(j+1)
v = COM(j+1)(h(j)

v ,AGG(j+1)({h(j)
u : u ∈ N (v)})). (1)

Since an automorphism π remains the set of edges, i.e., {u, v} ∈ E iff {π(u), π(v)} ∈ E ,
the connection relation between two neighbors is preserved after the permutation by π,
that is, N (π(v)) = {π(u), u ∈ N (v)} for any v ∈ V . Then, the input of AGG(j+1) for π(v)
is given by {h(j)

u : u ∈ N (π(v))}, which is {h(j)
π(u) : u ∈ N (v)}. Since hj

w = hj
π(w),∀w ∈ V ,

the input of AGG(j+1) for v is equal to the one of AGG(j+1) for v, i.e., {h(j)
π(u) : u ∈ N (v)} =

{h(j)
π(u) : u ∈ N (v)} and makes their output equal, i.e., mj+1

v = mj+1
π(v). Therefore, the

input of COM(j+1) for v, (h
(j)
v ,mj+1

v ), is also equal to the one of COM(j+1) for π(v),
which makes the vector features of v and π(v) equal after (j +1)th iteration for any node
v ∈ V and proves the property 4. Thus, the AC-GNN A always produces the same node
embeddings for the nodes in the equivalent node pair, which results in the same color.

.2.2 Proof of Property 2

We first recall the property.

Property 2. If a graph G contains two connected nodes u and v that share the same
neighborhood except each other, i.e., N (u)\{v} = N (v)\{u}, then an integrated AC-GNN
cannot discriminate {u, v}.

Proof. The proof starts with a simple fact: a classifier CLS(·) always assigns two nodes
with the same node embedding to the same category.

First, the node pair {u, v} is distinct since they are connected. It follows that the inputs
for the node features of u and v after iteration k are exactly the same since N (u)∪{u} =
N (u)\{v} ∪ {u, v} = N (v)\{u} ∪ {u, v} = N (v) ∪ {v}. Therefore, the outputs are the
same, which means that h

(j)
u = h

(j)
v holds for any iteration k and any aggregation and

combine functions AGG(·),COM(·). Combining with the fact that CLS(hu) = CLS(hv)
if hu = hv, the proof is finished.

.2.3 Proof of Corollary 1

We first recall the corollary.

Corollary 1. A local coloring method is non-optimal in the random d-regular graph as
d→∞.



CHAPTER 6. APPENDIX 95

Proof. A random d-regular graph Gnd is a graph with n nodes and each node pair is
connected with a probability d/n. We start the proof from the following non-trivial
property:
Property 5 ([90]). The largest density of factor of i.i.d. independent sets in a random
d-regular graph is asymptotically at most (log d)/d as d→∞. The density of the largest
independent sets in these graphs is asymptotically 2(log d)/d.

The property above limits the size of an independent set produced by local method for
the random d-regular graph with an upper bound, n(log d)/d as d→∞. Given an upper
bound of the independent set, the following corollary on the graph coloring problem is
introduced:
Corollary 3. The lower bound of k with a zero conflict constraint obtained by a local
coloring method for the random d-regular graph is d/ log d as d→∞.

The proof is based on the Property 5: if a local coloring method f obtains a smaller
k′, s.t. k′ < d/ log d by coloring Gnd without conflict using k′ colors, all node sets classified
by the node color will be independent sets and the size of the maximum one will be larger
than (n log d)/d, a contradiction with Property 5.

The Corollary 3 reveals the lower bound of k by local methods for a random d-regular
graph. Another important observation of k by [8] specifies that exact value of the chro-
matic number (i.e., the minimum k) of a random d-regular graph. The property is de-
scribed as follows:
Property 6 ([8]). Let td be the smallest integer t such that d < 2t log t. The chromatic
number of a random d-regular graph is either td or td + 1.

It follows directly from Corollary 3 and Property 6 that, we can finish the proof of
Corollary 1 by showing that the lower bound of k by local methods is always greater than
the exact chromatic number:

d/ log d > td + 1 for d→∞. (2)

Let f(t) = 2t log t and define t0 s.t. d = f(t0) = 2t0 log t0. Since td is the smallest
integer t such that d < f(t), we have f(t0) = d ≥ f(td − 1). Since f is monotonically
increasing, t0 ≥ td − 1 and thus d/ log d − td − 1 ≥ d/ log d − t0 − 2 always holds. Let
d = 2t0 log t0, we further derive the objective below:

d/ log d− td − 1 ≥ d/ log d− t0 − 2

=
2t0 log t0

log(2t0 log t0)
− t0 − 2 > 0, for d, t0 →∞.
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we first prove that

log t0
log(2t0 log t0)

> 2/3

⇒3 log t0 > 2 log(2t0 log t0)
⇒3 log t0 > 2(1 + log t0 + log(log t0))
⇒ log t0 > 2 + 2 log(log t0) when t0 →∞.

