L))

Check for
updates

DRC-SG 2.0: Efficient Design Rule Checking Script
Generation via Key Information Extraction

BINWU ZHU and XINYUN ZHANG, The Chinese University of Hong Kong
YIBO LIN, Peking University
BEI YU and MARTIN WONG, The Chinese University of Hong Kong

Design Rule Checking (DRC) is a critical step in integrated circuit design. DRC requires formatted scripts as
the input to design rule checkers. However, these scripts are manually generated in the foundry, which is
tedious and error prone for generation of thousands of rules in advanced technology nodes. To mitigate this
issue, we propose the first DRC script generation framework, leveraging a deep learning-based key informa-
tion extractor to automatically identify essential arguments from rules and a script translator to organize the
extracted arguments into executable DRC scripts. We further enhance the performance of the extractor with
three specific design rule generation techniques and a multi-task learning-based rule classification module.
Experimental results demonstrate that the framework can generate a single rule script in 5.46 ms on average,
with the extractor achieving 91.1% precision and 91.8% recall on the key information extraction. Compared
with the manual generation, our framework can significantly reduce the turnaround time and speed up pro-
cess design closure.

CCS Concepts: « Hardware — Methodologies for EDA;

Additional Key Words and Phrases: Design Rule Checking, natural language processing, key information
extraction

ACM Reference format:

Binwu Zhu, Xinyun Zhang, Yibo Lin, Bei Yu, and Martin Wong. 2023. DRC-SG 2.0: Efficient Design Rule
Checking Script Generation via Key Information Extraction. ACM Trans. Des. Autom. Electron. Syst. 28, 5,
Article 80 (September 2023), 18 pages.

https://doi.org/10.1145/3594666

1 INTRODUCTION

Design rule checking (DRC) is an important step in electronic design automation (EDA)
flow. It checks whether a layout conforms to a set of design rules, which specify certain geometric
and connectivity restrictions to ensure sufficient process window in manufacturing and guarantee
the proper functionality. Figure 1 sketches the complete DRC flow, consisting of two phases. (1)
Rule making: Manufacturers first specify the essential design rules based on their manufacturing
capability and then convert them into the executable DRC scripts manually, which is illustrated in

This work is supported The Research Grants Council of Hong Kong SAR (Project No. CUHK14208021).

Authors’ addresses: B. Zhu, X. Zhang, B. Yu, and M. Wong, The Chinese University of Hong Kong; emails:
bwzhu@cse.cuhk.edu.hk, xyzhang21@cse.cuhk.edu.hk, byu@cse.cuhk.edu.hk, mdfwong@cuhk.edu.hk; Y. Lin, Peking Uni-
versity; email: yibolin@pku.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-4309/2023/09-ART80 $15.00

https://doi.org/10.1145/3594666

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

https://orcid.org/0000-0001-8625-1502
https://orcid.org/0000-0002-7763-7507
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0001-8274-9688
https://doi.org/10.1145/3594666
mailto:permissions@acm.org
https://doi.org/10.1145/3594666
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594666&domain=pdf&date_stamp=2023-09-08

80:2 B. Zhu et al.

Minimum overlap

Rules Set |of M1A and M1B is DRC Scripts
1um

n _q Manual MI1A = layer(1, 0)
» — Translation [M1B = layer(2, 0)

[ap— /_\ errors = M1A.drc(
» — O

Design Rule

Checker Violation Report

O Q>
J
Foundry: Rule Making VLSI Designer: Rule Checking

Fig. 1. Entire design rule checking flow.

KLayout Script Guardian Script LayoutEditor Script
Layer:

MI1A = layer(1, 0) M1A (1, 0), M1A=1

M1B = layer(2, 0) MI1B (2, 0) Mi1B=2

errors = M1A.drc(InDistance: layout->drcTool->
overlap(M1B)>= layerl = M1A, minimumOverlap
1.um) layer2 = M1B, (M1A, M1B, 1)

limits >=1

Fig. 2. Script languages vary in different checkers.

the first phase of Figure 1. (2) Rule checking: These scripts are provided to a design rule checker,
such as KLayout [1] and LayoutEditor [2], to verify the correctness of the layout design.

Modern DRC process is time-consuming and error prone mainly in three aspects. (1) With the
rapid development of semiconductor technology and the shrinking size of integrated circuits, the
number of rules has grown from a few hundred in 65-nm nodes to thousands of rules in 7-nm
nodes. (2) Different checkers require different script languages, resulting in additional efforts to re-
implement and transfer scripts between checkers, as shown in Figure 2. (3) Some design rules can
be very complicated, e.g., with complex conditions, which may easily lead to misunderstanding.

In the past few years, advanced deep learning techniques have spawned many frameworks for
effectively and efficiently solving EDA problems, including physical design [3-6], mask synthe-
sis [7-10], physical verification [11-14], testing [15-17], and so on. The literature has also explored
to accelerate the rule checking phase in DRC with deep learning techniques and demonstrated
promising efficiency with acceptable accuracy. For example, A. F. Tabrizi et al. [18] proposed to
extract features from a placed netlist and feed to a neural network to detect short violations in
detailed routing. R. Islam et al. [19] developed the ensemble random forest algorithm to predict
DRC violations before global routing.

Despite the previous efforts to accelerate the rule checking phase with deep learning techniques,
the rule-making phase is still done manually, which requires more and more turnaround time with
increasing numbers of design rules in advanced technology nodes. In preliminary work, we argue
that it is of great importance to ease the manual workload in the rule-making procedure. In ac-
cordance with this argument, we have proposed a DRC script generation flow (DRC-SG) in
Reference [20], where the rule-making problem is formulated into a natural language processing
task, which can be conducted automatically by computers. To the best of our knowledge, Refer-
ence [20] is the first work to investigate methods for efficient DRC script generation. As shown
in Figure 3, the proposed flow in Reference [20] relies on an automatic DRC script generation
engine that consists of two stages: (1) a deep learning-based key information extractor to automat-
ically identify the essential arguments of rules and (2) an automatic script translator to generate

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:3

Minimum overlap
of M1A and M1B is
Rules Set 1um Key Information DRC Scripts
[] % Key
Information “Object”: “M1A”, Auto- MI1A = layer(1, 0) Quick
u — Extractor “Relation Object”: Translator |y layer(2, 0) Correction
" — “M1B”, 7 errors = M1A.dre(
“Property”:“overlap”,
u — I:I “Lower Bound”: “1
um”
(= >
Focus of Our Work

Fig. 3. Our proposed automatic DRC script generation (DRC-SG) flow. This is the optimization aiming at
the rule-making phase in Figure 1.

scripts based on the key information extracted. The quality of the generated script is correlated to
the accuracy of the key information extractor.

