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Abstract—The decrease of feature size and the growing com-
plexity of the fabrication process lead to more failures in
manufacturing semiconductor devices. Therefore, identifying the
root cause layout patterns of failures becomes increasingly cru-
cial for yield improvement. In this article, a novel layout-aware
diagnosis-based layout pattern analysis framework is proposed
to identify the root cause efficiently. At the first stage of the
framework, an encoder network trained using contrastive learn-
ing is used to extract representations of layout snippets that
are invariant to trivial transformations, including shift, rota-
tion, and mirroring, which are then clustered to form layout
patterns. At the second stage, we model the causal relationship
between any potential root cause layout patterns and the sys-
tematic defects by a structural causal model, which is then used
to estimate the average causal effect (ACE) of candidate lay-
out patterns on the systematic defect to identify the true root
cause. Experimental results on real industrial cases demonstrate
that our framework outperforms a commercial tool with higher
accuracies and around x8.4 speedup on average.

Index Terms—Causality, deep learning, design for manufac-
turability, failure analysis, fault diagnosis.

I. INTRODUCTION

HE YIELD of manufactured integrated circuits (ICs) is

defined as the percentage of good dies among all dies
manufactured. A high and stable yield could ensure the prof-
itability and reliability of products. However, as the feature
size decreases, specific layout patterns that are hard to fab-
ricate tend to cause more systematic defects, such as open
or bridge defects in neighboring wires. These layout patterns
are an important source of yield loss. Since layout configura-
tions of new designs may differ from existing ones, identifying
layout patterns that lead to yield loss through test chips,
SRAMs, etc., is becoming less effective. Performing hotspot
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detection [1]-[4] on entire layouts may result in overcorrec-
tion which can adversely affect chip area and performance.
Physical failure analysis (PFA) is a straightforward method to
determine whether a layout pattern is the root cause of sys-
tematic defects. However, it requires both experience and a
proper understanding of the fabrication process and is usually
time consuming and expensive.

To efficiently identify the root cause of systematic defects,
statistical methods have been adopted to automatically identify
common physical defect features by analyzing volume diagnosis
reports. One of the most prominent work is a Bayesian method
proposed in [5], which characterizes the conditional distribution
of systematic defect given potential root causes. It learns the
optimal root cause distribution by maximizing the likelihood of
observed diagnosis report using an expectation—maximization
(EM) learning algorithm. There are also works [6], [7] focusing
on improving the quality of diagnosis results by evaluating the
impact of diagnosis features to improve the root cause iden-
tification accuracy. These methods fall short of considering
root cause layout patterns which largely restricts their appli-
cability to real tasks. Cheng et al. [8] proposed an advanced
solution based on [5]. They take root cause layout patterns
into consideration when identifying the correct layout patterns
inducing systematic yield loss. In practice, there usually exists
complex interactions between different root causes, as well as
root cause and systematic defect, but the causal relationship
between candidate layout patterns and the systematic defect
was not considered in [8].

Another class of seminal works [9], [10] focus more on the
geometric structure of layout patterns by adopting clustering
algorithms to improve the systematic IC-defect identifica-
tion. Both connectivity-based and centroid-based clustering
algorithms are used to group rotation-, mirror-equivalent lay-
out snippets together. These works conduct clustering on raw
layout snippets in a two-stage manner and manually check
all possible geometric equivalence between different clusters.
Simulation experiments in [10] indicate that the resolution
of the identification results of clustering-based methods is
limited, since they may require a failure analysis expert’s
judgment to pick a single layout snippet for each cluster.
Furthermore, layout snippets that are shift equivalent are
regarded as different candidates, which is commonly con-
sidered unreasonable since these snippets share identical or
similar geometric structures.

To address the above issues presented in Fig. 1 and improve
the resolution of root cause identification, a unified framework
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Fig. 1. Overview of prior methods. Upper: [5], [7]; lower: [9], [10].

for layout pattern analysis (LPA) with deep causal effect
estimation is proposed in this work. Compared to exist-
ing statistical learning methods, our framework characterizes
the causal relationship between potential root causes and
the systematic defect. Compared to methods using cluster-
ing algorithms, our framework regards rotation-, mirror-, and
shift-invariant layout snippets as equivalent without requir-
ing any manual equivalence check. At the first stage of the
framework, a novel contrastive learning method is used to
train an encoder network to extract from layout snippets their
rotation-, mirror-, and shift-invariant latent features. The latent
features are then clustered to form layout patterns. Based on
the learned layout patterns, we use a structural causal model
(SCM) to model the causal relationship between candidate lay-
out patterns and the systematic defect, i.e., the model describes
the relationship between the occurrence/presence of a certain
layout pattern and the systematic defect. Finally, the average
causal effect (ACE) of candidate layout patterns on the sys-
tematic defect is estimated as the metric for the identification
of the root cause of systematic defects. Experimental results on
large-scale designs show that our framework achieves state-of-
the-art results which significantly outperforms a commercial
tool in terms of accuracy as well as inference time.

To the best of our knowledge, this work is the first to apply
contrastive learning-based deep learning techniques and ACE
estimation to identify the root cause. The main contributions
of this work are threefold.

1) We propose a unified solution to volume diagnosis-based
root causes layout pattern identification task. Both pat-
tern clustering and root cause identification are taken
into consideration. A novel clustering loss is proposed
to solve the limitation of the conventional contrastive
learning method. Our framework can identify the crit-
ical root causes and provide high-resolution clustered
snippets for further analysis.

