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1 Introduction

With VLSI designs becoming more complex and technology node scaling down, the photolithog-
raphy process is also getting sophisticated for wafer production. A photomask is the physical
representation of the design, typically generated after resolution enhancement techniques like op-

tical proximity correction (OPC). As photomask patterns get finer, the figures composing the
patterns inevitably have the tendency to get smaller due to the high density of the pattern and intro-
duction of various corrections [1]. The requirement of manufacturability of such smaller features
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has enforced a strict set of mask rule checks (MRCs) before mask fabrication. Any violations
or discrepancies in the design, such as overlapping of components, inadequate spacing between
features, incorrect width or length of conductive paths, or other violations of rule constraints, are
flagged for further review and correction. Keck et al. [2] have introduced the flow from design

rule checking (DRC)-clean layout data to mask manufacturing, where MRC appears as a criti-
cal stage between reduced verification of OPC’ed data and mask inspection. Moore et al. [3] have
pointed out that MRC must provide the basic functionalities including verification, filtering, and
reporting. Mason et al. [4] have proposed to standardize mask design rules using a common gram-
mar set, illustrated in Bacus-Naur form, where a rule consists of <layer>, <action>, and <value>
terms. Kato et al. [5, 6] have developed SmartMRC, which supports typical MRC functions like
space check, width check, and single point vertex check. Buck et al. [7] have reviewed the position
of MRC in design for manufacturing, where MRC is run to inspect the data for mask manufacturing
rule violations prior to mask inspection, and “Do Not Inspect Regions”are created for non-critical
unresolvable data regions.

It has been pointed out that the DRC capabilities of EDA tools can be used to form the basis of
an MRC system for photomasks [8]. Both DRC and MRC are to ensure a design layout conforming
to a deck of geometric rules imposed by the manufacturer. From an algorithmic perspective, the
processes basically involve running computational geometry algorithms to analyze the geometric
relationship between objects and to identify violation patterns (e.g., points that are within a certain
distance threshold) from the layout plane. During the advancement of DRC in the past decades,
many fundamental data structures, algorithms, and methodologies have been developed. A se-
ries of sweepline-based algorithms are proposed, including rectangle intersection report [9] and
Boolean mask operations [10]. Spatial data structures like quad tree [11], KD-tree [12], R-tree [13],
and corner-stitching [14] are introduced to efficiently handle layout data. Binning [15] and other
layout partition methodologies [16] are widely adopted to improve range search efficiency. To
utilize multi-processing hardware platforms to accelerate DRC, many parallel algorithms are also
developed [17–21]. Readers may refer to the work of He and Yu [22] for a detailed review of various
DRC techniques.

Despite the great similarity between DRC and MRC in terms of task, algorithm, and methodolo-
gies, a few critical differences remain. First, academic OPC tools often produce a pixel-based image
as their solution, whereas the original layout data are usually in standard industrial format like
LEF/DEF or GDSII. Second, since the OPC algorithm tends to compensate for the diffraction and
proximity effects in the lithography process [23], mask pattern shapes are distorted to minimize
edge placement error, process-variation band, and so on, resulting in much more irregular geome-
tries. Figure 1 illustrates the difference between DRC and MRC. Essentially, in MRC, polygon edges
are no longer rectilinear: they can appear in any angle. Moreover, many short segments exist in
the artificial zig-zag shape contours. Therefore, typical DRC approaches alone are inadequate to
handle mask rule checking.

This article proposes EasyMRC, an efficient mask rule checking methodology. EasyMRC takes a
post-OPC layout as input and reports all mask rule violations in the layout. EasyMRC utilizes a rep-
resentative edge sampling technique, which samples a subset of edges and points of each polygon
that best captures its contour while eliminating most redundant checks involved. A sweepline-
based scheme is accordingly designed to correctly identify all violations without missing any. Our
contributions are summarized as follows:

— We propose a representative edge sampling technique tailored for MRC that greatly im-
proves its efficiency.

— We design a sweepline-based algorithm used together with the representative edge sampling
scheme, so that all violations will be completely reported.
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Fig. 1. Comparison between DRC (a) and mask rule checking (MRC) (b). Distance in all directions has to be

considered in MRC.

— We achieve a significant speedup on MRC, compared with the state-of-the-art academic tool.

The rest of the article is organized as follows. Section 2 introduces related preliminaries.
Section 3 gives problem formulation. Section 4 describes EasyMRC algorithms in detail. Section 5
demonstrates experimental results. Section 6 concludes the article.