There are several advantages of the script generation flow in Figure 3. For example, with an
efficient and accurate key information extractor, most generated rules are correct, so process en-
gineers only need to do quick verification and make minor corrections on a few rules, which can
significantly reduce the manual efforts and the turnaround time. In addition, our flow is highly
adaptive to different design rule checkers with different script languages, as the key information
extractor is a common component, and the script translator can be easily modified to accommo-
date new language formats. However, there still exist some defects in our preliminary design. For
example, our previous flow does not fully leverage the rule information provided by the process
design kit, such as the category of each design rule. The extractor will have stronger rule under-
standing abilities if the model is trained to recognize the rule type. In addition, the imbalance issue
of the dataset used for training our key information extractor is not considered. It is acknowledged
that an imbalanced dataset will harm the performance of a deep learning-based model, which may
cause the model to be biased toward the major class in the dataset. In this work, we solve such an
issue by optimizing the loss function. The main contributions are summarized as follows:

e We propose an efficient DRC script generation flow and design dedicated deep learning tech-
niques based on the state-of-the-art natural language processing model to accurately extract
key information from design rules. Our proposed flow can be flexibly applied to different
checkers.

e We develop data generation techniques based on the special language structures of design
rules to expand the dataset, overcoming the dilemma of lacking design rule data for academic
research.

e We build up a rule type prediction head for the extractor based on the multi-task learning
paradigm to further improve the accuracy of the extracted information.

o A weighted cross-entropy loss function is customized for our key information extractor to
overcome the imbalance issue from the training dataset.

e Experimental results on 7-nm technology node demonstrate that our extractor achieves
91.1% precision and 91.8% recall on the key information extraction task. Besides, it only
takes 5.46 ms on average for our flow to generate the script of a single design rule.

The rest of this article is organized as follows. Section 2 introduces the problem formulation
and terminologies related to this work. Section 3 illustrates the details of the preliminary work,
including methods for rule data generation, and components of our proposed DRC-SG flow. Section
4 describes the techniques to enhance the performance of the preliminary DRC-SG flow. Section
5 shows the benchmarks and the experimental results, followed by the conclusion in Section 6.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

80:4 B. Zhu et al.

Word Classification Key Information
None | PRO | PRO | None | OBJ | None | LOW | LOW |
{
“Object”: “ACT”,
“Property”: “vertical
width”,
. “Lower Bound”: 48
Design Rule nm”

}

Minimum vertical width of ACT is 48 nm |

@

Word Classification Key Information

|None| PRO |None| OBJ |None| REL | REL | REL | REL |None|CON|CON|CON|CON|None| urP | urP | (

“Object”: “LIG”,
“Relation Object”:“LISD
interacting with M1”,
“Property”: “spacing”,

“Condition”: “both edges > 36 nm”
“Upper Bound”: 56 nm”
}

Design Rule

Maximum spacing between LIG and LISD interacting with M1 when both edges > 36 nm is 56 nm |

(b)

Fig. 4. Key information extraction process on (a) simple rule and (b) complex rule. (PRO means Property,
OBJ means Object, LOW means Lower Bound, and CON means Condition.)

2 PRELIMINARIES
2.1 Design Rule Key Information Extraction

Extracting key information from natural language design rules is critical in our proposed script
generation flow. It can be converted to such a problem that a specific word should be classified into
a particular category, termed as a semantic role, such as the property to be checked or a specified
minimum value. In this way, the problem can be considered as a word classification problem. We
provide two examples as shown in Figure 4(a) and Figure 4(b) to illustrate the extraction process,
where one rule is a simple rule and the other rule is relatively complex. All specified semantic roles
will be further explained in Section 3.1. After finishing the word classification task, the categories
and related words can be paired and then stored into a data structure, which is exactly the key
information extracted from design rules. The following script translator simply organizes the ex-
tracted information into the final scripts; therefore, the accuracy of the generated scripts mainly
depends on the extractor performance.

To quantitively evaluate the extractor performance, we adopt the widely used metrics in
multi-class classification problem including precision, recall, and F1 score. To illustrate these
metrics clearly, we first give the confusion matrix as shown in Table 1, where the rows present
actual classes while columns show the prediction results. For example, given a word belonging to
a specific semantic role category S, TP means that the category of the word is correctly predicted
while FN means that the word is predicted as other categories instead of S. Based on the confusion
matrix in Table 1, we give the definition of each metric as follows:

Definition 1 (Precision). Precision describes the proportion of positive predictions that is actually
.. _ P
correct, formulated as Precision = TPATP-
Definition 2 (Recall). Recall describes the proportion of actual positive samples that is correctly
classified, formulated as Recall = %.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:5

Table 1. Confusion Matrix

Prediction
Positive | Negative
Positive TP FN
Actual Negative FP TN

Definition 3 (F1 Score). The F1 score is the harmonic mean of the precision and recall, formulated
as F1 = 2 « Precision#Recall
- Precision+Recall *

2.2 Transformer and BERT

Recently, Transformer [21] has made much progress in sequence-to-sequence tasks [22-24].
BERT [22] is one of the most famous models built with the Transformer encoder and has been
widely used as a backbone to extract features from sentences to solve many natural language
processing problems such as Question Answering [25], Machine Translation [26], and so on. To
illustrate BERT [22], we first introduce the structure of Transformer encoder.