The above inequality holds obviously. Following the objective, we have:

2t0 log t0
log(2t0 log t0)

− t0 − 2

>
4

3
t0 − t0 − 2 > 0 when t0 →∞.

Therefore, we finish the proof.

.2.4 Proof of Corollary 2

We first recall the corollary.

Corollary 2. L-AC-GNN is a L-local coloring method and thus a local coloring method

Proof. Given an AC-GNN A with L layers, let’s consider a L-local equivalent node pair
{u, v} in G by an L-local automorphism πL, which means that two rooted subtrees BG(u, L)
and BG(v, L) are isomorphic and xw = xπr(w) holds for every w ∈ BG(u, r). Since two
rooted subtrees are isomorphic, the WL test [114] decides BG(u, L) and BG(v, L) are
isomorphic and assigns the same color to w and πL(w) for any w ∈ BG(u, L). To connect
the WL test with AC-GNN, the following property is used:
Property 7 ([82, 11, 117]). If the WL test assigns the same color to two nodes in a graph,
then every AC-GNN maps the two nodes into the same node embedding.

Therefore, A maps the u and v into the same node embedding. It follows that A is
L-local and thus local.

.2.5 Proof of Property 3

We first recall the theorem.

Property 3. Let {u, v} be a node pair in any graph G, and L be any positive integer. If
a L-AC-GNN discriminates {u, v}, a L+-AC-GNN also discriminates it.

Here, a L+-AC-GNN is defined as an AC-GNN by stacking injective layers after L-AC-
GNN (before CLS(·)). An injective layer includes a pair of injective aggregation function
and injective combination function.
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Proof. Let AL be the L-AC-GNN that discriminates {u, v}, and hL
u ,h

L
v are the node

embedding generated by AL (before CLS(·)) and correspond to the node u, v respectively.
Given the condition that AL discriminates {u, v}, i.e., hL

u ̸= hL
v , we here consider the case

where L+-AC-GNN AL+ is an AC-GNN that only stack one injective layer after AL. Then,
hL+

v , the node embedding of v generated by AL+ is defined as:

hL+
v = COML+(hL

v ,AGGL+({hL
m : m ∈ N (v)})), (3)

where COML+ and AGGL+ are the combination and aggregation functions of the newly
stacked injective layer. Since hL

u ̸= hL
v , and hL

u ,h
L
v are in the input multisets {hL

u ,AGGL+({hL
m :

m ∈ N (u)})}, {hL
v ,AGGL+({hL

m : m ∈ N (v)})} respectively, the input multiset of
COML+ when calculating hL+

v is different with the one when calculating hL+
u . Because

COML+ is injective, we can further conclude that the output of COML+ when calculating
hL+

v is different with the one when calculating hL+
u , that is, hL+

u ̸= hL+
v . By induction,

the inequality can be applied for any additional stacked layers. We finish the proof.

.2.6 Proof of Theorem 2

We first recall the theorem.

Theorem 2. Let A be a simple AC-GNN and both input and output of each layer in A
be the probability distribution h ∈ Rk of k colors, A is color equivariant if and only if the
following conditions hold:

• For any layer i, all the off-diagonal elements of C(i) are tied together and all the
diagonal elements are equal as well. That is,

C(i) = λ
(i)
C I + γ

(i)
C (11⊤)

λ
(i)
C , γ

(i)
C ∈ R ;1 = [1, ..., 1]⊤ ∈ Rk. (4)

• For any layer i, all the off-diagonal elements of A(i) are also tied together and all
the diagonal elements are equal as well. That is,

A(i) = λ
(i)
A I + γ

(i)
A (11⊤)

λ
(i)
A , γ

(i)
A ∈ R 1 = [1, ..., 1]⊤ ∈ Rk. (5)

• For any layer i, all elements in b(i) are equal. That is,

b(i) = β(i)1 β(i) ∈ R 1 = [1, ..., 1]⊤ ∈ Rk. (6)

Proof. Let AGG(i) and COM(i) be the aggregation and combination functions in the ith
layer of A. A is color equivariant if and only if all functions in {AGG(i),COM(i) : i ∈
1, ..., L} are color equivariant. the aggregation function is color equivariant clearly and
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thus we are left to consider the color equivariance of combination functions. Considering
the definition of color equivariant in Definition 4, the color equivariance of combination
function COM(i) = σ(xC(i) + yA(i) + b(i)) is given by:

