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Abstract—Continuous scaling of the very-large-scale integra-
tion system leaves a significant challenge on manufacturing; thus
optical proximity correction (OPC) is widely applied in conven-
tional design flow for manufacturability optimization. Traditional
techniques conduct OPC by leveraging a lithography model but
may suffer from prohibitive computational overhead. In addition,
most of them focus on optimizing a single and local clip instead
of addressing how to tackle the full-chip scale. In this article, we
present DAMO, a high-performance and scalable deep-learning-
enabled OPC system for full-chip scale. It is an end-to-end mask
optimization paradigm that contains a deep lithography simula-
tor (DLS) for lithography modeling and a deep mask generator
(DMG) for mask pattern generation. Moreover, a novel layout
splitting algorithm customized for DAMO is proposed, composed
of DBSCAN clustering and KMeans++ clustering, to handle the
full-chip OPC problem. Further, graph-based computation and
parallelism techniques are proposed to deploy our GPU algo-
rithms to accelerate computations. Extensive experiments show
that DAMO outperforms state-of-the-art OPC solutions in both
academia and industrial commercial toolkit.

Index Terms—Deep learning, design for manufacture, mask
optimization, optical proximity correction (OPC).

I. INTRODUCTION

CONTINUOUSLY shrinking down of the very large-
scale integration (VLSI) system has brought inevitable

lithograph proximity effects, resulting in degradation on man-
ufacturing yield [1]. Optical proximity correction (OPC)
compensates for lithography proximity effects by adding assis-
tant features and moving design edge segments inward or
outward [2]. Mainstream OPC solutions include rule-based
OPC [3], model-based OPC [4]–[6], inverse lithography tech-
nique (ILT)-based OPC [7], [8], and machine/deep-learning-
based OPC [9]–[11].

Kuang et al. [4] presented a model-based OPC for faster
convergence and achieved good edge placement error (EPE)
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with minor PV Band overhead using multistage SRAF inser-
tion and OPC. Gao et al. [7] tackled the mask optimization
problem by solving an ILT formulation, which descends the
gradient of wafer-target error over input masks. The pixel-
based optimization of the ILT solution makes them robust
to process variations. The generality of ILT also enables
simultaneous mask optimization and layout decomposition as
introduced in [8] and [12]. These methods, to some extent,
improve OPC quality, robustness, and efficiency.

The remarkable development of machine learning algo-
rithms has demonstrated the potential of applying artificial
intelligence to benefit modern OPC flows. On the one hand,
machine-learning-guided mask optimization targets to generate
masks that are close to the optimal status directly. Only fewer
fine-tune steps using traditional OPC engines are required to
obtain the final mask. Yang et al. [9] proposed GAN-OPC,
which grasps the advantage of generative machine learning
models that can learn a design-to-mask mapping and pro-
vides better initialization of the ILT engine. On the other
hand, machine-learning-based lithography simulation aims to
speed up OPC flows by replacing costly lithography simula-
tion with efficient learning models. Jiang et al. [10] applied an
XGBoost [13] learning model to predict EPE at certain OPC
control points that can guide the adjustment of shape edges.
Ye et al. [14] proposed LithoGAN to build a generative learn-
ing model that directly predicts lithography contours instead
of predicting wafer image errors. However, LithoGAN only
targets a single shape within a clip, which strictly limits its
usage in general OPC tasks.

There are several issues in previous methods. First, the
model-based/ILT inevitably methods require massive calls of
the costly lithography simulation and the mask optimization,
both of which are time consuming. Second, all previous
machine-learning-guided OPC works limit the single-clip
input layout to low-resolution images (e.g., 256 × 256-pixel
images). They all exhibit drawbacks that still have to go
through traditional OPC engines in the final steps due to
the low-resolution limits. Since the resolution loss is intol-
erable in OPC, the usage scenarios of previous work in
machine-learning-guided OPC are limited. And worse still,
the machine-learning-based single-clip OPC is not practical.
Third, although various methods have been proposed, most of
them focused on optimizing a given single clip, but rarely dis-
cussed how to tackle the OPC problem in a view of full-chip
scale. For full-chip OPC tasks, the most significant barrier to
conventional methods is the runtime overhead. Pang et al. [15]
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Fig. 1. Overview of our proposed DAMO framework, which consists of
two deep networks: 1) DMG and 2) DLS. The OPC process is completed by
utilizing the inverse correction gradient backpropagated from the DLS stage
(red arrows).

presented D2S to create full-chip ILT in a single day with giant
GPU/CPU pairs, which consumes many resources on the hand-
crafted hardware and software. To the best of our knowledge,
the learning-based methods have not achieved any progress on
full-chip mask optimization due to the dataset limitation and
the low wafer pattern fidelity.

To address these concerns, we present DAMO, a unified
OPC engine that is equipped with high-resolution GANs
for full-chip scale. Deep convolution GANs (DCGAN) [16]
have been demonstrated to be successful in generating high-
resolution images. In DAMO, we designed DCGAN-HD,
customized from DCGAN with a high-resolution genera-
tor and multiscale discriminators with perceptual loss. Then,
we design a deep lithography simulator (DLS) based on
DCGAN-HD that takes the input of the mask and generates
the lithography contours faster with similar contour qual-
ity compared to the legacy lithography simulation process.
The design of DLS also enables a unified neural network-
based OPC framework where another deep mask generator
(DMG) engine is trained along with the gradient backprop-
agated from DLS, as shown in Fig. 1. We further propose
a stitchless full-chip splitting algorithm, with which we can
perform full-chip OPC tasks efficiently with a few GPU
resources and much faster speeds. Our main contributions are
as follows.

1) We design DCGAN-HD, a very competitive high-
resolution feature extractor (1024 × 1024) by redesign
the generator and discriminator of DCGAN.

2) We build up DLS and DMG based on DCGAN-HD.
DLS is expected to conduct high-resolution lithography
simulations. By training along with the inverse correc-
tion from DLS, DMG can directly generate high-quality
masks.

3) We develop an efficient stitchless full-chip splitting algo-
rithm, composed of DBSCAN and KMeans++ clus-
tering algorithms, to apply DAMO on a layout of any
size.

4) We propose to use a graph-based computation technique
and parallelism technique to accelerate the computations
of DBSCAN and KMeans++ on GPU, respectively.
Besides, the proposed DCGAN-HD is also deployed by
using TensorRT, which results in much faster inferences.

5) We compare our proposed framework with state-of-the-
art commercial tool Calibre [17]: 5× speed-up in single-
clip OPC tasks and 1.3× acceleration in full-chip OPC
tasks while maintaining even better solution quality.