2) The causal relationship between different candidate lay-
out patterns and the systematic defects is characterized
using a neural network and a neural network attribution
method is adopted to estimate the ACE for root cause
identification.

3) Experimental results on several industrial designs show
the effectiveness and robustness against the noise of our
framework. The accuracy of our framework outperforms
a commercial tool and state-of-the-art framework in
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Fig. 2. 1dea of contrastive learning: maximize the similarity between latent
features of an image and its augmented version and simultaneously minimize
the similarity between latent features of inputs correspond to different original
images.

different scenarios and we get x 8.4 speedup on average
at inference.

The remainder of this article is organized as follows.
Section II introduces terminologies and problem formulation
related to this work. Section III describes the problem formu-
lation and the algorithmic details of our framework. Section IV
lists the experimental results, followed by the discussion and
conclusion in Section V.

II. PRELIMINARIES

In this section, preliminary knowledge related to the
proposed framework is briefly reviewed.

A. Layout Pattern Analysis

LPA takes a step toward identifying the layout patterns
which cause systematic defects. Cheng et al. [8] proposed an
LPA solution which is an enhanced flow based on [5]. Attribute
to the external steps on layout pattern processing, this work
makes root cause identification on layout patterns becomes
feasible. The challenge of how to handle a large number of
potential layout patterns to be considered for analysis is solved.
And the risk of overfitting caused by Bayesian modeling is also
addressed. Layout pattern extraction is designed to extract all
unique layout patterns around locations that could be phys-
ical defects. In layout pattern matching, layout patterns are
transformed to canonical forms which make shifted, rotated,
or mirrored patterns identical. Combining previous steps with
the root cause identification method proposed in [5], root cause
analysis results, including root cause distribution and layout
patterns, are returned for further study.

B. Contrastive Learning

Conventional deep network training often relies on large
amounts of annotated data to learn representations in a latent
space. Since the annotated data can be costly or even impossi-
ble to collect, self-supervised learning leverages unlabeled data
to perform pretext tasks for representation learning [11], [12].
Contrastive learning is a class of self-supervised learning that
uses contrastive objectives. The general idea of contrastive
learning is to maximize the similarity between an instance
and its augmentation, while keeping the discriminative power
against different instances through a contrastive loss in the
latent space, as illustrated in Fig. 2. Recent contrastive learning
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Fig. 3. SCM (a) without and (b) under intervention. Nodes represent random
variables and directed edges x — y indicate that x is a direct cause of y. Under
intervention do(t’), the intervened variable ¢ is fixed to the intervened value
¢ and all its incoming edges are removed.

methods [13]-[16] have achieved competitive results in visual
representation learning compared with prominent supervised
learning methods for computer vision tasks.

C. Structural Causal Models

SCMs [17] are developed toward a comprehensive theory
of causation and serve as a key ingredient of our framework.

Definition 1 (Structural Causal Model [17]): An SCM M
is a 4-tuple [E, X, F, P(E)], where

1) E is a set of exogenous (unobserved) variables;

2) X is a set of endogenous (observed) variables;

3) F represents a collection of functions F = {f;} such that
each endogenous variable x; € X is determined by a
function f; € F, where f; is a mapping from the respec-
tive domain of ¢; U Pa; to x;, with ¢; C E, Pa; € X\{X;}
is the set of direct parents of x;;

4) the uncertainty is encoded through a probability distri-
bution over the exogenous variables, P(E).

SCMs provide a compact way of characterizing ACE
ACEZO(XI_), which is defined as E[y|do(x; = 1)] — E[y|do(x; =
0)] for binary x;. E[y|do(x; = «)], known as interventional
expectation [17], denotes the expectation of y when interven-
ing the value of x; to be @. For an SCM, such intervened
model can be represented by replacing the structural equation
x; = fi(Pa;, €;) by a constant x; = «. A directed acyclic graph
representation of SCMs is presented in Fig. 3.

D. Neural Network Attributions

Attribution methods aim to provide interpretability of deep
networks by identifying the effect of an input neuron on a
specific output neuron [18], [19]. Recently, [20] approached
neural network attribution problems from a causal perspective.
They view a multilayer perceptron (MLP) {/1,...,[,} as an
SCM M'(E, {l, 1,},f’, P(E)), where [| is the input layer, [,
is the output layer, E refers to a set of exogenous random
variables which act as causal factors for the input neurons
I1, and f’ refers to the mapping from the input to output by
marginalizing out all hidden neurons.

Based on SCM reformulation, [20] approximated the inter-
ventional expectation of the output neurons f’(/1) under the
intervention do(x; = «) as

E[f'(D)do(xi = )] = f(w)
1
+ Etr(sz’(M)E[(h — Wl = ) do(xi = )] (1)
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Fig. 4. Overview of the framework.

where tr(-) is the trace operator, u = [u1, ..., uk]—r and each
entry uy = Elxy|do(xj = «)] Vxy € [, is the interventional
expectation of xy when x; is intervened to the value «.

III. METHODOLOGIES
A. Overview

The objective of LPA in this work is to identify the true
root cause(s) of the systematic defect by analyzing a dataset
consisting of m diagnosis reports R = {r‘}’" | and layout
snippets of potential root causes in these reports. Each report
r¢ consists of several independent symptoms (i.e., defects),
whose possible causes are also given along with several impor-
tant properties (e.g., ID, score, etc.). Our framework identifies
the true root cause(s) inducing systematic defects in R by
exploiting both the geometric structure of layout snippets
(Section III-B) and the causal relationship between potential
root causes and systematic defect (Section III-C).