σ(xC(i) + yA(i) + b(i))P = σ(xPC(i) + yPA(i) + b(i)). (7)
COM(i) is color equivariant if and only if the equation above holds for any permutation
matrix P ∈ Rk×k and any vectors x,y. Considering it holds for any vectors x,y, We
first find three special cases of x and y, which are necessary conditions and correspond
to three conditions respectively:

Case 0. When y = 0, we have that σ(xC(i))P = σ(xPC(i)) holds for any P and
x. That is, x(C(i)P − PC(i)) = 0 always holds, which reveals that C(i)P = PC(i).
C(i)P = PC(i) holds for any P follows that C

(i)
m,m = C

(i)
n,n and C

(i)
m,n = C

(i)
n,m for any

m,n ∈ {1, ..., k}. Therefore, all the off-diagonal elements of C(i) are tied together and all
the diagonal elements are equal as well.

Case 1. When x = 0, we can prove that all the off-diagonal elements of A(i) are tied
together and all the diagonal elements are equal as well following the similar induction in
case 1.

Case 2. When x = y = 0, we have that σ(b(i))P = σ(b(i)) holds for any P . Therefore,
all elements in b(i) are equal.

After proving that these conditions are necessary for a color equivariant A, we proceed
to prove that the conditions above are already sufficient. Let C(i) = λ

(i)
C I + γ

(i)
C (11⊤),

A(i) = λ
(i)
A I + γ

(i)
A (11⊤) and b(i) = β(i)1, COM(i) is then calculated by:

COM(i)P = σ(xC(i) + yA(i) + b(i))P

= σ(xλ
(i)
C IP + xγ

(i)
C (11⊤)P + yλ

(i)
A IP

+ yγ
(i)
A (11⊤)P + β(i)1P )

= σ(xPλ
(i)
C I + xP γ

(i)
C (11⊤) + yPλ

(i)
A I

+ yP γ
(i)
A (11⊤) + β(i)1)

= σ(xPC(i) + yPA(i) + b(i)). (8)

Therefore, COM(i) is color equivariant if and only if the conditions hold, which completes
the proof.

.3 Preproces & Postprocess in Chapter 4

In our method, we add preprocess and postprocess procedures to reduce the problem
complexity and improve the result quality. Note that these techniques are not necessary
for our method, in Appendix .5.4, we list the experimental results without any postprocess
procedures. At the same time, we have implemented these techniques in DGL or by a
series of tensor operations, so that both of them can be efficiently processed by GPU.



CHAPTER 6. APPENDIX 99

Algorithm 6 IterativeRemoval
Input: G = {V, E} → Target graph.
Input: k → Number of available colors.
1: while ∃u ∈ V s.t. degree of u < k do
2: Update degree of the neighbor of u by subtracting one.
3: Remove u in G.
4: end while

Algorithm 7 PostProcess
Input: G = {V, E} → Target graph.
Input: f → Coloring results.
1: Is_changed ← True;
2: while Is_changed do
3: Is_changed ← False;
4: for u ∈ V do
5: for r ∈ {1, ..., k} do
6: if the conflict # reduces when set f(u) to r then
7: f(u)← r;
8: Is_changed ← True;
9: end if

10: end for
11: end for
12: for e = {u, v} ∈ E do
13: if the conflict # reduces when swap color of u, v then
14: swap color of u, v;
15: Is_changed ← True;
16: end if
17: end for
18: end while

Preprocess In the preprocess part, we remove the node with a degree less than k itera-
tively. Because a node with degree less than k will always not contribute to a conflict in
the optimal solution, this kind of removal will not introduce any redundant conflicts. The
algorithm is shown in Algorithm 6. There are many other graph simplification techniques
in the practical applications such as bridge detection [65], we do not focus on these tech-
niques, because the aim of our work is not to develop a very effective coloring method by
powerful pre-process and post-process procedures, but to study the power of GNNs on
the coloring problems.

Postprocess In the postprocess part, we iteratively detect 1) whether a color change in
a single node will decrease the conflict number or 2) whether a swap of colors between
connected nodes will decrease the conflict number. The algorithm is shown in Algorithm
7. Generally, we iteratively check (L2 - L18) each node (L4 - L11) and each conflict edge
(L12 - L17), if one better solution is found, we modify the coloring result to the better
one and continue the iteration.
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.4 Global method

During the exploration of GNNs, the locality of GNNs has been widely observed as an
intrinsic nature. The main concern in previous works is that the locality inhibits GNNs
from detecting the global graph structure, thereby harming the representation power.
In the paper, we discuss one representative ”global” technique: deep layers, and show
that it can enhance the discrimination power while still cannot make AC-GNNd always
global. In this section, we use the notation of the local method defined in our paper, and
look back on previous solutions to see whether they provide a truly global scheme by our
definition. We hope that our analysis can provide some insights on the global GNNs for
future research. We first recap the definition of a local method:

Definition 3 (local method [36]). A coloring method f is r-local if it fails to discriminate
any r-local equivalent node pair. A coloring method f is local if f is r-local for at least
one positive integer r.

