
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023 2317

FastGR: Global Routing on CPU–GPU With
Heterogeneous Task Graph Scheduler

Siting Liu , Yuan Pu , Peiyu Liao , Hongzhong Wu, Rui Zhang, Zhitang Chen, Wenlong Lv,
Yibo Lin , Member, IEEE, and Bei Yu , Senior Member, IEEE

Abstract—Running time is a key metric across the standard
physical design flow stages. However, with the rapid growth in
design sizes, routing runtime has become the runtime bottleneck
in the physical design flow. As a result, speeding routing becomes
a critical and pressing task for IC design automation. Aside from
the running time, we need to evaluate the quality of the global
routing solution since a poor global routing engine degrades the
solution performance after the entire routing stage. This work
takes both of them into consideration. We propose a global rout-
ing framework with GPU-accelerated routing algorithms and a
heterogeneous task graph scheduler, called FastGR, to accel-
erate the procedure of the modern global router and improve
its effectiveness. Its runtime-oriented version FastGRL achieves
2.489× speedup compared with the state-of-the-art global router.
Furthermore, the GPU-accelerated L-shape pattern routing algo-
rithm used in FastGRL can contribute to 9.324× speedup over
the sequential algorithm on CPU. Its quality-oriented version
FastGRH offers a 27.855% improvement of the number of shorts
over the runtime-oriented version and still gets 1.970× faster than
the most advanced global router.

Index Terms—Parallel algorithms, routing.

I. INTRODUCTION

ROUTING is an essential stage in the design flow of
the modern very-large-scale integration (VLSI). Global

routing and detailed routing are two stages of the modern
routing flow. Global routing produces routing guidance for
detailed routing by performing rough routing on a coarse grid

Manuscript received 16 April 2022; revised 10 August 2022; accepted
14 October 2022. Date of publication 27 October 2022; date of current
version 20 June 2023. This work was supported in part by The Research
Grants Council of Hong Kong SAR under Project CUHK24209017, and in
part by the National Science Foundation of China under Project 62141404
and Project 62034007. The preliminary version has been presented at the
IEEE/ACM Proceedings Design, Automation and Test in Europe (DATE)
in 2022 [DOI: 10.23919/DATE54114.2022.9774606]. This article was rec-
ommended by Associate Editor L. Behjat. (Corresponding authors: Bei Yu;
Yibo Lin.)

Siting Liu and Peiyu Liao are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, and
also with the School of Integrated Circuits, Peking University, Beijing 100871,
China.

Yuan Pu and Bei Yu are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong, SAR
(e-mail: byu@cse.cuhk.edu.hk).

Hongzhong Wu and Rui Zhang are with HiSilicon, Shenzhen 518129,
China.

Zhitang Chen is with Huawei Noah’s Ark Lab, Hong Kong.
Wenlong Lv is with Huawei Technologies Company, Shenzhen, China.
Yibo Lin is with the School of Integrated Circuits, Peking University,

Beijing 100871, China, and also with the Beijing Advanced Innovation Center
for Integrated Circuits, Beijing 100871, China (e-mail: yibolin@pku.edu.cn).

Digital Object Identifier 10.1109/TCAD.2022.3217668

graph [1], [2], [3]. Following the guide from global routing,
detailed routing performs on a fine grid graph to interconnect
all the wires and eliminate design rule violations [4]. Global
routing also functions as a congestion predictor for other
phases in the design cycle, such as placement [5], [6]. The effi-
ciency and efficacy of global routing are crucial to the design
closure due to its recurrent invocation and guiding role.

Determining the shortest connections for each net is a crit-
ical problem in global routing [7]. Due to the enormous
problem scale, the modern global router is always divided into
two stages: 1) the general routing stage and 2) the rip-up and
reroute iterations. To narrow the search space for efficiency,
the pattern routing algorithm is always used in the general
routing stage [8]. To obtain higher solution performance, the
rip-up and reroute iterations always use maze routing by doing
an extended search to discover paths for all the nets, which
cannot find a legal paths in the general routing stage.

Due to the significance of the global routing step, var-
ious efforts have been made to improve both the solution
quality and the efficiency. Better global routing solutions, on
the other hand, usually result in longer searching time since
more candidate routing paths are explored. Existing global
routing approaches primarily focus on improving CPU effi-
ciency [9], [10], [11], [12], whereas the speedup is limited
owing to threading overhead, limit bandwidth, and CPU cache
sizes. Meanwhile, GPUs have a large number of grid-based
processing resources and small synchronization costs inside
the computation blocks. With GPU power rising all the time,
speeding global routing on heterogeneous CPU–GPU plat-
forms opens up new possibilities for high-performance routing
engines.

The literature has extensively explored shortest path search-
ing with GPU [13], [14]. However, most work only explores
the basic single-source shortest path algorithm. The task only
needs to search for one shortest path on a large graph. These
algorithms are unsuitable for routing since we must route
millions of nets while considering numerous objectives and
limitations, such as wirelength, number of vias, and design
rules. Regarding those modern routing challenges, more appro-
priate GPU kernel algorithms should be designed. In this
work, we propose FastGR, a global routing framework accel-
erated for CPU–GPU platforms. The framework leverages
a GPU-friendly pattern routing algorithm and a task graph
scheduler for heterogeneous CPU–GPU systems. By utilizing
the processing resources of GPUs, we can further increase the
solution quality performance of our global routing framework

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2454-5561
https://orcid.org/0000-0002-1322-5642
https://orcid.org/0000-0003-1220-1363
https://orcid.org/0000-0002-0977-2774
https://orcid.org/0000-0001-6406-4810

2318 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

while incurring a little runtime overhead. We develop two vari-
ants of our global routing framework: the runtime-oriented
version FastGRL and the quality-oriented version FastGRH.

The major contributions of this work are summarized as
follows.

1) We propose a novel GPU-friendly pattern routing frame-
work that can route a batch of nets while taking use of
the massive parallelism in routing problem on GPU.

2) We present a GPU-accelerated L-shape pattern rout-
ing technique and an innovative GPU-accelerated hybrid
pattern routing algorithm by reformulating them into
computation graph flows.

3) We present an effective task graph scheduler for dis-
tributing tasks on CPU–GPU systems considering work-
load balancing.

4) Experiments show that when compared to the state-of-
the-art global router [3], our runtime-oriented version
FastGRL can achieve 2.489× overall speedup with-
out any quality degradation. In particular, the GPU-
accelerated L-shape pattern routing algorithm can bring
9.324× speedup in pattern routing; Meanwhile, the task
scheduler can bring 2.070× speedup in the rip-up and
reroute stage.

5) The quality-oriented version FastGRH reduces the num-
ber of shorts by 27.855% over the runtime-oriented
version FastGRL [15] while remaining 1.970× faster
than the most advanced global router [3].

The remainder of this article is structured as follows.
Section II discusses the problem definition, the background
of modern global routing algorithms. Section III describes
our GPU-friendly pattern routing algorithms and the efficient
task graph scheduler. Section IV validates the algorithms with
experimental results. In the end, Section V concludes this
article.

II. PRELIMINARIES

A. Problem Formulation

Global routing works on a collection of global routing
cells (G-cells), which essentially form horizontal and vertical
grids distributed uniformly. A grid graph G(V, E) is defined
to formulate a global routing problem by considering each
G-cell as a vertex (v ∈ V) and drawing an edge (e ∈ E)

between all the pairs of adjacent G-cells. The wire edge is
the edge between two G-cells on the same metal layer. Its
capacity is equal to the number of tracks that can be pro-
vided for all the wires, while its demand is the number of
tracks that all the wires need to go through. The via edge
is the edge between two G-cells with the same 2-D posi-
tion but on separate metal layers. Many 2-D global routers
set the via capacity as infinite to ignore the cost of vias,
while some 3-D global routers consider the via capacity,
e.g., CUGR [3].