An illustration of our LPA framework is given in Fig. 4.
It uses diagnosis reports and layout snippets of potential
root causes in these reports as the inputs. First, a contrastive
learning-based method is adopted to extract rotation-, mirror-,
and shift-invariant latent features from input layout snippets.
Then, the latent features are clustered using k-means clustering
to identify layout patterns from a large amount of layout snip-
pets. Each cluster corresponds to one layout pattern. Third, a
feedforward neural network, which acts as the SCM involves
all candidate layout patterns and systematic defect, is trained
to maximize the likelihood of the input diagnosis reports given
the representation of candidate layout patterns as inputs. After
training, the ACEs of layout patterns to systematic defect are
evaluated to identify the true root cause(s).

B. Deep Layout Snippet Clustering

The identification of layout patterns from layout snippets
using clustering algorithm is elaborated in this section.
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Since there are a considerable number of duplicate and
equivalent layout snippets in the diagnosis reports, layout
pattern matching is usually conducted to recognize layout
snippets that are rotated, mirrored, or shifted version of each
other as geometrically equivalent. Clustering algorithms are
a widely used class of techniques in layout pattern match-
ing. Although applying connectivity-based or centroid-based
clustering algorithms on raw layout snippets achieved certain
improvements on identifying root causes, they heavily rely on
manual design and may have difficulty when generalized to
new manufacturing processes.

To circumvent the need of manually designed clustering
rules, we introduce deep neural networks in layout pattern
matching. Specifically, an encoder network is trained using
contrastive learning to extract latent features that are invari-
ant to trivial transformations, such as rotation, mirror, and
shift. Besides, the self-supervised nature of contrastive learn-
ing allows us to construct a huge amount of training data set
by cropping unlabeled layout snippets from the entire layout
designs.

Encoder Network: The principle of the encoder network
is to transform raw layout snippets into a low-dimensional
latent space, in which equivalent layout snippets are mapped to
an identical embedding (vector). The low-dimensional embed-
dings represent the prototypes of layout snippets. The network
structure of our model is shown in Fig. 5. “SeparableConv”
indicates the depthwise separable convolution layer which is
a variant convolution layer widely used in [21] for compu-
tation efficiency. “Block A” and “Block B” are two modules
with residual connections. Three “Linear” layers are attached
to the feature extractor as a bottleneck structure maps 2-D
features to embeddings.

Contrastive Learning: Given a batch of embeddings trans-
formed from raw layout snippets by the encoder network, our
goal is to make the embeddings of equivalent layout snippets
identical, while keeping those of nonequivalent as dissimilar
as possible. To achieve this, £,-norm is used as a metric to
measure the dissimilarity between embeddings z; and z; of a
pair of layout snippets

d(Zi, Zj) = ”Zi — Zij (2)

where p is a real number greater than 1 and is set to p = 2 in
this work. Conventional contrastive loss [22], [23] based on
the metric above is given by

Leon(z, p, n) = max(d(z, p) — d(z, n) + marg, 0) €))

where marg is a non-negative value indicating an appropri-
ately set margin, and z, p, and n are the embeddings of one
layout snippet, the embedding of a positive sample of z, and
the embedding of a negative sample of z, respectively. marg
represents the minimum difference between positive and neg-
ative distances that is required for the loss to be zero. During
training, positive samples p are getting closer to the anchor
embedding z and negative samples r are penalized to be far
from anchor embedding. An illustration of contrastive learning
with an encoder is shown in Fig. 6.

Clustering Loss: According to (3), the embedding cluster-
ing is improved by pair-wise comparison directly. While this
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method has drawbacks, the property of clusters is overlooked.
An example of a small batch size with two clusters is presented
in Fig. 7, the pair-wise operation may pull the positive samples
away from the center of clusters. The double-headed arrow
with a dotted line indicates the penalization term in (3), this
term causes two samples away from the center of correspond-
ing clusters. This may cause negative effects on the efficiency
of convergence and clustering quality. It will be more difficult
for training when the batch size is larger, since more clusters
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might be disrupted. To tackle this issue, we propose a cluster-
ing loss by adding a regularization term to improve the quality
of clusters. This term is expressed as

R(m,2) = |m; —z||, “4)

where m; is the cluster center of sample z. The whole
optimization objective is expressed as

L@z, p,n,my, m,) = Leon(z,p, n)
+ aR(@my,p) + BR(m,, n)  (5)

where « and 8 are the weights of regularization terms. With
the regularization terms for positive samples and negative sam-
ples, the drawback of contrastive loss in [23] is avoided and
the risk of low resolution is reduced. Each iteration of the
training decreases the quantization error of the clusters since
for the same cluster, we have the following inequality:

Y R(m',z) = Ram,z) =) |m' =z, — Im =z, <0
i i

where m’ is the updated cluster center and s; is the sample i
belongs to the cluster. Repeatedly replacing m by m’ speeds up
the convergence of the training schedule. Experimental results
verified that the proposed clustering loss requires less training
data and computation resources. The advantage of clustering
loss is summarized in Table I. A visualized illustration of (5)
is presented in Fig. 8. The detail of how to construct the
positive and negative samples and training scheme is clarified
in Section IV.

