
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025 2697

Prerouting Timing Prediction Across
Different Technology Nodes

Xinyun Zhang , Binwu Zhu , Fangzhou Liu, Jiaxi Jiang, Ziyi Wang , Peng Xu ,
Hong Xu , Senior Member, IEEE, and Bei Yu , Senior Member, IEEE

Abstract—In the domain of very-large-scale integration (VLSI)
design, the accuracy of prerouting timing prediction is of
paramount importance for ensuring the performance and reli-
ability of integrated circuits. Traditional methods based on
machine learning necessitate the availability of extensive and
high-quality datasets. However, this requirement poses significant
challenges for advanced technology nodes due to the laborious
and time-intensive nature of data preparation. To address this
critical issue, we introduce a novel transfer learning framework
that leverages data from preceding technology nodes to facilitate
learning and prediction on the target node. Our methodology
commences with the disentanglement and alignment of timing
path features across different nodes, ensuring the preservation
and effective translation of intrinsic timing path properties.
Subsequently, we employ a Bayesian-based model to predict
the arrival times of individual timing paths. This model is
particularly adept at managing the high-variability inherent in
arrival times and exhibits strong generalization capabilities to
novel design scenarios. Moreover, we propose a new algorithm to
reweight the preceding node data during training by estimating
their transferability through the cell type distribution. We
validate the efficacy of our proposed framework through com-
prehensive experimental evaluations, demonstrating successful
transfer learning from 130 or 45 to 7-nm technology nodes. The
results underscore the potential of our approach to significantly
mitigate the dependency on extensive data preparation while
maintaining high accuracy in timing prediction for cutting-edge
VLSI designs.

Index Terms—Pre-routing timing prediction, technology node,
transfer learning.

I. INTRODUCTION

THE DESIGN of contemporary integrated circuits (ICs)
imposes stringent demands on timing constraints to

ensure optimal performance and reliability. To adhere to these
rigorous timing requirements, the placement and routing (PnR)
processes are frequently conducted in an iterative manner,
necessitating multiple iterations to meet the specified timing

Received 7 July 2024; revised 17 November 2024; accepted 22 December
2024. Date of publication 27 December 2024; date of current version
20 June 2025. This work was supported in part by The Research Grants
Council of Hong Kong, SAR under Grant CUHK14208021, and in part by the
MIND Project under Grant MINDXZ202404. This article was recommended
by Associate Editor E. Keiter. (Xinyun Zhang and Binwu Zhu contributed
equally to this work.) (Corresponding author: Bei Yu.)

Xinyun Zhang, Fangzhou Liu, Jiaxi Jiang, Ziyi Wang, Peng Xu, Hong Xu,
and Bei Yu are with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong, SAR (e-mail: byu@
cse.cuhk.edu.hk).

Binwu Zhu is with the School of Integrated Circuits, Southeast University,
Nanjing 210000, China.

Digital Object Identifier 10.1109/TCAD.2024.3523426

objectives. This iterative nature of PnR can be highly time
consuming and resource intensive, often prolonging the design
cycle significantly. As a consequence, researchers are actively
developing methodologies to predict the timing report prior
to the completion of the routing step. This “look-ahead”
mechanism provides preliminary feedback that can be utilized
for early stage timing optimization, potentially expediting
the overall chip design process and reducing the number of
required iterations.

The widely used timing prediction approach is the linear RC
static timing analysis (STA) model, e.g., Elmore’s model [1],
which quickly evaluates timing using placement results.
However, the efficacy of such models is compromised by the
absence of detailed routing information, which is indispensable
for precise timing analysis. Recent studies have achieved
remarkable achievements in prerouting timing prediction
by leveraging machine learning (ML) methodologies. For
instance, Barboza et al. [2] introduced a method to predict
local net/cell delay and slew using features derived from high-
level placement results. Similarly, Guo et al. [3] proposed
an end-to-end graph neural network (GNN) framework for
predicting prerouting arrival time and slack values at critical
timing endpoints. Additionally, Wang et al. [4] developed an
endpoint embedding framework that integrates both netlist and
layout information to enhance timing optimization.

Despite the considerable progress achieved through these
ML-based approaches, a critical challenge persists: training
a precise and highly generalizable ML-based timing model
necessitates a substantial volume of training data at the
target technology node. When trained on limited data, the
performance of the timing predictor can deteriorate markedly,
as illustrated in Fig. 1. This issue is exacerbated by the rapid
advancement of technology nodes, where the collection of
comprehensive timing data necessitates the execution of a
series of computationally intensive tools, rendering the data
collection process exceptionally time consuming and resource
demanding. This presents a formidable challenge for training
accurate timing predictors for advanced technology nodes.
To address this issue, we propose a transfer learning frame-
work to leverage extensive data from preceding technology
nodes in conjunction with limited data from the target node.
This approach aims to enhance the performance of timing
prediction at the target node, as depicted in Fig. 1.

In the context of transfer learning for very-large-scale
integration (VLSI) timing prediction, three primary chal-
lenges must be addressed to ensure efficacy and reliability.

1937-4151 c© 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7763-7507
https://orcid.org/0000-0001-8625-1502
https://orcid.org/0000-0002-1694-5047
https://orcid.org/0009-0009-5669-8106
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0001-6406-4810

2698 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

Fig. 1. (a) Trained on limited 7-nm netlist data. (b) Trained on both limited
7-nm netlist data and 130-nm netlist data.

First, transfer learning endeavors to exploit common and
transferable knowledge across disparate data distributions.
Netlist data intrinsically comprises two distinct types of
knowledge: 1) node dependent and 2) design dependent.
Node-dependent knowledge pertains to the characteristics of
standard cell types, which can vary markedly across different
technology nodes, including variations in cell libraries and
electrical properties. Conversely, design-dependent knowledge
encapsulates the intrinsic functionalities of timing paths, which
remain consistent irrespective of the technology node. These
two types of knowledge are intricately interwoven within the
netlist graph, complicating the isolation and utilization of the
transferable components across different nodes. The effective
disentanglement of these intertwined features is paramount for
successful transfer learning. Second, the arrival time values of
different timing paths in VLSI circuits can exhibit substantial
variability, sometimes differing by one or even two orders of
magnitude. This significant variability poses a formidable chal-
lenge for ML-based regression models, which must accurately
predict timing across a wide range of values. Third, the limited
data availability at the target technology node exacerbates
the difficulty of training a reliable timing predictor. With
only a sparse dataset available for the target node, there is a
heightened risk of overfitting the model to the training designs.
Overfitting impairs the model’s ability to generalize to new
and unseen designs, thereby limiting its practical applicability.
This scarcity of data necessitates innovative approaches to
maximize the utility of the available information and enhance
the model’s generalization capabilities.

To mitigate these challenges, we propose a novel framework
tailored for timing prediction that first disentangles the features
of the timing path into node-dependent and design-dependent
parts in the latent feature space, then, we align these two
parts separately by minimizing a node-based contrastive loss
and a design-based discrepancy loss. Subsequently, with the
disentangled features, we propose a new Bayesian ML-based
framework that can adapt to highly variable arrival time values
and generalize well to new designs. We further provide a new
algorithm to estimate data transferability by calculating the
discrepancy between the distributions of the cell type. With

this estimation, we reweight the data from source technology
nodes, leading to better transfer learning efficacy.