Fig. 1 illustrates the procedure of grid graph construction.
We map all the pins into G-cells according to the pin position.
In this sample, different colors represent different metal layers.
There is a preferred routing direction (horizontal or vertical)
for wire edges in each metal layer, represented as the colored

Fig. 1. Grid graph construction procedure; there are three metal layers with
4 × 4 grids in each layer. The final grid graph is shown in the right.

Fig. 2. 2-D/3-D pattern routing; the red path represents one L-shape pattern
routing solution, and the blue path is one of the candidate Z-shape pattern
routing paths.

solid lines. The black dotted lines mean the via edges in our
grid graph.

Modern global routers always propose different cost func-
tions for each edge to consider the grid edges’ wirelength,
congestion, and net delay. With the grid graph G construction,
the global routing problem can be formulated as the minimum
accumulated cost path searching problem on G for all the nets
defined in VLSI designs.

B. Modern Global Router

A multipin net n to be routed includes a set of points
{(x1, y1), (x2, y2), . . . , (xn, yn)} on G, where the pin is the
single point of a net. In the modern global router, the
multipin nets are always transformed into a collection of
two-pin nets first with various Steiner tree construction tech-
niques [16], [17], [18], [19]. The Steiner tree construction
can help to lead researchers to the well-developed area of
single-source single-sink shortest path searching. Pattern rout-
ing [8], [20] plays an important role in the modern global
routing framework because of its efficiency. Two popular
patterns are shown in Fig. 2. We illustrate the L-shape and
Z-shape pattern routing paths on 2-D and 3-D routing spaces.
As shown in Fig. 2, the L-shape pattern routing path includes
one single bend point to change the routing direction, while
the Z-shape pattern routing path contains two bend points.

The most basic way of routing is to choose a certain nets
order and then route these nets consecutively in that order.
However, the key drawback of such a sequential method is
that it may suffer from the net ordering strategy and result in
a poor routing solution since the previously routed net might
impede the routing for its succeeding nets. Different net order-
ing strategies will bring different influences to the final global
routing solution, which we will discussed in Section IV-C.
Modern sequential global routers always follow a two-stage
process [21], [22], [23], the general routing stage and rip-up
and reroute iterations, with a net-ordering scheme. The most

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: FastGR: GLOBAL ROUTING ON CPU–GPU WITH HETEROGENEOUS TASK GRAPH SCHEDULER 2319

Fig. 3. Runtime breakdown of a typical global router, CUGR. PATTERN
represents the runtime taken by the pattern routing stage; MAZE represents
the runtime taken by the rip-up and reroute stage.

common-used framework applies pattern routing for the gen-
eral routing stage and maze routing for the rip-up and reroute
iteration. Our framework also follows this two-stage procedure
and named the general routing stage as the pattern routing
stage directly.

The concurrent routing approaches can solve the problem
related to net ordering and route all of nets at once. The most
often-used concurrent technique is to model the global rout-
ing problem as 0–1 integer linear programming problem (0–1
ILP) [24], [25]. Despite the fact that such an ILP formula-
tion can discover the optimal solution when it exists, the 0–1
ILP problem is an NP-complete problem. The high tempo-
ral complexity constrains the possible problem size, which is
unacceptable in the industry.

So as to have an efficient framework, we develop a rout-
ing algorithm with a practical routing task graph scheduler.
There is an efficient two-stage sequential routing structure,
encompassing pattern routing, and maze routing. After pattern
routing, maze routing is adopted in the rip-up and reroute iter-
ations to achieve routing closure. In such situation, the pattern
routing stage route roughly twice as many nets as the first
rip-up and reroute iteration.

C. Runtime Breakdown

We demonstrate the runtime breakdown of a modern global
router. It consists of two stages: 1) a pattern routing stage and
a rip-up and 2) reroute stage with maze routing. The run-
time breakdown of the global router on three benchmarks
from the ICCAD2019 benchmark suit [26] are plotted in
Fig. 3. PATTERN denotes the runtime portion of the pattern
routing stage, whereas MAZE represents the runtime por-
tion of the maze routing algorithm for rip-up and reroute
iterations. As shown in Fig. 3, 19test9 is a PATTERN-
dominated, 19test9m is an MAZE-dominated design, and
19test7 is a design with approximately the same propor-
tion of PATTERN and MAZE. Fig. 3 demonstrates that it is
PATTERN-dominated on average because the number of nets
that the pattern routing stage process is substantially more than
the number of nets that the rip-up and reroute iterations should
handle.

D. Intranet Ordering

As mentioned before, it is a typical practice to break a mul-
tipin net in multiple two-pin nets in sequential global routing.
We are expected to establish the net ordering of these two-
pin nets since there is a dependence between each pair of

(a) (b)

Fig. 4. Example of intranet ordering. (a) Multiple two-pin nets. (b) Two-pin
nets with order.

connected two-pin nets in our dynamic programming-based
algorithms. One of the most common approaches is to use a
depth-first search (DFS) traversal to explore all nodes starting
from a random root. Take Fig. 4 as an example to demonstrate
this procedure. All of the two-pin nets will route in the reverse
order sequentially.

Assume we select P6 as the random root in Fig. 4(a).
Then, beginning with P6, we conduct DFS traversal. The
DFS traversal accesses all the nodes in the following order:
P6, P5, P4, P3, P2, and P1. As illustrated in Fig. 4(b), we mark
all the two-pin nets in the reverse sequence e1, e2, e3, e4, and
e5, which is the order in which the routing algorithm will be
performed.

E. Internet Ordering

Besides the net ordering strategy within a single multipin
net, we also need to consider the ordering of routing between
multipin nets. Net ordering has a substantial influence on rout-
ing solution quality since a net routed early may hamper
the nets routed later with fewer routing resources [27], [28].
Therefore, efficient Internet ordering techniques are desirable
in pattern routing.

Unfortunately, finding a universally optimal ordering
scheme is extremely difficult. The literature indicates that no
single Internet ordering technique can outperform others in
all the benchmarks [29]. Typical Internet ordering schemes
include: 1) sort the nets according to the number of pins in
ascending (descending) order, as nets with more pins can be
more likely to block the routing of other nets; 2) sort according
to the wirelength of nets, as shorter nets are not as flexible as
longer nets and routing shorter ones first can improve routabil-
ity; and 3) sort according to the bounding box area of nets,
as larger nets require more routing resources and thus they
should be routed first.

Typical global routing algorithms adopt the aforementioned
Internet ordering strategies. However, such strategies fol-
low the sequential nature of net-by-net routing, causing the
challenges in efficiency. Hence, in this work, we explore a
heterogeneous task graph scheduler for routing nets consider-
ing both parallelization and workload balancing on CPU–GPU
platforms.

III. ALGORITHMS

A. Overview

Fig. 5 depicts the overall flow of FastGR. To begin, we
present a heterogeneous task graph scheduler and use it to
manage the execution order of multiple routing tasks in both

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

2320 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

Fig. 5. Overall flow of FastGR.

portions of our global routing framework, the pattern routing
stage, and the rip-up and reroute iterations. The conflicting
relationship among these tasks is used to form the task graph.
It is important to note that a conflict between two routing tasks
indicates that they cannot be processed at the same time. Our
task graph scheduler is utilized to determine the execution
order of each conflicting pair of tasks.