As shown in Figure 5(a), Transformer encoder consists of multiple layers, of which the most
important one is the multi-head self-attention, allowing the model to attend to information at
different positions globally [21]. Given the input representation of a sequence {xi,x3,...,Xn},
Transformer encoder first packs the sequence as a matrix, represented as X € R™ %= where n is the
length of the sequence and dy, is the dimension of each element. Then, the multi-head self-attention
layer projects the input matrix X onto three different subspaces, which can be represented as

(0,K, V) = (XW, XWX xwV}, (1)

where W2, WK and WV € R%>dm are three projection matrices, which project input matrix X
onto Q, K, and V, respectively. Q, K, and V are called query, key, and value as named in Trans-
former [21]. The output of multi-head self-attention layer can be formulated as

MultiHead(Q, K, V) = Concat (Hy, ..., H,) W°, (2)

where H;,i € {1,2,...,h} is the output of a single scaled dot-product attention head as shown
in Figure 5(b) and h is the number of heads. The multi-head self-attention layer concatenates all
the outputs H;,i € {1,2,...,h} from different heads and then reduces the high dimension fea-
ture Concat (Hy, . .., Hy) to low dimension via another projection matrix WO. To illustrate the
dimension of H; and W©, we first give the formulation of H; as follows:

H; = Attention (QW,°, KW, vW")

ow? (kwx)" S 3)

Vi l

For each attention head, the original input Q, K,V are further projected onto different subspaces
via projection matrices WiQ, Wl.K € Rm>di_ Wl.V € R9m*dv gq that different heads deal with dif-
ferent input to learn richer information [21]. The attention head then computes the similarity
between projected query and key via scaled dot-product and a softmax function is applied to ob-
tain the weights on projected value. As calculated in Equation (3), the output of each attention
head H; is a d,, X d,,, matrix. The concatenated matrix Concat (Hy, . .., Hy) is a n X hd,, matrix and
WO isahd, xd,, projection matrix.

As for BERT, the architecture is shown in Figure 5(c), which is based on stacked Transformer en-
coder blocks [21] and hence incorporates the superiority of multi-head self-attention. In addition,

= softmax

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

80:6 B. Zhu et al.

[Scaled Dot—ProCiuct Attention

o o o /h
[Linéar II (Lir{éar | I [Linéar Il
)))
y

Query Ke Value
(b)
Nx
A
wq f 1
Word Transformer|. . | Transformer | .
Embedding Encoder |’ " | Encoder |’
wn Ja

(©)
Fig. 5. (a) Transformer Encoder. (b) Multi-Head Self-Attention. (c) BERT.

another significant advantage of BERT [22] is that it has been fully pretrained by two complex
tasks, Cloze and Next Sentence Prediction (NSP). In the Cloze task, some of the words from the
input sentence are randomly masked, and the objective is to predict the masked words. As for the
NSP task, it predicts whether one sentence is followed by the other sentence. Since these two tasks
do not require any manual annotations, the model can be trained on two extremely huge datasets,
BooksCorpus (800M words) [27] and English Wikipedia (2500M words). As a result, the pretrained
BERT has been equipped with strong language representation ability and can be easily fine-tuned
for other language tasks.

3 DRC-SG FRAMEWORK

To design a powerful key information extractor, both data and architecture design are important.
In Section 3.1, we first consider how to label the design rules for effectively training the extrac-
tor. Then, in Section 3.2, we propose three design rule generation techniques to expand the rule
dataset. The architecture of the extractor is illustrated in Section 3.3. In addition to the extractor,
in Section 3.4, we explain how to design a rule-based translator to generate the scripts based on
the extracted information.

3.1 Semantic Roles

As illustrated in Section 2.1, extracting key information from design rules is inherently a word
classification problem. In our task, categories of words are determined based on their semantic
roles in sentences. Design rule data for training our key information extractor is from an open-
source design kit, FreePDK15 [28]. To clearly classify different words, we first clarify all essential
semantic roles for rules in FreePDK15 [28].

Some prior works for semantic role labeling studies [29, 30] have defined roles for universal
natural languages. However, semantic roles to be considered are relatively different for rule sen-
tences in integrated circuit design. For example, numerical expressions are less frequent in these
studies and usually not attributed to a separate category. In contrast, they exist in most design

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:7

Table 2. Explanations of All Semantic Roles Defined in Our Work

Semantic Roles Meanings Examples

Object Target layer of checking rules. Minimum vertical width of ACT is 48 nm.
Additional layer that have relationships
with target layer.

Property Property to be checked of the target layer. Minimum vertical width of ACT is 48 nm.
GATEC shape bottom or top must be aligned

Relation Object Minimum extension of GATEAB past ACT is 38 nm.

Condition Logical conditions for particular layers. if distance is less than 192 nm.
Restriction Geometric restrictions that layers should follow. GIL may not bend.
Lower Bound Minimum value of the property to be checked. Minimum vertical width of ACT is 48 nm.

Maximum distance of GATEAB to neighboring
shape is 236 nm.

Exact Value Exact value of the property to be checked. Exact horizontal spacing of ACT is 80 nm.
None Words do not belong to any above semantic roles Vertical length of AIL1 is 58 nm.

Upper Bound Maximum value of the property to be checked.

The bold parts belong to the roles defined in their rows.

rules and are core components of the extracted key information. Moreover, semantic roles of nu-
merical expressions are supposed to be further divided into three categories, i.e., “Lower Bound,”
“Upper Bound,” and “Exact Value,” which help adapt to different design rules flexibly as well as
avoid confusion. We list all customized semantic roles for our task along with their meanings and
examples in Table 2.

3.2 Rule Data Generation

Open-source design rules for academic research are relatively rare. Our training dataset,
FreePDK15 [28], only contains around 130 rules. To help the key information extractor avoid over-
fitting and generalize better on those unseen rule data, we are supposed to expand the dataset
before training.

Nevertheless, rule generation for our task is heavily restricted. On the one hand, since the extrac-
tor receives the design rule sentences, we are supposed to guarantee that all generated rules are
both syntactically and semantically correct. On the other hand, as our task is a classification task,
semantic role labels need to be assigned to each word, which is extremely expensive. Data aug-
mentation is one kind of dataset expansion technique, referring to adding slightly modified copies
of already existing data or newly created synthetic data from existing samples. There are many
widely used augmentation methods for image data, including rotation, cropping, and noise in-
jection, all of which are quite effective for generating new image samples. Encouraged by these
methods in image tasks and considering the unique properties of our rule data, we customize three
generation techniques as follows:

Word Order Adjustment. Inspired by the rotation technique for image data augmentation,
we propose to adjust the word order of a rule without modifying its meaning. For example, we
can settle the conditional adverbial clauses at the start or the end of the sentence, as shown in
Figure 6(a). For the human, the reordered sentence can be regarded as the same as the original one.
However, from the perspective of the extractor, the input rule is a sequence [wy, W, . . ., W,] where
w; stands for a word. If the order is changed, then the word of each position in the sequence will be
different. Moreover, since our adjustment operation is simply changing the position of conditional
adverbial clauses and does not change any sentence content, the syntactical correctness of the
generated rules can be guaranteed. In addition, adjusting the order will not affect the semantic
role labels of words, and thus no extra annotations need to be done.