To validate the effectiveness of our proposed method, we
collect abundant data at the 130 and 45-nm node and limited
data at the 7-nm node as our training set, then test its
performance using the 7-nm data. The experimental results
show that our method outperforms its counterparts by a
significant margin. The main contribution can be summarized
as follows.

1) To the best of our knowledge, we are the first to
investigate transfer learning from different technology
nodes in timing prediction.

2) A new feature disentanglement framework is proposed,
which first decouples the timing path features into node-
dependent and design-dependent parts and aligns them
separately.

3) To enable effective generalization to new designs, we
propose a novel Bayesian ML-based timing predictor.

4) We also propose a new algorithm to estimate the data
transferability by calculating the optimal transport (OT)
distance between the cell-type distributions of different
technology nodes.

5) With the transferability estimation, we assign different
importance to data from source technology nodes during
training to further improve the transfer learning efficacy.

6) The experimental results on transfer learning from 130
or 45-nm node to 7-nm node verify the effectiveness of
our method.

The remainder of this article is organized as follows.
Section II lists some preliminaries about timing prediction
and illustrates the problem formulation. Section III gives an
overview of our prerouting timing prediction across different
technology nodes. Sections IV–VI illustrate the details of
each part, including the feature disentanglement and alignment
(DA), Bayesian-based prediction method, and transferability
estimation. Section VII presents our experimental results,
followed by a conclusion in Section VIII.

II. PRELIMINARIES

A. ML-Based Timing Prediction

Before the ML era, traditional methods [5], [6], [7] for
timing prediction have been used for years. With the
rapid development of ML, ML-based timing prediction tech-
niques have been explored and proven to be successful.
These approaches leverage large datasets and utilize ML
algorithms to model the circuit timing. For routed wire
timing estimation, Cheng et al. [8] adopted XGBoost [9]
to predict the wire timing based on the tree and nontree
RC networks. Later, Ye et al. [10] adopted a tailored GNN
to model the complex paths in RC networks. Meanwhile,
Kahng et al. [11] and Xing et al. [12] investigated timing
prediction across different process-voltage-temperature (PVT)
corners. For prerouting timing prediction, the missing routed
wire information poses challenges for accurate timing estima-
tion. Early attempts [2], [13] mainly leverage ML algorithms
to model local timing delay with physical information from
the placement stage. Barboza et al. [2] proposed a random

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PREROUTING TIMING PREDICTION ACROSS DIFFERENT TECHNOLOGY NODES 2699

forest model that first utilizes extracted placement features
to predict routed net delay and slew. Then, relying on
PERT traversals [14], the overall circuit timing is determined
based on the prediction results output by the random for-
est model. Following [2] and [13] incorporates the FLUTE
algorithm [15] to construct a look-ahead RC network that
provides a fast estimation for the routed wire information
and significantly improves the prerouting timing estimation
accuracy. Later, many end-to-end prerouting timing prediction
methods [3], [4], [16], [17], [18] have been proposed. To
further accelerate the timing prediction, Guo et al. [3] proposed
a timing engine-inspired GNN model. By representing netlists
as graphs, GNNs can capture the relationships and depen-
dencies between circuit elements. The proposed GNN model
predicts global timing metrics at timing endpoints in an end-
to-end fashion, eliminating the need for additional feature
engineering and invoking STA tools. Meanwhile, Cao et
al. [16] incorporated transformers [19] to predict the timing
delay for each path. Specifically, by modeling each timing
path as a sequence, the attention mechanism in transformers
can effectively capture the timing information encoded in
various cells and netlist structures. Following [16] and [17]
proposes a new automatic feature extractor that leverages
a customized heterogeneous GNN as the encoder. Besides,
He et al. [17] also considered timing optimization techniques,
for example, gate sizing [20], [21], to further boost the
performance. Song et al. [18] utilized multilayer perceptrons
(MLPs) to encode the prerouting path delay and PVT features
to compensate for the sequence-based features.

However, most previous ML-based timing predictors rely
solely on the provided prerouting netlist structures, which do
not align with the optimized sign-off structures. Consequently,
these methods often yield inaccurate timing prediction results.
In order to address this issue, Wang et al. [4] introduced a
timing optimization-aware predictor capable of handling netlist
restructuring. By recognizing that timing endpoints remain
unchanged during timing optimization, the authors focus on
global endpoint-level prediction instead of the previously
utilized local cell-level prediction. They also propose incor-
porating supplementary information from the layout to model
the impact of timing optimization. This study demonstrates
that adopting a global endpoint-wise perspective from both the
netlist and layout significantly enhances optimization-aware
timing estimation. Following [4], our proposed timing model
is also timing optimization-aware.

B. Graph Model in EDA

Since the circuit can be intuitively represented by a graph,
where gates are depicted as nodes and wires as edges, the
graph model is extensively utilized in various applications
within the modern design process, offering significant sim-
plification of problem formulation and algorithm analysis.
Moreover, it effectively addresses numerous challenges present
in typical EDA flow, such as technology mapping [22], [23],
testability analysis [24], circuit partitioning [25], [26], place-
ment [27], [28], and more. Besides, different graph algorithms
can be employed based on specific application characteristics.

For example, Bryant [29] presented a new algorithm for
efficiently representing and manipulating Boolean functions
using directed acyclic graphs in logic design verification.
Constructing a power network with minimal wire length can be
modeled as a minimum tree construction (MST) problem [30].
In global routing, Cong and Madden [31] developed a global
router for standard cell design, which optimizes interconnect
topologies and wire sizes to reduce critical path delays,
employing either a channel graph model [31] or grid graph
model [32]. In detailed routing, to represent the relative
positions of different nets within a channel routing instance,
horizontal and vertical constraint graphs are utilized in [33].
Other commonly used graph algorithms in EDA include
network flow for placement [34], graph partitioning [35], graph
coloring for layout decomposition [36], etc.

C. Multimodal Learning

Multimodal learning [37] is one kind of ML strategy,
which offers an innovative pathway to understanding data
complexity. It thrives on the very tenet of diverse data
sources being interoperable, exploiting meaningful interactions
between numerous modalities. Traditional ML approaches
often fall short when dealing with multifarious data, typ-
ically defaulting to treating different modalities separately.
Multimodal learning, alternatively, leverages several data types
in an integrative fashion, ushering data analysis toward more
comprehensive insight. A multimodal representation entails
utilizing information from multiple such entities to represent
the data. In this work, we leverage multimodal information,
namely, the layout images and the netlist graph, for timing
path representation.