The pattern routing planning stage contains the Steiner
tree construction, the edge shifting algorithm to optimize the
Steiner tree, and a scheduler to get the routing order for the
two-pin nets in the pattern routing stage. After determining
the execution order of the task graph using our task graph
scheduler, we employ our proposed 3-D GPU-friendly pattern
routing algorithm on GPU.

For each iteration in the rip-up and reroute stage, we first
extract the nets to rip up and consider each net as a rip-up rout-
ing task. We can maximize the utilization of parallelism across
of these rip-up routing tasks using our task graph scheduler.
Then, on the CPU, we perform a 3-D maze routing algorithm
to complete the reroute iteration. We generate routing guid-
ance and patches for the detailed routing after multiple rip-up
and reroute iterations.

In the following sections, we will go over the details of our
task graph scheduler, our proposed GPU-friendly pattern rout-
ing framework, our GPU-friendly 3-D L-shape pattern routing
algorithm, our GPU-friendly 3-D hybrid-shape pattern routing
algorithm, and our task graph scheduler techniques in both
stages.

B. Task Graph Scheduler

To determine the execution order of the global routing tasks,
we develop a two-stage task graph scheduler. The first stage is
to create a task conflict graph based on the conflicting relation-
ship between each pair of tasks. The task graph scheduler is
then used to establish the order of execution for each conflict
edge in the task conflict graph.

Following the task conflict graph generation, we extract one
root task batch based on the conflict information in the graph.
Since there is no conflicts inside the root task batch, all of these
tasks can be divided into two groups: 1) the root task batch
and 2) the nonroot task batch. There are only two situations

Fig. 6. Sample for task graph scheduler with seven tasks; the edge in the task
graph represents the conflict relationship for each pair of connected tasks.

Algorithm 1 Batch Extraction Algorithm
Require: nets: the set of nets which need to process the

pattern routing.
Ensure: batch: a set of nets batches.

1: e ← nets[0];
2: Remove e from nets and declare a new empty batch
batch ← {e};

3: for ei ∈ nets do
4: if ei has no conflict with all the nets in batch then
5: Push ei into batch;
6: Remove ei from nets;
7: end if
8: end for
9: return batch;

between each pair of conflicting tasks since the no-conflict
situation inside the root task batch.

1) One task is part of the root task batch, whereas the other
is not. The execution direction is from the root batch task
to the other.

2) Both the tasks are not part of the root batch. The exe-
cution order is from the task with a smaller task ID to
the other and the task ID indicates the sorting result.

Our task graph scheduler uses the above strategy to assign
the execution order to each pair of conflicting tasks. As an
example in Fig. 6, we first select an independent root task
batch from the task conflict graph. Then, using the above
assignment strategy, we can obtain the final execution order
for the task conflict graph.

C. Pattern Routing Stage: Task Graph Generation

In the pattern routing stage, we consider a batch of multipin
nets as a single routing task because the number of nets to be
routed in this stage is quite enormous. To take use of the
parallelism across all of the multipin nets, we first partition
the multipin nets into multiple batches using a batch extraction
technique based on [4], as defined in Algorithm 1, to maximize
the parallelism within each batch.

Given a set of multipin nets nets, we first sort all of
the nets using a sorting strategy described in Section IV-C.
Assume we sort all of the nets with increasing bounding box
areas. Then, in one new empty batch batch, select the first
net e (Line 1), the net with the smallest bounding box area in
the collection of remaining nets. Following that, we scan the
whole collection of nets in sequence and filter out the nets that
do not conflict with any of the nets in batch (lines 3–8). We
update the list of remaining nets nets and the new batch
batch whenever we identify one net that fulfill this no-
conflict requirement. After such a thorough scan, we generate

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: FastGR: GLOBAL ROUTING ON CPU–GPU WITH HETEROGENEOUS TASK GRAPH SCHEDULER 2321

Fig. 7. Programming architecture for the pattern routing stage; on the host, the kernels are invoked sequentially and each of them is used to process a single
batch of nets. The nets in the same batch will be routed simultaneously on different blocks on the device.

a batch batch with nearly optimal independent sets of nets.
We should repeat the batch scheduler until the set of remaining
nets is empty. Finally, with a little overhead, we can acquire
a collection of no-conflict nets batches.

Since there is no bounding box overlap inside each batch,
we can route the nets in the same batch at the same time,
allowing us to treat one batch as one routing task when con-
structing the task graph in the pattern routing stage. The task
graph we generate from these batches will be a complete
graph with edges between every two batches, according to
the batch extraction technique described in Algorithm 1. To
prevent execution conflicts, we will execute all these routing
tasks sequentially by using our task graph scheduler.

Fig. 7 shows the programming architecture of our GPU-
friendly pattern routing framework for all of these routing
tasks during the pattern routing stage. Each batch in Fig. 7
represents a single routing task, and each task contains several
multipin nets.

To accomplish this single routing task, we invoke the 3-D
pattern routing kernel on the host, as demonstrated in Fig. 7.
We will allocate each kernel to the device’s grid, and multiple
blocks in this grid will be used concurrently with distinct com-
putation flows. The separate blocks can manage the pattern
routing procedure for various multipin nets simultaneously.
Furthermore, all threads in a single block can conduct the
same calculation flow at the same time. As a result, formulat-
ing the pattern routing procedures in each two-pin net into a
uniform computation flow is good for the utilization of GPUs.

D. Pattern Routing Stage: GPU-Friendly L-Shape
Pattern Routing

Besides the parallelism among multipin nets discussed
above, there is also the possibility of parallelism within each
two-pin net. As shown in Fig. 7, We use multiple blocks on
GPU to execute the multipin nets in the same batch simulta-
neously in one-to-one correspondence. Furthermore, for each
multipin net in the block, several two-pin nets should be
routed in an order decided by DFS traversal, which we have
discussed in Section II-D. Having the ordered multipin net,
we apply the bottom-up dynamic programming to solve the

Fig. 8. GPU-friendly 3-D L-shape pattern routing; each 3-D L-shape pattern
routing solution is denoted as P{Ps, Bls , Tlt }. There are two sample paths
colored by green and purple.

3-D global routing problem of each multipin net [3]. Pattern
routing is a widely used method to solve the global routing
problem for the single two-pin net. To utilize the computation
power of homogeneous GPU threads, we reformulate the
conventional 3-D L-shape pattern routing algorithm into a
unified computation graph flow, which is demonstrated in
Fig. 8.

Referring to the cost scheme in [3], cw(u, v, l) is used to
represent the cost of a wire edge, considering wirelength cost
and congestion cost, where l is the metal layer of the edge; u
and v are two 2-D G-cells connected by this edge. Meanwhile,
cv(u, l1, l2) is applied to mean the cost of a via edge, where l1
and l2 are metal layers connected by the via with the same 2-D
position to the G-cell u. Table I defines some important nota-
tions used in our GPU-friendly 3-D pattern routing algorithms
for the two-pin net Ps → Pt.

Take a two-pin net Ps → Pt as the example. Suppose that
the number of the metal layers is 4. The left part in Fig. 8
shows two separate 3-D L-shape pattern routing solutions of
Ps → Pt in different colors. We use ls to represent the source
layer of the wire connecting the source point to the bend point,
while lt is the target layer of the wire connecting the bend point

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

2322 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

TABLE I
NOTATIONS FOR GPU-FRIENDLY PATTERN ROUTING

to the target point. This routing path denoted as P{Ps, Bls , Tlt }
includes two parts.