To determine whether a coloring method is local or not, we need to, by definition,
determine whether the method is able to discriminate two local equivalent nodes. Consider
a local equivalent node pair, say u, v, we can exam previous global methods by testing
whether the node embeddings of u and v are the same. To simplify the discussion and
only focus on the main point, we summarize and distill the most representative techniques
as follows:

.4.1 Distance encoding [63].

Distance Encoding is a general class of structure-related features to enrich the sub-
structure or even global structure information. In their work, the distance can be repre-
sented in various forms and the distance encoding can be used in two different ways, i.e.,
extra node features and a controller for message passing. For simplicity, we only consider
the case where shortest path distance is used to measure distance and employed as the
extra node features. Formally, the input features with distance encoding is:

h0
v = x0

v ⊕
∑
v∈S

d(u, v) (9)

Here, x0
v is the original node attribute, d(u, v) is the shortest path distance between u

and v, ⊕ is the concatenation mark, and S is the target structure defined in the original
paper, which can be the whole graph, i.e., S = V , or a substructure, i.e., S ∈ V . We
make the following statements:

Property 4. AC-GNNs enhanced by distance encoding ARE global.

Proof. Note that a local method cannot discriminate any local equivalent node pair. We
can finish the proof by contradiction. Assume there exists r > 0 such that the enhanced
AC-GNN is a r-local method, i.e., it fails to discriminate any r-local equivalent node
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pair. We build a connected graph containing 2r + 3 nodes like a linked list. A figure
illustration is given in Figure 1, where the number represents the node index. Assume
all nodes share the same node attribute, i.e., x0

i = x0
j ,∀i, j ∈ {0, ..., 2r + 2}. Consider

the two nodes, vr and vr+1, their depth-r neighborhood are topologically equivalent, i.e.,
BG(vr, r) = BG(vr+1, r). Therefore, {vr, vr+1} is a r-local equivalent node pair. However,
the distance encoding of the two nodes are different, where

∑
v∈G d(vr, v) = r2+3r+3 but∑

v∈G d(vr+1, v) = r2+3r+2, resulting in a difference between h0
r and h0

r+1. Similarly, the
neighbors of vr and vr+1 have the different distance encodings. Therefore, the distance
encoding makes the two local equivalent nodes differentiable by providing a different input
for both aggregation and combination functions, which completes the proof. 1

0 1 r-1 r

2r+1 2r2r+2 r+1

…

…
Figure 1: A contradiction example to prove that the distance encoding makes an AC-GNN
global.

.4.2 Readout function [11].

Barcel et al. [11] proposed a scheme to update node features by aggregating not only
neighbor information, but also the global attribute vector. The function considering a
global attribute vector is also called the readout function. In their work, it is demonstrated
that even a very simple readout function, i.e., summation of all node features, can capture
all FOC2 classifiers, which means that the representation power is improved. Indeed, the
global feature vectors contain some information across the whole graph, and the distance
encoding discussed in Section .4.1 is also a kind of readout function in the form of distance
measurement. But can we declare that AC-GNNs become global methods as long as we use
a readout function? Here, we discuss the simplest form used in [11], aggregate-combine-
readout GNNs (ACR-GNNs), where the readout is calculated by the summation of all
node features. An ACR-GNN is formalized as follows:

h(i)
v =COM(i)(h(i−1)

v ,AGG(i)({h(i−1)
u : u ∈ N (v)}),

READ(i)({h(i−1)
u : u ∈ V})),

(10)

We make the following statement:

Property 5. ACR-GNNs are NOT global.
1We do not discuss extreme cases here, e.g. COM(·) = 0.
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Proof. The intuition for proof comes from the fact that the used readout function, i.e.,
summation of all node features, keeps the same for all nodes. We first prove the following:
Corollary 4. If an ACR-GNN succeeds in discriminating a node pair, an AC-GNN will
also discriminate it.