After training the encoder network, it is used to extract
embeddings of layout snippets. Then, the k-means clustering
algorithm is applied to these embeddings to partition them
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TABLE I
ADVANTAGE OF CLUSTERING LOSS COMPARED TO
CONTRASTIVE L0OSS USED IN [23]
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Fig. 9. Example of DLSC.

into k clusters C;, i € {1, ..., k}. Each cluster C; consists of
n; equivalent layout snippets that correspond to one layout pat-
tern. The silhouette method [24] which is a measurement of
how similar an object is to its own cluster compared to other
clusters is adopted to determine the optimal value of the num-
ber of clusters k. By embedding clustering, equivalent layout
snippets can be grouped into the same cluster without artificial
modulation.

An example of the deep layout snippet clustering (DLSC)
is illustrated in Fig. 9, layout snippets with a large number of
pixels are transformed to low-dimensional embeddings which
reduces the clustering computation remarkably while improv-
ing the layout pattern matching accuracy. Experimental results
in Section IV empirically show that encoder network trained
using layout snippets of one layout design can also generalize
to new layout designs.

C. Deep Average Causal Effect Estimation

In this section, we introduce how we use ACE estimation to
identify the true root cause(s) from a large amount of potential
root causes using diagnosis reports and the results of layout
pattern matching.

Defect SCM Training: Based on the clustering results, we
transform the embeddings of layout snippets to the cluster
space and then build the SCM between candidate layout pat-
terns and systematic defect. First, distance matrix D € Rnxk
is computed, whose (j, i)th entry [D];; denotes the distance
of the jth embedding to the center of cluster i. Then, the
distance matrix is converted to a cluster membership matrix
P ¢ R whose entries indicate the probability of each
embedding belonging to each cluster as follows:

exp (—Dji/7)
> rexp (=Dji/7)

where T is a temperature parameter, set as 0.1 in this work.
The layout snippets closer to the cluster center have higher
probabilities.

With all layout snippets represented in the form of mem-
bership vectors in P, we model the SCM between candidate
layout patterns and systematic defect with an MLP M to char-
acterize their causal relationship. MLP as a neural network

[Pl;; = (6)
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can be regarded as directed graphs with directed edges from
a lower layer to the layer above. The final output is based on
the hierarchy of interactions between lower level nodes.

Proposition 1: Given an [-layer feedforward neu-
ral network N(,b,...,l,), where [; is the set
of neurons in layer i has a corresponding SCM
MX, [, b, ....,LL A A, - o ful, P(E)), where 1 is

the input layer and [, is the output layer. Corresponding to
every [;, f; refers to the set of causal functions for neurons in
layer i.

Proof: In a feedforward neural network, each layer neu-
ron can be regarded as functions of neurons in its previous
layer, ie., Vi € [: Vl,:/. e I lij = ﬁi(li,l). The input
layer /1 can be assumed to be functions of exogenous
variables E such that l;, = fi,(e)V];;, € [} and ¢ €
E. This structure in the random variables, neurons in
the network, can be equivalently expressed by an SCM
MX, [, by ) [f1s fs - Sl POED). L

The causal structure can be reduced to SCM
M X, [, L], f/, P(E)) by marginalizing out hidden neurons,
since only the neurons in layer /; and layer /,, are observables.

Corollary 1: Every I-layer feedfoward neural
network N(l1,b,...,l;) with [; denoting the set
of neurons in layer i, has a corresponding SCM
MX, [, b, ....L, ft,f.....ful, P(E)) which can be

reduced to an SCM M (X, [l1, ], f , P(E)).

Proof: Starting with each neuron [, in the output
layer [,, the corresponding causal function f,,([,—1) can
be substituted as fm (fnfll (ln72)vfn712 (ln72)’/fnflg (n-2), ...,
fn_l‘/n—l‘ (l,—2)). This can be written as I, =fn,» (l,,_z).f,} refers
to the causal function of neuron j in layer i and /;; refers to
neuron j in layer i. Proceeding recursively layer by layer, we
have modified functions such that, Vi, € l,,: [, = f,/“ (7). The
causal mechanisms set f, of the reduced SCM M would be
U‘,/,I_Un,. e L,y U{h, =fi,(e))l; € 1 and ¢; € E}. [ ]

With Proposition 1 and Corollary 1, we can simplify the
SCM as M and concentrate on the input and output layers of
M in the following procedures. The input layer /; of M has k
input neurons x;, i € {1, ..., k}, each of which corresponds to
one layout pattern. Its output layer [, has one output neuron
indicating the probability of systematic defect. The objective
function for training the M is

£O)=- log[vaﬂy,-)pcyim,-, 0)} )

e=1

where m is the number of diagnosis reports, @ denotes the
parameters of M, u; = (1/n;) Z]’:IEC,' P; . is the mean repre-
sentation of cluster i with n; layout snippets, p(y;|i;, 0) is
the output of M corresponding to layout pattern x;, which
indicates the probability of layout pattern x; inducing the
systematic defect, p(r°|y;) is the conditional probability of
diagnosis report r¢ if layout pattern x; occurs. We train the
neural network M by minimizing the negative log likeli-
hood in (7). The detail on estimating p(r°|y;) is elaborated
in Section IV.

LPA by ACE Estimation: After the objective in (7) con-
verges, M is viewed as an SCM containing candidate layout
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patterns and systematic defect. We assume that the true root
cause has the most significant ACE on the systematic defect.
Therefore, ACEs of input neurons (corresponding to layout
patterns) on the output neuron (corresponding to the system-
atic defect) are estimated as the metric to identify root causes.
Causal neural attribution in (1) is adopted to compute the ACE
of each layout pattern on the systematic defect.