1) The wire connecting Ps to the bend point Bls .
2) The vias to change routing metal layers from ls to lt and

the wire connecting to Tlt .
As shown in Fig. 8, ls is 4 and lt 1 in the path noted by

green while ls is 1 and lt is 2 in the other sample path. Based
on the above two parts of the 3-D L-shape pattern routing
solution, we calculate the cost of P{Ps, Bls , Tlt } with

c
�
P
�
Ps, Bls , Tlt

�� = cw(Ps, B, ls) + cv(B, ls, lt) + cw
�
B, Tlt , lt

�
.

(1)

Besides the path cost described above, we also consider
the vias connecting parent two-pin net with the children two-
pin nets, which are defined by the intranet ordering strategy
described in Section II-D. Supposed that Ps → Pt has c chil-
dren two-pin nets P(i)

s → Ps, 1 ≤ i ≤ c, we calculate the
bottom children cost in (2) and this cost is not related to the
target layer of Ti

cbc(Ps, ls) = min
0<l1,...,lc≤L

�
cv(Ps, ls, l1, . . . , lc) +

�

1≤i≤c

c∗(P(i)
s , Ps, li)

�

(2)

where ls is the source layer of Ps in the two-pin net Ps → Pt

and l1, . . . , lc are all the layers of the children nets at the 2-D
position as Ps; c∗(P(i)

s , Ps, li) means the minimum cost of the
ith child two-pin net P(i)

s → Ps on the li layer.
Having the bottom children costs and the path costs,

we can compute the final c∗(Ps, Pt, lt) using the dynamic
programming procedure described in the following:

c∗(Ps, Pt, lt) = min
0<ls≤L

�
c
�
P
�
Ps, Bls , Tlt

�� + cbc(Ps, ls)
�

(3)

where ls is the source layer of Bls and lt is the target layer of
Tlt in this two-pin net.

The minimum cost of the whole ordered multipin net with
the root edge Pr

s → Pr
t is defined as follows:

c∗�Pr
t

� = min
0<lr≤L

c∗�Pr
s, Pr

t , lr
�

(4)

where Pr
t means the root point and Pr

s → Pr
t is the root edge.

We define the root point in Section II-D and illustrate the
sample root point P6 and sample root edge P5 → P6 in Fig. 4.

We propose a GPU-friendly L-shape pattern routing algo-
rithm for each two-pin net based on the above calculation
flow. Our algorithm can compute all the L outputs c∗(Ps, Pt, lt)
simultaneously using computation flow. Within each compu-
tation flow to get c∗(Ps, Pt, lt), our algorithm can enumerate
all L candidate ls at the same time. They can utilize the homo-
geneous GPUs threading resources well to enumerate L × L
combinations for ls and lt simultaneously.

The weights of the edges Ps → Bls in the computation
graph considers the bottom children cost and the edge cost
connecting Ps to B. The formal formulation of lsth entry of
the edge weights vector �w(1) is as follows:

w(1)
ls

= cbc(Ps, ls) + cw(Ps, B, ls), 0 < ls ≤ L. (5)

The Bls → Tlt works as enumerating the combinations of
the metal layer of B and the layer of T for all the candidate 3-D
L-shape pattern routing paths. The entry of the edge weights
matrix W(2) at the lsth row and the ltth column is

w(2)
ls,lt

= cv(B, ls, lt) + cw
�
B, Tlt , lt

�
, 0 < ls ≤ L, 0 < lt ≤ L

.(6)

Following the 3-D L-shape pattern routing algorithm proce-
dure, we can calculate c∗(Ps, Pt, lt) using the vector addition
and minimum operations, which is much more friendly to GPU
implementation:

c∗(Ps, Pt, lt) = min
0<ls≤L

	
w(1)

ls
+ w(2)

ls,lt

. (7)

Furthermore, all the L minimum costs c∗(Ps, Pt, lt) with
different lt can be computed using (7) at the same time since
there is no dependency among all the L calculation flows.

E. Pattern Routing Stage: GPU-Friendly 3-D Z-Shape
Pattern Routing

As shown in Fig. 2, there are two common patterns in pat-
tern routing approaches, where the L-shape pattern provides
two candidate routing paths in 2-D space and L × L candidate
routing paths in 3-D space, where L is the number of metal
layers, since L-pattern has one single bend point and there are
preferred routing directions in 3-D routing space. At the same
time, there are two bend points in Z-shape patterns named the
source bend point, and the target bend point since one con-
nects to the source pin, and the other connects to the target pin.
Note that once the position of the target bend point is deter-
mined, the location of the source bend point is determined
accordingly. Therefore, Z-pattern can get M +N −2 candidate
paths in 2-D space and (M + N − 2) × (L × L × L) candidate
routing paths on account of the two bend points, where M
represents the width of the bounding box of the net on G and
N is the height. The Z-shape pattern is like an intermediate
state between the L-shape pattern and maze routing paths
regarding the number of candidate paths. Table II defines the
additional notations used in our GPU-friendly 3-D Z-shape
pattern routing algorithms for the two-pin net Ps → Pt.

The 3-D Z-shape pattern routing can provide more candi-
date routing paths than 3-D L-shape pattern routing, especially
for the nets with a large bounding box. Following the formula-
tion of GPU-friendly 3-D L-shape pattern routing, we define a

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: FastGR: GLOBAL ROUTING ON CPU–GPU WITH HETEROGENEOUS TASK GRAPH SCHEDULER 2323

TABLE II
ADDITIONAL NOTATIONS FOR GPU-FRIENDLY

Z-SHAPE PATTERN ROUTING

Fig. 9. GPU-friendly 3-D Z-shape pattern routing flow for ith candidate bend
point pair (Bs(i), Bt(i)); each 3-D Z-shape pattern routing solution is denoted
as P{Ps, Bs(i)

ls
, Bt(i)

lt
, Tlt }. The sample routing path is colored by green.

GPU-friendly 3-D Z-shape pattern routing algorithm as shown
in Fig. 9. The left part in Fig. 9 illustrates one of the solutions
of Ps → Pt with 3-D Z-shape pattern routing algorithm and
the candidate bend point pair (Bs(i), Bt(i)), where i means the
index of the candidate bend point pair and 1 ≤ i ≤ M +N −2.

Besides ls and lt defined in the 3-D L-shape pattern routing
algorithm, we use lb to represent the layer of the wire con-
necting the source bend point and the target bend point in the
3-D Z-shape patterns. The 3-D Z-shape routing path includes
three parts.

1) The wire connecting the source point Ps to the source
bend point Bs(i)

ls
.

2) The vias to change routing metal layers from ls to lb
and the wire connecting to the target bend point Bt(i)

lb
.

3) The vias to change routing metal layers from lb to lt and
the wire connecting to the target point Tlt .

