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A B S T R A C T

As an emerging manufacture technology, block copolymer directed self-assembly (DSA) is promising for via layer
fabrication. Meanwhile, redundant via insertion is considered as an essential step for yield improvement. For
better reliability and manufacturability, in this paper, we first concurrently consider DSA guiding template cost
assignment with multiple redundant via and dummy via insertion. Firstly, by analyzing the structure property of
guiding templates, we propose a building-block based solution expression to discard redundant solutions. Then,
honoring the compact solution expression, we construct a conflict graph with dummy via insertion, and then
formulate the problem to an integer linear programming (ILP). In addition, to optimize the guiding template
cost, we incorporate it into the objective of ILP by introducing vertex weight and edge weight in conflict graph.
To make a good trade-off between solution quality and runtime, we relax the ILP to an unconstrained nonlinear
programming (UNP). Finally, a line search optimization algorithm is proposed to solve the UNP. Experimental
results verify the effectiveness of our new solution expression and the efficiency of our proposed algorithm.
Specifically, our guiding template cost optimization method can save 18% total guiding template cost.

1. Introduction

In an integrated circuit (IC) layout, a via provides the connection
between two net segments from adjacent metal layers. Due to various
reasons such as random defects, cut misalignment, electro migration
and thermal/mechanical stress [1,2], a single via may fail partially or
completely. Via failure heavily impacts on the functionality and yield
of a design [3,4]. Up to now, redundant via (RV) insertion has been
considered as an essential step to reduce via failure, and then improves
circuit reliability and yield [5,6]. The redundant via insertion technique
is that redundant via should be inserted next to every single via [7]. In
addition, an inserted redundant via should not cause any circuit short,
that is, an inserted redundant via should not overlap with any metal
wire from other nets of wires. As the layout shown in Fig. 1(a), we
can find all possible redundant via candidates (RVCs). In Fig. 1(b), c1s
are two RVCs of via v1 and c2 is a RVC of via v2. Conventionally, we
only need insert one redundant via for a via, and then two possible one
redundant via insertion plans are shown in Fig. 1(c) and (d) and for the
layout in Fig. 1(a).
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Fig. 1. (a) A layout; (b) Redundant via candidates; (c)(d) Two possible one
redundant via insertion plans.

With the size of feature continually shrinking to beyond 7 nm,
conventional optical lithography technology patterning becomes more
and more expensive. As an emerging VLSI manufacture technology,
block copolymer directed self-assembly (DSA) is considered as the
most promising for the via layers [8,9]. Furthermore, previous work
has made many significant improvements on manufacturing, model-
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Fig. 2. Seven useable types of guiding templates.

ing, simulation and graphoepitaxy of DSA [10,11]. These improvements
enable DSA technology to pattern vias. In DSA, block copolymers with
right proportion would form cylinders, and the remainder material can
be used to fabricate contacts/vias after removing cylinders. To gener-
ate irregularly distributed vias using DSA, guiding templates includ-
ing vias are required [12,13]. Since irregular guiding template has a
higher probability of generating overlay error, to guarantee the over-
lay accuracy, we only use some regular guiding templates with few
holes. In this paper, we follow [14] designing seven types of useable
guiding templates T1, T2, … , T7 as shown in Fig. 2. These guiding tem-
plates are manufactured by the conventional optical lithography, and
thus the resolution is limited by the pattern pitch. The spacing between
neighboring guiding templates should not be less than the optical res-
olution limit spacing ds. Thus, only one guiding template between two
close guiding templates can be patterned. To form the shape of useable
guiding templates, adjacent vias and redundant vias may be gathered
together and put into a matched guiding template [15–17]. Thus, we
need to decide the assignment of guiding templates such that more vias
and redundant vias can be surrounded by guiding templates.

Figs. 3(a), (b) and (c) show three different guiding template assign-
ments for the redundant via insertion plan in Fig. 1(c). In Fig. 3(a), via
v1 and redundant via r1 are assigned to a 1 × 2 hole template t1, and
via v2 and a redundant via r2 are guided by another 1 × 2 hole tem-
plate t2. However, since t1 and t2 are too close, only one of them can
be patterned (suppose t1). For the result in Fig. 3(a), only a via can be
manufactured and a redundant via can be inserted. The same as for the
result in Fig. 3(b). Similarly, for the result in Fig. 3(c), two vias can be
manufactured but two redundant via cannot be inserted.

In the traditional design process, the redundant via insertion and
the manufacture of via layers are handled in two independent stages.
Fang et al. [14] first concurrently considered the redundant via inser-
tion and DSA guiding template assignment problem. For this concur-
rent consideration, both the number of insertable vias (insertion rate,
IR) and the number of manufacturable vias (manufacture rate, MR) are
increased. Recently, several techniques are presented to improve both
of the insertion rate and the manufacture rate. The mainstream tech-
niques in previous works [18–21] can be summarized in the following
two types: increasing resolution space by multiple patterning [19,20];
improving the degree of freedom of redundant vias and guiding tem-
plates [18,21]. For the second way, Fang et al. [21] investigated the
redundant via insertion and DSA guiding template assignment prob-
lem with wire bending. By local perturbing some metal wires, it inserts
redundant vias at the cost of increasing the wirelength. But in the
advanced 1-D metal layer design, wire bending are unwarrantable. To
avoid this issue, Hung et al. [18] studied the problem with dummy via
insertion, in which some dummy vias are inserted for assisting forma-
tion of guiding templates. In a circuit, dummy via does not connect
to any wire, which is only used for filling the guiding template. For
the redundant via insertion plan in Fig. 1(c), if we insert a dummy via
(DV) as in Fig. 3(d), then the via v2 and redundant vias r2 and r1 can
be guided by a regular 2 × 2 template t2, but via v1 still cannot be
patterned due to the small space between template t1 and t2.