Given a node pair {u, v} in the graph G. Let h
(k)′
u and h

(k)
u represents the node em-

bedding of u after k layers by an ACR-GNN A′ and an AC-GNN A respectively. Suppose
after k layers, A′ discriminate them, i.e., h(k)′

u ̸= h
(k)′
v , while A fails to discriminate them,

i.e., h
(k)
u = h

(k)
v . It follows that during the layer t from 0 to k − 1, h

(t)′
u = h

(t)′
v and

h
(t)
u = h

(t)
v . That is, for any t from 0 to k− 1, we can create a valid mapping ϕ such that

h
(t)′
v = ϕ(h

(t)
v ) for any node v ∈ V .

Consider the inequality after k layers, since node u and v always have the same readout
term, i.e., READ(k)({h(k−1)′

u : u ∈ V}), combing with Equation 10, it must be the case
that:

(h(k−1)′

v , {h(k−1)′

s : s ∈ N (v)}) ̸=
(h(k−1)′

u , {h(k−1)′

s : s ∈ N (u)})
(11)

That is,
(ϕ(h(k−1)

v ), {ϕ(h(k−1)
s ) : s ∈ N (v)}) ̸=

(ϕ(h(k−1)
u ), {ϕ(h(k−1)

s ) : s ∈ N (u)})
(12)

However, according to the assumption, the AC-GNN fails to discriminate the two nodes,
indicating that the inequality above cannot hold. Hence we have reached a contradiction.

Therefore, we can conclude that the ACR-GNN also cannot discriminate any local
equivalent node pair, making it a local method. Actually, this proof also demonstrates
that such an ACR-GNN is upper-bounded by AC-GNNs in the terms of the discrimination
power.

.4.3 Identity-aware Graph Neural Networks [125].

Identity-aware Graph Neural Networks (ID-GNNs) focus on solving the problem that
the embeddings are only related to the local subtree. The key insight is to inductively
consider the root node during message passing, i.e., whether the aggregated node is the
target node itself. If the aggregated node is the target node, a different aggregation and
combination channel is used so that the ID-GNN is a heterogeneous one. Formally, let
the target node is u, i.e., we are calculating the node embedding of u, then, the mediate
features of other nodes are given by:

h(i)
v,u = COM(i)(h(i−1)

v,u , {AGG(i)
1[s=u](h

(i−1)
s,u ) : s ∈ N (v)}), (13)

Here, h(i)
v,u represents the mediate feature of node v after ith layer when calculating the

node embedding of u, AGG(i) contains two functions, where AGG(i)
1 is applied to the

target node, and AGG(i)
0 is for other nodes. The simple heterogeneous scheme makes the
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target node different from other nodes and therefore sensitive to the identity. However,
such a scheme still fails to discriminate c, d in the Figure 1(a) of our paper. Based on this
observation, we claim the following property:

Property 6. ID-GNNs are NOT global.

Proof. We can finish the proof by showing that ID-GNNs cannot discriminate any lo-
cal equivalent node pair. Given an ID-GNNs A with L layers, let’s consider a L-local
equivalent node pair {u, v} in G by an L-local isomorphism πL, which means that the
two subgraphs BG(u, L) and BG(v, L) are isomorphic and xw = xπr(w) holds for every
w ∈ BG(u, r). Here, we propose a stronger property:
Corollary 5. Given a L-depth ID-GNN and a L-local equivalent node pair {u, v} by π,
hi

s,v = hi
π(s),u holds for any iteration i and any node w ∈ BG(u, r) if i+ d(s, v) ≤ L, where

d represents the shortest distance.
We prove the corollary by a nested induction.
First induction:
This statement, i.e., hi

s,v = hi
π(s),u, apparently holds when i + d(s, v) ≤ 0. Suppose

this holds if i+ d(s, v) ≤ k (first assumption), we now prove that the statement will also
hold when i+ d(s, v) = k + 1 as long as k + 1 ≤ L.

Induction in the induction: For those nodes, say sk+1, whose shortest distance
with v is k + 1, i.e., d(sk+1, v) = k + 1, we have h0

sk+1,v
= h0

π(sk+1),u
since {u, v} is a

L-local equivalent node pair and k + 1 ≤ L. Suppose hi
s,v = hi

π(s),π(v) holds if i = t and
d(s, v) = k+1−t (second assumption), we continue to prove that this will hold if i = t+1
and d(s, v) = k − t.