2 Preliminaries

2.1 Optical Proximity Correction

In the field of semiconductor manufacturing, small feature sizes on chips leads to the effects of
optical diffraction and light scattering during the lithography process. These effects result in dis-
tortions in the printed patterns. Serving as an important resolution enhancement technique in the
lithography process, OPC analyzes the optical characteristics of the lithographic system and the
wafer process, and determines the optimal adjustments to the mask shapes. These adjustments aim
to counteract the optical diffraction, lens aberrations, and other phenomena that can introduce dis-
tortions to the printed pattern. Essentially, OPC adjusts the shapes on the photomask to ensure
that after the light exposure and development stages, the shapes on the silicon wafer match the
intended design as closely as possible.

2.2 Mask Rule Checking

The mask designs usually have to be verified for a set of predefined manufacturing rules after
being sent to the mask shops. These rules encompass various aspects of the mask layout, such as
minimum feature size, spacing, width-to-space ratios, and other geometrical constraints. Violat-
ing these rules can lead to yield loss and reliability problems. Today, many of the advanced OPC
techniques generate curvilinear mask shapes rather than pure rectangular shapes. Therefore, the
type of rules changes at the same time, and efficient techniques for checks are required [24]. This
enables designers to make necessary adjustments to the layout, ensuring compliance with the man-
ufacturing rules and optimizing the yield, and overall performance of the IC. Regarding spacing
violations between shapes, which is the focus of this work, one key difference from rectangular
shapes is that the minimum distance violating the spacing rule is not necessarily perpendicular to
the edges. In earlier rule definitions, the minimum width (or spacing) typically considered only hor-
izontal and vertical distances, checks in other directions referred to as internal (external) “corner-
to-corner” measurements. However, this does not apply to curved geometries. In this work, the
spacing check and width check consider the distance between shapes in all directions and identify
any violations of the spacing rule. It should be noted that current OPC tools output pixel-level
masks rather than analytical expressions of the curvilinear contours. Therefore, we still have to
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format the mask into a segment-wise GDSII file with horizontal and vertical edges before further
processing.

2.3 Sweepline

The sweepline algorithm is a powerful technique used in various fields. It involves sweeping a
line across a set of objects or events to efficiently process and solve geometry-related problems.
The algorithm maintains a data structure, often a binary search tree, to keep track of the objects
intersecting or being encountered by the sweepline as it moves. By carefully choosing the order of
processing events and efficiently updating the data structure, the sweepline algorithm can solve
problems such as segment intersection, polygonal decomposition, and closest pair of points. The
sweepline algorithm has been used in various tasks of DRC, including the spacing violation be-
tween objects. Due to the O(log(n)) complexity for each operation of updating the binary search
tree or extracting information from it, the sweepline algorithm in these tasks can usually achieve
an expected time upper bound of O(n log(n)). Many techniques have been proposed to accelerate
these processes. In this article, we will customize the sweepline algorithm based on the character-
istics of MRC tasks to achieve acceleration.

3 Problem Formulation

Problem 1 (Format Conversion). Given a pixel-based graphic generated by OPC tool, the task

is to convert it to a segment-based formatted file.

Problem 2 (Spacing Rule Checking). Given a formatted post-OPC layout, the task is to report

all spacing rule violations. The spacing rule is defined based on the geometric relationship between

objects. In this work, it requires that the minimum distance between any two polygons is not less than

a threshold, and we report the locations where the distances violate this threshold. The spacing rule is

a most common and fundamental rule in mask optimization.

Problem 3 (Width Rule Checking). Given a formatted post-OPC layout, the task is to report

all width rule violations. In this work, width rule checking requires the minimum distance between

any two opposite edges of one polygon is not less than a threshold, and we report the locations where

the distances violate this threshold. The width rule is a most common and fundamental rule in mask

optimization.

4 Algorithm

Figure 2 illustrates the overall flow of EasyMRC. Given an OPC’ed mask image, we first convert
it to a standard GDSII format file, where the boundaries of all polygons are saved in the form
of segments, facilitating subsequent processing and being imported into the state-of-the-art tool,
which is introduced in Section 4.1. Next, the sampling algorithm introduced in Section 4.3 will filter
out representative points and edges and record some necessary information for use in our custom
sweepline algorithm later on. The preceding procedures are considered preprocessing of mask rule
checking. Then, if the task involves space checking, pairs of polygon candidates will be generated
by a standard sweepline algorithm introduced in Section 4.2. Subsequently, the custom sweepline
algorithm described in Section 4.4 will be executed for each candidate pair. If the task involves
width checking, the sweepline algorithm introduced in Section 4.5 will be directly executed within
each polygon. Finally, we provide a complexity analysis of the algorithms in Section 4.6.
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Fig. 2. Overall flow of mask rule checking.

4.1 Format Conversion

To accurately convert a pixel-wise image generated by the OPC process into a segment-wise GDSII
file, we apply a Format Conversion algorithm.