In this sample path, ls is 1, lb is 2, and lt is 4. As the
same to the analysis in the 3-D L-shape pattern routing algo-
rithm, we denote this candidate Z-shape pattern routing path
as P{Ps, Bs(i)

ls
, Bt(i)

lb
, Tlt }. According to the above three parts,

the formal formulation to calculate the cost of this path is as
follows:

c
�
P
	

Ps, Bs(i)
ls

, Bt(i)
lb

, Tlt

�
= cw

�
Ps, Bs(i), ls

�

+ cv

�
Bs(i), ls, lb

�
+ cw

�
Bs(i), Bt(i), lb

�

+ cv

�
Bt(i), lb, lt

�
+ cw

�
Bt(i), Tlt , lt

�
. (8)

For each pair of bend points (Bs(i), Bt(i)) in Z-shape patterns,
we will generate the candidate flow i for this bend point pair.
c∗(i)(Ps, Pt, lt) represents the minimum cost result of the two-
pin net Ps → Pt in the ith candidate flow with the 3-D Z-shape

Fig. 10. Overall GPU-friendly 3-D Z-shape pattern routing flow.

pattern routing algorithm. Similar to (7), the calculation of
c∗(i)(Ps, Pt, lt) is shown in the following:

c∗(i)(Ps, Pt, lt)

= min
0<ls,lb≤L

�
cbc(Ps, ls) + c

�
P
	

Ps, Bs(i)
ls

, Bt(i)
lb

, Tlt

��
. (9)

As shown in Fig. 10, we propose a merge step to merge the
results of all M + N − 2 candidate flows. With the merge step,
we can get the final minimum cost as follows:

c∗(Ps, Pt, lt) = min
1≤i≤M+N−2

c∗(i)(Ps, Pt, lt). (10)

To better utilize the GPU resources, we also reformulate
the computation in Z-shape patterns to the computation graph
flow using the vector/matrix addition and minimum operation.
Our proposed GPU-friendly Z-shape pattern routing algorithm
for the ith candidate bend point pair (Bs(i), Bt(i)) is shown in
the right part of Fig. 9.

The weight of the edge Ps → Bs(i)
ls

includes the bottom
children cost cbc(Ps, ls) and the wire cost to connect Ps and
Bs(i). The formal formulation of lsth of the edge weights vector
�w(1) is as follows:

w(1)
ls

= cbc(Ps, ls) + cw

�
Ps, Bs(i), ls

�
, 0 < ls ≤ L. (11)

The metal layer switch procedure at the source bend point
is represented by the connection between Bs(i)

ls
and Bt(i)

lb
. Based

on the connection, we formulate the entry of the edge weights
matrix W(2) at the lsth row and the lbth column as follows:

w(2)
ls,lb

= cv

�
Bs(i), ls, lb

�
+ cw

�
Bs(i), Bt(i), lb

�
, 0 < ls, lb ≤ L.

(12)

Similar to the metal layer switch procedure at the source
bend point, we can also define the metal layer switch proce-
dure at the target bend point as the connection between Bt(i)

lb
and Tlt . The entry at lbth row and the ltth column of the edge
weights matrix W(3) is defined as follows:

w(3)
lb,lt

= cv

�
Bt(i), lb, lt

�
+ cw

�
Bt(i), Tlt , lt

�
, 0 < lb, lt ≤ L.

(13)

The minimum cost c∗(i)(Ps, Pt, lt) of the candidate bend
point pair (Bs(i), Bt(i)) can be calculated as (14) referring to (9)

c∗(i)(Ps, Pt, lt) = min
0<ls,lb≤L

	
w(1)

ls
+ w(2)

ls,lb
+ w(3)

lb,lt

. (14)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

2324 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

Fig. 11. Hybrid shape pattern routing; The left part shows all the bend point
pairs and the right part contains four candidate 3-D solutions.

Having all the minimum cost of M + N − 2 candidate
bend point pairs, we can finally get the c∗(Ps, Pt, lt) using
the merge step in (10) which can also be computed as the
vector minimum operation on GPU.

F. Pattern Routing Stage: GPU-Friendly Hybrid-Shape
Pattern Routing

We combine the L-shape and Z-shape pattern routing to
form a hybrid-shape pattern routing algorithm since the can-
didate paths in L-shape patterns are sometimes crucial for the
routing path selection. The proposed hybrid-shape pattern rout-
ing enables the two-stage global router framework to obtain a
better global routing solution with a little runtime overhead.

As illustrated in Fig. 2, the difference between the L-shape
pattern and the Z-shape pattern is the number of bend points,
where the L-pattern only has one bend point, while the Z-
pattern gets two bend points.

We regard the L-shape pattern as a special case of the rout-
ing patterns with two bend points. We analyze this conclusion
in 2-D space, and it is clear that the situation is similar in 3-D
space. For all the (M + N) − 2 Z-shape candidate patterns,
we only need to allocate the position of the target bend point
along the two bounding box edges connected to the target
point. One edge includes M − 1 candidate positions and the
other gets N − 1 candidates. The position of the source bend
point is determined automatically according to the position of
the target bend point. We set the target point overlapping with
the target bend point so that the source bend point gets two
possible positions, resulting in two L-shaped shape patterns.

The left part of Fig. 11 illustrates the candidate bend point
positions of our hybrid shape pattern routing algorithm. The
colored triangle nodes represent a set of bend point pairs in
Z-shape patterns, and the colors represent the corresponding
relationships for pairs. The colored round nodes represent the
two L-shape patterns, and the round node on Pt’s position
represents the target bend points overlapped with the target
point. The right part of Fig. 11 is four candidate solutions
for our 3-D hybrid-shape pattern routing algorithm. Note that,
the color of paths on the right corresponds to the color of
bend point pairs on the left. In this way, we can unify the
definition of the hybrid shape pattern routing algorithm as the

TABLE III
ICCAD2019 BENCHMARKS

GPU-friendly Z-shape pattern routing algorithm designed in
Section III-E with M + N candidates bend point pairs.

G. Parallel Rip-Up and Reroute Iterations

For several multipin nets, the pattern routing stage is never
able to obtain a violation-free routing solution. To decrease the
total amount of violations, multiple rip-up and reroute itera-
tions will be performed. We simply need to rewire the nets
with violations in our rip-up and reroute process after the pat-
tern routing stage. We apply our task graph scheduler to utilize
the parallelism among all these multipin nets for the runtime
decreasing. Each multipin net is treated as a separate routing
task, as distinct to the pattern routing stage, since the num-
ber of multipin nets in the pattern routing stage is much more
than the number in the rip-up and reroute iterations. Then, we
apply our task graph scheduler to these routing tasks based on
the conflict relationship. Finally, all these routing tasks follow
the execution order determined in the ordered task graph.

As a result, utilizing Taskflow [30] and the ordered task
graph built by our proposed task graph scheduler, we can
quickly maximize the parallelism of our rip-up and reroute
iterations. Taskflow is a C++ tasking toolkit that uses the
task dependency graph to automatically execute all the tasks.
It utilizes the ordered task graph as the task dependency graph
and execute all the tasks in maximum parallelism by utilizing
CPU threading resources.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The framework was developed in C++/CUDA based on
the open-source global router CUGR [3]. We conducted the
experiments on a 64-bit Linux machine with Intel Xeon Gold
6226R CPU @ 2.90 GHz and 1 NVIDIA GeForce RTX 3090
GPU. ICCAD2019 benchmarks [26] were adopted to evaluate
the performance.

To estimate the effectiveness of our proposed scheduler, we
implemented our proposed task graph scheduler in both the
pattern routing stage and the rip-up and reroute iterations.
Meanwhile, we integrated our proposed two types of GPU-
friendly pattern routing algorithms into the pattern routing
stage separately to illustrate the strength of our methods.

B. Benchmark

The details for the ICCAD2019 benchmarks are listed in
Table III. We only list half of the benchmarks since the other
half, which end with “m,” have the same number of nets and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: FastGR: GLOBAL ROUTING ON CPU–GPU WITH HETEROGENEOUS TASK GRAPH SCHEDULER 2325

TABLE IV
SORTING SCHEMES

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT SORTING SCHEMES; THE

SORTING SCHEMES ARE ONLY SUBSTITUTED IN THE RIP-UP

AND REROUTE ITERATIONS. THE BEST IS MARKED AS

BOLD AND THE SECOND BEST IS NOTED AS BLUE

number of G-cells, and the only difference between them is the
number of metal layers. This set of benchmarks includes the
small design with 70k nets to the extensive design with nearly
900k nets. The scalability of the ICCAD2019 benchmark helps
us better evaluate our approaches.