Consider those nodes, say sk−t, whose shortest distance between v is k − t, i.e.,
d(sk−t, v) = k − t, then ht+1

sk−t,v
is given by:

ht+1
sk−t,v

=COM(t+1)(ht
sk−t,v

,

{AGG(t+1)
1[s=v](h

(t)
s,v) : s ∈ N (sk−t)}),

(14)

According to the first assumption, ht
sk−t,v

= ht
π(sk−t),u

since i+d(sk−t, v) = k. We then
consider the second term in Equation 14, h(t)

s,u : s ∈ N (sk−t). The distance between the
neighbors of sk−t and the root node v ranges from k− t− 1 to k− t+1. For the neighbor
nodes sk−t−1 ∈ N (sk−t) with a distance k−t−1 between v, we have ht

sk−t−1,v
= ht

π(sk−t−1),u

since t + d(sk−t−1, v) = k − 1 ≤ k (first assumption). Similarly, for the neighbor nodes
s′k−t ∈ N (sk−t), the equation still holds since t + d(s′k−t, v) = k ≤ k (first assumption).
For the neighbor nodes sk−t+1 ∈ N (sk−t), the equation ht

sk−t+1,v
= ht

π(sk−t+1),u
also holds

since i = t and d(sk−t+1, v) = k + 1− t (second assumption).
End of the induction in the induction: Hence by mathematical induction hi

s,v =

hi
π(s),π(v) is correct for all positive integers i and d(s, v). Therefore, we show that hi

s,v =

hi
π(s),π(v) holds when i+ d(s, v) = k + 1 ≤ L, d(s, v) and i are positive integers.
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End of the induction: Hence by mathematical induction, hi
s,v = hi

π(s),u holds for
any iteration i and any node w ∈ BG(u, r) if i + d(s, v) ≤ L, such completes the proof of
Corollary 4.

Based on Corollary 4, we can conclude that hL
v,v = hL

u,u, indicating that the L-depth
ID-GNN fails to discriminate u and v, which completes the proof.

.4.4 Randomness.

In the development of GNNs, random schemes are widely-used and studied. Ryoma et
al. [94] and Andreas et al. [73] both prove that the distinct node attributes (even initialized
randomly) enhance the representation power significantly. George et al. [27] propose a
randomly coloring methods to distinguish different nodes and break the local equivalence.
Position-aware GNN [126] makes use of the distance encoding to design a position-aware
GNN, where one of the differences between distance encoding [63] is that the distance is
not measured with a pre-defined set S, but with a set of randomly selected anchor node
sets. In our work, we also demonstrated that the randomness enhances the discrimination
power of AC-GNNs, because nodes are not possible to be local equivalent considering that
their node attributes are initialized randomly. Therefore, we want to know:

Q: Does randomness make AC-GNNs global?
Unfortunately, we are not able to answer the question now. We can only declare that

a random scheme indeed helps to distinguish local equivalent node pair, but it may be
still local. The reason is that the AC-GNNs are not deterministic anymore if we add some
randomness, therefore, the definition of local methods is not available here. In some cases,
the upper bound (or lower bound) remains when the function becomes not deterministic,
but a formal proof is needed in our case. We look forward to a deeper discussion on the
discrimination power of randomness in AC-GNNs, and leave this as our future work.

.5 Supplementary Experiments in Chapter 4

.5.1 Experiment & model settings.

Experiments. We implemented our experiments in the PyTorch Deep Graph Library
(DGL) [109]. We conducted all experiments on a server with a Titan X GPU and an E5-
2630 2.6 GHz CPU. Besides GNN-GCP and tabucol compared in the paper, we also
implement integer linear programming (ILP) based solver by Gurobi [83], and three
heuristics coloring methods which are used as baselines in [48]. In the supplementary
experiments, 80% randomly selected samples in the layout dataset are separated into the
training dataset (for trainable models) and the testing dataset contains the remaining
samples. In the paper, we only run our model once with a specified k and obtain the cost
(conflict number), in the supplementary experiments, we sometimes need to calculate the
chromatic number by our model, i.e., calculate the minimum k that achieves a zero cost.
To do this, we iteratively run our model and add k by one after each iteration until a zero
cost is received.
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Network and training. A detailed network and training setting is covered in the Ap-
pendix. Layout dataset is used as the training data and we will show that our TreeNet
trained on these small graphs can generalize to much larger ones such as Citation dataset.
Other datasets are comprised of either (1) a single graph, or (2) graphs with varying
chromatic numbers, which are not suitable for training, especially for other variations.
During training, we initialize the variables of TreeNet in each layer as:

λ
(i)
C = 1, γ

(i)
C = 0, λ

(i)
A = −1, γ(i)

A = 0, β(i) = 0 (15)

The initialization is motivated by the truth that neighbors of each node should be assigned
as different colors as the node.