When training the M, the inputs are representations obtained
from the membership matrix P whose entries are continuous
values between [0, 1]. Since entries in P indicate the probabil-
ity of a layout snippet belonging to a certain cluster, they have
monotonic property, i.e., the closer (j, i)th entry is to 1 (resp.,
0), the higher (resp., lower) the probability of the jth layout
snippet belonging to cluster i is. As a result, when regard-
ing x; as a binary variable, the ACE of x; on y characterizes
the causal effect of the presence of layout pattern x; on the
systematic defect. This ACE can be estimated as

ACE), .., = [E[yldo(x; = 0)] = Elyldo(x; = D]l.  (8)

The interventional expectation when x; is intervened to O in (8)
can be estimated using (1) as

Elyldo(x; = 0)] ~ f"(mio)
1 /
+ Etr<V2f (Mio)E[(lm — io) (lin — ILiO)T|d0(xi = 0)])
)

where f” refers to the mapping from the input of M to its out-
put y, the vector of interventional expectation u;, is obtained
by intervening the value of the ith entry of u; to 0. Similar
steps apply for the computation of the interventional expecta-
tion when x; is intervened to 1. After obtaining the ACE of
all layout patterns on systematic defect, we normalize them
to form the root cause distribution of all candidate layout
patterns as

y
ACB o)

>/ ACE’

. (10)
do(x})

p(x;) =

D. Inference Flow

An overview of this unified framework and modules of
DLSC and deep average causal effect estimation (DACE) are
introduced in Sections I1I-B and III-C. Here, we give a detailed
explanation on the inference flow of the framework.

The pseudocode of the inference flow is presented in
Algorithm 1, lines 1-7 correspond to the inference steps of
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Algorithm 1 Inference Flow of the Framework

Input: R = {r¢}__, - a set of diagnosis reports, S = {sj}]’.l:1 -
a set of layout snippets of all potential root causes;
Output: Root cause distribution

1. ford=1— L do

2 for j=1— |S| do

3 Encoder(s;) — z;, Vj € d; > Equation 5
4 end for

5: Get optimal k; with highest silhouette score;

6 Compute distance matrix D, using optimal kg;

7: end for

8: Construct D by concatenating Dy, Vd € {1, ..., L};

9: Convert D to P; > Equation 6

10: Train defect SCM M(6);

11: fori=1— k do

12: Calculate ACE of clusters;
13: end for

14: return Root cause distribution;

> Equation 7
> Equation 8

> Equation 10

DLSC, and lines 8-12 represent the procedure of DACE.
First, layout snippets are transformed to embeddings in a
latent space and clustered within each layer with the dedicated
optimal cluster number k4, respectively. Layer-wise clustering
is performed due to the consideration of process variance of
different layers and efficiency. Second, the membership matrix
of layout snippets in each layer is computed and different
matrices from all layout layers are concatenated along axis O
to form P. An SCM M is then learned using the information in
diagnosis reports. Finally, the ACE of each cluster on the sys-
tematic defect is estimated according to (8). The root causes
are identified based on the estimated ACE of all candidate
layout patterns.

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our proposed framework by
testing its root cause identification accuracy on six noise-free
datasets from six different layout designs, 40 noisy datasets
from five layout designs, and 50 mixture datasets from five lay-
out designs. The advantage of our framework over compared
methods in runtime is also validated by all related experiments.
The accuracy is defined as the percentage of datasets that the
real root cause is identified.

A. Datasets

Encoder Training: We crop layout snippets according to
the point of interests (POI) from the layout design in case 2.
Their size is determined by the pitch size in the corresponding
layer. Layout snippets in other designs are not used during the
training. We find out that the trained encoder can be applied
to new designs directly without sacrificing clustering quality.
Each cropped layout snippet is rotated, mirrored, and shifted to
generate positive samples for itself. Samples corresponding to
different original layout snippets are deemed negative samples
in contrastive learning.

LPA: We follow the same steps of defect injection per-
formed in [5] to generate diagnosis reports. It requires around
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TABLE II
NOTATION ON DIAGNOSIS REPORT FEATURES

Feature  Description
rule_id ID of the potential root cause
sj. The score of potential root cause j in 7€
hj DFM hits of potential root cause j in ¢
v DFM violations of potential root cause j
(x;,y;) Coordinate of potential root cause j
layer Layer name of current potential root cause
type Defect category of current potential root cause
TABLE III
LAYOUT DESIGN INFORMATION
Size (um X pum) #Layers  #Gates
Case 1 8881 x 9328 5 9337
Case 2 429 x 384 9 1560k
Case 3 8033 x 7822 6 9278k
Case 4 1091 x 1304 8 4176k
Case 5 2300 x 2410 9 5598k
Case 6 1483 x 1736 7 455k
TABLE IV
DEFECT INJECTION STATISTICS
#TotalInjections  #Open  #Bridge
Case 1 68 50 18
Case 2 107 72 35
Case 3 93 69 24
Case 4 44 28 16
Case 5 25 18 7
Case 6 39 28 11
Case 2 noise” 963 648 315
Case 3 noise 736 544 192
Case 4 noise 221 145 76
Case 5 noise 176 125 51
Case 6 noise 429 356 73

* We increase the number of injection experiments which is greater
than the statistics presented in [23].