D. Transfer Learning

In ML, when we do not have enough data on the target
domain, an effective solution is transfer learning, which lever-
ages data from other domains to aid the learning on the target
domain. The critical issue in transfer learning is how to design
a learning framework for learning the transferrable knowledge
between the source and target domains. A widely used tech-
nique is pretraining-then-finetuning [38], which first trains the
model on the source domain with abundant data to learn a good
feature extractor and then finetunes the model with much fewer
steps on the target domain to transfer the knowledge. Another
effective approach is the parameter-sharing strategy [39] that
lets some parameters of the neural networks be shared by
data from different domains while the other parameters are
learned separately. In EDA, Wang et al. [40] proposed a
transfer learning-based framework for transistor sizing that
transfers knowledge in different circuits. In the case of timing
prediction, collecting the timing data requires running a long,
time-consuming toolchain. Consequently, the ability to transfer
knowledge from one technology node to another becomes
increasingly important. To the best of our knowledge, the
application of transfer learning in the field of timing prediction
has not been previously discussed.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

2700 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

E. Bayesian-Based Machine Learning

Bayesian-based ML is a paradigm that integrates Bayesian
inference with traditional ML techniques to enhance model
robustness and interpretability. By representing uncertainty
through probability distributions over model parameters, this
approach allows for more nuanced and adaptive learning
processes. Bayesian methods update beliefs in response to new
data, providing a principled framework for incorporating prior
knowledge and mitigating overfitting. As a key technique in
Bayesian-based ML, Bayesian neural networks (BNNs) [41]
integrate Bayesian inference with traditional neural network
models to provide a probabilistic framework for learning.
Unlike conventional networks that yield point estimates, BNNs
maintain distributions over their weights, effectively captur-
ing model uncertainty. This probabilistic approach enhances
robustness to overfitting and allows for improved uncertainty
quantification in predictions. By leveraging advanced tech-
niques, such as variational inference [42], BNNs approximate
the intractable posterior distributions. In this work, we propose
a Bayesian-based timing prediction module for robust and
adaptive timing delay regression.

F. Optimal Transport

OT [43] is a mathematical framework that determines the
most efficient way to transform one probability distribution
into another. It quantifies the cost of transporting mass between
distributions, providing a powerful tool for comparing them.
This framework has broad applications across fields, such as
computer vision and ML, where it aids in tasks like domain
adaptation, image processing, and generative modeling. By
leveraging its ability to compare distributions in a geometri-
cally meaningful manner, OT offers deep insights into data
alignment and structural similarities. In this work, we leverage
OT to measure the cell type distribution gap between two
different netlists.

G. Central Moment Discrepancy

Central moment discrepancy (CMD) [44] quantifies the
difference in central tendencies between two probability
distributions. It is crucial in contexts where aligning these cen-
tral characteristics enhances model performance and ensures
consistency across datasets. CMD is particularly effective
when the central alignment of distributions is prioritized,
offering computational efficiency compared to more complex
metrics.

H. Problem Formulation

Problem 1 (Transferrable Timing Prediction): Given a
large netlist set NS at the source preceding technology
node and a limited netlist set NT at the target advanced
technology node, our goal is to learn a model which accurately
predicts endpoint arrival time on test netlist data at advanced
technology node, achieving high-R2 score and demanding
low-computation cost.

Fig. 2. Overview of the method. Timing path feature alignment and the
reweighting are only computed during the training stage.

III. OVERVIEW

We build our timing prediction model in an endpoint-
based manner. The main idea is first to disentangle the
node-dependent and design-dependent features for each timing
path. Then, we try to make the node-dependent features
consistent in one technology node and distinguishable in
different nodes. Meanwhile, since the design-dependent fea-
tures are node-agnostic, we try to minimize the gap between
the design-dependent features in different nodes. These two
objectives serve as the target of feature alignment. Later, we
propose a Bayesian-based timing predictor to output the highly
variable timing delay for each endpoint. Then, we estimate the
transferability for each timing path in source technology nodes
by calculating the cell type distribution discrepancy. With the
estimated transferability, we reweight the samples in the source
node to improve the transfer learning efficacy. The overview
of our method is shown in Fig. 2. We detail our methods in
the following sections.

IV. FEATURE DISENTANGLEMENT AND ALIGNMENT

The feature DA process consists of three parts: 1) feature
extraction; 2) node-based contrastive learning; and 3) design-
based discrepancy minimization.

A. Timing Path Feature Extractor

Following [4], we build a multimodal timing path feature
extractor F(·), that is, capable of handling netlist restructuring,
as shown in Fig. 3. The netlist is first transformed into a
heterogeneous graph G, where each pin is treated as a node,
and each net edge and cell edge is represented as an edge in
the graph. Besides, the output of cell edges is referred as cell
nodes, and the sink of net edges is regarded as net nodes. We
denote the set of all the timing paths as Path(G) = {G′

i}M
i=1,

where G′ represents a timing path and M is the total number of
timing paths. Here, G′ is the whole fanin cone for the timing
endpoint, a subgraph of the netlist G. Each timing path graph
G′ consists of pin and net information. Besides, we also collect
the corresponding layout image set X for each timing path.

The heterogeneous graph G′ has two types of edge, the net
edge and the cell edge. The nodes in G′ represent the pins in
the netlist. The net distance, cell driving strength, gate type,
and pin capacitance are used as the node features. Note that
we use one-hot representation for the gate type and merge all
the gates in different technology nodes as the total gate set.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PREROUTING TIMING PREDICTION ACROSS DIFFERENT TECHNOLOGY NODES 2701

Fig. 3. Timing path feature extractor.

Fig. 4. Netlist can be characterized by two parts of information: The
functionality and the standard cell information.

Then, we use a GNN to propagate on G′ from the primary
inputs to the endpoints to obtain the feature for each timing
path. The GNN model propagates information in topological
order, eventually gathering at the timing endpoints. The final
netlist embeddings for the endpoint e is denoted as �ue

n.
The layout image set X includes the cell density map, rect-

angular uniform wire density map, and the macro cells region
map. Considering that the impact of timing optimization varies
for different endpoints, an endpoint-wise masking technique
is proposed, which consists of two steps: 1) path-finding and
2) mask generation. The path-finding is to search the longest
path Pe for the endpoint e, which can be solved by depth-
first-search (DFS). After obtaining the longest path Pe for
each endpoint e, the critical region Me of endpoint e will
be constructed, which is achieved by taking the union region
covered by the bounding boxes of the two-pin net edges
along Pe. Then, with the region mask Me and the layout
information map ML, the endpoint-wise layout embedding ue

l
can be calculated as follows:

ue
l = CNN(Me � ML) (1)

where CNN(·) denotes a convolution neural network. The
final output of the multimodal feature extractor �u is the
concatenation of �ue

n and �ue
l .

B. Timing Path Feature Disentanglement

As shown in Fig. 4, each netlist contains two parts of
information: 1) the functionality information encoded in the
design specification and 2) the standard cell information,
including its structures and parameters, such as the load and
capacitance. For a given design, mapping to different technol-
ogy nodes may produce two utterly different netlist graphs,
but they will share the same logical functionality. Inspired
by this, we aim to separate these two kinds of knowledge
to facilitate transfer learning. However, these two pieces of
knowledge are highly coupled in the netlist graphs, which is
infeasible to separate directly from the raw input. Therefore,
we propose disentangling the design-dependent knowledge and

the node-dependent knowledge from the feature space of the
timing path.