Due to the use of pixel-based graphics methods in many advanced OPC algorithms, fitting a
series of short edges with low-order functions becomes challenging. Since this work focuses solely
on spacing and width violations within a single layer, we assume that the input mask consists of a
binary image in one layer. Therefore, we directly record the horizontal and vertical edges of each
polygon with precision.

After importing the PNG file, we scan from the bottom-left corner to the top-right corner. If we
encounter a mask pixel on the edge that has not been visited, we start to construct a new polygon.
Figure 3 shows how the process works. The black arrows represent the pixels being searched,
and the thick boundary lines represent the segments being generated. We search clockwise along
the edge of the polygon and change the direction whenever encountering a corner, and record the
segment in a list. Note that pixels have area, so at corners, it is necessary to judge which endpoints
to connect based on the situation. When a pixel is searched, it is recorded to ensure that all the
polygons will only be built once. Therefore, all the pixels will only be visited or searched once,
consuming a linear time complexity. After the process is over, we output the GDSII file since all
the edges for each polygon have been saved in a list.

4.2 Candidate Pair Generation

This process is only necessary for spacing checks. For ease of explanation, we introduce it before
discussing the sampling method. To report spacing violations effectively among polygons, it is es-
sential to first identify potential rule-violating pairs which are spatially close. This step avoids the
complexity of discerning if points in the segment tree belong to the same polygon, when applying
the sweepline algorithm. To facilitate this, bounding boxes are employed to find pairs of polygons
which are spatially close. The process to detect bounding box overlaps using the sweepline algo-
rithm includes four steps. Initially, a bounding box whose width and height are determined by the
distance of violation is generated for each polygon, and two events are then generated on the left
and right edge for the bounding box. Subsequently, these events are sorted by the x-coordinate of
the edges, with lower edges given precedence in cases of equal x-coordinates. Next, an empty seg-

ment tree is set up to track active bounding boxes as the sweepline moves. The final step involves
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Fig. 3. Extracting segments from an image.

sweeping all events from left to right. Each event is processed in turn: for a left-edge event, over-
laps of intervals within the segment tree are checked, and the overlap of each pair of polygons
is recorded. The interval is then inserted into the segment tree. Conversely, a right-edge event
involves removing the interval from the tree.

By following this procedure, the sweepline algorithm efficiently identifies and records the over-
laps between bounding boxes. In space checking, we apply sweepline to all these pairs respectively.

4.3 Sampling

As previously introduced, mask patterns are irregular geometries with many short segments in
the zig-zag contours. Our motivation is to pick a subset of these segments so that the shapes are
still effectively captured, violations are correctly reported, and the number of involved checks are
reduced. Therefore, we have designed a sampling method to select representative edges and points.
The idea is straightforward: in a smaller circular area, only the central vertices participate in the
complex search processes. The other points and edges within the range are checked using faster
methods, thus reducing the overall algorithm runtime.

The Sampling Method. We pick representative points and edges in this process. A sampling radius
r is first defined. Points and edges within r from a representative point will be shielded by it. To
dynamically adapt to masks of different sizes, r is chosen as a multiple of l , where l represents
the average length of all edges. According to our experiments, r = 4l serves as a good setting.
For each polygon, we scan the vertices along the polygon boundary starting from a starting point.
After selecting the first vertex, we choose the next representative point that is as far away as
possible, ensuring that all points between the two are shielded. Edges with lengths greater than
the sampling radius are sampled. Only these representative points and edges will directly interact
with the binary search tree during the sweepline phase. Figure 4 illustrates the sampling by an
example, where the red circles indicate representative points, and the gray circles demonstrate the
sampling radius as well as the shielded points inside.

Guarantee of Correctness. The sampling approach should ensure that any existing violation will
be correctly identified. To show that this is indeed the case, let us start the discussion without
applying sampling method. Since a violation is equivalent to the minimum distance between two
edges, the violations fall into two categories.

Theorem 1. There are and only are two possibilities of a violation between two edges (Figure 5):

(1) it is between endpoints of two edges, or

(2) it is between an endpoint of one edge and a point on another.

Proof. The first situation occurs when two edges have no intersecting projection, and the sec-
ond situation occurs when two edges have non-empty projection. Here the projection is checked
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Fig. 4. An example for representative points and edges.

Fig. 5. Two types of violation before sampling.

on the coordinate axis parallel to the edges when they are parallel, whereas it is checked on both
axes when the edges are perpendicular. �

Obviously, a sweepline algorithm reports all the violations, including both categories, as long
as we do not sample.

Our customized sweepline algorithm after sampling only insert representative points into the
segment tree or query on the segment tree using them as central points. To avoid missing violations
between points and edges within their range, we set an “extended rule”

R′ = R + 2 ∗ r , (1)

where R is the original rule distance that generate violations between points and edges. Repre-
sentative point pairs within R′ will be directly found in the segment tree, thereby preventing the
omission of violations between the points and edges they shield. Furthermore, we categorize the
sources of violation into two types. These two types of violations, illustrated in Figure 6, require
different treatments later in the sweepline process.