Traditionally, designers only insert one redundant via for a single
via. To further improve the insertion rate and the manufacture rate,
in this paper, we consider another technology, namely multiple redun-

dant vias insertion. As shown in Fig. 3(d), v1 cannot be patterned due
to space limitation. But if v1 can be included by a guiding template
with other vias or redundant vias, then v1 also can be patterned prop-
erly. In Fig. 4(a), a guiding template t1 include two vias, two redundant
vias and a dummy via. Regretfully, this guiding template t1 is irreg-
ular and is not our useable type of guiding template. However, if we
insert another redundant via r1 of via v1 in lower-left, then the formed
distribution of holes match a T7 guiding template as Fig. 4(b). Thus,
multiple redundant vias insertion can improve the insertion rate and
manufacture rate.

After using multiple redundant vias insertion and dummy via inser-
tion, layouts become more free for inserting redundant vias and using
multi-hole guiding templates. And then the insertion rate and manufac-
ture rate can be improved. In Ref. [18], the authors generated all guid-
ing template candidates for all the redundant via candidates, dummy
via candidates, and immediate neighbor vias. The generated guiding
template candidates are utilized to express solution space, which is
extremely large. And then, to solve the problem, the authors of [18]
proposed an ILP formulation. As we know, solving ILP can obtain the
exact result, but it is very time consuming for the large scale and dense
circuit layouts since the NP complexity of ILP. The experimental com-
parisons in Section 5 verify this. Hence, it is important to derive a more
compact solution space and a fast solving method for the DSA guid-
ing template assignment with multiple redundant via and dummy via
insertion problem.

In addition, grouping more than one contacts in a multi-hole guid-
ing template may introduce overlays. For different guiding templates
with different shapes or sizes, the overlays are different. Specifically,
complex guiding templates with more holes may introduce large over-
lays and the contained vias may not be patterned correctly. Hence,
to achieve a better guiding template assignment result with less total
overlays, the costs of guiding templates should be considered during
guiding template assignment. An example is shown in Fig. 5. Given a
layout with two vias as Fig. 5(a), we can find two guiding template
assignment results as Figs. 5(b) and (c) and , in which two vias can be
patterned and a redundant via can be inserted. There is a T4 guiding
template in Fig. 5(b), and there are a T1 and a T2 in Fig. 5(c). Sup-
pose the costs of guiding templates T1, T2 and T4 are wT1

= 0, wT2
= 1

and wT4
= 3, respectively. Obviously, the guiding template assignment

result in Fig. 5(c) is better than in Fig. 5(b).
In this paper, we consider DSA guiding template assignment with

multiple redundant via and dummy via insertion. Our main contribu-
tions are summarized as follows.

∙ We first introduce multiple redundant via technique to improve the
insertion rate and manufacture rate.

∙ We first optimize the guiding template cost, and achieve guiding
template assignment results with less overlays.

∙ We first prove the NP-complexity of the DSA guiding template
assignment and redundant via insertion problem.

∙ We introduce a building-block based manner instead of guiding
template candidate to compactly express solution. With the help
of building-blocks, we model the DSA guiding template assignment
with redundant via and dummy via insertion problem to a new ILP
formulation based on a conflict graph.

∙ With a sigmoid function, we relax the ILP to an UNP to make a good
trade-off between solution quality and runtime. We develop a line
search optimization algorithm to solve the UNP, and prove the local
converegence of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, we intro-
duce the related concepts and the problem formulation. In Section 3,
we discuss the proposed graph model. In Section 4, we detail our IP
formulation, local optimal algorithm and guiding template cost opti-
mization method for the problem. In Section 5, we list experimental
results, followed by conclusion in Section 6.
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Fig. 3. (a)(b)(c) Three guiding template assignments for redundant via insertion plan in Fig. 1(c); (d) A result with dummy via insertion.

Fig. 4. (a) An irregular guiding template; (b) A result with multiple redundant
via and dummy via insertion.

Fig. 5. (a) A layout with two redundant via candidates; (b)(c) Two possible
guiding template assignment results.

2. Preliminaries

In this section, we first briefly introduce the details of multiple
redundant via and dummy via insertion, respectively. Then, the prob-
lem formulation and solution flow will be presented.

2.1. Multiple redundant via insertion

In this paper, we consider the multiple redundant via insertion on a
grid graph. Suppose the grid coordinate of a single via vi is (xi, yi). For
the neighbor four grid coordinates (xi − 1, yi), (xi + 1, yi), (xi, yi − 1)
and (xi, yi + 1), a grid coordinate is called a redundant via candidate
(RVC) of vi if its position is not occupied by other vias or metal wires
from other nets.

Conventionally, the objective of redundant via insertion problem
is to insert a redundant via for a via. To match more possible useable
guiding template shape, in this paper, a via is allowed to insert multiple
redundant vias (one or more than one redundant vias). As shown in
Fig. 4(b), to match a T7 guiding template, two redundant vias r1s are
inserted for via v1. Naturally, the insertion of two or more redundant

vias for a via should satisfy the following two conditions: i) the insertion
can make up a multi-hole (not less than three holes) guiding template
with other vias or redundant vias; ii) it can improve the insertion rate
or manufacture rate.