Fig. 2. Different types of defects. Same lithography images result in different
EPE violations due to different choices of measurement points. Some defects
are not detectable by merely checking EPE.

The remainder of this article is organized as follows.
Section II introduces terminologies and evaluation metrics
related to this work. Section III details the proposed DAMO
architecture. Section IV shows the data preparation and
DAMO training procedure, while Section V provides the
full-chip splitting algorithm and the acceleration techniques.
Section VI details experimental results and followed by a
conclusion in Section VII.

II. PRELIMINARIES

In this section, we will introduce some concepts and
background related to this work and the problem formulation.

A. cGAN Basis

cGAN is short for conditional generative adversarial
networks [18], [19], which resembles classical GANs [20]
that consist of a generator and a discriminator. The generator
is trained to generate patterns that follow some distribution
such that the discriminator cannot identify whether these data
come from the generator or the training dataset. cGAN differs
from GANs by certain constraints such that inputs and out-
puts of the generator can have stronger beneath connections.
Representative cGAN applications in VLSI include GAN-
OPC [9] and LithoGAN [14]. The former is designed for
layout mask synthesis and the latter focuses on lithography
contour prediction of the single via/contact shapes.

B. Problem Formulation

We introduce the following terms and evaluation metrics for
the DAMO framework.

Definition 1 (mIoU): Given two shapes P and G, the IoU
between P and G is IoU(P, G) = P ∩ G/P ∪ G. The mIoU is
mean IoU.

Definition 2 (Pixel Accuracy): Pixel accuracy (pixAcc) is
defined as the percentage of pixels correctly classified on an
image.

The mask quality is evaluated through the fidelity of its
wafer image with respect to its target image. As illustrated in
Fig. 2, EPE, bridge, and neck are three main types of defect
detectors that are adopted in a layout printability estimation
flow. EPE is calculated by the distance from the measurement
sites on target edges to lithography contours. The neck defect
is the error of critical dimensions of lithography contours com-
pared to target patterns, while the bridge detector aims to find
unexpected short of wires. Both neck and bridge defects can
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appear in any direction. Because EPE violations could hap-
pen with good critical dimension and neck or bridge occurs
with small EPE, none of these defect types individually can be
an ideal representation of mask printability. Considering the
objective of mask optimization is to make sure the remain-
ing patterns after the lithography process is as close as target
patterns, we have two evaluation metrics to measure mask
quality following [9]. The squared L2 error measures the qual-
ity of a mask under nominal process conditions, while PV
Band measures the robustness of the generated mask under
variations.

Definition 3 (Squared L2 Error): Let w and y as design
image and wafer image, respectively, the squared L2 error is
calculated by ||w− y||22.

Definition 4 (PV Band): Given the lithography simulation
contours under a set of process conditions, the PV Bands are
the area among all the contours under these conditions.

With these definitions and evaluation metrics, the problem
of mask optimization is defined as follows.

Problem 1 (Mask Optimization): Given a design image w,
the objective of mask optimization is generating the corre-
sponding mask x such that remaining patterns y after the
lithography process is as close as w or, in other words,
minimizing PV Band and squared L2 error of lithography
images.

III. DAMO FRAMEWORK

The architecture overview of DAMO is illustrated in Fig. 3.
As the first part of DAMO, DLS aims to conduct an efficient
and high-quality lithography simulation with the generative
neural network model. However, general cGAN is not directly
eligible for such a purpose due to potential contour-design mis-
alignment and low accuracy. Although LithoGAN [14] tries to
alleviate the problem by embedding coordinate inputs, the sce-
nario of application is strictly limited to a single via/contact
shape, which is not practical in most cases. Therefore, DLS
is developed as a customized cGAN for general-purpose
lithography contour prediction tasks.

DMG is the second part of DAMO, which shares the iden-
tical architecture with DLS. The forward lithography process
can be described with the following equation:

Z = f (M). (1)

The traditional ILT tries to obtain the optimal mask Mopt based
on the given lithography model, which is presented as

Mopt = f−1(Zt) (2)

where Zt is the design pattern and Mopt is the optimized mask
with OPC. In DAMO, we regard DLS as f in (1). However,
different masks may yield the same result, thus (2) is an ill-
posed problem. The previous mask optimizer GAN-OPC [21]
generates masks by using cGAN to learn the mapping between
the design and the mask pattern. Inspired by conventional ILT,
our DMG steps further by not only learning mask patterns
from training datasets but also being optimized by gradi-
ent backpropagated from the pretrained DLS. After training,
the generator of DMG performs inference to generate the
solutions.

A. Improving Accuracy by Higher Resolution

Different from synthesizing photo-realistic images in com-
puter vision tasks, the OPC task using generative models has
its own properties. Intuitively, the layout in the OPC task
has simpler patterns (mostly rectangles) but higher precision
demands compared with image translation tasks. Moreover,
the inputs of traditional image generation tasks are fixed-size
images whose width or height is barely more than 2048 pixels.
However, layouts contain thousands of via/contacts or SRAF
patterns, whose area can reach more than 100 × 100 um2.
Previous work GAN-OPC [9] converts 1000× 1000 nm2 lay-
out to 256 × 256 pixel images, which means 1-pixel shift
error will cause an 8-nm shift in the output layout, making
the results vulnerable for the industrial OPC tasks. To elim-
inate image transformation error, we set the input resolution
of our model to be 1024 × 1024 pixels to contain the full
1024× 1024 nm2 layout. Combined with the window split-
ting algorithm, which will be introduced in Section VI, the
DAMO framework can process input layouts of any size, even
the large full-chip layouts.

It is known that the adversarial training might be unsta-
ble and hard to converge for high-resolution image generation
tasks, as mentioned in [16], [22], and [23]. Therefore, we
present DCGAN-HD, a new conditional GANs model qual-
ified with high-resolution input images, which is the basic
architecture of DLS and DMG.

B. DCGAN-HD: Solution for High Resolution

Previous work GAN-OPC is a conditional GAN frame-
work for design to mask translation which consists of a
generator G and a discriminator D. It adopts U-Net [24] as
the generator with the input resolution of 256 × 256, We
tested the GAN-OPC framework directly on high-resolution
images and found the training is unstable and the gener-
ated results usually became empty. DCGAN [16] is one
of the popular and successful network designs for cGAN
allowing for higher resolution and deeper models. Based on
DCGAN we present DCGAN-HD, a robust high-resolution
conditional GAN model consisting of a newly designed gen-
erator, multiscale discriminators, and a novel adversarial loss
function. The architecture is illustrated in Fig. 3. The detailed
architecture of DCGAN-HD is listed in Table I.