Since we aim to learn a performant timing predictor from
only limited data in the target advanced technology node and
abundant data in the source preceding technology node, we
may assume that our training set is composed of two parts
NS = {GS

1 , . . . ,GS
LS

} and NT = {GT
1 , . . . ,GT

LT
}, where NS and

NT represent the source preceding node and target advanced
technology node netlist set, respectively, and we have LS �
LT . For any path feature �u, we further adopt two multilayer
perceptrons (MLP(·)) to disentangle the equal-sized node-
dependent features �un and design-dependent features �ud by

�un = MLPn(�u) ∈ R
m/2, �ud = MLPd(�u) ∈ R

m/2. (2)

Each layer of MLP is parameterized by two learnable weights
�W and �b, which can be characterized by

φ(�u) = ReLU(�W�u + �b). (3)

Then, the total MLP function can be defined as

MLP(·) = (φL ◦ · · · ◦ φ1)(·) (4)

where L is the number of layers. To save the number of
parameters, we set L to 2. Moreover, for MLPd, we append
one extra tanh(·) activation after the MLP to limit the range of
the design-dependent feature, which will be used for feature
alignment detailed in the following section.

C. Timing Path Feature Alignment

Following feature disentanglement, the target of feature
alignment is to design a proper loss function to encode our
designated disentanglement of the node- and design-dependent
knowledge into an end-to-end ML framework. With this in
mind, we propose two loss functions, node-based contrastive
loss and design-based discrepancy loss, to align the node-
and design-dependent features, respectively. The overview of
timing path feature alignment is shown in Fig. 5.

Node-Based Contrastive Loss: The intuition to align the
node-dependent features is that the netlist on the same node
should share the same standard cells, including the gate
structures and the configuration parameters for pins and
nets. On the contrary, the node-dependent features should be
distinguishable for netlists at different nodes. For this purpose,
we propose a node-based contrastive loss.

Specifically, in each batch of training data, we first sample
some designs N ′

S ⊆ NS and N ′
T ⊆ NT . Then, we sample some

paths from both nodes to construct the batch-wise training
data. We denote the paths from the source node as BS =
{G′S

i }P
i=1 and the paths from the target node as BT = {G′T

i }P
i=1,

where P is the batch size for each node. Each batch of data
consists of data from both the source and target nodes, which
can be defined as

B = BS + BT . (5)

Then, we can obtain the disentangled path feature sets, i.e.,
node- and design-dependent features, for the source preceding

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

2702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

Fig. 5. Timing path feature alignment.

node, denoted as Un
S and Ud

S . The feature extraction process
for the source technology node can be formulated as

Un
S = {MLPn(F(G′))|G′ ∈ BS} (6)

and

Ud
S = {MLPd(F(G′))|G′ ∈ BS}. (7)

Similarly, we can obtain the node-dependent path features and
design-dependent path features of the target advanced node,
denoted as Un

T and Ud
T . The feature extraction process can be

characterized by

Un
T = {MLPn(F(G′))|G′ ∈ BT} (8)

and

Ud
T = {MLPd(F(G′))|G′ ∈ BT}. (9)

Denote the set of all the node-dependent features as A =
Un

S ∪Un
T . Given any node-dependent feature set Un (Un

S or Un
T),

the contrastive loss for the feature set can be defined as

LSet(Un) =
∑

�u∈Un

−1

|Un| − 1

∑

�m∈Un\{�u}

exp(�u · �m/τ)∑
�a∈A\{�u} exp(�u · �a/τ)

(10)

and the total contrastive loss can be formulated as

LCLR = 1

|Un
S |LSet(Un

S) + 1

|Un
T |LSet(Un

T). (11)

Node-based contrastive loss aims to pull together the features
from the same node while pushing apart those from different
nodes. With this loss, the node-dependent features on the same
node will be approximately consistent and differ in different
nodes.

Design-Based Discrepancy Loss: The design-dependent fea-
tures represent the abstract logical functionality of each netlist.
For each design, we can opt for different technology nodes
to synthesize various netlists but with the same functionality.
Therefore, the overall distribution of the design-dependent
features in different nodes should be consistent.

To align the design-dependent features, we optimize the
CMD between the feature sets from different nodes, which
can be formulated as

LCMD(Ud
S ,Ud

T) = 1

b − a

∥∥∥E(Ud
S) − E(Ud

T)

∥∥∥

+
∞∑

k=2

1

|b − a|k
∥∥∥ck(Ud

S) − ck(Ud
T)

∥∥∥ (12)

where [a, b] is the interval that bounds Ud
S and Ud

T , E(·)
denotes the expectation, and ck(·) is the kth order moment.
Since we apply a tanh activation function after MLPd, we limit
the value of the node-dependent features in (−1, 1). Therefore,
we can set a and b to −1 and 1, respectively. In practice, we set
the maximum moment order to 5. In essence, minimizing (12)
equals minimizing the gap between the statistics in different
orders of the design-dependent features from different nodes.
According to [44], we have the following properties.

Theorem 1: Let Ud
S and Ud

T be two probability distributions
on a compact interval, then we have

CMD(Ud
S ,Ud

T) → 0 =⇒ Ud
S → Ud

T . (13)

Such a property can guarantee that minimizing the loss
function formulated in (12) can align the overall distribution
of the design-dependent features from netlists at different
technology nodes.

V. BAYESIAN-BASED TIMING PREDICTION

Given a timing path feature �u, the conventional approach is
to feed the timing path feature �u into a linear layer with weight
�W ∈ R

1×m to output the arrival time. However, the value of
the arrival time for different endpoints can be significantly
different even in one netlist, as shown in Fig. 6, which poses
a huge challenge for accurate timing prediction with only a
fixed �W. Besides, since we only have very limited data on
our target technology node, the ML-based model is prone to
overfitting the training design. This can dramatically limit the
timing prediction performance on the unknown test netlists,
which may possess a large distribution gap with the training
set as shown in Fig. 6. To address these issues, we propose a
Bayesian-based timing prediction model, as shown in Fig. 7.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PREROUTING TIMING PREDICTION ACROSS DIFFERENT TECHNOLOGY NODES 2703

Fig. 6. Kernel density estimation of the different designs’ arrival time distribution. (a) smallboom (7nm); (b) arm9 (7nm); (c) chacha (7nm); (d) hwacha
(7nm); (e) or1200 (7nm); (f) sha3 (7nm); (g) jpeg (130nm); (h) spiMaster (130nm); (i) usbf_device (130nm); (j) jpeg (45nm); (k) spiMaster (45nm); (l)
usbf_device (45nm).

Fig. 7. Bayesian ML-based timing prediction.

Under the Bayesian ML framework, the model parameters are
considered as a distribution instead of fixed parameters. This
feature allows us to condition the model parameters on any
inputs, allowing the model to adapt to different inputs easily.
In our timing prediction task, we model the final readout linear
layer �W as a distribution to obtain better flexibility. Moreover,
an ideal and well-generalizable timing predictor should make
predictions based on the input timing path feature and the
distribution of all the timing paths on the target node. However,
common ML-based timing prediction methods [3], [4] only
consider the input timing path while ignoring the global
distributions.