Theorem 2. Let SP(p) denote all the points or edges within r of a representative point p. There are

and only are two possibilities of a violation after sampling:

(a) It is the distance between SP(p1) and SP(p2), including type (1) and type (2) distance mentioned

previously. p1 and p2 are two representative points.

(b) It is the distance between SP(p1) and a representative edge, with only type (2) distance being

applicable. Here, p1 is a representative point.
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Fig. 6. Two types of violation after sampling.

Proof. In Theorem 1, we defined two categories of violations, without any omissions. The fol-
lowing demonstrates that identifying all violations of types (a) and (b) is equivalent to identifying
all violations of types (1) and (2).

If two points described in (1) violate rule R, their corresponding representative points will also
violate R′. Therefore, violations in (1) are encompassed within violations in (a). If the two edges de-
scribed in (2) are not representative edges, they are shielded by representative points, and as such,
they are similarly included in violations of type (a). If one of the edges is a representative edge, this
situation specifically falls into type (b), and the corresponding representative point must violate the
extended rule R′′ = R+r in conjunction with the representative edge. Finally, if both edges are rep-
resentative edges, their endpoints must have been sampled. This implies that at least one violation
will be reported between an endpoint of one edge and the other edge, categorized as type (b). �

Therefore, to ensure that all violations are identified without omission, we must query all pairs
of representative points that violate the extended rule within the segment tree, and subsequently
check all corresponding point-edge pairs within their sampling radius r . The same procedure
should be applied to pairs consisting of a representative point and a representative edge.

4.4 The Sweepline Algorithm for Space Checking

We have come up with a customized sweepline algorithm to accommodate the sampling scheme. In
particular, we have to run the sweepline several times, as there are slight differences in handling the
two kinds of violations previously defined. Because space checking is more complex than width
checking, let us first discuss the implementation method for space checking. Afterward, it can
naturally be extended to width checking.

First, we describe the algorithm for handling type (a) violations. Recall that the extended spacing
rule threshold is defined as R′ = R+2r . For each candidate pair of polygons, we select the sampled
points within the extended bounding box (i.e., the bounding box inflated byR′ in all four directions)
of the other polygon. Next, we sort these representative points by their x-coordinates. Points with
the same x-coordinate are sorted by their y-coordinates to resolve ties. We then construct two
segment trees for the two polygons, each maintaining the points along the y-coordinates. Now,
sweep through the points from left to right. For each point p encountered,

(1) Remove from the segment trees any points whose x-coordinates are smaller than p by at
least R′.

(2) Search in the segment tree of the other polygon for points whosey-distance fromp is smaller
than R′. If any such point q is found, check whether any of the distances between SP(p) and
SP(q) is smaller than R. These are the violations that need to be reported.

(3) Insert p into the segment tree.
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Fig. 7. Search range in data structure during sweepline for type (a) violations.

Note that for (1), the points can be safely removed because they will no longer yield violation pairs
with the points encountered in the future due to the total order between all points.

From a geometric perspective, we found all representative points in the left half of a square with
a side length of 2 ∗R′ centered at each representative point, which is shown in Figure 7. Therefore,
we actually checked all the points and edges (whether sampled or not) of the other polygon in the
left half square centered at the current representative point, with the points and edges within the
sampling radius of the current point. After this process, we identified all violations of type (a) and
some violations of type (b), specifically those occurring between SP(p) and SP(q) for any p and
q. Note that there is no need to apply the algorithm from right to left or from bottom to top, as a
violation must involve one representative point on the left and one on the right, with the right one
playing the role of the current point. Algorithm 1 summarizes the overall flow of space checking
sweepline algorithm.

To find the remaining type (b) violations, we only need to find the violations between points
and representative edges, so the point must be covered in the projection of the edge; otherwise,
the case is already handled in type (a). Now set the extended rule distance to R′′ = R + r . The
vertical representative edges are split into two events. Suppose its x-coordinate is x0, then the two
events are set at x0 and x0+R

′′. For the horizontal representative edges, suppose its right endpoint
has x-coordinate x0 and the event is set at x0 + r . Sort the representative points and the events in
ascending x-coordinates. Similarly, initialize two segment trees for the two polygons to maintain
points along they-coordinate axis. Sweep through the points and edges from left to right. For each
point or event encountered:

(1) Remove from the segment trees those points whose x-coordinates are smaller than p by at
least R′ = R + 2r .