C. Sorting Scheme

The experimental results with various sorting schemes,
listed in Table IV, reveal that net ordering influences the final
solution quality performance and the running time. We select
six different schemes that are solely applied in the rip-up and
reroute iterations to highlight the influence of net ordering
while maintaining the pattern routing stage process. Table V
displays the experimental results. The running time of the
rip-up and reroute iterations varies depending on the sorting
scheme since the routing order influences the routing process
and an earlier routed net may hamper the continue net with
fewer routing resources.

Furthermore, we use a weighted sum score that takes three
metrics into account: 1) wirelength; 2) the number of vias;
and 3) the number of shorts violations, to indicate the solution
quality of a global routing engine. The formal formulation to
compute the score s is as follows:

s = αW + βV + γ S (15)

where W means the wirelength, V for the number of vias, and
S as the number of shorts violations. Additionally, α, β, and
γ stand for the three weights of wirelength, vias number, and
shorts violation number. (In our experiments, we set α to 0.5,
β to 4, and γ to 500, considering the order of magnitude of
different metrics.)

Fig. 12. Performance with different t2 for the design 18test5m, where t1 is
100; the solid circle line represents PATTERN runtime while the other is the
global routing score. The thick dashed line is the baseline PATTERN runtime
of CUGR and the other is the baseline score.

To be more thorough, we choose two benchmarks to ana-
lyze the influence of routing order, 18test10 with nine metal
layers and 18test10m with only five metal layers. TOTAL
is used in Table V to indicate total running time; PATTERN
is used to represent the running time of the pattern routing
stage, and MAZE is used to describe the running time of
rip-up and reroute iterations. According to the experimental
results in Table V, adopting bounding box half perimeter as
the measurement to sort nets can improve the running time
for both of these two benchmarks. Besides the running time,
solution quality matters in the global routing stage. Overall,
the ascending bounding box half perimeter is a better sorting
scheme for the global router.

D. Selection

We observed that when the hybrid shape pattern rout-
ing algorithm is applied to all the two-pin nets, it suffered
the performance of our global router in both acceleration
performance and the final solution quality performance. The
acceleration performance is suffered from a few tremendous
nets, which are only less than 0.01% of all the nets. Still, they
can generate thousands of candidate bend point pairs in the
hybrid shape pattern routing algorithm. As for the solution
quality performance, when we apply the hybrid-shape pattern
routing algorithm to all the two-pin nets regardless of their
size, the small nets executed first will impede the routing for
the following more giant nets since the routing resources are
limited. Based on this observation and analysis, we develop
a selection technique in our proposed hybrid-shape pattern
routing algorithm to improve the performance of our global
router. First, we set two thresholds, t1 and t2, to split all the
two-pin nets into three parts, small nets, medium nets, and
large nets, according to the bounding box size of them. Noted
that, we use half perimeter wirelength (HPWL) to represent
the size of the bounding box since the number of candidates
flows in the hybrid-shape pattern routing algorithm is related
to HPWL. To better explain the choice of the split thresh-
olds, we show the variation trend of 18test5m’s PATTERN
runtime and global routing score in Fig. 12 with the fixed t1,
100, and changing t2 from 100 to 1000. It is reasonable that
with a larger t2, the performance is better but the running time
is longer since the hybrid-shape pattern routing can consider

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

2326 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

TABLE VI
ABLATION STUDY FOR FASTGRH

TABLE VII
OVERALL RESULTS ON ICCAD 2019 BENCHMARKS

more candidate routing paths than the L-shape one. As shown
in Fig. 12, when t2 is smaller than 250, hybrid-shape pattern
routing can achieve runtime improvement compared to CUGR.
Furthermore, the solution quality will be improved when t2 is
larger than 380. Therefore, we finally choose 100 and 500 as
the split thresholds in FastGRH.

According to the split results, the small nets account for
around 99%, the medium nets account for around 1%, and the
large nets only get nearly 0.1%. After that, we only apply our
proposed GPU-friendly hybrid-shape pattern routing algorithm
in the medium nets, and use our proposed GPU-friendly L-
shape pattern routing algorithm to the rest nets.

According to the experimental results, the selection tech-
nique improves both the acceleration and quality performance
of our proposed hybrid-shape pattern routing algorithm.
Table VI plots the running time and quality comparison
between FastGRL and FastGRH without the selection tech-
nique. We can get 2.304× acceleration by applying selection
to the pattern routing stage, while the number of nets with
violations that should be passed to rip up and reroute iteration
increases by 21.1%. Therefore, for the total running time, we
can only achieve 1.888× speedup compared with FastGRH

without selection. As for the quality performance, we can get
a 14.742% improvement on average concerning the number of
shorts, which is a significant metric to reflect the routability.

E. Acceleration

We conduct experiments on 12 distinct benchmarks from the
ICCAD2019 contest with advanced nodes. And, we find out
that half of them (end with “m”) contain only five metal layers,
while the other six contain nine. Furthermore, as discussed in
Section IV-C, we eventually arrange all the routing tasks in
both stages with ascending bounding box half perimeter to
obtain better running time and solution quality performance.

In order to show the acceleration performance of our task
graph scheduler and our two GPU-friendly pattern routing
algorithms, we assess total runtime, pattern routing runtime,
and the runtime of the rip-up and reroute iterations. In addi-
tion, we display the solution quality using the score provided
in (15). The FastGR with our proposed GPU-friendly L-shape
pattern routing algorithm is named FastGRL [15] and FastGRH

is short for our global router integrated with our GPU-friendly
hybrid-shape pattern routing algorithm.

We evaluate the total runtime, pattern routing runtime, and
the runtime of the rip-up and reroute iterations to demon-
strate the acceleration performance of our proposed task graph
scheduler and our developed two GPU-friendly pattern rout-
ing algorithms. Also, we evaluate the solution quality using
the score defined in (15).

Table VII plots the overall performance with total running
time and the solution quality on ICCAD2019 benchmarks. By

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: FastGR: GLOBAL ROUTING ON CPU–GPU WITH HETEROGENEOUS TASK GRAPH SCHEDULER 2327

TABLE VIII
BREAKDOWN RUNTIME RESULTS ON ICCAD 2019 BENCHMARKS

utilizing our proposed task graph scheduler and the GPU-
friendly L-shape pattern routing algorithm, we can get an
overall 2.489× acceleration over the widely used modern
two-stage global router [3]. By conducting the GPU-friendly
hybrid-shape pattern routing algorithm and the scheduler, we
can still obtain 1.970× speed up compared with the baseline.

To better illustrate the impact on the different stages,
Table VIII lists the pattern routing running time in the pattern
routing stage and the maze routing running time of three rip-up
and reroute iterations named PATTERN runtime and MAZE
runtime, respectively. As for the GPU-friendly pattern rout-
ing algorithms, we apply the zero-copy technique [31] of the
CUDA library in our implementation to shorten the data trans-
mission running time between the CPU and the GPU within
1 s. Therefore, the PATTERN runtime in Table VIII primarily
reflects the efficiency of our proposed GPU-friendly pattern
routing algorithms.