Therefore, following common practice in Bayesian
ML [45], [46], we can formulate our learning objective as:

log p(y|G′,N) = log
∫

p(y|G′, �W)p(�W|N)d �W (14)

where y denotes the ground truth arrival time, N represents the
overall distribution for all the timing paths at the technology
node, and we condition �W on this true global timing path
distribution with a probability density function p(�W|N), also
known as the prior distribution. However, computing this
probability in real practice is infeasible since the real timing
path distribution of the whole target node N is intractable
when we only have limited timing paths from the netlists
on the target advanced technology node. Therefore, we adopt
variational inference [45], [46], [47] to approximate the prior
distribution.

Specifically, we introduce a variational posterior distribution
q(�W|G′) which only conditions on single timing path input and
is easy to compute to simulate the prior distribution. Then, we
can derive the evidence lower bound (ELBO) of the objective
function by

log p(y|G′,N) = log
∫

p(y|G′, �W)p(�W|N)d �W

= log
∫

p(y|G′, �W)
p(�W|N)

q(�W|G′)
q(�W|G′)d �W

= logEq

[
p(y|G′, �W)

p(�W|N))

q(�W|G′)

]

≥ Eq

[
log p(y|G′, �W)

p(�W|N))

q(�W|G′)

]

= Eq
[
log p(y|G′, �W)

]

− KL(q(�W|G′)||p(�W|N))). (15)

The first term in (15) is the log-likelihood with the vari-
ational posterior. Minimizing the first term equals narrowing
down the gap between the timing prediction conditioned on
the input path features and the ground truth, which is the same
as previous ML-based timing prediciton methods [3], [4].
The second term in (15) is the KL divergence between
the variational posterior and the prior distribution, which
regularizes the prediction conditioned on single paths and the
prior knowledge from the global distribution. This regularizer
can help alleviate the overfitting issue and benefit the model’s
generalization ability [45]. In all, with (15), we can learn a
network with parameters only conditioned on the input timing
path G′ but with good generalization ability. Besides, this
design also fits the feature of high variability of the arrival
time of different timing paths.

Now, we introduce the construction of p and q for
optimization. Following common practice in variational infer-
ence [45], [47], we can model the variational posterior
distribution as a Gaussian formulated by

�Wq ∼ N(μ([�un, �ud]),�([�un, �ud])) (16)

where �Wq is the linear layer generated by distribution q,
�un and �ud are the disentangled node-dependent and design-
dependent features for the timing path G′, and μ(·) and �(·)
are two MLPs. In other words, we use the two learnable small
networks, μ(·) and �(·), to output the mean and variance of
the distribution of �Wq, as shown in Fig. 7. Similarly, using the
amortization trick [47], we can model the prior as

�Wp ∼ N(μ(�̃u(N)),�(�̃u(N))) (17)
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

2704 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

where �Wp is the linear layer generated by the prior distribution
p and �̃u(N) ∈ R

m is a dummy timing path feature that
represents the true distribution of all the timing paths within
the whole technology node N . To construct a representative
�̃u for the target technology node with only limited data,
we leverage the disentangled node- and design-dependent
features. Specifically, since the node-dependent features are
approximately consistent within one technology node, we
can simply use the mean of all the node-dependent features
to represent the node information. As for the design-related
information, we can collect all the design-dependent features
in both the source preceding technology node and the target
advanced technology node since the design-based discrepancy
loss has already brought them to the same distribution, and
we can take the mean of them as the representative feature
for all the designs. Since we adopt batch-wise stochastic
gradient descent (SGD) for optimization, we update �̃u via
moving average. Specifically, for each batch of features, we
first calculate the batch means of the node-dependant features
of the source technology node as follows:

�u′n
S = 1

|Un
S |
∑

�u∈Un
S

�u. (18)

Similarly, the batch mean of the node-dependant features of
the target technology node can be calculated by

�u′n
T = 1

|Un
T |
∑

�u∈Un
T

�u. (19)

For the design dependent features, we calculate the overall
batch mean from both the source and target nodes, which can
be formulated as follows:

�u′d = 1

|Ud
T | + |Ud

S |
∑

�u∈Ud
T ∪Ud

T

�u. (20)

Then, the total batch mean for the source target node can be
constructed as

�u′
S =

[
�u′n

S , �u′d] (21)

and the batch mean for the target node can be constructed as

�u′
T =

[
�u′n

T , �u′d] (22)

where [·] denotes feature concatenation. With these batch
means, the moving average update of the dummy feature �̃u
can be denoted as

�̃u(NS) = (1 − m) · �̃u(NS) + m · �u′
S (23)

and

�̃u(NT) = (1 − m) · �̃u(NT) + m · �u′
T (24)

where m is the momentum factor. We set m to 0.001 in our
experiment, and �̃u is initialized to the first batch mean.

Combining (16) and (17) and the construction of �̃u, we can
explicitly calculate KL(q(�W|G′)||p(�W|N))). To calculate the
first term in (15), we use Monte Carlo sampling to sample
K samples from q(�W|G′), denoted as { �Wi

q}K
i=1, and with each

sampled �Wi
q, we can obtain a timing prediction ŷi, which

Fig. 8. Example of cell type distribution construction.

are then averaged to obtain the final timing prediction ŷ =
(1/K)

∑K
1 ŷi. The ELBO objective can be formulated as

LELBO(y,G′,N)

= 1

K

K∑

i=1

log p(y|G′, �Wi
q) − KL(q(�W|G′)||p(�W|N)).

Overall, the first term in (25) represents the timing prediction
loss, and the second term describes the distribution discrep-
ancy between the variational posterior and prior distribution.

VI. TRANSFERABILITY-BASED REWEIGHTING

The efficacy of transfer learning is not universally guar-
anteed. When the source and target domains lack sufficient
similarity, transferring knowledge from a weakly related
source can adversely impact performance in the target domain,
a phenomenon commonly referred to as negative transfer [48].
Therefore, we propose a standard cell similarity-aware transfer
learning that reweights the samples from previous technology
nodes by estimating their transferability. Specifically, we first
construct the standard cell type distribution for each timing
path. Then, we estimate the transferability by calculating the
discrepancy between the data from the source nodes and that
from the target nodes using OT distance. Finally, we reweight
the source data based on the estimation. Note that other factors,
such as the netlist graph structure, may affect the similarity
between the source and target data. However, these are hard
to quantify and calculate. We adopt cell type distribution as it
is an important and easily calculable indicator to measure the
similarity between the source and target data.

Standard Cell Type Distribution Construction: For each
timing path, we first calculate the distribution of different
types of cells. Specifically, during GNN propagating from the
primary inputs to the timing endpoints, we count the frequency
for each cell type and normalize them to construct the cell
type distribution, as shown in Fig. 8.