1) High-Resolution Generator for DCGAN-HD: The left
part of Fig. 3 shows the high-resolution generator. In the
DLS part, the generator of DCGAN-HD resembles lithography
simulation, which requires mask-to-wafer mapping. With the
gradient backpropagated from DLS, in the DMG part, the gen-
erator focuses on synthesizing the mask patterns from design
and SRAF pattern groups.

UNet++ Backbone: Previous work [9] and [14] adopt tra-
ditional UNet [24] for mask generation. Input features are
downsampled multiple times. With the decrease in feature
resolution, it is easier for a network to gather high-level fea-
tures such as context features, while low-level information
such as the position of each shape becomes harder to col-
lect. However, in OPC tasks, low-level information matters
more than in common computer vision tasks. For example,
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Fig. 3. Architecture of DCGAN-HD with high-resolution generator and
multiscale discriminators, used in both DMG and DLS.

TABLE I
ARCHITECTURE OF DCGAN-HD

the shape and relative distance of design or SRAF patterns
must remain unchanged after the deep mask optimization or
deep lithography process. The number and relative distance
of via patterns in an input layout have a crucial influence on
the result. The features of OPC datasets determine the vital

importance of the low-level features. UNet++ [25] is hence
proposed for better feature extraction by assembling multiple
UNet that have different numbers of downsampling opera-
tions. It redesigns the skip pathways to bridge the semantic
gap between the encoder and decoder feature maps, contribut-
ing to the more accurate low-level feature extraction. The
dense skip connections on UNet++ skip pathways improve
gradient flow in high-resolution tasks. It is an ideal solu-
tion to low-level and high-level feature capturing. Although
UNet++ has a better performance than UNet, it is not quali-
fied to be the generator of DCGAN-HD. First, we replace all
pooling layers with stride convolution. Meanwhile, all bilin-
ear upsample layers are switched into transpose convolution.
This amendment makes the entire network different. Second,
batch normalization is applied after each convolution layer,
which helps the convergence of the neural network. Finally,
the Tanh activation function is used after the output layer. For
further improvement, we manipulate the UNet++ backbone
with the guidelines suggested in DCGAN [16]. We will show
later that our high-resolution generator outperforms UNet and
UNet++ by a large margin.

Residual Blocks: Most importantly, following the settings
from Johnson et al. [26], a set of residual blocks are added at
the bottleneck of UNet++, which has been proven success-
ful in style transfer and high-resolution image synthesis tasks.
Since most structures are shared in output and input images
(design and SRAFs), residual connections make it easy for the
network to learn the identity function, which is appealing in
the mask generation process. Specifically, we use nine resid-
ual blocks, each containing two 3× 3 convolution layers and
batch normalization layers.

2) Multiscale Discriminators for DCGAN-HD: The high-
resolution input also imposes a critical challenge to the dis-
criminator design. A simple discriminator that only has three
convolutional layers with LeakyReLU [27] and Dropout [28]
is presented. Since the patterns in OPC datasets have simple
and homogeneous distribution, a deeper discriminator has a
higher risk of overfitting. Therefore, we simplify the discrimi-
nator by reducing the depth of the neural network. Meanwhile,
a dropout layer is attached after each convolutional layer. We
use 3× 3 convolution kernels in the generator for parameter-
saving purposes and 4 × 4 kernels in the discriminator to
increase receptive fields.

However, during training, we find that the simple dis-
criminator fails to distinguish between the authentic and the
synthesized images when more via patterns occur in a window.
Because when the number of via reaches 5 or 6 in a win-
dow, the via patterns will have a more significant impact on
each other and the features become more complicated. Inspired
by Wang et al. [23] in pix2pixHD, we design multiscale dis-
criminators. Different from pix2pixHD [23] that using three
discriminators, our design uses two discriminators that have
an identical network structure but operate at different image
scales, which is named D1 and D2, as shown in the right
part of Fig. 3. Specifically, the discriminators D1 and D2
are trained to differentiate real and synthesized images at the
two different scales, 1024× 1024 and 512× 512, respectively,
which helps the training of the high-resolution model easier.
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In our tasks, the multiscale design also shows its strengths in
flexibility. For example, when the training set has only one
via in a window, we can use only D1 to avoid overfitting and
reduce the training time.

3) Perceptual Loss: Instead of using per-pixel loss such as
L1 loss or L2 loss, we adopt the perceptual loss which has been
proven successful in style transfer [26], image super-resolution
and high-resolution image synthesis [23]. A per-pixel loss
function is used as a metric for understanding differences
between input and output on a pixel level. While the function
is valuable for understanding interpolation on a pixel level,
the process has drawbacks. For example, as stated in [26],
consider two identical images offset from each other by one
pixel; despite their perceptual similarity, they would be very
different as measured by per-pixel losses. More than that,
previous work [16] shows L2 Loss will cause blur on the out-
put image. Different from per-pixel loss, the perceptual loss
function in (3) compares ground-truth image x with generated
image x̂ based on the generated results from pretrained con-
volutional neural networks �, which is ideal in the DAMO
framework. In the DLS part, since the wafer pattern is not a
regular circle, it is meaningless to fit the exact border of a
wafer on the pixel level. The ultimate goal is to generate a
better mask with a higher perceptual quality wafer, reflected
in less L2 error and smaller PV Band

LG,�
LP

(
x, x̂

) = LL1

(
�(x),�

(
x̂
)) = Ex,x̂

[∥∥�(x)−�
(
x̂
)∥∥

1

]
.

(3)

4) SSIM Loss: Recently, the structural similarity index
method (SSIM) is actively explored as a feasible alternative for
the pixel-level loss. SSIM was first introduced in [29], which is
significantly capable of identifying the structural information
from the scene. In the enhanced DAMO (EDAMO) frame-
work, besides the perceptual loss, we also apply the SSIM loss
to capture the structural and geometric information to gener-
ate high-fidelity wafer patterns. The SSIM metric extracts three
critical features from a given image: 1) luminance; 2) contrast;
and 3) structure. Then, the SSIM loss is given by

LSSIM
(
x, x̂

) = 1− (2μxμx̂ + C1)(2σxx̂ + C2)(
μ2

x + μ2
x̂ + C1

)(
σ 2

x + σ 2
x̂ + C2

) (4)

where the luminance μx = (1/N)
∑N

i=1 xi is measured by the
averaging over all the pixel values in image x. The contrast
metric is calculated by the standard deviation of all the pixel

values, σx =
√

[1/(N − 1)]
∑N

i=1(xi − μx)2. In discrete form,

σxx̂ can be estimated as σxx̂ = [1/(N − 1)]
∑N

i=1(xi−μx)(x̂i−
μx̂). C1 = k1L and C2 = k2L, where L is the dynamic range for
pixel values. In our implementation, k1 = 0.01 and k2 = 0.03.
Instead of applying the SSIM loss globally, we use local mean
SSIM (MSSIM) following the instructions in [29]:

LMSSIM
(
x, x̂

) = 1

M

M∑

j=1

LSSIM
(
xj, x̂j

)
(5)

where M is the number of local windows in the image.