(2) • If it is a point, insert it into the segment tree.
• If it is an event of a vertical edge, search in the segment tree for the points that are covered

by the projection of the edge. Due to the sampling radius, the actual search range should
be expanded by r . If a representative point p is found, check SP(p) with the current edge.
Report any found violation. The events at x0 and x0 + R′′ will identify the violations on
the left and right side of this edge, respectively.

• If it is an event of a horizontal edge, suppose its y-coordinate is y0, then search in the
segment tree for range [y0 −R′′,y0 +R

′′]. If a representative point p is found, check SP(p)
with the current edge. Report any found violation.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 3, Article 47. Publication date: April 2025.
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Fig. 8. Search range in data structure for the remaining type (b) violations.

ALGORITHM 1: Space Checking Overall Flow

Input: Post-OPC layout, minimal spacing R, sampling radius r
Output: Violation pair list S

1: Convert layout image to GDSII; � Section 4.1
2: Find candidate polygon pairs C; � Section 4.2
3: Sample representative points P, edges E; � Section 4.3
4: for polygon pair (p1,p2) in C do

5: Sort P(p1) + P(p2) in ascending x-coordinates;
6: Initialize two segment trees for p1 and p2, respectively;
7: for each point v in the sorted representative points do

8: Remove the points whose x-coordinates are smaller than v by R′ from the trees;
9: Insert v into the tree of its polygon at its y-coordinate;

10: Query in the other tree for [y − R′,y + R′];
11: for each representative point vi found in the range do

12: Check the distances between SP(vi ) and SP(v);
13: Record the violations;
14: end for

15: end for

16: Identify type(b) violations in direction d ; � Algorithm 2
17: end for

18: return violations list S;

The query range of the left event of a vertical edge is illustrated in Figure 8. The right event of a
vertical edge will query the mirrored range on the right side. As for a horizontal edge, the search
range is the corresponding upper and lower sides. All the cases are correctly handled in this way.
The program flow for type (b) violations is as shown in Algorithm 2. It should be noticed that
the flows of maintaining representative points in Algorithm 1 and Algorithm 2 are the same. The
only difference is to handle the events of representative edges together. Therefore, we can directly
merge the two flows, thus completing the whole algorithm in one go.

4.5 Width Checking

Width checking differs slightly from space checking. First, width checking occurs within all poly-
gons, so there is no need for preprocessing of candidate pairs. Second, we aim to ensure that the
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ALGORITHM 2: Identify the remaining type (b) violations

Input: Representative points P, edges E
Output: Type (b) violation pair list S′

1: Create events set E for representative edges.
2: Sort P(p1) + P(p2) + E in ascending x-coordinates;
3: Initialize two segment trees for p1 and p2, respectively;
4: for each point v or event e in the sorted representative points do

5: Remove the points whose x-coordinates are smaller than v by R′ from the trees;
6: Insert v into the tree of its polygon at its y-coordinate;
7: Query in the other tree for the corresponding range of e;
8: for each representative point vi found in the range do

9: Check the distances between SP(vi ) and the corresponding long edge of e;
10: Record the violations;
11: end for

12: end for

minimum internal diameter in all directions does not fall below the rule. However, two adjacent
edges that are perpendicular to each other should obviously not be considered. Therefore, we stip-
ulate that only edges facing in opposite directions and too close to each other will be reported.

In summary, we can retain most of the process from the spacing checking algorithm, as it accu-
rately identifies all pairs of edges with distances below the threshold. However, only those pairs
of edges that are facing in opposite directions will be recorded as a violation.

4.6 Complexity Analysis

We analyze the runtime complexity of previously described procedures.

Format Conversion. All pixels will only be visited once, so the complexity is O(m), where m is
the number of pixels in the image.

Candidate Pair Generation. This process is to find the polygon pairs that have overlapping
bounding boxes. The boxes are rectangles, so the time complexity is O(p logp) by the sweepline
framework, where p is the total number of boxes (polygons). Note that if p is not too large, we can
simply maintain an active set with a linear data structure to cut down the constant coefficient.

Sampling. The time complexity is O(N ), where N is the total number of endpoints, because sam-
pling is done in one loop for each polygon to select the representative points from the endpoints.

Sweepline. Since we have to consider the corner to corner cases, one can easily construct examples
reaching the worst time complexity of O(n2) for each pair of polygons found in candidate pair
generation. Here, n is the number of endpoints of the two polygons (assuming they have the same
scale). But we can make some assumptions without losing generality: let R, r , l represent the dis-
tance of violation, the sampling radius, and the average length of the shielded edges, respectively.
Then let us assume that in a half square described in Section 4.4, the number of endpoints is at the
scale of O(R+2r

l
), which visually indicates that the shape of a polygon does not “fold repeatedly.”