Paraphrasing. In contrast to word order adjustment, paraphrasing can produce a new rule that
does not change the meaning but has different expressions. To be specific, we can replace some
words with synonyms or change the sentence structure, e.g., from passive to active voice, and an

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

80:8 B. Zhu et al.

Original GATEC shape bottom or top must be aligned

Rule if distance is less than 192 nm
If distance is less than 192 nm, GATEC shape
Reordered .
bottom or top must be aligned
(@
Original o . . .
Rule Minimum vertical width of M1A is 48 nm.

Paraphrasing| The vertical width of M1A is at least 48 nm

(b)

Area, width,
length
(any property)

38, 48, 80
(any numerical
expression)

ACT, GATE,
M1 (any layer
name)

Lo e e

Minimum | Property |of | Object Lower Bound | nm

.
7}

Fig. 6. Three rule data generation methods. (a) Word Order Adjustment, (b) Paraphrasing, and (c) Template
Filling.

example is given in Figure 6(b). To reduce the manpower work, we first rely on a paraphrasing
tool called QuillBot [31] and then check the correctness of the generated paraphrases by ourselves.
Although paraphrasing will modify some words, which require extra annotations, there are still
many words not replaced, whose semantic roles also stay unchanged. Therefore, the annotation
workload can be reduced remarkably.

Template Filling. The generated design rules from the previous two methods are still confined
to the meaning of the original ones, making it challenging to generate sufficient training data. To
take a further step, we propose the third method, template filling. After applying the previous
two generation methods, we can obtain a series of design rules with diverse sentence structures.
We notice that many rules have similar structures, e.g., “Minimum width of ACT is 42 nm” and
“Minimum length of GATE is 28 nm.” To generate more design rule data, we first extract many
templates from design rules and a representative template is “Minimum Property of Object is
Lower Bound nm,” as shown in Figure 6(c). For example, we can fill in words related to the prop-
erty, like “width,” “length,” and “area,” in the Property part. And we can fill in words related to
the layer name, like “ACT,” “GATE,” and “M1” in the Object part. Also, numerical value can be
filled in the Lower Bound part. With such a template, once we associate words in the bold part,
the syntactical correctness of the generated rules can be guaranteed. By filling in the designed
templates via different combinations, a large number of design rules can be collected for training,
which benefits the generalization ability of the extractor dramatically. More importantly, we do
not need to annotate the data manually, since the semantic roles have been specified in advance.

After applying our customized data generation methods, we obtain 2,830 new design rules,
which effectively expand our rule dataset and contribute to training our key information extractor.

3.3 Key Information Extractor

To classify all words from design rules into their corresponding semantic roles, we build up a deep
learning-based language model. The overall architecture of our framework is illustrated in Figure 7.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:9

Word Classification Head

N\ e 2"

Condition
Random
Field

Feed
Forward

Design Preproce

Rl woing BERT

Output

Fig. 7. Architecture of the key information extractor in DRC-SG.

Input Preprocessing Module. Before feeding the design rules into our extractor, some prepro-
cessing operations need to be conducted. The first one is to split the rule into a list of words for
the later word classification task. Besides, since different rules vary in sentence length, we extend
the word list length to a fixed value L by padding a special word “[PAD].” The whole procedure is
formulated as

Preprocess(r) = [wi, Wa, ..., Wien(r), [PAD], ..., [PAD]], (4)
—,———
L-len(r)

where r is the input design rule. w;,i € {1,2,...,len(r)} represents each word of r, and len(r) is
its sentence length.

Backbone. Following the design paradigm of the deep learning model, we first need a backbone
module to obtain a good feature representation from input rules. Determining the semantic role
of each word is closely related to its sentence, and one word may have different semantic roles in
different rules like “ACT” in the first and second examples in Table 2. Therefore, the backbone is
supposed to have strong abilities to capture the context information.

Instead of designing a backbone from scratch, we adopt a powerful language model, BERT [22],
as the feature extractor, which proves to have prominent feature extraction ability according to
many natural language processing works like References [25, 26]. As explained in Section 2.2, based
on the self-attention mechanism, BERT is able to model interactions between any two different
words in a sequence; therefore, the extracted feature of each word is closely correlated with the
contexts. Besides, BERT has been fully pretrained, which means that we can fine-tune it from the
pretrained parameters, notably speeding up the training procedure.

Given the word list after preprocessing, the backbone will first encode words into vectors and
then feed them into stacked Transformer encoder layers. The output feature is represented as
F° € RM where d} is the dimension of the word feature and L is the length of the input sequence.

Word Classification Head. With the purpose of classifying each word, we feed F° into a word
classifier, which is a simple feed-forward neural network composed of two fully connected layers.
The output is represented as P¥¢ € RIXNwe where N, is the number of categories, and the
element P}"/ stands for the score of the word w; belonging to label j.

However, such a prediction head does not take the relationships between different labels into
consideration. We can force the word classification head to effectively avoid those impossible pre-
diction sequences. For example, according to the common natural language expression habits, “Re-
lation Object” is impossible to directly follow “Object” since there must exist some conjunctions
between them. As a result, the extractor performance can be further improved by evaluating the
rationality of the entire prediction sequence. To achieve this, we build a probability model, condi-
tion random field (CRF) [32], on top of the word classifier, whose parameters are a label transi-
tion matrix, represented as K € RWwet2)X(Nwet2) The element of the label transition matrix K; ;

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

80:10 B. Zhu et al.

describes the probability of transitioning from label i to j. Two additional states included in K stand
for the “start” and “end” of the sequence. In such a case, given a design rule r, the probability of a
prediction sequence y is calculated from softmax function as

exp S(r,y)
Ygev, expS(r,g)’

where Y, represents all possible prediction sequence results given the rule r. S(r,y) is used to
measure the score of prediction y, which can be formulated as

plylr) = ®)

L-1 L
S(ra y) = (Kstart,yl + Z K wyin T KyL,end) + ZP,‘,M; (6)
i=1 i=1

In this way, S(r,y) is able to measure the reasonableness of the label sequence itself.