Transferability Estimation: The key idea for transferability
estimation is to measure the cell type distribution discrepancy.
Considering that the support of the cell type distribution
of different nodes may be different due to the different
cell libraries, we leverage OT to calculate the discrepancy.
OT distance is a commonly utilized metric for comparing
distributions that may have different support. In this work, we
only focus on the discrete case because of the nature of the
cell type distribution. Suppose we have two sets of features;

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PREROUTING TIMING PREDICTION ACROSS DIFFERENT TECHNOLOGY NODES 2705

the discrete distributions can be represented as follows:

k =
M∑

i=1

aiδ�fi and l =
N∑

j=1

bjδ�gj (25)

where k and l are two M and N-dimensional discrete probabil-
ity distributions, respectively. �a and �b are discrete probability
vectors summing to 1, and δ is a Dirac delta function. In our
case, �f and �g are the representations of cell types from different
technology nodes, and �a and �b denote the probability density.
The transport distance is then expressed as

〈�T, �C〉 =
M∑

i=1

N∑

j=1

�Tm,n �Cm,n (26)

where �C represents the cost between points �fi and �gj, and �T
represents the transport plan. Given a fixed cost matrix �C,
different plan �T will lead to different transport distances. The
OT distance is defined as the minimal transport distance, which
can be defined as solving the following optimization problem:

OT(k, l) = min
�T

〈�T, �C〉
s.t. �T�1N = �a, �T��1M = �b, �T ∈ R

M×N+ (27)

where OT(·, ·) denotes the optimal distance. Since directly
optimizing this objective is often computationally expensive,
we apply the Sinkhorn distance [49] which incorporates an
entropic constraint for faster optimization. The optimization
problem with an entropic regularization term is defined as

OTγ (k, l) = min
�T

〈�T, �C〉 − γ h(�T)

s.t. �T�1N = �a, �T��1M = �b, �T ∈ R
M×N+ (28)

where h(·) denotes the entropy function and γ ≥ 0 is a
regularization parameter. This leads to a more efficient solution
through iterative updates

�T∗ = diag
(
�a(t)
)

exp

(
−�C
γ

)
diag

(�b(t)
)

(29)

where t represents the iteration step. At each iteration, the
updates are

�a(t) = �a(
exp

(−�C
γ

)�b(t−1)
) (30)

and

�b(t) = �b(
exp

(−�C
γ

)��a(t)

) (31)

starting with the initialization �b(0) = 1.
The OT distance is conditioned on the definition of the cost

matrix �C. In the context of the cell type distribution, we split
the cell libraries for each node into two parts: 1) the cells with
common logical functions in both nodes denoted as Q and
2) the cells with specific logical function on the given node.
For example, there may be cells with INV_1x1 functionality in
both nodes. Suppose the source and target nodes have M and

TABLE I
STATISTICS OF THE DATASET (EDP STANDS FOR ENDPOINT, AND en AND

ec DENOTE NET EDGE AND CELL EDGE, RESPECTIVELY)

Fig. 9. Ablation study on the effectiveness of each module.

N cells, respectively. We denote {�fi}M
i=1 and {�gi}N

i=1 as the cell
representation for the source and target nodes, respectively.
By further letting logical(·) represent the logical function of a
given cell, we can define the cost matrix as

�Ci,j =
⎧
⎨

⎩

0.1, if logical(�fi) = logical(�gj)

0.5, if logical(�fi) �= logical(�gj) and �fi, �gj ∈ Q
1, o/w.

(32)

The intuition behind (32) is that we assign small cost to cells
with identical logical functions in both nodes. We assign larger
weights for cells with different logical functions but appearing
in the common cell set Q. For cells not in Q, which means
they only appear in one node, we assign the highest cost.

Sample Reweighting: We reassign different weights to sam-
ples in the source technology node based on the transferability
estimation, as illustrated above. Specifically, for each batch,
we first calculate the average cell type distribution for the
target data, denoted as kT . Then, for each timing path in the
source node, we calculate the OT distance between its cell
distribution lSi and kT , as formulated by

αi = OTγ (kT , lSi) ∀i ∈ {1, . . . , |BS|}. (33)

Considering the construction of the cost matrix, we can see
that 0.1 ≤ αi ≤ 1. Therefore, we define the weight as

βi = 1 − αi ∀i ∈ {1, . . . , |BS|}. (34)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

2706 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

TABLE II
EVALUATION RESULTS ON TRANSFER LEARNING IN THE 130-TO-7-NM SETTING. HERE, RUNTIME DENOTES THE MODEL INFERENCE TIME

TABLE III
EVALUATION RESULTS ON TRANSFER LEARNING IN THE 45-TO-7-NM SETTING. HERE, RUNTIME DENOTES THE MODEL INFERENCE TIME

TABLE IV
RUNTIME (S) COMPARISON WITH COMMERCIAL TOOLS

Then, the total loss for each batch can be defined as

L =
|BT |∑

i=1

LELBO(yT
i ,G′T

i ,NT) +
|BS|∑

i=1

βiLELBO(yS
i ,G′S

i ,NS)

+ γ1LCLR + γ2LCMD (35)

where γ1 and γ2 are two hyperparameters.

VII. EXPERIMENTAL RESULTS

A. Implementation Details

We implement our entire framework with the widely used
deep learning library, DGL [51] and Pytorch [52]. The model
is trained and tested on a Linux system with a 2.3GHz
Intel Xeon CPU and a single NVIDIA GeForce RTX 3090
GPU. Regarding the hyperparameters of our model in the
experiments, we implement all the MLPs with a hidden
dimension of 256 for the GNN. As for the CNN, we set the
input size to 3×512×512. Besides, the dimension of endpoint-
wise netlist and layout embedding is set to 128. The weights
for the node-based contrastive loss γ1 and the designed-based
discrepancy loss γ2 are set to 10 and 100, respectively. Our
model is trained with a learning rate of 0.0001 and batch size
of 2048 for 200 epochs.

We use 7-nm node as our target node. As for preceding
node data, we collect netlists from two nodes, 130 and 45
nm. Therefore, our experiments include two settings, 130-to-7
and 45-to-7 nm. For each setting, we use four 130 or 45-
nm netlists and one 7-nm netlist as the training set, and five

TABLE V
TRAINING TIME (HRS) COMPARISON

7-nm netlists as the test set. The statistics of all the designs
are shown in Table I. Specifically, we collect open-source
designs from Freecores [53] and Chipyard [54]. In the dataset
generation workflow, we employ Cadence Genus with 130-
nm SkyWater [55], 45-nm Nangate [56], and 7-nm ASAP7
PDK [57] for synthesis. We further adopt Cadence Innovus
for placement, timing optimization, routing and STA. Note
that timing constraints for each design in the PnR phase are
derived from estimated values provided by Cadence Genus
during synthesis to ensure effective timing optimization. DEF
files and netlists are acquired at each phase of the flow,
enabling the retrieval of pin and cell locations, as well as
other available features, in accordance with PDK rules. The
prediction is performed at pre-CTS stage for all the methods.
Besides, we employ the routeDesign -globalDetail
command with default settings as the final step in our flow,
without further power/timing optimization.

To verify the effectiveness of our proposed learning strategy,
we set the following baselines for comparison. By default, all
the baseline models are the previous state-of-the-art (SOTA)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PREROUTING TIMING PREDICTION ACROSS DIFFERENT TECHNOLOGY NODES 2707

TABLE VI
ABLATION STUDY ON THE NUMBER OF 130-NM DESIGNS. WE REPORT THE R2 SCORE

model published in DAC23 [4], but trained with different
strategies.