2.2. Dummy via insertion

As the technique of multiple redundant via, another effective trick is
adding some dummy vias (DV), such that the structure of vias matches
a special useable guiding template. As the effect of dummy via d in
Fig. 3(d). In a circuit, dummy via does not connect to any wire, which is
only used for filling the guiding template. The same as multiple redun-
dant via, the insertion of dummy vias also should satisfy the following
two conditions: i) the insertion can make up a multi-hole (not less than
three holes) guiding template with other vias or redundant vias; ii) it
can improve the insertion rate or manufacture rate. After finding the
possible redundant via candidates (RVC), we should find all potential
guiding template assignments for every via. If these needed dummy vias
on the empty grid points satisfy the above two conditions, then these
empty grid points are marked as dummy via candidates (DVC).

2.3. Problem and framework

The problem aims at inserting at least a redundant via for every
via, and manufacturing all vias and their redundant vias by the DSA
technique with the help of dummy via insertion. The redundant via
insertion rate and the manufacture rate are considered as evaluation
indicators in Refs. [14,19]. The insertion rate (IR) is defined as the ratio
of the number of vias with redundant vias to the number of vias. And
the manufacture rate (MR) is the ratio of the number of manufacturable
vias to the number of vias. The DSA guiding template assignment with
multiple redundant via and dummy via insertion (DMRD) problem is
formulated as follows:

Problem 1. [DMRD]. Given a post-routing via layers layout, the usable
types of guiding templates, and the optical resolution limit spacing ds, insert
at least a redundant via for every via, assign guiding templates for vias,
redundant vias and dummy vias, such that: i) the inserted redundant vias
are legal; ii) the spacing between neighboring guiding templates should not be
less than ds. The objective is maximizing MR + 𝛽 · IR, where 𝛽 is a weighting
parameter.

To show the complexity of the DMRD problem, we first simplify the
DMRD problem by restricting the useable types of guiding templates
to only T1. Then the simplified-DMRD problem can be formulated as
follows: Given a layout with vias and redundant via candidates (they
can be pre-detected), in which every via or redundant via candidate is
included into a T1 guiding template, we need find a subset V1 of all
T1s such that the distance between every two T1s in V1 is larger than
ds. The target of simplified-DMRD problem is to maximize the size of
V1, if 𝛽 = 1. Obviously, the simplified-DMRD problem is a special case
of the DMRD problem. On the other hand, we introduce the unit disk
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Fig. 6. (a) Layout after detecting redundant via candidates; (b) The simplified-DMRD problem; (c) Unit disk graph.

maximum independent set (UDMIS) problem, which is solving the maxi-
mum independent set on unit disk graph. The unit disk graph is a graph,
where vertices corresponds to the equal-sized circles in the plane, and
an edge appears between two vertices when the corresponding circles
intersect [22].

Figs. 6(a) and (b) show an example of the simplified-DMRD problem.
Fig. 6(c) is a unit disk graph.

Lemma 1. The UDMIS problem is equivalent to the simplified-DMRD prob-
lem.

Proof. The UDMIS problem can be further described as follows: Given a
unit disk graph, we need find a subset Vc of centers of all circles, such that
the distance of every two centers of circles in Vc is larger than the diameter of
unit circle. The target of UDMIS problem is to maximize the size of Vc. If we
set the diameter of unit circle as ds, then the UDMIS problem is equivalent
to the simplified-DMRD problem.

Since the UDMIS problem is NP-hard [22], the simplified-DMRD
problem is a special case of the DMRD problem, we have following
theorem.

Theorem 1. DMRD problem is NP-hard.

Furthermore, to achieve a better patterned result, we integrate the
DSA guiding template cost into our objective, i.e., we need to concur-
rently minimize the total guiding template cost Tcost. Then the redun-
dant via insertion and DSA guiding template (cost-aware) assignment
with multiple redundant via and dummy via insertion (DMRD-cost)
problem is formulated as follows:

Problem 2. [DMRD-cost]. Given a post-routing via layers layout, the
usable types of guiding templates, and the optical resolution limit spacing
ds, insert at least a redundant via for every via, assign guiding templates
for vias, redundant vias and dummy vias, such that: i) the inserted redun-
dant vias are legal; ii) the spacing between neighboring guiding templates
should not be less than ds. The objectives are maximizing MR + 𝛽 · IR and
minimizing Tcost.

In this work, we propose a local optimal method to concurrently
optimize the redundant via insertion and guiding template assign-
ment. Fig. 7 shows our solution flow, which is composed of prepro-
cessing and solver. First, in the preprocessing stage, we first find all
redundant and dummy via candidates. Based on these candidates, we

Fig. 7. Solution flow.
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Fig. 8. Building-blocks.

detect all building-blocks, and further construct a conflict graph on
building-blocks. Then, some vertices deletion techniques are introduced
to reduce the size of conflict graph. Second, in the local optimal solver,
we first formulate the DMRD problem into two integer programmings
(IPs): IP without guiding template cost consideration, and IP with guid-
ing template cost consideration. Then, we design an unconstrained
nonlinear programming (UNP) algorithm to solve our IPs. Before that,
we propose a method to generate a good initial solution for our UNP
method.

3. Conflict graph construction

3.1. Building-block

After finding all possible redundant via candidates and dummy
via candidates, previous work directly checks all the possible guid-
ing template assignments. However, the solution space based on guid-
ing template assignments would be extremely large. And then, solving
the DMRD problem with extremely large number of guiding template
assignments is time consuming.

To obtain a compact solution expression, we introduce a concept
of building-block (bblock). A bblock is composed of some vias and some
candidates, and bblocks can be used to compose various types of guiding
templates. Nine types of bblocks are shown in Fig. 8, where bblock_1
includes a via; bblock_2 includes a redundant via; bblock_3 includes a via
and a redundant via; bblock_4 includes two vias; bblock_5 includes two
redundant vias; bblock_6 includes a via and a redundant via in diagonal;
bblock_7 includes two vias in diagonal; bblock_8 includes two redundant
vias in diagonal; and bblock_9 includes six vias or redundant vias, which
can be covered by a six-hole guiding template. These types of bblocks
compose a dictionary. bblock_1 and bblock_2 are grouped as C1; bblock_3,
bblock_4 and bblock_5 are grouped as C2; bblock_6, bblock_7 and bblock_8
are grouped as C3, bblock_9 is grouped as C4.