Loss Function. After constructing the whole architecture, we need to specify the loss function
to train our key information extractor. In the CRF module, we should maximize the ground-truth
probability p(g|r), where g is the actual label sequence for the rule r. Based on this maximization
objective, the loss function £,,. of the word classification head can be formulated in the negative
log-likelihood format as follows:

Loye = Lepp = —logp(glr)
(7)

-S(r,g) + log Z exp S(r,9)

jev,

3.4 Script Translator

The script translator in the second stage of our proposed flow is used to translate the extracted
key information into the DRC scripts. When transferring to other checkers, we can preserve the
extractor and simply replace the translator. The translator design is similar and simple for different
checkers, and here we take the Guardian checker [33] as an example.

DRC script is composed of function calling statements. When given the key information, the
functions to be called mainly depend on the checking properties. To conveniently search the re-
quired function, we can pair the properties and functions together, as shown in Figure 8. In addition,
to automatically pass the key information to the function, we also need to connect the parameters
of different functions with our semantic roles. As we clearly define the fine-grained semantic roles
in Table 2, the relationships can be easily established, for example, parameters that receive the
layer name correspond to “Object” or “Relation Object” and parameters that receive the checking
value correspond to “Lower Bound” or “Upper Bound” or “Exact Value.”

To better illustrate the entire script translation process, we take the translation process of an
overlap rule as an example, which is shown in Figure 8. Layer is a regular function for each
Guardian script and receives the layer names along with their identifiers, which depend on the
specific layout design. InDistance function receives two layer names and the value to check
the overlap. It can be observed that all the required arguments passed to these two functions can be
easily obtained from the extracted information. By automatically filling them into the correspond-
ing placeholders, we obtain the final script for overlap checking. It can be seen that the entire
translation process is very efficient.

4 DRC-SG 2.0

In the previous section, the preliminary DRC-SG flow has been proposed. However, there still ex-
ists some room to improve the performance of the script generation flow. For instance, the training

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:11

Functions and their checking properties

Checking Guardian
Property Function

{

“Object”: “M1A”, | /| «eeee
“Relation Object”:

M1B (2,0

InDistance:
Layer: layerl = M1A,
<LayerNamel> (<LayerID1>) layer2 = M1B,
<LayerName2> (<LayerID2>) limits >=1

“Lower Bound”: “1
um”

Extracted Key Information InDistance:

Layerl = <LayerNamel>
Layer2 = <LayerName2>
limits <Value>

Overlap checking script

Parameters of overlap checking script

Fig. 8. Script translator.

dataset has an imbalance issue, which has a negative impact on the performance of the key infor-
mation extractor in DRC-SG. Therefore, based on the preliminary design for DRC-SG, we propose
DRC-SG 2.0 where two new techniques are introduced for further enhancement.

4.1 Rule Classification Head for Key Information Extractor

In addition to the concrete rule descriptions as shown in the “Examples” column in Table 2, the
process design kit also provides another important information, rule category, which is not effec-
tively utilized in the DRC-SG framework. Rule category is always determined by the entire rule
content. Therefore, the global comprehension ability of the extractor on the design rule can be
further improved if the extractor can learn to predict the rule type, which also contributes to the
word classification performance.

Based on such a consideration, a new branch, rule type prediction head, is incorporated into the
original key information extractor as shown in Figure 9. It can be seen that the rule classification
head shares the same backbone with the word classification head. To predict the rule type, we are
supposed to learn the rule feature f"¢ by combining word features f°,Vi € {1,2, ..., L} output by
the backbone. To achieve this, we rely on the self-attention mechanism illustrated in Section 2.2
and make some customizations.

First, instead of utilizing the entire word features f°,¥i € {1,2,...,L}, a well-designed algo-
rithm is proposed to select part of them, which is illustrated in Algorithm 1. The main idea of our
selection algorithm is to leverage the probability matrix P*¢ output by the word classification head
to guide the word feature selection. P describes the probability of each word belonging to each
semantic role. We propose that words with lower probabilities belonging to “None” category are
more informative, and based on this metric, we choose features of the most informative k words
for rule type prediction.

Then, we introduce an extra variable q"¢ as the query, and features fik ,ie{1,2,...,k) from F¥
are regarded as the key and value. Different from the original multi-head self-attention computa-
tion paradigm as formulated in Equation (2), we only adopt a single self-attention head, which is
capable of this sub-task and also saves computation resources. In this way, the rule feature can be
represented as follows:

k re(fkysK\T
f,czz exp(q"° (fFW)T /\dy) Fw, ®

S ¥k exp(qne(fFWK)T /)

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

80:12 B. Zhu et al.

Preprocessing

1
Feed Self-
Forward Word Attention
Feature
Selection

Forward

r
|
|
|
|
|
: Feed
|
|
|
|
|
|
|

|
(B
Semantic Role : : Rule Type
Prediction of Each Word | | Preidction
| 11 J
Word Classification Head Rule Classification Head

Fig. 9. Architecture of the key information extractor with rule prediction head in DRC-SG 2.0.

ALGORITHM 1: Word Feature Selection Algorithm

Input: Word Classification Output P"¢ € REXNwe Feature Map F° € RI%ds Selection Number k;
Output: Feature set F k.

. F¥ « Initialized to empty set;

. pN"¢ « probabilities of all words belonging to “None” class.

. SelectIdx « indices of the minimum k probabilities in p™N"¢;
: fori<—1,2,...kdo

idx « SelectIdx[i];

f{ « the feature in the position idx of F°;

append feature f’ to F k.

: end for

. return feature set F¥ with k word features.

b A A

where f7¢ and ¢"¢ € R% have the same dimension as fl.k. WK and WV e R%*% are projec-
tion matrices as explained in Section 2.2. Noted that ¢"¢ is a learnable variable whose value is
determined after extractor training.

Once the representation f"¢ of the whole design rule is obtained, we feed it into a rule classifier,
which is a neural network with three fully connected layers. The final output is represented as
p ¢ € RNe elements of which are prediction scores of all rule types, and N, represents the
number of rule categories.