Model hyperparameters. If not specified, all AC-GNN variations have 2 layers and the
hidden dimension is 64. Other training parameters of these variations keep the same with
our proposed TreeNet . We use the Adam [53] optimizer with a 1024 batched graph (if
batch-graph is possible) and a learning rate 0.001. Training proceeds for 10 epochs and
takes about one hour. More detailed default hyperparameter values can be found in our
released code, i.e., color_arg.py.

Datasets. We totally evaluate performance on five datasets.
(1) The layout dataset, which is composed of many simplified small but dense layout

graphs transformed from circuit layout. This dataset is widely used as the benchmark
for the layout decomposition problem [50, 66, 132], a similar problem in the industry
manufacturing based on the graph coloring problem. The number of available colors k is
set to 3 following previous works;

(2) The citation networks (Cora, Citeseer, and Pubmed) [98] that contains real-world
graphs from academic search engines. We follow the setting in [69] and regard them as
the coloring scenario for large but sparse graphs, hence dismissing their original node
attributes and edge directions. k in Cora, Citeseer, and Pubmed are set to 5, 6 and 8
respectively;

(3) Three random graph distributions namely: random power-law tree, Watts-Strogatz
small-world and Holme and Kim model [112, 45], some works [60] evaluated them on the
graph coloring problem. k is set from 2 to 5 due to its randomness. The settings to
generate the random graphs are: random power-law tree (γ=3), Watts- Strogatz small-
world (k = 4, p = 0.25) and Holme and Kim model (m = 4, p = 0.1), To fit the problem
context and prevent miscalculations, we removed all self-loops in the testing graphs and
added duplex connections between connected nodes;

(4) COLOR dataset2 that contains medium sized graphs, which is also the most es-
sential dataset in the graph coloring community [60, 38, 116]. Here, we select instances
following [60], other instances show a similar trend in our experiments;

2https://mat.tepper.cmu.edu/COLOR02/

https://mat.tepper.cmu.edu/COLOR02/
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(5) Regular dataset that contains d-regular graphs with size n. We use NetworkX [?]
to randomly generate 100 graphs whose density is 16 and graph size is 128. The color
number is set to d/ log d+ 1 = 5.

For some tasks (Random, Citation) whose available color numbers k are not specified,
we assign k as the chromatic numbers of graphs, which are obtained from the CSP Solver3.
Each graph G is first preprocessed by removing vertexes iteratively following steps in
[132, 50].

.5.2 Comparison with other methods.

We compare our method with the other three heuristics coloring methods use in [48] and
ILP based method. We only compare these methods in the layout dataset, because ILP
even cannot solve others within 24 hours. The three heuristic algorithms are summarized
as follows:

Static-ordered: Coloring nodes in the order of node IDs.
Sorted-ordered: Coloring nodes in the largest degree first manner.
Dynamic-ordered: Coloring nodes in the largest degree first manner, while the

degree is updated when coloring nodes, i.e., the neighbors of the colored node will decrease
their degree by one.

The results are shown in Figure 2. We measure the average predicted k (minimal color
number to be conflict-free) on four different graph size |V|, i.e., small (|V| <8), Medium
(8 ≤ |V| < 16), Large (16 ≤ |V| < 32), Huge (32 ≤ |V|). All methods contain a pre-
process procedure for a fair comparison. From the results, we can see that Our method
achieves exactly the same performance with ILP in all graphs except the huge one. Note
that ILP is an optimal coloring solver, indicating that our method reaches the optimality
for relatively small graphs. However, even for such small cases, three heuristic algorithms
fail to be close to ILP or our method. For large and huge graphs, the average k is increased
by more than 10% for static and dynamic algorithms. With the growth of the graph size,
our method becomes more and more advanced compared with these heuristic algorithms.

.5.3 Ablation study

Model depth In our paper, we show that a deep AC-GNN is a more powerful coloring
solver (Property 3). Here, we validate our conclusion by experiments. The results on
layout dataset are shown in Figure 3(a), where the solved ratio is defined as in paper, i.e.,
the ratio between the number of edges without introducing conflicts and the number of
total edges. According to the results, we can conclude that a deeper model indeed has a
more positive influence on the results. However, the ratio improvement gradually slows
down and eventually stops as the model goes deeper: when the model is deeper enough, it
is able to cover all graphs in the layout dataset. The results on regular dataset as shown in
Figure 3(b) also align with our proof. With the increase of the model depth, our method

3https://developers.google.com/optimization/cp/cp_solver

https://developers.google.com/optimization/cp/cp_solver
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Figure 2: Comparison with other heuristic methods.

becomes more powerful regardless of what the aggregation function is. The phenomenon
also demonstrates the theorem in [73], i.e., the product of the GNN’s depth and width
must exceed a polynomial of the graph size to obtain an optimal result.