1) The first baseline is only trained with limited advanced
7-nm node netlist data, denoted as DAC23-AdvOnly.

2) The second baseline is simply merging the 7 nm and the
130 or 45-nm netlist data as the training set, denoted as
DAC23-SimpleMerge.

3) The third baseline is parameter sharing [39], which is
a common practice in transfer learning and multitask
learning, denoted as DAC23-ParamShare. For the source
node and target node data, they share the same feature
extractor, but adopt a node-specific linear layer for the
final prediction.

4) The fourth baseline is pretraining-then-finetuning [38],
denoted as DAC23-PT-FT. As a widely used technique
in transfer learning, this strategy first trains the timing
prediction model with 130 or 45-nm netlist data and then
fine-tunes it with 7-nm netlist data.

B. Main Results

The main results for the 130-to-7 and 45-to-7-nm settings
are shown in Tables II and III, respectively. First of all, we can
observe that only training with limited 7-nm data (DAC23-
AdvOnly) achieves poor performance, indicating the necessity
of massive training data belonging to the same distribution
as the test data. The rest of the baselines investigate different
approaches to leveraging the data from the 130 or 45-nm node
to help the learning on the 7-nm node. The most intuitive
one is to merge the limited data on the target node and
the abundant data on the source node. However, since the
arrival time on target and source nodes suffer from a large
distribution discrepancy, as shown in Fig. 6, this strategy is
infeasible to handle them simultaneously, leading to negative
R2 scores in both 130-to-7 and 45-to-7-nm settings. The
next baseline parameter sharing (DAC23-ParamShare). As a
common practice in transfer learning, it obtains some improve-
ments compared with DAC23-AdvOnly, specifically 0.018 in
the 130-to-7-nm setting and 0.077 in the 45-to-7-nm setting.
This demonstrates that it somehow leverages the knowledge
from the source node data to help the learning for target
node data. Another common practice in transfer learning,
pretraining-then-finetuning (DAC23-PT-FT), achieves superior
regression performance compared with DAC23-ParamShare
with a substantial margin (0.161 in the 130-to-7-nm setting
and 0.079 in the 45-to-7-nm setting), indicating its effective
knowledge transfer capability

Our method outperforms all the baselines by a significant
margin, with improvements of about 41% and 47% in the
R2 score compared to its best counterpart, DAC23-PT-FT,

in the 130-to-7 and 45-to-7-nm settings, respectively. This
validates that our method is effective in handling the distri-
bution shifts between the source and target node data and
is capable of transferring knowledge to different technology
nodes. Meanwhile, our method requires only about 4% addi-
tional runtime to achieve this remarkable improvement due
to the added parameters. Note that all the baseline models
share the same runtime since they only differ in training
strategy, and they are the same during inference. Moreover,
compared to [50], we observe further improvements on most
benchmarks, with the average R2 score increasing by around
2.8% and 3.2% in the 130-to-7 and 45-to-7-nm settings,
respectively. This indicates the effectiveness of the proposed
transferability-based reweighting algorithm.

C. Runtime Analysis

The runtime analysis is shown in Tables IV and V. First of
all, since our method is used for prerouting timing predictions,
we do not have to run time-consuming timing optimization
and routing to get detailed wire information for the timing
information. Therefore, we compare our method with an
advanced commercial tool, which requires running complex
timing optimization and routing. As shown in Table IV, given
the results from the placement stage, the following timing
optimization and routing stage will take up much time for
commercial tool usage. Moreover, the post-routing STA stage
also consumes some extra time. As for our method, with the
netlist and layout as the input, we only need two steps to get
the final timing prediction. First, we process the data to the
required multimodal format, and then we only need a single
model inference to output the timing delay. As we can see
in Table IV, for smaller designs the data processing time is
neglectable, while it will increase as the design gets larger and
will dominate the whole test-time runtime for large designs,
for example, or1200. The inference time also increases with
the design size but with a much smaller speed compared with
the data processing time. In all, the total test-time runtime
for our method is much smaller than that required by the
commercial tools to run full timing optimization and routing
process. We can get on average 2000 times acceleration for
timing prediction, which validates the efficiency and necessity
of ML-based prerouting timing prediction methods.

We also show the training time comparison in Table V.
Compared with our baseline model [4], in the 130-to-7-nm
setting, the proposed feature disentanglement and Bayesian
prediction framework introduces around 9% extra training
time. Compared with [50], our proposed transferability esti-
mation algorithm requires solving an OT problem for each
iteration, which further introduces another 11% training time.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

2708 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

In the 45-to-7-nm setting, we can observe similar time con-
sumption difference. The transferability estimation algorithm
takes around 9% more training time. The overall training time
for 45-to-7-nm setting is slightly shorter than that of 130-to-7
nm because the 45-nm netlist sizes are smaller than that of the
130-nm netlists, as shown in Table I. Generally, the training
on one 7-nm design and four 130 or 45-nm designs ends in
less than two days with only one Nvidia 3090 GPU.

D. Ablation Study

To further validate the effectiveness of our method, we
conduct two ablation studies to show 1) the effectiveness of
each module in our method and 2) the effect of the number
of preceding node netlist data. We conduct the ablation study
experiments in the 130-to-7-nm setting.

Effectiveness of Different Modules: To verify the effective-
ness of the feature DA, the Bayesian-based timing prediction
module (Bay.), and the transferability-based reweighting algo-
rithm (Re.), we conduct ablation studies as shown in Fig. 9.
For the two core modules, DA and Bayesian-based timing
prediction module, the performance drops by a substantial
margin without any of them, demonstrating the effectiveness
of both of them. In addition, these two modules lead to
different improvements on different designs. For instance, the
model with DA only outperforms the model with Bayesian
only on or1200 and sha3, but on arm9 and chacha model
with Bayesian only owns substantial advantages. Moreover,
the transferability-based reweighting algorithm further boosts
the performance of our proposed transfer learning framework.

Number of Source Node Netlist Data: We also investigate
how the number of source node data used in transfer learning
affects the performance of the timing predictor. As shown
in Table VI, when we increase the number of source node
data, the timing prediction performance improves consistently.
This indicates that, on the one hand, our method is effective
in transferring the knowledge in different nodes to enhance
the performance on the target node; on the other hand, the
involvement of more source node data can improve the timing
predictor’s generalization ability on various 7-nm designs.

VIII. CONCLUSION

ML-based methods [3], [4] have achieved remarkable success
in prerouting timing prediction. To ensure precise prediction,
they demand extensive data from the designated technology
node. However, the data collection process is time consuming,
posing a challenge in acquiring adequate data for advanced
technology nodes. To mitigate this issue, we propose a novel
transfer learning framework that leverages abundant data from
preceding technology nodes to enhance learning on the target
technology node. Specifically, our method first disentangles
the timing path features into node- and design-dependent parts
and aligns them separately. Then, we use a Bayesian ML-
based model to predict the arrival time of each timing path,
which can handle its high variability and generalize to new
designs in the test set. Moreover, we reweight the samples
from preceding technology nodes based on their transferability
to further enhance the transfer learning efficacy. Experimental

results on transfer learning from 130 or 45-nm node to 7-nm
node validate the effectiveness of our method.