3.2. Conflict graph

Then the seven types of useable guiding templates in Fig. 2 can be
formed by grouping some bblocks in the dictionary, as shown in Fig. 9.
Here we only list the vertical cases and skip the horizontal cases due to
similarity.

A dummy via candidate (DVC) must belong to a guiding template. At
the DVC finding stage, we can easily find out which guiding template
a DVC belongs to. Given a result of finding redundant via candidates
as in Fig. 10(b), we can identify all possible bblocks as in Fig. 10(c),
and these bblocks are regarded as vertices in the conflict graph. Based

on these vertices, we construct a conflict graph [20], as shown in Fig.
10(d). There are three types of edges in conflict graph:

Definition 1. [Overlap Edge [20]]. There exists an overlap edge eij
between bblock s i and j if they overlap each other. Let EO be the set of
overlap edges.

Definition 2. [Conflict Edge [20]]. There is a conflict edge eij between
bblock s i and j if the distance between them is not larger than ds and
eij ∉ EO. Let EC be the set of conflict edges.

Definition 3. [Template Edge [20]]. For two bblock s i and j, suppose
that at least one of them is not S1. If i and j can be assigned simultaneously to
a guiding template without any design error, and between i and j there exists
a conflict edge eij ∈ EC , then eij is also called a template edge between i
and j. Let ET be the set of template edges. Obviously, ET ⊆ EC.

Then, a conflict graph CG(V,E) is constructed.

Definition 4. [Conflict Graph CG [20]]. The conflict graph is an undi-
rected graph CG(V,E), where vertex v ∈ Vdenotes a bblock, eij ∈ E is an
edge and E = (EC − ET ) ∪ EO. EC, ET and EO are the sets of conflict edges,
template edges and overlap edges, respectively.

In Fig. 10(d), the black edges are the overlap edges, the red edges are
the conflict edges, and the green dotted edges are the template edges.
From Fig. 10(b), we know bblocks e and d are overlapped with each
other at r1, hence there is an overlap edge between them as in Fig.
10(d). The distance between bblocks a and e is not larger than ds, hence
there is a conflict edge between them. Since bblocks b and d can be
assigned to a 3 × 1 hole guiding template as in Fig. 10(d), there is a
template edge between b and d.

According to our conflict graph construction process, the con-
structed conflict graph may be very dense. Specially, there may exist
some vertices with local full-degree, i.e., these vertices connected to all
vertices (except themself) by conflict edges or overlap edges in a local
subgraph. For example, vertex e in Fig. 10(d) is a local full-degree vertex
since it connects to all other vertices by conflict edges or overlap edges.
In this part, we propose a method to reduce the size of conflict graph by
removing these local full-degree vertices. Firstly, we perform our initial
solution generation algorithm in Algorithm 1, then we obtain a solu-
tion with greedy best value. We compare the greedy best value with
the weights of all local full-degree vertices one by one. If the weight
of local full-degree vertex v is not greater than the greedy best value,
then vertex v and its connected conflict edges and overlap edges will be
removed from the conflict graph. After performing the graph reduction,
the conflict graph in Fig. 10(d) is simplified as Fig. 10(e).

3.3. Guiding template cost, building-block cost, and template edge weight

Suppose the costs of seven guiding templates T1,T2,… ,T7 are
wT1

, wT2
, … , wT7

, respectively. And suppose the costs of four groups
of building-blocks C1,C2,C3and C4 are wC1

, wC2
, wC3

, and wC4
, respec-

tively. Four groups of building-blocks can be used to generate seven
guiding templates by some template edges. From Figs. 4 and 5, it can
be seen that: Guiding template T1 can be composed of a C1; Guiding

Fig. 9. All possible combinations of bblocks to form the seven types of guiding templates.
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Fig. 10. (a) A layout; (b) Redundant via candidates; (c) All bblocks of the layout in Fig. 10 (a); (d) Conflict graph; (e) Reduced conflict graph.

Fig. 11. Three kinds of conflict structures.

template T2 can be composed of a C2; Guiding template T3 can be com-
posed of a C3; Guiding template T4 can be composed of a C1 and a
C2; Guiding template T5 can be composed of a C1 and a C3; Guiding
template T6 can be composed of two C2s; Guiding template T7 can be
composed of a C4. Guiding templates T1, T2, T3 and T7 compose of only
one building-block, guiding templates T3, T4 and T5 compose of two
building-blocks and a template edge. Furthermore, we divide the set
of template edges according to the types of guiding templates. That is
ET = ET4

∪ ET5
∪ ET6

, where ET4
is the set of template edges in guiding

template T4, ET5
is the set of template edges in guiding template T5,

and ET6
is the set of template edges in guiding template T6. Suppose

the weight of template edges in ETl
as we

Tl
, (l = 4,5,6), then we have

follow relationships:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wT1
= wC1

;
wT2

= wC2
;

wT3
= wC3

;
wT4

= wC1
+ wC2

+ we
T4
;

wT5
= wC1

+ wC3
+ we

T5
;

wT6
= 2wC2

+ we
T6
;

wT7
= wC7

.

(1)

And then, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wC1
= wT1

;
wC2

= wT2
;

wC3
= wT3

;
wC4

= wT7
;

we
T4

= wT4
− wT1

− wT2
;

we
T5

= wT5
− wT1

− wT3
;

we
T6

= wT6
− 2wT2

.