1-2 h to generate reports for one injection experiment. Defects
of type Open and Bridge are considered in the injection steps.
The detailed information within diagnosis reports is listed
in Table II. Three classes of datasets are considered in our
evaluation.

1) Noise-Free Dataset: Besides three different layout
designs presented in [23], three more layout designs are
used to construct noise-free datasets. Basic information
of six designs is shown in Table III. Cases 2—-6 are five
real silicon datasets that result from real in-production
IC. Diagnosis reports in one noise-free dataset share one
single true root cause of the systematic defect. The data
of each layout design consists of #TotalInjections
noise-free datasets and both open and bridge types are
considered in our experiments (Table IV).

2) Noisy Dataset: A certain percentage of diagnosis reports
in the dataset shares a single true root cause and the
remaining diagnosis reports have root causes different
from the true one (i.e., noise). Different percentages of
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noise are considered during the process of injections
and the sources of noise are randomly sampled from
the entire layout designs among all metal layers.

3) Mixture Dataset: Diagnosis reports in this dataset are
divided into four portions. Each portion shares one root
cause independently. Three portions of root causes are
true and the rest portion is different from the true one.
For example, proportion *“50-20-20-10” in Table VII
means 50%, 20%, and 20% of diagnosis reports have
three true root causes correspondingly and 10% of
diagnosis reports have random noise.

Besides the diagnosis reports, layout snippets of potential
root causes in these reports are another required inputs of our
framework. Note that in the noisy dataset, both the number of
injections and types of defects are the same across different
noise levels. We merged them as “Case # noise” in Table IV.

B. Implementation Details

The proposed framework is implemented in Python with
PyTorch library [25]. The encoder network is trained using
four Nvidia Tesla V100 GPUs. The SGD optimizer is adopted
with initial learning rate le—1, weight decay Se—4, and
momentum 0.9. The batch size, number of epochs, and mar-
gin marg in (3) are set to 64, 16, and 1.5 in the experiments,
respectively. Regularization weights « and B in (5) are set as
1 in all experiments. Following [15], we add a single linear
layer before the output of the encoder during training to avoid
the feature collapsion problem.

When conducting LPA, the defect SCM M is trained using
the SGD optimizer with initial learning rate le—2, weight
decay le—3, and momentum 0.9. The maximum number of
epochs of model training is set as 100 and the training will
be early stopped if there is no improvement of the training
loss in consecutive 5 epochs. The conditional probability of
diagnosis report r¢ if layout pattern x; is true is calculated as

e e
M5 | .
" {s1s=90} | Sjx

9k

p(rlyi) = (11)
where j* = arg max;cc, >, s]?IL{ngo} (s;), Ls]s>90} (s]?) is an
indicator function which evaluates to 1 if sf > 90 and O
otherwise.

C. Results and Analysis

We compare the proposed framework eLPA-DCE with
LPA-DCE [23] and an industry-leading commercial tool. One
Nvidia Tesla V100 GPU is used for inference. The DFM hits
are the number of a potential root cause appearing in the
diagnosis report, more DFM hits indicate the layout snippet
is more likely to be the root cause to a certain extent. To
justify the necessity of our causality-based approach, a diag-
nosis statistical approach is presented as the baseline. The
baseline approach finds the root cause in the following steps:
1) given a volume of diagnosis reports, collect the DFM hits
and DFM violations of potential root causes; 2) calculate the
ratio between DFM hits and DFM violations of layout snip-
pets and get the mean ratio within each cluster; and 3) the
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TABLE V
ACCURACY(%) ON NOISE-FREE DATASETS

Dataset Baseline Commercial Tool LPA-DCE[23] eLPA-DCE
Case 1 25.00 98.53 100.00 100.00
Case 2 55.88 92.52 98.04 98.04
Case 3 58.06 98.92 98.92 100.00
Case 4 43.71 72.09 97.67 100.00
Case 5 39.25 82.05 91.30 100.00
Case 6 56.29 84.62 94.87 89.74
Average 46.37 88.12 96.80 97.96

case2-noise-avg

case3

[
case

=3 Ours (sec)
casel g 1 Tool (sec)

Fig. 11.  Inference speed comparison between our framework and the
commercial tool.

cluster with the top rank of ratio is regarded as the root cause
predicted by the diagnosis reports.

On Noise-Free Datasets: As shown in Table V, our method
outperforms the commercial tool 9.84% on average under the
setting of noise-free defect injection. The average accuracy of
the baseline is 46.37% which is much lower than our method
and the commercial tool. This indicates that by using simple
statistics according to the diagnosis report it is hard to locate
the root cause accurately. With the new clustering loss, we got
1.16% improvement compared to LPA-DCE [23]. This means
we get a better quality on the membership matrix with the
proposed regularization.

On Noisy Datasets: When given more challenging tasks
of root cause identification, we observe that the performance
of baseline becomes worse when the noise level is higher.
Our proposed method can estimate the root cause with better
performance under different noise levels (see Table VI). The
average accuracy of the framework is 40.01% higher than the
commercial tool. In case 5, the commercial tool cannot iden-
tify the root cause under the noise perturbation. Our method
can identify the root cause with robust performance across dif-
ferent noise levels. For other cases, especially when the ratio
of noise is greater than 70%, it is difficult for the commercial
tool to identify the root cause precisely. While our framework
locates the root cause with higher accuracy than the commer-
cial tool. For example, the performance of case 3 and case 4 of
the commercial tool at 80% noise level is 26.88% and 14.29%
and ours are 100% and 76%. The proposed method is robust
to the injection noise and it also outperforms LPA-DCE [23]
in most cases.