With the zero-copy technique, Table VIII shows that our
proposed GPU-friendly L-shape pattern routing algorithm
can bring 9.324× speedup. Meanwhile, the proposed GPU-
friendly hybrid-shape pattern routing algorithm can achieve
2.070× acceleration on average compared with the sequen-
tially executed strategy. The reduction of the speedup is
because the hybrid-shape pattern routing algorithm considers

e∈E((Me +Ne)×L×L×L×L) candidate routing paths com-
pared with both CUGR [3] and FastGRL [15], which contain

e∈E(L × L) candidate routing paths in the L-shape pattern
routing algorithm. We set Me, Ne to represent the width and the
height of net e on the global routing grid graph G and L is the
number of metal layers. Further analysis of the pattern routing
running time reveals that the performance of our GPU-friendly
pattern routing algorithms may be determined by design scale.
If the case has a larger design scale, the performance will be
better. In addition, modern circuits’ metal layers exceed five
thus our algorithms are desirable in the industry.

Respecting the rip-up and reroute iterations, we count the
number of nets after the pattern routing stage, which is related
to the MAZE runtime since only the nets with violations
will be passed into rip-up and reroute iterations. In com-
parison with the widely adopted batch-based parallelization
strategy, our GPU-friendly L-shape pattern routing algorithm
can reduce the number of nets with violation by 2.4%. On

the other hand, the GPU-friendly hybrid-shape pattern routing
strategy can significantly reduce the number of nets with vio-
lations by 23.3% on average. Both of them illustrate that our
proposed pattern routing framework can improve the solution
quality of the pattern routing stage.

In the case with a similar number of nets to rip up, the task
scheduler can contribute to 2.501× speedup over the widely
adopted batch-based parallelization strategy on the CPU. By
applying the hybrid-shape pattern routing algorithm in the pat-
tern routing stage, our proposed framework can largely reduce
the number of nets to rip up, and the running time of maze
routing iterations can achieve a 3.157% on average compared
to the baseline. This improvement between FastGRL [15] and
FastGRH mainly gains from the reduction of the number of
nets to rip up.

F. Time Complexity Analysis

The time complexity is analyzed as follows. The hybrid-
shape pattern routing algorithm considers

e∈E((Me + Ne) ×

L×L×L) candidate routing paths compared with the L-shape
pattern routing algorithm with

e∈E(L × L) candidate rout-

ing paths, where E represents the set of all the two-pin nets.
Considering executing all the multipin nets in sequential, the
time complexity of our proposed hybrid-shape pattern routing
algorithm gets an O(|E|(M + N)L3) computational amount,
where M and N are the width and height of the 2-D global rout-
ing grid graph, respectively. In that case, the L-shape pattern
routing algorithm gets O(|E|L2) computational amount.

Our developed computation graph flow methods enumerate
all the layer combinations at the same time, which can help
reduce the time complexity to O(|E|(M + N)) and O(|E|),
respectively, in an ideal situation with enough resources.
Furthermore, with the help of the framework described in
Fig. 10, we can enumerate all the (M + N) candidates simul-
taneously when the computation resource is enough so that the
time complexity of our proposed hybrid-shape pattern routing
can be reduced to O(|E|).

On the other hand, the additional merge step for all (M+N)

candidates with this structure costs O(log(M + N)) by using
divide-and-conquer. In our experiment, we implement the
merge step by searching all results, and the cost of the merge

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

2328 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

TABLE IX
SOLUTION QUALITY RESULTS

TABLE X
QUALITY COMPARISON AFTER DETAILED ROUTING. THE BEST IS MARKED AS BOLD AND THE SECOND BEST IS NOTED AS BLUE

step will be O(M + N). Finally, our GPU-accelerated hybrid-
shape pattern routing algorithm can get O(|E| + M + N) time
with enough computation resource, and the GPU-accelerated
L-shape pattern routing algorithm costs O(|E|).

Based on the above analysis, our computation graph flow
for routing only needs additional merge cost when extending
more bend points in the modern routing algorithm with enough
computational resources.

G. Evaluation on Hybrid Shape Patterns

The effectiveness of the proposed hybrid-shape pattern rout-
ing algorithm is verified by applying the hybrid shape pattern
routing FastGRH or the L-shape pattern routing FastGRL [15]
in our FastGR framework. Table IX shows the comparison of
the detailed solution quality. It establishes that the global router
with hybrid-shape pattern routing algorithm FastGRH can
beat the global router with L-shape pattern routing algorithm
FastGRL [15] with respect to the score defined in (15) and
wirelength on most designs. Since our hybrid-shape pattern
routing algorithm considers Z-shape patterns as the candi-
date routing paths, the number of vias increases reasonably.
The most important metric for global routing solution quality
is the number of shorts, representing the degree of viola-
tions. By replacing the L-shape pattern routing algorithm with
our proposed hybrid-shape pattern routing algorithm, we can
achieve a 27.855% improvement on average in the number

of shorts. Note that especially for the designs with a few
shorts, FastGRH optimizes all the shorts, which is a significant
improvement since a few shorts usually need to be manually
fixed by the engineers, which takes a lot of time. In contrast,
the large number of shorts still require more placement and
routing (PnR) flow iterations and the more candidate routing
paths only optimize a few rate of violations in that case.

H. Detailed Routing Performance

Since the global routing solution is only a guide for the
detailed router, the final detailed routing solution quality may
not be improved as the same as the global routing solu-
tion quality. To further evaluate the solution performance,
Dr. Cu [4] is applied to conduct detailed routing under
the guide of the global routing solution. The correspond-
ing detailed routing results including wirelength, the number
of vias, the number of shorts, and the number of spac-
ing violations are listed in Table X. As for the wirelength,
our FastGR framework outperforms CUGR on most designs.
Furthermore, FastGR can obtain comparable detailed rout-
ing performance with CUGR in many aspects (including
the number of vias, the number of shorts, and the number
of spacing violations) as shown in Table X. On the other
hand, compared with FastGRL, FastGRH can maintain a sim-
ilar number of vias with better wirelength and routability
performance.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: FastGR: GLOBAL ROUTING ON CPU–GPU WITH HETEROGENEOUS TASK GRAPH SCHEDULER 2329

V. CONCLUSION

In this article, we propose an efficient global routing
framework, FastGR, accelerated for CPU–GPU platforms. We
propose two GPU-friendly pattern routing algorithms and a
heterogeneous task graph scheduler. The framework includes
a fast version FastGRL, which can obtain 2.489× acceleration
with a 9.324× speedup over the sequential 3-D L-shape pattern
routing algorithm on the CPU. We also develop a quality-
oriented version FastGRH to get a 27.855% improvement in
respect of the number of shorts and maintain a 1.970× speedup
at the same time. This article’s results highlight the importance
of GPU-accelerated kernel algorithms and the task scheduler
for Internet ordering in routing. An adequate fuse of them can
assist in reducing design cycles and improve the solution qual-
ity at the same time. In the future, we plan to extend the task
graph scheduler to other critical stages and exploit the power
of GPU acceleration in the VLSI flow.

REFERENCES

[1] J. He, U. Agarwal, Y. Yang, R. Manohar, and K. Pingali, “SPRoute 2.0:
A detailed-routability-driven deterministic parallel global router with
soft capacity,” in Proc. ASPDAC, 2022, pp. 586–591.

[2] A. B. Kahng, L. Wang, and B. Xu, “TritonRoute: The open-source
detailed router,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 40, no. 3, pp. 547–559, Mar. 2021.

[3] J. Liu, C.-W. Pui, F. Wang, and E. F. Y. Young, “CUGR: Detailed-
routability-driven 3D global routing with probabilistic resource model,”
in Proc. DAC, 2020, pp. 1–6.

[4] G. Chen, C.-W. Pui, H. Li, and E. F. Young, “Dr. CU: Detailed rout-
ing by sparse grid graph and minimum-area-captured path search,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 9,
pp. 1902–1915, Sep. 2020.