(2)

That is, given the guiding template costs of seven useable guiding tem-

plates, we can obtain the costs of four groups of building-blocks and the
weight of template edges.

4. Algorithms

4.1. ILP formulation

4.1.1. Constraints
In conflict graph, if two bblocks i and j are overlapped with each

other, i.e., eij ∈ EO, then only one of the them can be patterned. In
addition, if two bblocks are within the optical resolution limit spacing
ds, i.e., eij ∈ EC, then only one of them can be patterned due to limi-
tation of resolution, unless the two bblocks are assigned into the same
guiding template, i.e., eij ∉ ET .

If two bblocks i and j are connected by a template edge, then they
may be assigned to the same guiding template, but not necessarily. Spe-
cially, for the structure shown in Fig. 11(a), bblocks i and l are connected
to k by two template edges, but i, k and l cannot be simultaneously
assigned to a same guiding template, since we do not have a guiding
template with four holes aligned in a line (same as the structures in
Fig. 11(b) and (c)). We call these unordered triplets (i, k, l) as conflict
structures, and denote CS as the set of conflict structures, whose formal
definition are described as follow:

Definition 5. [Conflict Structure]. The conflict structure is a structure
composed of three bblock s i, k and l, in which eik and ekl are template edges
and there does not exist any edge between i and l.

4.1.2. Objectives
The main objective of DMRD problem is intend to maximize

MR + 𝛽 · IR, i.e., maximizing the weighted sum of the number of man-
ufacturable vias and the number of inserted redundant vias. Suppose
the weights of a via and a redundant via is 1 and 𝛽, respectively. Since
different bblocks include different vias and redundant vias, we jointly
consider MR and IR by assigning weight wi to every bblock i as

wi = Nv + 𝛽 · Nr , (3)

where Nv and Nr are the numbers of included vias and redundant vias
by bblock i, respectively. Let W be the set of weights, then the conflict
graph CG(V,E) is weighted and written as CG(V,E,W).

Let binary variable xi = 1 denote that building-block i is selected.
Then,

∑
i∈Vwixi denotes the main objective. We formulate the DMRD

problem as following ILP.

max
x

∑
i∈V

wixi (4)
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s.t. xi + xj ≤ 1, ∀eij ∈ E; (4a)

xi + xk + xl ≤ 2, ∀(i, k, l) ∈ CS; (4b)

xi ∈ {0,1} , ∀i ∈ V. (4c)

In above ILP, Constraint 4(a) indicates that, if there exists eij ∈ EO
or eij ∈ EC − ET between vertices i and j, then at most one of them
can be patterned; Constraint 4(b) ensures that, if i, k and l compose an
conflict structure, then at most two of them can be patterned.

4.2. A local optimal algorithm

It is time consuming to solve the ILP by commercial solver for a
large scale layout. In this subsection, we develop a fast algorithm to
obtain a local optimal solution of DMRD problem.

Firstly, the ILP formulation of Problem (4) is equivalent to:

max
x

∑
i∈V

wixi (5)

s.t. xixj = 0, ∀eij ∈ E; (5a)

xixkxl = 0, ∀(i, k, l) ∈ CS; (5b)

xi ∈ {0,1} , ∀i ∈ V, (5c)

where w = (w1,w2,… ,wn)⊤ ∈ ℝn, x = (x1, x2,… , xn)⊤ ∈ {0,1}n,
n = |V|. Since Constraints (5a) and (5b) are equality, they can be
directly incorporated in the objective function. That is, Problem (5)
can be further rewritten as following integer nonlinear programming:

max
x

∑
i∈V

{wixi
∏

j ∈ V

eij ∈ E

(1 − xj)
∏

k, l ∈ V

(i, k, l) ∈ CS

(1 − xkxl)}

(6)

s.t. xi ∈ {0,1} , ∀i ∈ V. (6a)

In (6), eij ∈ E and (i, k, l) ∈ CS are used to describe the relationship
among vertices. Let B = (Bij) ∈ {0,1}n×n be the adjacency matrix of
the conflict graph CG. If eij ∈ E, then Bij = 1 and (1 − xj)Bij = (1 − xj);
and if eij ∉ E, then Bij = 0 and (1 − xj)Bij = 1. Moreover, we use C
= (Cikl) ∈ {0,1}n×n×n to represent the conflict structures in layout.
If (i, k, l) ∈ CS, then Cikl = 1 and (1 − xkxl)Cikl = (1 − xkxl), otherwise
Cikl = 0 and then (1 − xkxl)Cikl = 1. The objective of Problem (6) can be
more conveniently written using adjacent matrix and tensor of CG as
Problem (7).

max
x

∑
i∈V

{wixi
∏
j∈V

(1 − xj)Bij
∏

k,l∈V
(1 − xkxl)Cikl} (7)

s.t. xi ∈ {0,1} , ∀i ∈ V. (7a)

Problem (7) is equivalent to Problem (4), and still falls to the cato-
gory of discrete formulation. To design a more efficient solution, we
further relax this problem into a continuous domain. First, we intro-
duce an auxiliary vector y = (yi) ∈ ℝn, and approximate the constraint
xi ∈ {0,1},∀i ∈ V with the sigmoid function

xi ≈ 𝜎(yi) = (1 + e−𝛾yi )−1. (8)

Above sigmoid function is used to approximate function

Fig. 12. Sigmoid function 𝜎(yi) on different 𝛾.

xi =
{

0, yi ≤ 0;
1, yi > 0,

(9)

where 𝛾 is set to 8 in this paper for a sharper sigmoid function. The
detailed curves of sigmoid function with different 𝛾 are plotted in
Fig. 12, where 𝛾 is set to 8 in this paper for a sharper sigmoid func-
tion.