(a)

(b)

Fig. 4. Overall training of DAMO. (a) Training DLS in the first stage.
(b) Training DMG with fixed DLS generator in the second stage.

IV. DATA PREPARATION AND TRAINING

In order to collect sufficient data for training, we develop a
data generation pipeline that can generate infinite training data,
with which our DCGAN-HD can be fully utilized to simulate
the lithography process and generate high-quality mask pat-
terns. The overall training procedure of DAMO can be divided
into two parts which are depicted in Fig. 4.

A. Building Training Set From Scratch

It takes five steps to generate a training image, includ-
ing design generation, SRAF insertion (with design rule
checking), OPC, lithography simulation, and layout to image
transformation.

Design a Design Pattern: Via patterns are obtained under
the following constraints using a layout pattern generator [30].
First, all via patterns (70 × 70 nm2) are restricted in a
1024× 1024 nm2 window. Second, by changing the via den-
sity, we can control the number of via patterns in a single
window. The via patterns are grouped evenly by the via num-
bers for reducing the bias caused by the random distribution
of training set.

SRAF Insertion and DRC: Mentor Calibre [17] is applied to
do the SRAF insertion and design rule checking. Note that the
via patterns may appear on any position inside the design area,
Calibre will create a new design layer centered at the center
of the via patterns when doing SRAF insertion. This makes
the model easier to learn because all via patterns locate near
the center of the image. In addition, it gives us guidance to
develop further speed-up algorithms. Since the design area is
1024× 1024 nm2, it is possible that a few of SRAF patterns
will be outside the design area when there are more than 2 via
patterns. A larger window of 2048×2048 nm2 will be used to
capture all the SRAF patterns, which shares the same center
as the design window.

OPC, Litho-Simulation, and Image Generation: We use
masks and wafer patterns generated by Calibre as ground truth.
All the via patterns, SRAFs, and masks are discriminated by
RGB channels. Two sets of paired data are required for train-
ing. Mask–wafer pairs are generated to train DLS. After that,
we align design–mask–wafer data for the OPC process. The
obtained clips of size 2048 × 2048 nm2 are converted into
images with 2048 × 2048 pixels where 1 nm represents one
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Fig. 5. Training details of DLS, where the input images are mask–wafer
pairs.

pixel. All the 2048 × 2048 pixels images will be centrally
cropped into 1024 × 1024 pixels images where the design
window locates before training. After training, the generated
1024 pixels images will be attached at the center of the SRAF
clip layer to form a 2048 × 2048 nm2 layout before testing
using Calibre. The crop-then-recover strategy saves the com-
putational cost and improves the accuracy by focusing on the
mask generation.

B. Training of DLS

Fig. 5 shows the training process of our deep lithography
simulator. As a customized design of cGAN, DLS is trained
in an alternative scheme using paired mask image x and wafer
image y obtained from Mentor Calibre. z indicates randomly
initialized images.

The objectives of DLS include training the generator G that
produces fake wafer images G(x, z) by learning the feature
distribution from x–y pairs and training the discriminators D1
and D2 to identify the paired (x, G(x, z)) as fake. This moti-
vates the design of the DLS loss function. The first part of the
loss function comes from vanilla GAN that allows the gen-
erator and the discriminator interacting with each other in an
adversarial way

LcGAN(G, D) = Ex,y
[
log D(x, y)

]

+ Ex,z
[
log(1− D(x, G(x, z))

]
. (6)

Combined with our multiscale discriminators described in
Section III-B2, (6) can be modified as
∑

k=1,2

LcGAN
(
GDLS, DDLSk

) =
∑

k=1,2

Ex,y
[
log DDLSk (x, y)

]

+ Ex,z
[
log

(
1− DDLSk (x, GDLS(x, z))

]

(7)

where DDLSk is the kth discriminator of DLS. In the DLS
design, the perceptual loss is added to the objective, we denote
ŷ as G(x, z) and loss network � is a pretrained VGG19 on
ImageNet. The perceptual loss is given by

LGDLS,�
LP

(
y, ŷ

) =
∑

j=1...5

LL1

(
φj(y), φj

(
ŷ
))

=
∑

j=1...5

Ey,ŷ
[∥∥φj(y)− φj

(
ŷ
)∥∥

1

]
(8)

where φj is the feature representation on the jth layer of the
pretrained VGG19 �. To capture more structural information,
we also add the SSIM loss for DLS training in the EDAMO
framework. By combining (5), (7), and (8)

LDLS =
∑

k=1,2

LcGAN
(
GDLS, DDLSk

)

+ λ0LGDLS,�
LP

(
y, ŷ

)+ α0LMSSIM
(
y, ŷ

)
. (9)

C. Training of DAMO

Here, we introduce the overall training procedures of the
whole framework. The first training step is illustrated in
Fig. 4(a), which is focusing on DLS. The proposed DLS is
expected to predict wafer image with higher precision com-
pared with traditional cGAN. After the training of DLS, all
parameters in its generator are frozen.

The second training step is illustrated in Fig. 4(b), which
is focusing on DMG. DMG has the same architecture as DLS
developed for DAMO training. In this stage, training data
are switched to design–mask–wafer pairs. We use the design–
mask to train DMG, obtaining an initial solution. The objective
of DMG is shown in (11), where x represents the ground-
truth mask, w is the corresponding design, and z0 is the image
with random values. GDMG and DDMG represent the generator
and discriminator of DMG. x̂ is the generated mask of GDMG.
Here, DMG shares the same architecture as DLS, which yields
a similar objective as (9)

∑

k=1,2

LcGAN
(
GDMG, DDMGk

)

=
∑

k=1,2

Ew,x
[
log DDMGk(w, x)

]

+ Ew,z0

[
log

(
1− DDMGk(w, GDMG(w, z0))

]
. (10)

LDMG =
∑

k=1,2

LcGAN
(
GDMG, DDMGk

)

+ λ1LGDMG,�
LP

(
x, x̂

)+ α1LMSSIM
(
x, x̂

)
. (11)

Then, the outputs of DMG will be put into DLS for lithog-
raphy simulation. After comparing the lithography results of
DLS with ground truth (wafer image), DLS backpropagates the
gradients to DMG, which can finally output high-quality masks
after repetitive training. RGB images instead of binary images
are used because we can control the gradient of design, mask,
and wafer separately, which is significant for avoiding noise
points. Separating the design, mask, and SRAF into differ-
ent channels makes DAMO more stable and flexible because
we can apply different weights on different channels. After
that, DLS calculates the perceptual loss between the gener-
ated wafer and the ground-truth wafer. Finally, the gradient
will be backpropagated to DMG to guide mask generation.
Combining (9) with (11), the objective function of DAMO
can be expressed as