On Mixture Datasets: We conduct the mixture root causes
identification experiments to test whether our framework can
be extended to multiple root causes scenario. The experimen-
tal results in Table VII show that the proposed framework has
competitive results compared to the commercial tool especially
in tasks of identifying three true root causes from the mixture
dataset, while the commercial tool may provide misleading
results which cannot be used for further study. Especially
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TABLE VI

ACCURACY (%) ON

NoOISY DATASETS

Noise (%) Commercial Tool LPA-DCE[23] eLPA-DCE
Case 2 Case3 Case4 Case5 Case6 \ Case 2 Case3 Case4 Case5 Case6 \ Case 2 Case3 Case4 Case5 Case6
80 70.09 26.88 14.29 - 17.95 94.32 95.70 64.00 100 86.67 96.59 100.00 76.00 100.00 75.86
70 88.79 44.09 35.71 - 28.21 97.17 92.47 94.59 92.00 92.31 98.11 96.77 94.59 96.00 89.74
60 93.46 52.69 50.00 - 46.15 92.52 97.85 95.12 92.00 94.87 93.46 97.85 95.12 92.00 89.74
50 93.46 69.89 52.38 - 64.10 87.85 98.92 88.10 96.00 89.74 91.59 97.85 95.24 92.00 87.18
40 93.46 89.25 57.14 - 82.05 87.85 95.70 95.24 100.00 89.74 89.72 97.85 95.24 95.24 79.49
30 93.46 90.22 61.90 - 74.19 91.59 94.57 100.00 89.74 96.77 86.92 94.57 97.62 84.21 90.32
20 92.52 90.11 64.29 - 78.57 94.39 98.90 97.62 100.00 92.86 99.07 98.90 100.00 94.44 92.86
10 93.46 97.73 66.67 - 84.62 99.07 100.00  100.00 94.44 100.00 99.07 100.00  100.00  100.00 92.31
Average 89.84 70.11 50.30 - 59.48 \ 93.10 96.76 91.83 95.49 92.87 \ 94.32 97.97 94.23 94.24 87.19
TABLE VII
ACCURACY(%) ON MIXTURE DATASETS
Proportion Commercial Tool LPA-DCE [23] eLPA-DCE
(r1%-r2%-r3%-noise%) Case 2 Case3 Case4 Case5 Case6 ‘ Case 2 Case3 Case4 Case5 Case6 ‘ Case 2 Case3 Case4 Case5 Case6
20-20-20-40 62.07 8.05 29.21 - 13.83 77.19 78.02 64.00 79.37  86.32 85.96 93.41 84.00 74.60  87.37
30-20-20-30 65.91 19.28 29.03 - 19.57 82.35 89.01 82.61 72.60  83.15 80.88 92.31 78.26 7945  85.39
30-30-20-20 71.74 38.82 32.22 - 41.94 80.23 86.81 78.26 84.34  91.11 93.02 92.31 69.57 84.34  88.39
30-30-30-10 79.17 74.42 40.00 - 45.83 89.47 93.41 92.31 87.88  87.00 86.32 96.70 88.46 87.88  92.00
40-20-20-20 70.79 27.06 30.00 - 38.71 84.51 85.71 69.23 8143  91.11 84.51 91.21 69.23 7429  84.44
40-30-20-10 69.15 62.79 35.23 45.45 82.76 83.52 84.09 92.05 91.30 88.51 98.90 84.09 9545 9239
40-30-30-0 83.51 81.32 42.42 - 55.00 91.84 96.70 89.19 89.00  87.00 92.85 96.70 86.49 89.00  95.00
50-20-20-10 70.65 61.63 31.33 32.63 72.46 90.11 78.79 70.27  89.16 81.16 91.21 75.76 70.27  91.57
50-30-20-0 73.12 84.27 40.22 - 46.00 83.13 91.21 90.24 83.70 9545 85.54 96.70 80.49 9239  98.86
60-20-20-0 72.22 74.71 37.08 37.11 81.54 82.42 83.78 68.57  86.90 78.46 89.01 81.08 8143  94.05
Average 71.83 53.24 34.67 - 37.61 | 8255 87.69 81.25 80.92  88.85 | 85.72 93.85 79.74 8291 91.00
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Fig. 12.  Accuracy of identifying 1-3 true root causes in top-3 layout patterns

on mixture dataset case 2. (a) 30-30-30-10. (b) 40-20-20-20. (c) 40-30-20-10.

(d) 40-30-30-0. (e) 50-20-20-10. (f) 50-30-20-0. (g) 60-20-20-0. (h) 20-20-20-40. (i) 30-20-20-30. (j) 30-30-20-20.

when the percentage of root causes is low, e.g., proportion
“20-20-20-40,” the causal-based methods are much more reli-
able, since it is more frequent we have a low percentage of root
causes. Similar to the results of the commercial tool presented
in Table VI, the root causes of case 5 cannot be identified.
We infer that the pitch sizes of patterns used in the com-
mercial tool are different and this might be the reason why
the identification of root causes of this case failed. Our frame-
work achieves 82.91% high accuracy and got 47.17% better on
average than the commercial tool. eLPA-DCE also got better
results on four out of five designs than the LPA-DCE [23].

The major advantage of eLPA-DCE is owed to the advantage
of clustering loss, the causation among snippets becomes more
identifiable based on the clusters with better quality.