Then Problem (7) is approximated as

max
y

f (y) =
∑
i∈V

{wi𝜎(yi)
∏
j∈V

(1 − 𝜎(yj))Bij
∏

k,l∈V
(1 − 𝜎(yk)𝜎(yl))Cikl}. (10)

If we obtain a solution y∗ of Problem (10), then the final solution x∗ is
obtained by rounding the sigmoid function value 𝜎(y∗i ) to the nearest
integer, ∀i ∈ V. Problem (10) is an unconstrained nonlinear program-
ming (UNP). Let

gi(y) = 𝜎(yi)
∏
j∈V

(1 − 𝜎(yj))Bij
∏

k,l∈V
(1 − 𝜎(yk)𝜎(yl))Cikl (11)

and gi = gi(y), then the objective of Problem (10) is

f (y) =
∑
i∈V

wigi.

We aim at finding a maximal solution y∗ ∈ ℝn of Problem (10). At
each iteration t, the solution is updated by the following gradient direc-
tion of f(y):

y(t+1) = y(t) + 𝛼∇f (y(t)), (12)

where 𝛼 is the step length, which is obtained by the Wolfe-Powell inex-
act line search method in Ref. [23]. Besides, [∇f (y(t))]i = 𝜕f (y(t))∕𝜕yi is
calculated by

[∇f (y(t))]i =𝛾wig
(t)
i {(1 − 𝜎(y(t)i )) −

∑
j

Bij𝜎(y
(t)
j ) (13)

−
∑

k

∑
l

Cikl
𝜎(y(t)k )(1 − 𝜎(y(t)k ))𝜎(y(t)l )

1 − 𝜎(y(t)k )𝜎(y(t)l )
},

where g(t)i = gi(y(t)). It can be shown that first order dynamic in Equa-
tion (12) increases f(y(t)) at every iteration t, and will converge to a
local optimum.

However, since the objective function of Problem (10) is highly non-
linear and non-concave, the above iteration is highly dependent on the
initial solution y(0) and may converge to an undesirable local optimum.
Hence, in order to obtain a better solution, the iteration would be better
starting from a good initial solution y(0). We propose an (|V|) com-
plexity algorithm to obtain a desirable initial solution, as detailed in
Algorithm 1.
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Algorithm 1 Initial Solution Generation
Input: A connected component of CG(V,E,W);
Output: Initial solution x(0) of ILP (4);
1: repeat
2: S ← {k ∣ k ∈ argminl∈Vwn(l)};
3: repeat
4: ∀k ∈ S, compute ws(k);
5: x(0)i ← 1, where i = argmink∈Sws(k);
6: forevery j in V with eji ∈ E do
7: x(0)j ← 0, and V ← V − {j};
8: if j ∈ S, S ← S − {j};
9: end for
10: S ← S − {i}, and V ← V − {i};
11: until S = ∅
12: until V = ∅

In line 2 of Algorithm 1, wn(l) is the number of vias and redundant
vias covered by bblock l. In line 4, the selection weight ws(k) of bblock k
is calculated by

ws(k) = dc(k) − dt(k), (14)

where dc(k) is the number of conflict edges incident to bblock k, and
dt(k) is the number of template edges incident to bblock k.

After obtaining the desirable initial solution, we present our opti-
mization method for the ILP (4) in Algorithm 2, where the objec-
tive value is increased at every iteration, and is converged to a maxi-
mal solution. Experimentally, Algorithm 2 only takes a few iterations
before achieving the convergence condition. Furthermore, we know
from Equation (13) that every iteration of Algorithm 2 can be finished
in (max{|V| · |E|, |V| · ‖C‖0}), where ‖C‖0 is the number of nonzero
elements in tensor C.

Algorithm 2 UNP Solver
Input: A connected component of CG(V,E,W),
convergence threshold 𝛿 = 10−4;
Output: Solution x∗ of ILP (4);
1: Initialize t ← 0;
2: Generate x(0);
3: If x(0)i = 1, let y(0)i ← 1; otherwise, let y(0)i ←
−1;
4: repeat
5: ∀i ∈ V, compute g(t)i ;
6: Obtain ∇f(y(t));
7: 𝛼 ← LineSearch(y(t));
8: y(t+1) ← y(t) + 𝛼∇f(y(t));
9: t ← t + 1;
10: until ∥ ∇f(y(t)) ∥ < 𝛿

11: Get x∗i by rounding 𝜎(y(t)i ) to the nearest
integer, ∀i ∈ V.

4.3. Algorithm analysis

Lemma 2. Under Equation (13),
∑

iwi𝛥gi≥0

Proof. By Equation (13),

∑
i

wiΔgi =
∑

i
wi𝛾gi{(1 − 𝜎(yi))Δyi −

∑
j

Bij𝜎(yj)Δyj

−
∑

k
Cikl

∑
l

𝜎(yk)(1 − 𝜎(yk))𝜎(yl)
1 − 𝜎(yk)𝜎(yl)

Δyk}.

Let ui = wigi, u = (ui) ∈ ℝl, and the auxiliary matrix A = (Aij) ∈
ℝn×n has the following elements: Aij = 1 − 𝜎(yi), if i = j;

39



X. Li et al. Integration, the VLSI Journal 70 (2020) 32–42

Fig. 13. The result of benchmark primary2 and its a partial layout on vias between Metal 0 and Metal 1.