For the algorithm addressing violations of type (a), we can estimate that the worst-case time
complexity of searching for violations in the segment tree, for each representative point acting as

the “current point,” is given by O( (R+2r ) log L

lr
+ R+2r

l
∗ r

l
). Here the first part (R+2r )

lr
∗ logL comes

from querying all the representative points in the segment tree. (R+2r )
lr

∗ stands for the scale of
representative points in the search range. All points within the sampling radius of the identified
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points are then checked individually against the points within the sampling radius of the current
point. This process contributes to the second term R+2r

l
∗ r

l
, where r

l
represents the scale of shielded

points and edges associated with a single representative point. L is the length of the interval in
the segment tree, which can be discretized to the same scale as n. Thus, the worst-case total time
complexity is

O

(
n

r/l ∗
(
(R + 2r ) log(L)

lr
+
R + 2r

l
∗ r

l

)
� query & check

+
n

r/l ∗ log(L) � insertion

+T1

)
� #violations,

(2)

where n

r/l
∗ log(L) accounts for inserting or removing representative points into or from the seg-

ment tree, and n

r/l
represents the scale of representative points. T1 denotes the number of viola-

tions detected during this process. Typically, we only need to determine whether a violation exists
within the range of a pair of representative points. Therefore, the point-to-point check process can
terminate and report as soon as the first violation is found. And thus the cost of finding a violation
is O(log(L) + R+2r

l
∗ r

l
).

The sweepline to find violations of type (b) similarly has a time complexity of

O

(
k ∗

(
(R + 2r ) log(L)

lr
+
(R + 2r )

l

)
+

n

r/l ∗ log(L) +T2

)
, (3)

where k is the scale of the representative edges.
In width check, the preceding processes take place in each polygon rather than between the

candidate pairs. But it has no direct impact on complexity analysis.
Typically, R/l and r/l are considered to be relatively small constants, so the total complexity

remains of the same order as when sampling is not applied. In fact, the sampling strategy is effective
because it reduces the number of data structure operations with large constants, at the cost of
increasing the number of checks between point pairs. These checks, however, are fast and remain
acceptable in terms of performance. In Section 5.4, we experimentally verified the effectiveness of
the sampling strategy.

Note that if we use a balance tree rather than a segment tree, we will not need to cost logL time
for each representative point found in the search operation, but find them as a continuous interval
in the balance tree. Then the worst time complexity becomes

O

(
n

r/l ∗
(
log

(
n

r/l

)
+
R + 2r

l
∗ r

l

)
+T1

)
. (4)

The reduction of log factors will achieve further optimization when the polygons have quite long
run length, where the scale of representative points needed to be checked is larger for each search.

In summary, the scheme proposed in this article can convert OPC’ed mask images into GDSII
files in input complexity. Given a GDSII OPC’ed layer, the algorithm reports all the spacing viola-
tions or width violations including the corner-to-corner case in O(N ∗ polyloд(n)) time. We will
see in the experiments that our scheme is effective in practice, which greatly reduces the actual
time consumption.

4.7 Multithread

To benchmark against the multithreading mode of the baseline in our experiments, we also imple-
mented multithreading parallelization. In spacing checks, since the processing of each candidate
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pair does not interfere with others, these pairs can be directly distributed as tasks to all processes.
In width checks, since all inspections occur within each polygon, all polygons can be distributed
as tasks to the processes. These strategies do not increase the overall work complexity and achieve
good load balance.

5 Experiments

5.1 Setup

We implemented our approach in C++. Our benchmarks comprise optimized patterns from the
ICCAD 2013 contest [25], generated by OpenILT [26, 27], and four large masks (active layer, metal
layer, poly layer and via layer) of the GCD (which show different pattern distributions on different
layers) and two full-chip size masks (CPU0, CPU1) optimized by FuILT [28].

We used the DRC function of the widely used academic tool KLayout [29] as the baseline, since
there is no specialized academic tool for MRC. We also conducted experiments with the commercial
tool Calibre as reference. The experiments of KLayout and our method were all conducted on a
Debian server with an Intel Xeon Silver 4310 CPU. The experiments of Calibre were conducted on
a Red Hat virtual machine with an Intel i7-12700H CPU (due to a license problem).

The input images were converted to a GDSII file first with our Format Conversion tool before
being imported into our program and KLayout. Figure 10 visualizes a post-OPC mask as well as
the corresponding GDSII file with spacing violations reported.

5.2 Overall Comparison

To examine the overall performance of the proposed approach, we compare EasyMRC with the
state-of-the-art academic tool KLayout and industrial tool Calibre. Note that Calibre runs on a
different platform with only one thread available due to license problem, so the runtime of it can
not be directly compared. The distance of violation is set to 50 nm (the following distance units
are all in nanometers), slightly greater than the average spacing between polygons to generate a
certain amount of violations, thereby more comprehensively testing the program’s performance.
And we choose the sampling radius as 4l , where l is the average length of all the polygons in
EasyMRC. KLayout and our method use eight threads.