LDAMO = LDMG + LDLS + λ2LL1

(
ŷ, wr

)
. (12)

We denote wr as the via patterns (without SRAF). The last
term in (12) shows the superiority of our architecture, which
bridges the gap between the generated wafer (ŷ) and target
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Algorithm 1 Training Algorithm of DAMO
1: Setting λ0 λ1 λ2;
2: for number of training iterations do
3: Sample design patterns W ← {w1, . . . , wb};
4: Sample mask patterns X ← {x1, . . . , xb};
5: Sample wafer patterns Y ← {y1, . . . , yb};
6: Initialize random noise Z0 ← {z01, . . . , z0b};
7: Initialize random noise Z ← {z1, . . . , zb};
8: Concatenate W , Z0 ← {{w1, z01}, . . . , {wb, z0b}};
9: �Wg ← 0, �Wd ← 0;

10: for each {wi, z0i} ∈W,Z0, xi ∈ X , yi ∈ Y and zi ∈ Z do
11: x̂i ← GDMG(wi, z0i);
12: Lg ← − log(DDMG(wi, x̂i))+ λ0‖φ(xi)− φ(x̂i)‖1;
13: Ld ← log(DDMG(wi, x̂i)) − log(DDMG(wi, xi))
14: Concatenate {x̂i, zi} for DLS input;
15: Fix WgDLS ;
16: wri ← Remove SRAF in wi
17: ŷi ← GDLS(x̂i, zi);
18: LgDLS ← − log(DDLS(xi, ŷi))+ λ1‖φ(yi)− φ(ŷi)‖1;
19: LdDLS ← log(DDLS(xi, ŷi)) − log(DDLS(xi, yi))
20: E = λ2‖ŷi − wri‖1;

21: �Wg ← �Wg + ∂Lg

∂Wg
+ ∂LgDLS

∂Wg
+ ∂E

∂Wg
;

22: �Wd ← �Wd + ∂Ld

∂Wd
+ ∂LdDLS

∂Wd
;

23: end for
24: Wg ← Wg − lr

b
�Wg;

25: Wd ← Wd − lr

b
�Wd;

26: end for

design (wr) thus optimizing the mask directly. DAMO con-
trols the whole flow from design to wafer while GAN-OPC
relies on the conventional ILT engines. The training pro-
cess of DAMO is described as Algorithm 1. GDMG, DDMG,
and GDLS are parameterized as Wg, Wd, and WgDLS , respec-
tively. First, we sample a mini-batch of design/mask/wafer
patterns as ground truth and initialize Z0/Z for mask and wafer
prediction, respectively (lines 3–7). Then, designs W and Z0
are concatenated for mask generation (line 8). Initially, the
gradients of DMG are set to zeros (line 9). DMG is trained
and the outputs are pushed into DLS for wafer prediction
(lines 10–19). An L1 loss E is applied to narrow the dif-
ference between ground-truth design wri and predicted wafer
pattern ŷi (line 20). In the training process, the parameters of
GDMG are not only updated by (∂Lg/∂Wg) but also guided
by (∂LgDLS/∂Wg) (line 21). Similarly, DDMG is optimized by
Ld and LdDLS (line 22). Finally, the network gradients are
calculated (lines 24 and 25).

With the guidance of DLS, the DAMO framework has a
higher solution space than GAN-OPC. The success of our
approach is also verified by various experiments. Compared
to previous works, there are several advantages of DAMO as
follows.

1) DLS surpasses LithoGAN [14] by being able to predict
lithography contours of a single clip with multiple via
patterns, which enables efficient training of DMG.

2) DAMO, equipped with DCGAN-HD, can directly out-
put manufacturing friendly masks that avoid further
fine-tuning with traditional costly OPC engines.

(a)

(c) (d)

(b)

Fig. 6. Two-step full-chip splitting algorithm. (a) Part of full chip. (b) Coarse
step: full chip to DBSCAN clusters. (c) Fine step: run KMeans++ on each
DBSCAN cluster to get KMeans clusters, where each KMeans cluster belongs
to a 1024× 1024 nm2 window. (d) Split chips.

V. FULL-CHIP SPLITTING ALGORITHM

DAMO shows advantages on 1024 × 1024 nm2 clips. To
further adopt DAMO on full-chip layouts, a coarse-to-fine win-
dow splitting algorithm is proposed, in which the two-step
clustering enables us to deal with full-chip industrial layouts
where via patterns are distributed randomly with different local
densities. Further, graph-based computation and parallelism
techniques are used to accelerate the computations.

A. Two-Steps Splitting

A portion of one full-chip is shown in Fig. 6(a). First, we
cluster the vias coarsely with DBSCAN. Second, the clustered
vias are assigned to fine clusters by using KMeans++.

Coarse Step (DBSCAN): The main concept of the DBSCAN
algorithm is to locate the regions of high via density that
are separated from other low density regions. The distances
between all pairs of vias are computed. For each via, if the
number of neighboring vias is greater than a given threshold
minPts, this via will be regarded as a core via. Any via
neighborhood within a circle of radius Eps(ε) from a core via
v will be assigned to the same cluster of v. Then, DBSCAN
iteratively parses all of the core vias to determine all of the
clusters. The DBSCAN algorithm is used to initially detect the
clusters of via patterns (lines 1–4 in Algorithm 2). After the
coarse step, the via patterns in a large layout will be assigned
into different DBSCAN clusters, as shown in Fig. 6(b). Since
the DBSCAN algorithm only needs two parameters: 1) the
minPts and 2) the radius Eps(ε), while the size of the layout
is not necessary for DBSCAN. This feature allows us to obtain
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Algorithm 2 Full-Chip Splitting Algorithm
Require: Full-chip, DBSCAN parameter ε;
Ensure: Best full-chip splitting windows;

1: V ← collection of all via patterns; � DBSCAN starts.
2: minPts← 1;
3: Run DBSCAN on V with parameters ε and MinPts;
4: D← collection of DBSCAN clusters. � DBSCAN ends.
5: S ← empty collection of best splitting windows;
6: K ← max via number in a window; � KMeans++ starts.
7: H← width and height of a window;
8: for each d ∈ D do
9: V ← via number in DBSCAN cluster d;

10: for ∀k < V do
11: Run KMeans++ in cluster d with k centroids;
12: C ← collection of KMeans clusters in DBSCAN cluster

d;
13: Create H × Hnm2 split windows centered at k centroids;
14: BestSplitting← True;
15: for each KMeans cluster c ∈ C do
16: vc ← via number of KMeans cluster c;
17: if vc > K or via in c is not in k split windows then
18: BestSplitting← False;
19: Break;
20: end if
21: end for
22: if BestSplitting is True then
23: Add the k split windows to S;
24: end if
25: end for
26: end for
27: return collection of best splitting windows S; � KMeans++

ends.

a density-based preliminary clustering result for a layout with
an arbitrary size.