Aij = − 𝜎(yj), if eij ∈ E; Aik = −∑l∈V
𝜎(yk)(1−𝜎(yk))𝜎(yl)

1−𝜎(yk)𝜎(yl)
, if i, k, l ∈ CS.

Then
∑

iwiΔgi = 𝛾u⊤AΔy. From (12), we know Δy = y(t+1) −
y(t) = 𝛼∇f(y). According to the definition (13) of ∇f(y) and Aij, we
have Δy = 𝛼𝛾A⊤u. Thus

∑
iwiΔgi = 𝛼𝛾2u⊤AA⊤u ≥ 0.

According to Lemma 2,
∑

iwiΔgi ≥ 0 in every iteration, thus we have
following Theorem 2.

Theorem 2. Under Equation (13), f(y) does not decrease.

Corollary 1. Strict inequality
∑

iwi𝛥gi>0 cannot be achieved, since AA⊤

is not positive definite.

Proof. We prove that AA⊤ is not positive definite. The ILP (4) contains
at least one node, e.g., xi = 1. It follows, ∀j ∈ V, eij ∈ E, xj = 0. Then,
all the elements of i-th row of A are zero, i.e., A does not have full rank.
Consequently, at least one of the eigenvalues of AA⊤ is zero.

Theorem 3. Algorithm 2 converges to a local maximum.

Proof. Since ∀i, xi = 𝜎(yi) ∶ ℝ → [0,1], then from Equation (13), it
can be easily deduced that ∀i, gi ∶ ℝ → [0,1]. Consequently,

∑
i wigi ≤

w⊤1 holds. And by Theorem 2, f(y) = ∑
i wigi always increases. Thus

Algorithm 2 converges, and which stop when the gradient ∥ ∇f(y) ∥ =
0, i.e., in a local maximum.

We can achieve a local optimal result by performing Algorithm 2.
In this paper, we skip the detailed Proof due to space limitation. In
addition, as will be verified in experiments, if Algorithm 2 starts from
a desirable initial solution x(0) by Algorithm 1, it likely returns a near
global optimal result.

4.4. Handle guiding template cost

To obtain a better DSA guiding template assignment result, guid-
ing template cost should be considered. We impliedly calculate total

guiding template cost by calculating the cost of building-blocks and the
weight of connected template edges. The cost wbi of building-block i can
be calculated with Equation (2), i.e. the cost of building-block i:

wbi = wCk
, (k = 1,2,3,4),

if i belongs to the building-block group Ck. Similarly, the weight we
ij of

template edge eij in guiding template Tl can be calculated with Equation
(2), i.e.

we
ij = we

Tl
, (l = 4,5,6),

if eij belongs to the building-block group Tl.
Let binary variable xi = 1 denote that building-block i is selected.

Then,

MR + 𝛽 · IR =
∑
i∈V

wixi

denotes the main objective, i.e., manufacture rate and insertion
rate. And

∑
i∈Vwbixi denotes the total cost of building-blocks, and

1
2
∑

eij∈ET
we

ijxixj denotes the total weight of template edges. Thus

Tcost = 𝛼{
∑
i∈V

wbixi +
1
2

∑
eij∈ET

we
ijxixj}

is the total template cost, where 𝛼 is the weight parameter between the
main objective and template cost objective. At last, we formulate the
guiding template cost aware DMRD problem as the following integer
programming (IP):

max
x

∑
i∈V

wixi − 𝛼{
∑
i∈V

wbixi +
1
2
∑
i,j∈V

we
ijxixj} (15)

s.t. 4(a) 4(b) 4(c).

Table 2
Comparison between the TCAD′17 work and Our-UNP.

Benchmarks #V TCAD′17 [14] Our-UNP

MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s)

des-perf-1 736470 94.04 76.89 962.00 97.15 84.04 227.62
des-perf-a 765166 95.98 76.41 928.00 98.12 82.12 187.74
des-perf-b 720412 96.68 83.35 951.00 98.60 87.52 238.51
fft-1 238324 94.79 78.53 317.00 96.32 85.65 22.32
fft-2 255324 95.64 81.70 336.00 97.42 87.30 28.33
fft-a 234441 96.45 84.11 328.00 97.85 87.91 23.98
fft-b 247866 95.36 79.66 334.00 97.54 85.99 27.64
pci-bridge32-a 198376 96.80 82.88 258.00 98.43 87.77 19.77
pci-bridge32-b 172483 97.55 88.74 273.00 98.49 90.78 23.12
Avg. 396540 95.92 81.36 520.78 97.77 86.56 88.78
Ratio 0.98 0.94 5.87 1.00 1.00 1.00
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Fig. 14. Comparison on template cost between with and without guiding template optimization.

Let wv
i = wi − 𝛼wbi, then the IP formulation of Problem (15) is equiv-

alent to:

max
x

∑
i∈V

wv
i xi −

1
2
𝛼
∑
i,j∈V

xiwe
ijxj (16)

s.t. 4(a) 4(b) 4(c).

Problem (15) can be directly solved by IP solver. Furthermore, as the
process of Problem (5) to Problem (10), Problem (15) also can be for-
mulated to a similar problem as (10). And then, our UNP solver in
Algorithm 2 can be invoked to solve Problem (15).

5. Experimental results

Our proposed algorithms are implemented in C++ and run on a
personal computer with 2.7 GHz CPU, 8 GB memory and Unix operat-
ing system. We test our method on MCNC benchmarks and an industry
Faraday benchmarks, provided by Fang et al. [14]. As in Ref. [21], lay-
outs of all benchmarks are transformed to grid models, where a grid size
is one metal pitch, and the optical resolution limit spacing ds of adja-
cent guiding templates is set to one metal pitch too. The user-defined
parameter 𝛽 and 𝛼 are set to 1 and 0.01, respectively.