After introducing the rule classification head, the loss function for training our extractor is
supposed to be redesigned as follows:

L=2L+ /I'Crc’ (9)

where £,,. is the loss of the word classification head and £, is the loss of the rule classification
head. A is a hyperparameter to balance £,,. and £,. Since the rule classification head conducts a
multi-classification task, we utilize the conventional cross entropy loss for £,., computed as

exp (p;°)

Lre = —log ——tt 2,
N exp (pf°)

(10)

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:13

Table 3. Semantic Roles Distribution of Dataset

Semantic Roles Training Set Test Set
Percentage (%) # Percent (%)

Object 6,054 15.68 491 14.74
Relation Object | 2,561 6.63 181 5.43
Property 4,705 12.18 300 9.01
Condition 5,061 13.10 596 17.89
Restriction 1,404 3.64 159 4.77
Lower Bound 2,482 6.43 326 9.79
Upper Bound 1,144 2.96 8 0.24
Exact Value 1,430 3.70 40 1.20
None 13,778 35.68 1,230 36.93
Total 38,619 100 3,331 100

where t stands for the ground-truth rule type of the input and p"® is the prediction result of the
rule classification head.

4.2 Weighted Cross-Entropy Loss for Word Classification Head

In our previous loss function design for the word classification head, we have avoided unreason-
able label sequences by utilizing the CRF module, which effectively improves the word classifica-
tion performance. However, another issue is the imbalance problem of the dataset, which cannot
be solved by CRF. To be specific, almost every design rule has words belonging to the semantic
role “Object” but may not have “Relation Object” words. The concrete proportion distribution of
different semantic roles in our dataset is shown in Table 3, also proving the imbalance issue.

We realize that such an issue is harmful to the performance of our extractor. Specifically, the
extractor will be biased toward the major class in the dataset once it is trained by an imbalanced
dataset. To solve this issue, we consider introducing a weighted cross-entropy loss term £;,,; into
the original word classification loss, formulated as follows:

Lo = [/crf + ULimb’ (11)

where L, r is still from Equation (7) and 7 is another hyperparameter to balance £, and £;pp.
The £, is computed via a weighted cross-entropy loss as formulated in Equation (12) and wy, is
the corresponding weight of each term,

exp (Pl“’gc)
Limp=—) wgy,lo - (12)
Z 70 SN exp (P

wg, (13)

[24

We utilize the ground-truth label of each word to supervise the input of the CRF module, P"¢ €
REXNwe wwhich includes scores of words belonging to each category. g; is the ground-truth label
of the ith word and u € RNve is a vector containing proportions of different categories. & € R is
a hyperparameter to control the weight range. It can be observed that we assign larger weight wy,
to the smaller proportion category, by which we are able to balance the extractor performance on
each word category. After introducing the rule classification loss £,. and weighted cross-entropy
loss £;mp, the total loss of the enhanced extractor is finally represented as follows:

L=Lye+Alre=Lerf +nLimp + ALy, (14)
The objective of training is to minimize the loss calculated in Equation (14), which can be success-

fully solved by Adam [34] optimizer, a widely used gradient descent optimization algorithm.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

80:14 B. Zhu et al.

Table 4. Word Classification Comparison Results with Two Other Baselines

Semantic Roles Bi-RNN [37] Bi-LSTM [38] DRC-SG [20] DRC-SG 2.0
Precision Recall ~F1 | Precision Recall F1 | Precision Recall F1 | Precision Recall F1

Object 0.609 0.666 0.636 0.772 0.662 0.713 0.853 0.804 0.828 0.916 0.872 0.894
Relation Object 0.436 0.674 0.529 0.422 0.674 0.519 0.849 0.896 0.872 0.904 0.934 0.918
Property 0.879 0.970 0.922 0.899 0.953 0.926 0.892 0.900 0.896 0.955 0.997 0.976
Condition 0.786 0.768 0.777 0.670 0.757 0.711 0.818 0.838 0.828 0.900 0.938 0.919
Restriction 0.389 0.453 0.419 0.538 0.399 0.458 0.789 0.704 0.744 0.800 0.704 0.749
Lower Bound 0.947 0.871 0.907 0.960 0.883 0.920 0.967 0.907 0.936 0.987 0.908 0.946
Upper Bound 0.500 1.000 0.667 0.429 0.750 0.545 0.889 1.000 0.941 1.000 1.000 1.000
Exact Value 0.371 0.650 0.473 0.750 0.900 0.818 0.741 1.000 0.851 0.833 1.000 0.909
None 0.853 0.714 0.777 0.883 0.825 0.853 0.892 0.894 0.893 0.900 0.912 0.906
Average 0.641 0.752 0.679 0.703 0.756 0.718 0.853 0.880 0.863 0.911 0.918 0.913
Ratio 0.703 0.819 0.744 0.772 0.824 0.786 0.936 0.959 0.945 1.000 1.000 1.000

5 EXPERIMENT RESULTS
5.1 Experimental Settings and Benchmark

We implement our entire framework with the Pytorch library [35] in Python and test it on a plat-
form with the Xeon Silver 4114 CPU processor and NVIDIA TITAN Xp Graphic card. The dataset
used for training our key information extractor contains 2,970 design rules, 2,840 of which are ob-
tained via our proposed rule generation methods and the rest are the original data from PDK15 [28].
To evaluate the performance, another design kit, ASAP7 [36], acts as the test set, which includes
200 design rules on the 7-nm node. Due to the advanced technology node, rules in ASAP7 are
more complex compared with our rules on the 15-nm node for training, and therefore, the evalua-
tion performance on ASAP7 will convincingly reflect the generalization ability of our framework.
We summarize the statistics of the datasets in Table 3. It can also be observed from Table 3 that
the “None” category words accounts for nearly 40%, which further proves that a key information
extractor can filter a lot of unnecessary information and contribute to the design rules scripts
generation.

5.2 Experimental Results and Analysis

Due to the various structure of scripts for different rules, it is not convenient to directly measure
the accuracy of the generated scripts. In Section 2.1, we discuss that the script accuracy can be
reflected by the extractor performance, and we also explain that the key information extraction
task is essentially a word classification task. To evaluate the comprehensive performance, we test
the word classification accuracy, inference time of the whole generation process and robustness
ability of the extractor.

Word Classification Results. Table 4 summarizes the detailed comparing results in the test set.
Since our preliminary work DRC-SG [20] is the first one to investigate key information extraction
methods for design rules, no other state-of-the-art work in DRC area can be referred for compar-
ison. Therefore, we further implement two baseline models, bidirectional RNN (Bi-RNN) and
bidirectional LSTM (Bi-LSTM). Similarly to BERT, Bi-RNN [37] and Bi-LSTM [38] are commonly
used for learning words features combined with context information and output the category pre-
diction results, which match the objective of our extractor. The corresponding results are listed in
columns “Bi-RNN” and “Bi-LSTM.” The remaining two columns, “DRC-SG” and column “DRC-SG
2.0,” denote the methods in Reference [20] and the framework presented in this work.