Fine Step (KMeans++): After DBSCAN clustering, every
via pattern is assigned to a coarse cluster d which contains
V via patterns. Then, we search every coarse cluster and
run KMeans++ algorithm to find the best splitting windows,
where the max number of via patterns in a window is set to K
(lines 5–27 in Algorithm 2). Note that every KMeans cluster
belongs to a 1024× 1024 nm2 window, whose center locates
at the centroid of the KMeans cluster, as shown in Fig. 6(c).

After the coarse-to-fine clustering, the design will be split
into many 1024 × 1024 nm2 windows [see Fig. 6(d)]. Our
coarse-to-fine splitting algorithm has many advantages. First,
it is extremely fast because DBSCAN only needs to scan the
via patterns once, and it also skips the empty areas. Second,
the typical window-sliding method is hard to handle overlap-
ping situations and stitching errors. We conduct a clustering
algorithm to make sure each via belongs to one and only one
cluster. The splitting process is based on the clusters instead of
the windows. Fig. 7(a) gives one example. We mark two pat-
terns via-A and via-B with red borders. The via-A is in both
window-1 and window-3, while it only belongs to KMeans
cluster C1. According to the clustering result, the via-A is
too far from the centroid of cluster C3 to influence the mask
optimization process in cluster C3. Therefore, the algorithm
only assigns the via-A to the window-1 to form the final
chip. Thus, overlapping situations and stitching errors will not
occur. The splitting result can be visualized hierarchically in
Fig. 7(b).

(a) (b)

Fig. 7. Detail illustration of the KMeans clusters and the chips.
(a) KMeans++ clusters, we illustrate only cluster 1 and cluster 3 for
simplicity. (b) Hierarchical visualization for chip 1 and chip 3.

Note that in this article we focus on the mask optimization
process, while all the SRAFs are generated directly by Mentor
Calibre. During the mask optimization, we only replace the
design patterns with our optimized masks. The SRAFs remain
unchanged in the final large chip.

Third, because the window locates at the centroids of the
clusters, the via patterns are all placed near the center of the
windows, which reduces the search space of the machine learn-
ing model to a large extent, resulting in less training data and
training time.

B. Acceleration Techniques on GPU

Typically, the DNN models, including our proposed
DCGAN-HD, can be deployed on GPU to accelerate the infer-
ences. In contrast, traditionally, DBSCAN and KMeans++
are implemented on the CPU. The computations on the CPU
are conducted via fetch–decode–execute cycles, in which the
instructions are fetched, decoded, and executed one by one,
thus very slow. Computations on CPU also usually suffer
from cache misses due to the limited sizes of on-chip caches.
Parallel computing on CPU has been proposed while the
scheduling is actually pseudoparallel therefore the deploy-
ment performance is usually unsatisfying. In comparison,
GPU facilitates parallel computations by following the single-
instruction–multiple-data (SIMD) mechanism. On GPU, there
are a group of blocks, and in each block, there are some threads
that can compute on different data following the same instruc-
tion. The blocks and threads share some global buffers and also
own some local buffers exclusively. These blocks and threads
can conduct the same operations on different data and then
merge them or communicate with each other. In other words,
a task can be divided hierarchically to be operated coopera-
tively by the blocks and threads in parallel. For the clustering
algorithms used in this article, the irregular computation and
communication patterns hinder the performance improvements
on the CPU. Consequently, there is a significant difference
in speed between Algorithm 2 on CPU and DCGAN-HD on
GPU, and Algorithm 2 has been a bottleneck of our flow. To
address these issues, graph-based computation and parallelism
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Fig. 8. Example of the graph representation for the on-chip vias, and the
corresponding lists. The number of vias is V = 5, and the number of edges
is E = 4.

techniques are adopted to accelerate the computations of
DBSCAN and KMeans++ on GPU.

As mentioned above, the operation of DBSCAN is based
on calculating a distance between each pair of objects, which
is defined according to the adopted metric. The objects are
grouped with each other if their distance is smaller than the
given radius Eps(ε). The complexity of DBSCAN is O(n2),
thus making its scalability a major challenge while tackling
large data volume scenarios.

In this work, we propose to represent the vias to be clustered
as a graph with an indexing matrix and a neighbor list [31].
Then, the clustering process is implemented for each vertex
in this graph in parallel on GPU. Represent the vias on the
chip as a vertex set V . First, computing the distances between
each pair of vias and connecting two vias if their distance is
smaller than the radius Eps(ε). Consequently, we can obtain a
graph G(V, E), where E is the edge set. While computing E ,
each via is assigned to a GPU thread. Current GPUs usually
support the parallel computations of more than thousands of
threads at the same time. Therefore, this process is much faster
compared with the serial computations on the CPU. Fig. 8 is
taken as an example to illustrate the graph representation. The
vias are stored in an indexing matrix M with two rows. The
first row records the number of neighboring vias for each via
at the location of its index. The second row stores the starting
position of the neighborhood in the neighbor list. The edge
information is stored as a neighbor list L, where the starting
position for each via is stored in M. While calculating the
pairwise distances, and determine that whether a via is a core,
the complexity can be reduced by assigning threads to each
via, and share the graph data between the vias. Note that there
exists data dependency while computing the starting indices
of the neighborhood lists, i.e., the successor vias depend on
processor vias. This problem can be tackled easily by using
exclusive scan operation on GPU [32].

After the creation of graph representation, the cluster-
ing process is done by using the breadth-first search (BFS)
method. A group of threads is created, and each thread con-
ducts a BFS procedure starting at each core via. The BFS
will visit all of the neighboring vias in L. As the vias are
visited, they are labeled as members of the same cluster.
Each BFS will find a new cluster and will be repeated as
long as there are nonvisited core vias. Denote the number of
vias as V , and the number of edges as E. Theoretically, the
graph construction has the time complexity O(V2) since it

needs to compute the distance between each pair of vias. In
practice, some pairs will not be computed since they are far
between each other. The BFS clustering stage has the complex-
ity O(V + E). Therefore, the theoretical complexity is O(V2)

in the worst case. However, the parallelism on GPU reduces
the time complexity significantly.