5.1. Effectiveness of ILP

To evaluate the performance of the proposed ILP in Section 4.1,
we compare the obtained results with the ILP results in TCAD′17
[14] and ASPDAC′17 [18]. The experimental comparisons are reported
in Table 1. Columns “TCAD’17 [14]” and “ASPDAC’17 [18]” are the
results in Refs. [14,18], respectively. Column “Our-ILP” is obtained by
performing the CPLEX solver [24] to solve our ILP (4) in Section 4.1.
Moreover, in this table, column “#V” lists the numbers of vias, and
column “CPU(s)” is the runtime in second. “MR(%)” and “IR(%)” are,
respectively, the manufacture rate and the redundant via insertion rate.

MR = #MV
#V

× 100%, IR = #RV
#V

× 100%.

In the above equations, #MV is the number of manufacturable vias
(excluding redundant vias), #RV is the number of vias with redundant
vias.

The difference between the results in “Our-ILP” and in “TCAD’17
[14]” is that our work considers multiple vias and dummy via insertion
but work TCAD′17 [14] does not. Compared with the computational
results of “TCAD’17 [14]”, from the row “Ratio”, our ILP (4) improves
MR and IR up to 7% and 9%, respectively. These improvements mainly
result from the help of multiple vias and dummy via insertion. Natu-
rally, considering multiple vias and dummy via insertion will extremely
increase the size of solution space, which leads to more challenge for
solving. In spite of this, our ILP (4) achieves less runtime than the ILP
in TCAD′17 [14].

Both of the method in ASPDAC′17 [18] and our ILP (4) consider
the dummy via insertion as the complementary technique for improv-
ing MR and IR. But our ILP (4) also consider multiple redundant vias
insertion, which can further improve MR and IR. From the comparison
in Table 1, our ILP achieves almost the same MR as the ILP in Ref.
[18] But our ILP improves 3% IR than the ILP in Ref. [18]. It must be
noted that, the average runtime of the ILP in Ref. [18] is 4.17 × slower
than ours. The improvement in runtime owes to our compact solution
expression, which greatly reduces the solution space.

5.2. Effectiveness of local optimal algorithm

In this subsection, we design another experiment to show the per-
formance of our UNP algorithm in Algorithm 2. In Table 1, the data
in “Our-UNP” are obtained by our UNP algorithm in Section 4.2. Com-
pared with the results in column “Our-ILP”, “Our-UNP” achieves almost
the same quality of results. However, the average runtime of our UNP
algorithm is 3.63 × less than our ILP based method. In order words,
compared with our ILP, our UNP algorithm can save 72% runtime.
These comparisons show that our UNP algorithm is very effective and
efficient.

Fig. 15. The ratio on total guiding template cost between with and without guiding template optimization.
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In Fig. 13, we plot the result generated by our optimization method
on benchmark primary2. In the layouts, we show two metal layers,
Metal 0, Metal 1 and two via layers V0−1. In the legend of Fig. 13,
M/via/rvia/0–1 (blue) denotes manufacturable via and redundant via
on layer V0−1, U/via/0–1 (red) denotes unmanufacturable via on layer
V0−1.

To further verify the efficiency of our UNP algorithm, we compare
our UNP solver with the ILP solver in TCAD′17 [14] on nine much
larger benchmarks in Ref. [14] modified from ISPD 2015 Placement
Contest [25]. The experimental results are listed in Table 2. Compared
with “TCAD’17 [14]”, “Our-UNP” improves the average manufacture
rate by 2% and the average insertion rate by 6%. More important,
from Table 2, it can be seen that the average runtime of ILP solver
in Ref. [14] is up to 520 s. Specially, the runtime is up to 962 s for
benchmark des-perf-1. This demonstrate that the ILP based method
is seriously time consuming for the large scale cases. By comparison,
“Our-UNP” achieves 5.87 × shorter runtime, i.e., it can save 83% run-
time.

5.3. Guiding template cost

For the redundant via insertion with DSA guiding template assign-
ment problem, exist works do not consider the cost of guiding template,
we first concurrently optimize the guiding template cost. To evaluate
the performance of the guiding template cost optimization, we com-
pare our UNP solver with guiding template cost (objective (16)) and
without guiding template cost (objective (4)). In this paper, we set
the costs of seven useable guiding template T1,T2,T3,T4,T5,T6 and
T7 are wT1

= 0, wT2
= 1, wT3

= wT4
= 3, wT5

= wT6
= 5 and wT7

= 8.
This setting satisfies the rule that the cost of complex guiding template
with more holes should be greater than the simple guiding template
with less holes. The comparison result are ploted in Figs. 14 and 15.
From Fig. 14, it can be seen that considering guiding template cost
in our UNP solver can greatly reduce the total guiding template cost
for every test circuit. From Fig. 15, we know that the average ratio
of total guiding template cost between “with cost optimization” and
“without cost optimization” is up to 82%. In other words, considering
guiding template cost in our UNP can reduce 18% total guiding tem-
plate cost.

6. Conclusion

In this paper, we have concurrently considered DSA guiding tem-
plate assignment with multiple redundant via and dummy via inser-
tion problem. In addition, we first optimize guiding template cost in
this problem. Thanks to building-blocks, the vertices number in conflict
graph can be effectively reduced. On the conflict graph, we model the
problem as an ILP formulation, and relax it to an unconstrained nonlin-
ear programming. We develop a line search optimization algorithm to
obtain a local optimal solution. Experimental results demonstrate multi-
ple redundant via insertion is effective for improving insertion rate and
manufacture rate. In addition, our guiding template cost aware method
greatly reduce the total guiding template cost.
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