It can be seen that the result in DRC-SG averagely outperforms Bi-RNN with 21.2% and 12.8%
improvement on precision and recall and 18.4% rise on F1 score. Besides, DRC-SG surpasses Bi-
LSTM with an average precision, recall and F1 score of 15.0%, 12.4%, and 14.5%. Compared with
our preliminary work DRC-SG [20], the word classification performance is further promoted in

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:15

this work. Specifically, our new proposed DRC-SG 2.0 model achieves better results with 91.1%,
91.8%, and 91.3% on precision, recall, and F1 score, respectively.

Noted that we do not show the rule type prediction results since the rule classification head is
removed during the test stage to save the computation costs. It is designed to help promote the
training performance of the word classification head, and we will show its functionality in the
following ablation study part.

Inference Time. In addition to the satisfactory accuracy, our flow also shows superior effi-
ciency. We first test the inference time of the extractor on ASAP7 dataset that contains 200 design
rules. The total runtime result is 1.0 s, from which we can calculate that our model averagely takes
only 5.0 ms to process a single rule. As for the translator, since it is simply responsible for deciding
which function to call and passing the extracted key information to the function, the translation
process is also highly efficient. According to our measurement, the script translator spends around
0.46 ms processing one item of key information. In conclusion, by combining the extractor and
translator, our framework can generate a single script in 5.46 ms on average, indicating that our
proposed DRC script generation flow is extremely efficient.

Compared with Manual Script Generation. We also compare the runtime of our proposed
DRC-SG 2.0 framework with manual script generation. Although the key information extractor in
DRC-SG 2.0 cannot guarantee absolutely accurate results and requires post-correction; however,
because of the high accuracy as listed in Table 3, most scripts will be correct and only few errors
need to be rectified in real scenarios, and thus the manual workload of scripts generation is notably
reduced. We test that it takes around 30 minutes to correct all the scripts generated by our DRC-SG
2.0 framework. As for manual script generation, we calculate that a single rule averagely takes 3
minutes to write its corresponding script. Therefore, given all the 200 design rules from ASAP7
dataset, people should spend around 10 hours finishing all scripts writing, which is very time-
consuming. With the help of our proposed DRC-SG 2.0, the script generation tasks achieve nearly
20 times faster than manual script generation.

Robustness Analysis. Sometimes there may exist typos in natural language design rules,
which may affect the accuracy of a language model. To further evaluate the performance of the ex-
tractor, we conduct the following experiments to test the robustness ability of our extractor when
encountering typos. We randomly choose 5% words from the test datasets and then replace one
character of each word to simulate typos. Without retraining our extractor, we directly evaluate
the performance on the new test datasets. We repeat the above procedure 10 times and the average
F1 score is 88.35%, which is close to the original F1 score (91.30%). This indicates that our extractor
has powerful fault-tolerant mechanism, which is also beneficial for the stability of the whole script
generation flow.

5.3 Ablation Studies

The major work of this article is to design a high-performance key information extractor. To ver-
ify the benefit of our customized components in the extractor, including rule classification head,
weighted cross-entropy, CRF, and data generation methods, we conduct extra ablation studies. The
average word classification results of different configurations are shown in Table 5. In the follow-
ing analysis, we mainly adopt F1 score as the metric, since it is calculated from both the precision
and recall and is capable of reflecting the positive effect of each component.

Results in Table 5 show that with the rule generation techniques, F1 score notably improves. It
is because that abundant data increase the diversity, which helps prevent the extractor from over-
fitting and improve the generalization ability. Besides, with CRF, we further achieve nearly 2.2%
improvement on F1 score, demonstrating that CRF effectively avoids unreasonable label sequence
and achieves better word classification performance. With the weighted cross entropy loss, the F1

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

80:16 B. Zhu et al.

Table 5. Average Word Classification Results on Different Ablation Settings

Ablation Settings .
Rule Weighted gCondition Rule Precision | Recall | F1
Classification Head | Cross-Entropy | Random Field | Generation

v v v 0.875 0.903 | 0.889
v v v 0.895 0.913 | 0.904
v v v 0.877 0.905 | 0.891
v v v 0.662 0.634 | 0.637
v v v v 0.911 0.918 | 0.913

score increases 0.9% and we also notice that the positive gains are mainly from small proportion
categories such as “Upper Bound” and “Exact Value,” which conforms to our design motivation.
In addition, with the rule classification head, F1 score improves around 2.4%, indicating that the
knowledge learned in this head can be positively leveraged for the word classification task.

6 CONCLUSION

In this article, we propose an automatic DRC script generation flow. We first build up a deep
learning-based extractor that efficiently recognizes essential arguments from design rules and then
leverage a script translator to organize the extracted arguments into the scripts. Experimental re-
sults on 7-nm technology node have confirmed the excellent performance of our framework: It
only takes on average 5.46 ms to generate a single rule script, which is much faster than man-
ual generation, and our powerful extractor achieves 91.1% precision and 91.8% recall on the key
information extraction task. The number of design rules keeps increasing with the development
of semiconductor technology, and generating DRC scripts manually will become more and more
time-consuming. We hope the framework proposed in this work can provide a preliminary solu-
tion to automate the generation of DRC scripts and help reduce the manual workload. There still
exist limitations for our model to generate design rule scripts for those extremely complex rules
and we will continue to find the solution in the future.

REFERENCES

[1] KLayout. Retrieved from https://www.klayout.de/doc/manual/drc.html.

[2] LayoutEditor. Retrieved from https://www.layouteditor.org/layoutscript/api/drc.

[3] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z. Pan. 2019. DREAMPlace: Deep learning
toolkit-enabled GPU acceleration for modern VLSI placement. In Proceedings of the ACM/IEEE Design Automation
Conference (DAC’19). 1-6.

Siting Liu, Qi Sun, Peiyu Liao, Yibo Lin, and Bei Yu. 2021. Global placement with deep learning-enabled explicit
routability optimization. In Proceedings of the IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE’21).
1821-1824.

Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang, Yiran Chen, and Jiang Hu. 2018. RouteNet:
Routability prediction for mixed-size designs using convolutional neural network. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’18). 1-8.