The results of space rule checking and width rule checking are listed in Tables 1 and 2, respec-
tively. #Poly and #edges denote the number of polygons and edges in each case, respectively. #VioP
is the number of polygon pairs that have violations (in width check, it denotes the number of poly-
gons that have internal violation), whereas #VioE denotes the number of edge pairs violating the
rule generated by different tools. The column Time lists the runtime of the tools. All the time units
are in milliseconds. Correct denotes that our method indicated all the violations without omissions
under the following standard.

It should be noted that in mask rule checking, there are often a large number of conflicting edge
pairs concentrated in one area. It is unrealistic to ensure that all the violation pairs we generate are
exactly the same as the standard answer generated by KLayout or Calibre. (Actually, the specific
numbers of violation edge pairs generated by KLayout and Calibre have a large gap.)

In Section 4, we explained why our method may generate fewer violations than KLayout in some
circumstances (e.g., only one violation will be recorded within the range of a pair of representative
points). In addition, Figure 9 illustrates a possibility that our method generates more violations
than KLayout. In KLayout, only the red edge pairs are recorded. However, in our method, they are
handled as type (b) violations, and the green violations are handled as type (a) violations. These
examples demonstrate why it is hard to align the violation number between different tools.

Therefore, we check the correctness of our programm in two directions. First, for any conflicting
point pair in the standard answer generated by KLayout, as long as there is a pair of points in our
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Table 1. Runtime Comparisons of Space Rule Checking

Case #Poly #Edges #VioP
Calibre* KLayout [29] Ours

#VioE Time #VioE Time #VioE Time Correct

Mask1 33 6096 15 1030 77 1129 154.8 346 2.081
√

Mask2 22 5442 17 1180 87 1428 138.6 352 1.984
√

Mask3 32 6676 29 2704 112 3028 218.0 1052 2.645
√

Mask4 33 5206 15 1264 97 1292 109.1 460 2.031
√

Mask5 24 5402 16 1371 83 1430 179.5 603 2.422
√

Mask6 24 5782 12 752 88 872 166.3 253 2.546
√

Mask7 28 4864 10 1392 83 1413 200.2 372 1.814
√

Mask8 28 5660 13 1067 67 1152 169.5 515 1.731
√

Mask9 27 6076 16 728 82 749 223.1 363 1.419
√

Mask10 29 4010 0 0 80 0 21.5 0 1.246
√

Average 211.7 1.992

Active 700 54109 1690 169271 801 152909 4665 209614 17.11
√

Metal 1481 99374 8904 571795 2052 255165 36331 220531 70.46
√

Poly 1162 45604 5372 154641 724 88209 6601 527390 30.09
√

Via 5411 59205 38052 346581 994 277819 17975 208414 30.51
√

Average 16393 37.04

CPU0 6858 460652 13872 1387605 5372 1244749 26290 1711950 105.6
√

CPU1 14904 853932 72018 4740751 16346 2163630 199093 1838427 452.1
√

Average 112691 278.9

*Calibre runtime is only for reference since it runs on a different platform as stated in Section 5.1.

Runtimes are in milliseconds.

Fig. 9. Different identification of violations.

Fig. 10. An OPC’ed mask (a) and the converted GDSII file with violations marked with bold black dots (b).
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Table 2. Runtime Comparisons of Width Rule Checking

Case #VioP
Calibre* KLayout [29] Ours

#VioE Time #VioE Time #VioE Time Correct

Mask1 33 11643 75 12791 157.5 13493 3.554
√

Mask2 22 11143 65 12270 184.7 11333 3.145
√

Mask3 32 11872 51 12809 247.3 15869 3.296
√

Mask4 33 11327 66 12323 122.8 16303 5.004
√

Mask5 24 10140 68 11161 207.3 15135 4.675
√

Mask6 24 9832 47 10625 250.1 16179 4.697
√

Mask7 28 9846 55 10541 138.2 13387 3.368
√

Mask8 28 15458 65 16397 245.1 9632 4.537
√

Mask9 27 11439 52 11428 214.0 7674 4.242
√

Mask10 29 8256 44 8992 80.8 5112 3.013
√

Average 184.8 3.953

Active 700 305230 595 283503 1175 250057 12.19
√

Metal 1481 324226 812 240380 4040 105774 27.93
√

Poly 1162 106612 363 85826 415 177746 12.27
√

Via 5411 73924 291 74391 89 42384 7.14
√

Average 1429 14.89

CPU0 6858 2581226 6177 2398084 7813 2118073 74.1
√

CPU1 14904 2777249 9318 2077771 34307 927754 163.5
√

Average 21060 118.8

*Calibre runtime is only for reference since it runs on a different platform as stated in Section 5.1.

answer within 2r (2r for sampling radius) from it, the result is considered correct (i.e., no omissions).
Second, each pair of violations in our results is generated only when the real distance is less than R,
which makes each violation pair in our results indeed a violation (i.e., no wrong answers). Since the
sampling radius is typically set much smaller than the violation distance, this stipulation ensures
that we accurately indicate the locations of all violations for engineers to check.