[5] X. He et al., “Ripple 2.0: High quality routability-driven placement via
global router integration,” in Proc. DAC, 2013, pp. 1–6.

[6] J. Hu, J. A. Roy, and I. L. Markov, “Completing high-quality global
routes,” in Proc. ISPD, 2010, pp. 35–41.

[7] J. Soukup, “Global router,” in Proc. DAC, 1979, pp. 481–484.
[8] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern routing: Use

and theory for increasing predictability and avoiding coupling,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 7,
pp. 777–790, Jul. 2002.

[9] M. Pan, Y. Xu, Y. Zhang, and C. Chu, “FastRoute: An efficient and
high-quality global router,” in Proc. VLSI Des., 2012, p. 14.

[10] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: Global router with efficient
via minimization,” in Proc. ASPDAC, 2009, pp. 576–581.

[11] M. D. Moffitt, “MaizeRouter: Engineering an effective global router,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 11,
pp. 2017–2026, Nov. 2008.

[12] Y. Xu and C. Chu, “MGR: Multi-level global router,” in Proc. ICCAD,
2011, pp. 250–255.

[13] H. Djidjev, G. Chapuis, R. Andonov, S. Thulasidasan, and D. Lavenier,
“All-pairs shortest path algorithms for planar graph for GPU-accelerated
clusters,” J. Parallel Distrib. Comput., vol. 85, pp. 91–103, Nov. 2015.

[14] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck, “PHAST:
Hardware-accelerated shortest path trees,” J. Parallel Distrib. Comput.,
vol. 73, no. 7, pp. 940–952, 2013.

[15] S. Liu et al., “FastGR: Global routing on CPU-GPU with heterogeneous
task graph scheduler,” in Proc. DATE, 2022, pp. 760–765.

[16] C. J. Alpert, T. C. Hu, J.-H. Huang, A. B. Kahng, and D. Karger, “Prim-
Dijkstra tradeoffs for improved performance-driven routing tree design,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 14, no. 7,
pp. 890–896, Jul. 1995.

[17] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83, Jan. 2008.

[18] C. J. Alpert et al., “Prim-Dijkstra revisited: Achieving superior timing-
driven routing trees,” in Proc. ISPD, 2018, pp. 10–17.

[19] G. Chen and E. F. Y. Young, “SALT: Provably good routing topology by
a novel steiner shallow-light tree algorithm,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 6, pp. 1217–1230, Jun. 2020.

[20] J.-R. Gao, P.-C. Wu, and T.-C. Wang, “A new global router for modern
designs,” in Proc. ASPDAC, 2008, pp. 232–237.

[21] Y. Han, D. M. Ancajas, K. Chakraborty, and S. Roy, “Exploring high-
throughput computing paradigm for global routing,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 155–167, Jan. 2014.

[22] M. M. Ozdal and M. D. F. Wong, “Archer: A history-based global rout-
ing algorithm,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 28, no. 4, pp. 528–540, Apr. 2009.

[23] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, “NTHU-Route 2.0: A fast and
stable global router,” in Proc. ICCAD, 2008, pp. 338–343.

[24] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “A parallel integer program-
ming approach to global routing,” in Proc. DAC, 2010, pp. 194–199.

[25] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Scalable 3D global
routing using integer programming,” in Proc. DAC, 2009, pp. 320–325.

[26] S. Dolgov, A. Volkov, L. Wang, and B. Xu, “2019 CAD contest:
LEF/DEF based global routing,” in Proc. ICCAD, 2019, pp. 1–4.

[27] J. Hu and S. S. Sapatnekar, “A survey on multi-net global routing for
integrated circuits,” Integration, vol. 31, no. 1, pp. 1–49, 2001.

[28] C.-P. Hsu, “A new two-dimensional routing algorithm,” in Proc. DAC,
1982, pp. 46–50.

[29] L. C. Abel, “On the ordering of connections for automatic wire routing,”
IEEE Trans. Comput., vol. C-21, no. 11, pp. 1227–1233, Nov. 1972.

[30] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-TaskFlow: Fast
task-based parallel programming using modern C++,” in Proc. IPDPS,
2019, pp. 974–983.

[31] “Zero copy technique.” NVDIA. Accessed: May 2009. [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
index.html#zero-copy

Siting Liu received the B.S. degree from the
Department of Computer Science, Huazhong
University of Science and Technology, Wuhan,
China, in 2020. She is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University
of Hong Kong.

She is a visiting student with the School of
Integrated Circuits, Peking University, Beijing,
China. Her current research interests include deep
learning applications and GPU acceleration in
physical design.

Ms. Liu received the Best Paper Award from DATE 2022 and the Best
Paper Award Nomination from DATE 2021.

Yuan Pu received the B.S. degree in computer sci-
ence from The Chinese University of Hong Kong,
Hong Kong, in 2022.

He is currently a Research Assistant with the
CSE Department, The Chinese University of Hong
Kong, supervised by Prof. B. Yu. His research
interest includes machine learning in EDA and
hardware/algorithm co-optimization.

Peiyu Liao received the B.S. degree from the School
of Mathematical Sciences, Zhejiang University,
Hangzhou, China, in 2017, and the M.S. degree
from the School of Engineering, The Hong Kong
University of Science and Technology, Hong Kong,
in 2019. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong,
Hong Kong.

He is a visiting student with the School of
Integrated Circuits, Peking University, Beijing,

China. His current research interests include high-performance computing and
numerical optimization in physical design.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

2330 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

Hongzhong Wu received the Ph.D. degree from
the University of Science and Technology of China,
Hefei, China.

He is currently a Senior Engineer with HiSilicon,
Shenzhen, China.

Rui Zhang received the Ph.D. degree from the
Institute of Semiconductor, Chinese Academy of
Sciences, Beijing, China.

He is currently a Senior Engineer with the
EDA Solutions Development Department, HiSilicon,
Shenzhen, China. His research interests include
design for manufacturing, floorplan automation,
macro placement, and facilitating the use of artificial
intelligent techniques in EDA solutions.

Zhitang Chen received the bachelor’s degree
from the Department of Automation, Sun Yat-sen
University, Guangzhou, China, in 2010, and the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, in 2014.

He is a Researcher with the Noah’s Ark Lab,
Huawei Technologies, Hong Kong. His current
research interests include kernel methods, deep
learning, reinforcement learning, and multiagent
systems and their applications to computer networks.

Wenlong Lv received the Ph.D. degree from Fudan
University, Shanghai, China, in 2019.

He is currently a Principal Engineer with Huawei
Technologies Company, Shenzhen, China. His main
research interest is the combination of machine
learning and EDA technologies.

Yibo Lin (Member, IEEE) received the B.S.
degree in microelectronics from Shanghai Jiaotong
University, Shanghai, China, in 2013, and the
Ph.D. degree from the Electrical and Computer
Engineering Department, The University of Texas
at Austin, Austin, TX, USA, in 2018.

He is currently an Assistant Professor with the
School of Integrated Circuits, Peking University,
Beijing, China. His research interests include phys-
ical design, machine learning applications, GPU
acceleration, and hardware security.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received nine Best Paper Awards from
DATE 2022, ICCAD 2021 and 2013, ASPDAC 2021
and 2012, ICTAI 2019, Integration, the VLSI Journal
in 2018, ISPD 2017, SPIE Advanced Lithography
Conference 2016, and seven ICCAD/ISPD Contest

Awards. He has served as the TPC Chair of ACM/IEEE Workshop on Machine
Learning for CAD, and in many journal editorial boards and conference
committees. He is an Editor of IEEE TCCPS NEWSLETTER.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 20,2023 at 08:08:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