The drawback of the KMeans++ is that to find the optimal
centroids, in each optimization iteration, pairwise distances
between cluster centroids and noncentroids vias are required.
Sequentially computing the k centroids makes the process very
slow on CPUs for even a very small k. Given a set of selected
centers C, the objective is to minimize the errors between the
vias in V and C. Initially, a center via v0 is sampled uniformly
at random and then k − 1 cluster centers are sampled adap-
tively according to the D2-sampling method. Specifically, in
iteration i ∈ {2, . . . , k}, the via v ∈ V is sampled to the set of
already sampled cluster centers Ci−1 with probability

p(v) = d(v, Ci−1)
2

∑
v′∈V d(v′, Ci−1)

2
(13)

where d(·, ·) is the distance function. The computational
complexity is 
(nk), arising from the computations of the
distances between pairs of vias. n is the number of vias. In
our applications, there are dozens of vias (i.e., n) in each clus-
ter after clustering via DBSCAN, and k is usually set to be 5.
Consequently, the computations can be paralleled on GPU ele-
gantly, since the number of available threads on GPU is usually
larger than the number of vias.

VI. EXPERIMENTAL RESULTS

Many experiments are carried out to evaluate our proposed
framework. First, we evaluate the effectiveness of our DLS
by testing the mIoU and pixAcc of generated wafer patterns.
Second, the superiority of our proposed DAMO is also val-
idated by thorough experiments. Finally, we test our model
using the full-chip layout in ISPD 2019 contest [33], which is
generated by an open-source router [34].

A. Dataset

Our Training Set and Validation Set: As described in
Section IV-A, two sets of 2048× 2048 pixels RGB images
are generated for training purposes: one mask–wafer paired for
DLS, while another one design–mask–wafer paired for DMG.
To obtain fine-grained models, we divide our data depending
on the via number with a window, and six groups marked as
1-via, 2-via, . . . , 6-via are generated. For instance, the
1-via group contains all cases with only one via in a win-
dow. Each group has 2000 training images and 500 validation
images.

ISPD 2019 Large Full-Chip Test Set: We use another
real benchmark coming from ISPD 2019 Contest on
Initial Detailed Routing, We take the layer 40 of
ispd19_test1 [33] as our design layer (100 × 100 um).
After the SRAF insertion, OPC, and lithography process via
Calibre, we extract the design, SRAF, mask, and wafer lay-
ers and merge them to be the ground truth. Then, using our
coarse-to-fine full-chip splitting algorithm, the full-chip layout
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(a) (b)

Fig. 9. (a) ISPD 2019 large full-chip layout and splitting windows. (b) Via
window distribution in ispd19_test1 [33].

is split to lots of 1024× 1024 nm2 layout windows. According
to the design rule, we set the DBSCAN radius Eps (ε) to be
400 nm. The hyperparameters K in KMeans++ fine step is
set to 5, because the images containing more than five design
patterns only account for 0.5% in the total windows. The
ispd19_test1 benchmark contains 16 035 design patterns
which are split to 11 649 windows. 6116 split windows marked
as ISPD-1-via has only one via in a window, accounting
for 52.5%. The detailed distribution of different windows is
illustrated in Fig. 9.

B. Implementation Details

The proposed DAMO is implemented in Python with
PyTorch library [35]. In both DLS and DMG training stages,
The Adam optimizer [36] is adopted, where we set base learn-
ing rate and momentum parameters to 0.0002 and (0.5, 0.999).
In the LeakyReLU, the slope of the leak is set to 0.2 in all
models. We set the batch size to be 4, and the maximum train-
ing epoch to be 100. The weight parameters of λ0, λ1, α0, α1,
and λ2 are set to 100, 100, 30, 30, and 20, respectively. The
fixed parameters of DLS can be implemented by the evalu-
ation mode of PyTorch. After training, the generated mask
layer will be converted into a GDSII layout file then fed into
Mentor Calibre for lithography simulation validation. We use
four Nvidia TITAN Xp GPUs for training and one for testing.
The evaluation metrics we adopt are mIoU, pixAcc, L2 error,
and PV Band. Here, the PV Band is calculated by Calibre.

C. Effectiveness of DLS

Before training DAMO, it is of great importance to construct
a high-performance DLS. Since our DLS model is based on
the cGAN framework, we set up an ablation experiment to
illustrate the advantages of our generator and discriminators.
The results in Table II are the average values from six valida-
tion sets. First, cGAN (used in LithoGAN) provides a baseline
mIoU of 94.16% which is far away from practical application.
Then, UNet++ is used to replace the UNet generator in cGAN
for better performance. However, the original UNet++ is not

TABLE II
RESULTS OF DLS

Fig. 10. Visualization of L2 with different loss function during the training
process.

qualified to be a generator of a cGAN and the mIoU is reduced
to 93.98%.

Following DCGAN, we made some amendments in
UNet++ (as discussed in Section III-B1) and high-resolution
generator is adopted in our DLS model. After applying our
high-resolution generator, mIoU is improved to 97.63%, which
outperforms UNet and UNet++ generators by a large margin
when using the same discriminator. The huge gain in mIoU
implies that our developed high-resolution generator is a strong
candidate for DLS. Next, the newly designed multiscale dis-
criminators (introduced in Section III-B2) are used to replace
the original cGAN discriminator. Results in Table II show that
mIoU is further boosted to 97.63%.

We replace the L1 loss with the perceptual loss proposed
in Section III-B3 and the mIoU reaches 98.68%. In addition,
we design a set of ablation studies on the SSIM loss and
perceptual loss. Compared with the perceptual loss, the mIoU
and the pixAcc of SSIM loss are reduced by 0.44% and 0.49%,
respectively. As shown in Fig. 10, the SSIM loss can achieve
faster convergence than the perceptual loss. In the EDAMO
framework, we combine the SSIM loss with the perceptual loss
to further improve mIoU to 98.74% and pixAcc to 99.57%.

Additionally, DLS can handle multiple vias in a single clip,
which overcomes the limitation of LithoGAN [14].

D. Performance of DAMO

We test DAMO on the six groups of validation sets to ver-
ify the performance. Every generated mask will be pushed into
Calibre for lithography simulation. After that, we apply L2 and
PV Band measurements to test the performance of different
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TABLE III
COMPARISON WITH STATE OF THE ART ON VALIDATION SET

TABLE IV
COMPARISON ON ISPD 2019 FULL-CHIP SPLITTING WINDOWS

(a) (b) (c) (d) (e)

Fig. 11. Visualization of DAMO model advancement on via layer:
(a) Epoch 20, (b) Epoch 40, (c) Epoch 60, (d) Epoch 80, and (e) Epoch 100.

mask optimization methods. Note that since GAN-OPC fails to
train on high-resolution input, the 1024× 1024 input images
are downsampled to 256× 256 pixels to train the model. After
the inference process, the results are upsampled to the original
size for L2 and PV Band testing. Table III shows that on the
validation set, DAMO has 2.7× less L2 error and 1.3× less
PV Band compared with GAN-OPC. In addition, DAMO out-
performs Calibre in both L2 and PV Band metrics, meanwhile
achieving 4× speed-up. The L2, the PV Band, and the runtime
performance of DAMO are better than Calibre and GAN-OPC
in all cases, which demonstrates that the stability of DAMO
can be guaranteed.