It can be seen that, for all the cases, EasyMRC achieves dozens of times speedup than Klayout,
with an average of 106 times for basic examples, 442 times for large examples, 404 times for full-
chip size examples in spacing check and 46 times for basic examples, 96 times for large examples,
and 177.2 times for full-chip size examples in width check. Note that the runtime of Calibre cannot
be directly compared. It is evident that the proposed sampling-enabled approach is efficient and
effective. Larger masks are generally tiled to this scale; even without such processing, EasyMRC’s
performance will not be inferior to KLayout.

5.3 Runtime Breakdown

We are curious about the time consumption at different stages. Figure 11 shows the distribution of
processing time for the six large examples. Each horizontal bar is for one test case, where the green
portion is for candidate pair generation, yellow for sampling, and red for sweepline, respectively.
The experiment settings are the same as in Section 5.2. The experimental results demonstrate that
the sampling strategy reduces the time consumption of the whole process through only a small
certain cost of preprocessing, which is precisely the outcome we aimed to achieve.

5.4 Ablation Study

To eliminate the constant influence in algorithm implementation as much as possible and accu-
rately evaluate the effectiveness of the sampling strategy, we conducted a series of additional ex-
periments. The results are listed in Figure 12.
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Fig. 11. Runtime breakdown of space check.

Fig. 12. Time consumption versus sampling radii.

The violation distance is denoted by R, and the sampling radius r is chosen as a multiple of l ,
where l denotes the average length of all edges. This choice allows us to examine the impact of
different sampling radii on time consumption. When r is set to 0, the program no longer performs
sampling. Instead, it directly includes all points and edges in the sweepline algorithm. Specifically,
it inserts and searches for all points whose Chebyshev distances from the current point are smaller
than R in the segment tree, and subsequently verifies whether they violate the rule.

The experimental results show that the optimization effect reaches its maximum when the sam-
pling radius is set to 4l . As r continues to increase to unreasonable levels, the time consumption
does not vary significantly, which aligns with the complexity analysis. While the time consump-
tion for querying in the segment tree indeed has a significant constant factor, this does not imply
that larger r are always beneficial. This is because each pair of representative points identified
by the segment tree reports only one violation within the range. When r is small, this approach
does not affect the accuracy of the report (for reference, R are greater than 40 in our benchmarks,
and r = 4l are typically about 10). However, when r is large, it may become difficult for users to
identify all violations at once. Therefore, the value of r should remain relatively small compared
to R.

The results of ablation experiments show that the sampling strategy can achieve significant
speedup without affecting the reported accuracy.
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Fig. 13. Time consumption versus thread number.

5.5 Multithread Efficiency

We compared the optimization effects of multithreading parallelization between KLayout and
EasyMRC when processing the six large examples. Figure 13 shows the change rate of the total
runtime with the number of threads. Other parameter settings are the same as in Section 5.2.

On the four GCD benchmarks, our program has slightly higher parallelism. At 2, 4, 8, and 16
threads, the average total runtime of our program is 1.48, 2.88, 4.68, and 4.88 times that of single-
threaded execution, whereas KLayout is 1.51, 2.81, 3.81, and 4.91 times. As the number of threads
continues to increase, the speedup ratio gradually becomes flat. As for the two full-chip size ex-
amples, the average total runtime of our program is 1.92, 3.77, 6.79, and 7.49 times that of single-
threaded execution, whereas KLayout is 1.95, 3.71, 7.48, and 8.99 times. This may indicate that
our method spends a larger proportion of time in preprocessing (sampling). Overall, the experi-
ments indicate that the approach of splitting tasks based on candidate pairs can achieve good load
balancing.

6 Conclusion

Modern VLSI designs are becoming more and more complex, and technology nodes continue to
shrink. In the meantime, the photolithography process is getting more sophisticated, and pho-
tomask patterns are getting finer. There is no doubt that mask rule checking is essential to ensure
the validity of the photomask. Unlike the layout data in DRC, mask data are more irregular with
short edges in zig-zag shapes. Therefore, this article proposed an efficient mask rule checking
approach tailored to such characteristics. A representative edge sampling scheme was utilized to
sample a subset of edges and points of each polygon, which best captures its contour, while greatly
reducing the number of edges involved in actual checking. Experimental results were conducted to
demonstrate the effectiveness of such an approach: compared with the state-of-the-art academic
tool, significant speedup was achieved.
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