Top-3 Accuracy on Mixture Datasets: We analyze the
performance of identifying 1-3 true root causes from the mix-
ture datasets. Since there are three true root causes in each
dataset, a true root cause belonging to one of top-3 layout pat-
tern in the root cause distribution is a successful identification.
The accuracies of identifying 1-3 true root causes are shown
in Figs. 12-16, our method can identify at least one root cause
in all cases while the commercial tool fails to achieve 100%
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Fig. 13.  Accuracy of identifying 1-3 true root causes in top-3 layout patterns on mixture dataset case 3. (a) 30-30-30-10. (b) 40-20-20-20. (c) 40-30-20-10.

(d) 40-30-30-0. (e) 50-20-20-10. (f) 50-30-20-0. (g) 60-20-20-0. (h) 20-20-20-40. (i) 30-20-20-30. (j) 30-30-20-20.
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Fig. 14. Accuracy of identifying 1-3 true root causes in top-3 layout patterns on mixture dataset case 4. (a) 30-30-30-10. (b) 40-20-20-20. (c) 40-30-20-10.
(d) 40-30-30-0. (e) 50-20-20-10. (f) 50-30-20-0. (g) 60-20-20-0. (h) 20-20-20-40. (i) 30-20-20-30. (j) 30-30-20-20.

accuracy. Also, the average accuracy of identifying two root
causes of our method is greater than 95%, which is around
30% better than the commercial tool.

Comparing the performance of eLPA-DCE and
LPA-DCE [23], the root cause distributions generated
with the encoder trained by clustering loss are more concen-
trated than the ones trained with conventional contrastive loss.
Dense and recognizable clusters are beneficial to identify the
root causes especially if the number of clusters is large.

Inference Speed: The inference time of our framework and
the commercial tool on single root cause datasets are shown in
Fig. 11. The speed of the proposed deep learning framework
method surpasses the conventional commercial tool by a large
margin. We got around x10.4 and x2.3 speedup on noise-
free datasets and noisy datasets. The robustness of accuracy

and inference speed indicate our method is valuable for the
industry.

Clustering Quality: We compare the clustering quality of
DLSC with directly applying the k-means algorithm and
DBSCAN algorithm on raw layout snippets using the adjusted
rand index (ARI € [—1, 1], [26]). ARI computes a similar-
ity measure between two partitions by considering all pairs
of samples and counting pairs that are assigned in the same
or different clusters in the predicted and true clusterings. High
ARI indicates a good match between the clustering results and
the ground truth. In LPA, high ARI scores indicate high resolu-
tion. The experiments are conducted on cases 2—6, 256 layout
snippets are sampled layer-wise of each case for evaluation.
Note that these cases are not available during the training of
the encoder network. The ARIs of clustering using raw layout
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Fig. 15. Accuracy of identifying 1-3 true root causes in top-3 layout patterns on mixture dataset case 5. (a) 30-30-30-10. (b) 40-20-20-20. (c) 40-30-20-10.
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Fig. 16. Accuracy of identifying 1-3 true root causes in top-3 layout patterns on mixture dataset case 6. (a) 30-30-30-10. (b) 40-20-20-20. (c) 40-30-20-10.
(d) 40-30-30-0. (e) 50-20-20-10. (f) 50-30-20-0. (g) 60-20-20-0. (h) 20-20-20-40. (i) 30-20-20-30. (j) 30-30-20-20.

snippets, embeddings in LPA-DCE [23], and embeddings in
this work presented in Fig. 17 are the mean of ten independent
evaluations. The ARI scores of embeddings with the clus-
tering loss outperform the conventional contrastive learning
method presented in [23] in all metal layers. Also, both the
embedding-based clustering get higher ARI scores than the
raw-based clustering. This indicates that the contrastive learn-
ing can improve the quality of layout pattern matching. The
clustering loss can make it perform better since it avoids the
drawback of the primitive method.

Advantage of Clustering Loss on Encoder Training: The
number of layout snippets used to train encoder with con-
trastive learning proposed in LPA-DCE and the clustering loss
presented in this work is shown in Fig. 18. Only 4 x 10°

samples are required to train the encoder in this work, which is
10x lower than the number of samples used in LPA-DCE [23].
The budget for training data and computation resources is
much less. Regularization with clustering loss lower the
requirements of training set scales and speed up the procedure
of model training, which reduces the budgets of retraining on
new designs with different technological process.

V. DISCUSSION AND CONCLUSION

In this article, a unified framework on LPA is proposed
to identify the root cause(s). Based on the concept of con-
trastive learning, a DLSC module is designed to solve the
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Fig. 17. ARI of conducting layout pattern matching using raw layout snippets (k-means and DBSCAN), embeddings presented in LPA-DCE(LPA-emb) [23],

and embeddings presented in this work(Ours-emb).
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Fig. 18. Training sample requirements for training encoder with contrastive

learning proposed in LPA-DCE versus the clustering loss used in this work.

ambiguity issue and improve the resolution of root cause iden-
tification. Embedded canonical forms are presented as latent
codes of layout patterns, which decreases the size of features
and the inference times. According to the principle of SCM, a
deep ACE estimation method is proposed to model the causal
relationship between candidate layout patterns and the sys-
tematic defect. The experimental results on several industrial
designs show that our framework outperforms a commercial
tool in different scenarios. We hope our research provides a
new perspective on LPA for yield improvement.
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