Daijoon Hyun, Yuepeng Fan, and Youngsoo Shin. 2019. Accurate wirelength prediction for placement-aware synthesis
through machine learning. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE’19).
324-327.

Yuzhe Ma, Jhih-Rong Gao, Jian Kuang, Jin Miao, and Bei Yu. 2017. A unified framework for simultaneous layout
decomposition and mask optimization. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’17). 81-88.

Haoyu Yang, Shuhe Li, Zihao Deng, Yuzhe Ma, Bei Yu, and Evangeline F. Y. Young. 2020. GAN-OPC: Mask optimization
with lithography-guided generative adversarial nets. In Proceedings of the IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD’20). 2822-2834.

Guojin Chen, Wanli Chen, Yuzhe Ma, Haoyu Yang, and Bei Yu. 2020. DAMO: Deep agile mask optimization for full
chip scale. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’20). 1-9.

[4

[laaw}

5

—

[6

—

[7

—

8

—

[9

—

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

https://www.klayout.de/doc/manual/drc.html
https://www.layouteditor.org/layoutscript/api/drc

DRC-SG 2.0: Efficient DRC Script Generation via Key Information Extraction 80:17

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Hao Geng, Wei Zhong, Haoyu Yang, Yuzhe Ma, Joydeep Mitra, and Bei Yu. 2020. SRAF insertion via supervised dic-
tionary learning. In Proceedings of the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD’20). 2849-2859.

Haoyu Yang, Jing Su, Yi Zou, Yuzhe Ma, Bei Yu, and Evangeline F. Y. Young. 2019. Layout hotspot detection with
feature tensor generation and deep biased learning. In Proceedings of the IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD’19). 1175-1187.

Hao Geng, Haoyu Yang, Lu Zhang, Jin Miao, Fan Yang, Xuan Zeng, and Bei Yu. 2020. Hotspot detection via attention-
based deep layout metric learning. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’20). 1-8.

Ran Chen, Wei Zhong, Haoyu Yang, Hao Geng, Fan Yang, Xuan Zeng, and Bei Yu. 2021. Faster region-based hotspot de-
tection. In Proceedings of the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD’21).
669-680.

Yiyang Jiang, Fan Yang, Hengliang Zhu, Bei Yu, Dian Zhou, and Xuan Zeng. 2019. Efficient layout hotspot detection
via binarized residual neural network. In Proceedings of the 56th ACM/IEEE Design Automation Conference (DAC’19).
1-6.

Christopher B. Harris and Ian G. Harris. 2016. Glast: Learning formal grammars to translate natural language specifi-
cations into hardware assertions. In Proceedings of the IEEE/ACM Proceedings Design, Automation and Test in Eurpoe
(DATE’16). 966-971.

Junchen Zhao and lan G. Harris. 2019. Automatic assertion generation from natural language specifications us-
ing subtree analysis. In Proceedings of the IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE’19).
598-601.

Rahul Krishnamurthy and Michael S. Hsiao. 2020. Transforming natural language specifications to logical forms for
hardware verification. In Proceedings of the IEEE 38th International Conference on Computer Design (ICCD’20). 393-396.
Aysa Fakheri Tabrizi, Logan Rakai, Nima Karimpour Darav, Ismail Bustany, Laleh Behjat, Shuchang Xu, and Andrew
Kennings. 2018. A machine learning framework to identify detailed routing short violations from a placed netlist. In
Proceedings of the ACM/IEEE Design Automation Conference (DAC’18). 1-6. DOT : http://dx.doi.org/10.1109/DAC.2018.
8465835

Riadul Islam and Md Asif Shahjalal. 2019. Late breaking results: Predicting DRC violations using ensemble random
forest algorithm. In Proceedings of the ACM/IEEE Design Automation Conference (DAC’19). 1-2.

Binwu Zhu, Xinyun Zhang, Yibo Lin, Bei Yu, and Martin Wong. 2022. Efficient design rule checking script gener-
ation via key information extraction. In Proceedings of the ACM/IEEE 4th Workshop on Machine Learning for CAD
(MLCAD’22). 77-82. DOT : http://dx.doi.org/10.1109/MLCAD55463.2022.9900085

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS). 5998—6008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL’19). 4171-4186.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. 2018.
Generating wikipedia by summarizing long sequences. In Proceedings of the International Conference on Learning
Representations (ICLR’18).

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario Guajardo-
Céspedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019. End-to-end
open-domain question answering with BERTserini. In Proceedings of the Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL’19).

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqgiang Li, and Tieyan Liu. 2019. Incorporat-
ing BERT into neural machine translation. In Proceedings of the International Conference on Learning Representations
(ICLR’19).

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015.
Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV’15). 19-27.

Kirti Bhanushali. 2014. Design Rule Development for FreePDK15: An Open Source Predictive Process Design Kit for 15nm
FinFET Devices. Ph.D. Dissertation.

Paul R. Kingsbury and Martha Palmer. 2002. From TreeBank to PropBank. In Language Resources and Evaluation
Conference (LREC). 1989-1993.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

http://dx.doi.org/10.1109/DAC.2018.8465835
http://dx.doi.org/10.1109/MLCAD55463.2022.9900085

80:18 B. Zhu et al.

[30]
[31]
[32]

(33]
[34]
[35]

[36]

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The berkeley framenet project. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL’98). 86-90.

QuillBot. Retrieved from https://quillbot.com.

John Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Proceedings of the International Conference on Machine Learning
(ICML’01).

Silvaco. Guardian. Retrieved from https://silvaco.com/wp-content/uploads/product/pdf/guardian_brief.pdf.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
arXiv preprint arXiv:1912.01703.

Lawrence T. Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh Sinha, Brian Cline, Chandarasekaran
Ramamurthy, and Greg Yeric. 2016. ASAP7: A 7-nm finFET predictive process design kit. Microelectr. J. 53 (2016),
105-115.

[37] Jie Zhou and Wei Xu. 2015. End-to-end learning of semantic role labeling using recurrent neural networks. In Pro-

[38]

ceedings of the Annual Meeting of the Association for Computational Linguistics (ACL’15). 1127-1137.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
2018. Deep contextualized word representations. In Proceedings of the Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL’18). 2227-2237.

Received 9 October 2022; revised 24 February 2023; accepted 20 March 2023

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 80. Pub. date: September 2023.

https://quillbot.com
https://silvaco.com/wp-content/uploads/product/pdf/guardian_brief.pdf