The mask optimization process of DAMO is visualized in
Fig. 11. All the wafer images are generated using Calibre
lithography simulation. The red contours represent wafer pat-
terns on masks produced by Calibre while the purple wafers
are on masks generated by DAMO. We sample DAMO

results after 20/40/60/80/100 training epochs for the illustra-
tion. Initially, the wafer patterns of DAMO have lower quality
compared with Calibre [as shown in Fig. 11(a) and (b)]. Along
with the increase of training epochs, the results of DAMO
and Calibre are getting closer [Fig. 11(c)–(e)] show that the
performance of DAMO surpasses Calibre after the iterative
optimization.

E. Results on ISPD 2019 Full-Chip Layout

For ISPD 2019 large full-chip layout, the experiment has
two stages. In the first stage, we test DAMO on the 11 649
split windows, as listed in Table IV. We compare GAN-
OPC, Calibre, and DAMO under metrics of L2, PV Band,
and runtime. Here, columns “L2,” “PVB,” and “T (s)” rep-
resent L2 (nm2), PV Band (nm2) and runtime (s). DAMO
shows better performance against Calibre and GAN-OPC, on
all metrics of L2, PV Band, and runtime. Comparing the results
listed in Tables III and IV, since the simple patterns, such as
ISPD-1-via and ISPD-2-via, account for a great propor-
tion (75.3%), the average of L2 or PV Band performs better
in the ISPD 2019 dataset than our validation set.

In the second stage, we recover all the split windows into
the original 100× 100 um2 large full-chip layout with DAMO
generated masks. Still, we use Calibre to test the L2 error and
PV Band of the large layout results. Fig. 12 shows the sum
of L2 error and PV band on split windows are very close to
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(a) (b)

(c)

Fig. 12. Comparison with Calibre on ISPD 2019 full-chip layout in terms of (a) L2, (b) PV Band, and (c) runtime.

(a) (b) (c)

Fig. 13. Comparison among the original DAMO, the EDAMO, and TensorRT FP32, FP16, INT8 precisions.

the results of full-chip layouts owing to our efficient split-
ting algorithm. As shown in Fig. 12(a) and (b), DAMO still
has better performance than Calibre. For the runtime of the
large full-chip layout [see Fig. 12(c)], we separate runtime
of DAMO to preparation time (4395 s) and inference time
(231.5 s). The inference time takes only 5% of the total by
parallel using four GPUs. Preparation includes the full-chip
splitting, split layouts to images, generated images to layouts,
and the split windows to full-chip recovering. All these prepa-
ration processes are running on a single CPU, which means
the preparation time can be easily reduced when using multi
CPUs in parallel.

F. Performance of the Enhanced DAMO

Our EDAMO has been implemented on NVIDIA GPUs
to accelerate the computations, and the data precision is
32-bit floating point (FP32). The deep learning layers are
deployed via NVIDIA TensorRT [38], and the full-chip

splitting algorithm is implemented as CUDA C++ on GPUs.
TensorRT is designed to facilitate the high-performance com-
putations of deep learning models on NVIDIA GPUs and
focuses on accelerating the inference of an already-trained
model. Some typical optimization techniques provided by
TensorRT include layer fusions (i.e., combining neighboring
layers into one computation core to reduce the interlayer com-
munications), kernel selections (i.e., selecting optimal CUDA
kernels for the operations in the DNN model), conversions
of operations (i.e., converting operations to high-performance
matrix operations which are suitable for GPUs), etc. The
convolutions, deconvolutions, and residuals in our DAMO
are perfectly supported by TensorRT, which supports mixed-
precision inference with FP32, FP16, or INT8. As shown in
Fig. 13, we test the EDAMO with those three precisions.
When using FP32, the accuracies of EDAMO with SSIM
loss are better than original DAMO, while FP16 and INT8
will cause accuracy losses. Here, we apply mixed-precision
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training to reduce the accuracy gap between FP32 and FP16.
However, our proposed splitting algorithms are not supported
by TensorRT. To avoid the unnecessary communication and
synchronization costs between CPU and GPU, Algorithm 2 is
also implemented on GPU by ourselves, so as to make the
split chips passed into DAMO on GPU seamlessly.

The experimental results are shown in Tables III and IV
and Fig. 12. Columns “L2,” “PVB,” and “T (s)” represent
L2 (nm2), PV Band (nm2), and runtime (s). On the valida-
tion set, the average reduction of the running time is reduced
by up to 29%. On the ISPD dataset, the average reduction is
27%. We also implement a simple version of Robust-OPC [4].
Since the lithography model in this article is different from that
in Robust-OPC [4], the runtime performance of Robust-OPC
listed in this article is severely compromised due to the data
saving and loading with GDSII format. As shown in Table III,
with SSIM loss, the L2 and PV Band of the EDAMO reduce
0.9% and 0.3%, respectively, on the validation set. Similarly,
in Table IV, the L2 and PV Band also reduce 1.7% and 1.1%.
On the ISPD 2019 full-chip dataset, the EDAMO also outper-
forms the DAMO framework, detailed in Fig. 12(a) and (b).
In Fig. 12(c), the profiling of the running times is plotted. The
running time of data preparation (including full-chip splitting)
reduces from 4395 to 2883 s in the GPU-accelerated version.
The model inference part reduces from 231.5 to 173 s with the
help of TensorRT. Overall, the improvements of our EDAMO
are 34.01% and 50.04% compared with the traditional DAMO
and Calibre, respectively.

VII. CONCLUSION

In this article, we present DAMO, an end-to-end framework
targeting full-chip mask optimization with high-resolution gen-
erative machine learning models. The framework comes with
DLS that offers precise lithography prediction benefiting from
the proposed DCGAN-HD. The high-quality DLS also enables
the efficient training of DMG which hence promises to gen-
erate manufacturing friendly masks without further costly
fine-tuning. The advantage of the proposed framework over the
representative industrial and academic state of the art demon-
strates the possibility of deep neural networks as an alternative
solution to many layout and mask optimization problems. Our
future research includes the deployment of the framework
to more complicated designs (such as metal layers) and the
transferability as technology node advances.
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