Injective function In Property 3, we demonstrate that an injective aggregation and
combination function guarantee a more powerful AC-GNN. In our proposed GDN, we
use summation as the aggregation function since sum aggregators can represent injective
function over multisets (Lemma 5, [117]). Here, we replace summation with mean ag-
gregator to see its performance in the regular dataset. The results are shown in Figure
3(b), we can see that our method with sum aggregator is always better than the mean
aggregator among all depths.

Integrated AC-GNN & Equivalent nodes In Property 1 and Property 2, we state
the drawbacks of integrated scheme and equivalent nodes in the coloring problem. To
solve these issues, we respectively summarize two rules to make AC-GNN more powerful:
Do not use integrated AC-GNN and avoid equivalent nodes by assigning nodes different
attributes. We also try two variations of our methods, where the first one integrates the
aggregation and combination:

h(i)
v = λ

(i)
C (h(i−1)

v +
∑

u∈N (v)

h(i−1)
u ) + β(i)1 (16)

The second one set the node attribute as the same one while keep other steps the same.
However, both variations fail to discriminate any two nodes, resulting in a zero solved
ratio on all datasets after several layers.
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Figure 3: Comparison with different model depth and mean aggregation.

.5.4 Other discussion.

Postprocess. We discuss the influence of our proposed GPU-friendly postprocess on
the result quality and runtime. We compare our method with postprocess and without
postprocess on layout dataset (Table 2 ) and normal dataset (Table 1). In the layout
dataset, the relatively simple one, our post process can reduce the average predicted k
by 1%. More importantly, the postprocess part makes our method optimal for more
than 99.9% layout graphs except for the huge one, which occupies less than 0.1% in
the total dataset. In the harder normal dataset, the conflict will increase by 73.4% if
postprocess is not used, as a scarifies, the runtime is increased by 12.8% when using
postprocess. However, compared with the significant accuracy improvement, the time
loss is acceptable, especially under the occasion that our method is 500× faster than a
heuristic algorithm with a similar-quality. In Table 1, our method without postprocess
sometimes even results in a better solution than the one with postprocess, this happens
because we randomly initialize our node attribute, resulting in a slightly different solution
everytime. Actually, we can further improve our performance by a repeated running like
previous coloring methods [137, 15, 103], but our target is to provide insights for powerful
GNNs on coloring problems instead of developing a powerful coloring solver by some
simple tricks.

Other techniques for heterophily. In [139], they propose a concatenation technique for
tasks under heterophily, i.e., concatenate all features in the middle layers, and compute
the final embedding using the concatenated result. We also implement it for comparison,
the results are shown in Table 2. According to the table, we can see that it fails to be
effective in the coloring problem, which even increases k a little bit. Nevertheless, it is
still an open and interesting question to find the effective techniques in the coloring tasks,
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Table 1: The results of our method without postprocess on the normal dataset.

Ours Ours w.o. post
cost time cost time

jean 0 0.13 0 0.11
anna 0 0.17 0 0.15
huck 0 0.13 5 0.11
david 1 0.19 0 0.17
homer 1 0.29 1 0.26
myciel5 0 0.12 0 0.10
myciel6 0 0.21 1 0.18
games120 0 0.08 0 0.07
Mug88_1 0 0.01 0 0.01
1-Insertions_4 0 0.07 0 0.07
2-Insertions_4 2 0.08 1 0.07
Queen5_5 0 0.05 7 0.04
Queen6_6 4 0.05 5 0.04
Queen7_7 11 0.06 15 0.05
Queen8_8 7 0.06 16 0.05
Queen9_9 10 0.09 18 0.06
Queen8_12 7 0.09 14 0.08
Queen11_11 24 0.07 38 0.07
Queen13_13 42 0.08 68 0.08
ratio 1.000 1.000 1.734 0.872

Table 2: The results of our methods without postprocess and with concatenation on the layout
dataset. k is the average predicted chromatic number, and the ↑ (%) is the increase compared
with Our original model.

Small Med. Large Huge
ILP k 3.0505 3.0151 3.0425 3.0612
Ours k 3.0505 3.0151 3.0425 3.0645
Ours k 3.0548 3.0181 3.0451 3.0669
w.o. post ↑ (%) 1.4 1.0 0.9 0.8
Ours k 3.0512 3.0151 3.0425 3.0653
w. concat ↑ (%) 0.3 0 0 0.3



CHAPTER 6. APPENDIX 110

and even in the general tasks under heterophily.

2 End of chapter.
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