REFERENCES

[1] J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal delay in RC
tree networks,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 2, no. 3, pp. 202–211, Jul. 1983.

[2] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. 56th
ACM/IEEE Design Autom. Conf. (DAC), 2019, pp. 1–6.

[3] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2022, pp. 1207–1212.

[4] Z. Wang, S. Liu, Y. Pu, S. Chen, T.-Y. Ho, and B. Yu, “Restructure-
tolerant timing prediction via multimodal fusion,” in Proc. 60th
ACM/IEEE Design Autom. Conf. (DAC), 2023, pp. 1–6.

[5] J. Qiu, S. Reda, and S. Hassoun, “Fast, accurate a priori routing delay
estimation,” in Proc. 12th ACM/IEEE Workshop Syst. Level Interconnect
Predict. (SLIP), 2010, pp. 77–82.

[6] Q. Liu and M. Marek-Sadowska, “Pre-layout wire length and congestion
estimation,” in Proc. 41st ACM/IEEE Design Autom. Conf. (DAC), 2004,
pp. 582–587.

[7] S. Bodapati and F. N. Najm, “Pre-layout estimation of individual wire
lengths,” in Proc. ACM Workshop Syst. Level Interconnect Predict.
(SLIP), 2000, pp. 93–98.

[8] H.-H. Cheng, I. H.-R. Jiang, and O. Ou, “Fast and accurate wire timing
estimation on tree and non-tree net structures,” in Proc. 57th ACM/IEEE
Design Autom. Conf. (DAC), 2020, pp. 1–6.

[9] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proc. 22nd ACM Int. Conf. Knowl. Discov. Data Min. (KDD), 2016,
pp. 785–794.

[10] Y. Ye, T. Chen, Y. Gao, H. Yan, B. Yu, and L. Shi, “Fast and accurate
wire timing estimation based on graph learning,” in Proc. IEEE/ACM
Design, Autom. Test Eurpoe (DATE), 2023, pp. 1–6.

[11] A. B. Kahng, U. Mallappa, L. Saul, and S. Tong, “‘Unobserved corner’
prediction: Reducing timing analysis effort for faster design convergence
in advanced-node design,” in Proc. IEEE/ACM Design, Autom. Test
Eurpoe (DATE), 2019, pp. 168–173.

[12] W. W. Xing et al., “TOTAL: Multi-corners timing optimization based on
transfer and active learning,” in Proc. 60th ACM/IEEE Design Autom.
Conf. (DAC), 2023, pp. 1–6.

[13] X. He, Z. Fu, Y. Wang, C. Liu, and Y. Guo, “Accurate timing
prediction at placement stage with look-ahead RC network,” in Proc.
59th ACM/IEEE Design Autom. Conf. (DAC), 2022, pp. 1213–1218.

[14] H. Chang and S. S. Sapatnekar, “Statistical timing analysis con-
sidering spatial correlations using a single PERT-like traversal,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2003,
pp. 621–625.

[15] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83, Jan. 2008.

[16] P. Cao, G. He, and T. Yang, “TF-predictor: Transformer-based prerouting
path delay prediction framework,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 42, no. 7, pp. 2227–2237, Jul. 2023.

[17] G. He, W. Ding, Y. Ye, X. Cheng, Q. Song, and P. Cao, “An optimization-
aware pre-routing timing prediction framework based on heterogeneous
graph learning,” in Proc. 29th IEEE/ACM Asia South Pac. Design Autom.
Conf. (ASPDAC), 2024, pp. 177–182.

[18] Q. Song, X. Cheng, and P. Cao, “Critical paths prediction under multiple
corners based on BiLSTM network,” in Proc. 60th ACM/IEEE Design
Autom. Conf. (DAC), 2023, pp. 1–6.

[19] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Annu. Conf.
Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 1–11.

[20] X. Zhou et al., “Heterogeneous graph neural network-based imitation
learning for gate sizing acceleration,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2022, pp. 1–9.

[21] S. Nath, G. Pradipta, C. Hu, T. Yang, B. Khailany, and H. Ren,
“TransSizer: A novel transformer-based fast gate sizer,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2022, pp. 1–9.

[22] K.-C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “DAG-Map:
Graph-based FPGA technology mapping for delay optimization,” IEEE
Design Test Comput., vol. 9, no. 3, pp. 7–20, Sep. 1992.

[23] R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping
program for lookup table-based field programmable gate arrays,” in
Proc. 27th ACM/IEEE Design Autom. Conf. (DAC), 1991, pp. 613–619.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PREROUTING TIMING PREDICTION ACROSS DIFFERENT TECHNOLOGY NODES 2709

[24] K.-T. Cheng and C.-J. Lin, “Timing-driven test point insertion for full-
scan and partial-scan BIST,” in Proc. IEEE Int. Test Conf. (ITC), 1995,
pp. 506–514.

[25] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Hypergraph partitioning
with fixed vertices,” in Proc. 36th ACM/IEEE Design Autom. Conf.
(DAC), 1999, pp. 355–359.

[26] N. Selvakkumaran and G. Karypis, “Multiobjective hypergraph-
partitioning algorithms for cut and maximum subdomain-degree
minimization,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 25, no. 3, pp. 504–517, Mar. 2006.

[27] B. Hu and M. Marek-Sadowska, “Fine granularity clustering-based
placement,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 4, pp. 527–536, Apr. 2004.

[28] B. Yu et al., “Methodology for standard cell compliance and detailed
placement for triple patterning lithography,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 5, pp. 726–739, May 2015.

[29] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[30] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic Design
Automation: Synthesis, Verification, and Test. Burlington, MA, USA:
Morgan Kaufmann, 2009.

[31] J. Cong and P. H. Madden, “Performance driven global routing for
standard cell design,” in Proc. ACM Int. Symp. Phys. Design (ISPD),
1997, pp. 73–80.

[32] C. Albrecht, “Provably good global routing by a new approximation
algorithm for multicommodity flow,” in Proc. ACM Int. Symp. Phys.
Design (ISPD), 2000, pp. 19–25.

[33] T. Yoshimura and E. S. Kuh, “Efficient algorithms for channel rout-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 1,
no. 1, pp. 25–35, Jan. 1982.

[34] Y. Lin et al., “MrDP: Multiple-row detailed placement of heterogeneous-
sized cells for advanced nodes,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 37, no. 6, pp. 1237–1250, Jun. 2018.

[35] C. J. Alpert, A. E. Caldwell, A. B. Kahng, and I. L. Markov,
“Hypergraph partitioning with fixed vertices [VLSI CAD],” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 2, pp. 267–272,
Feb. 2000.

[36] B. Yu and D. Z. Pan, “Layout decomposition for quadruple patterning
lithography and beyond,” in Proc. 51st ACM/EDAC/IEEE Design Autom.
Conf. (DAC), 2014, pp. 1–6.

[37] D. Ramachandram and G. W. Taylor, “Deep multimodal learning: A
survey on recent advances and trends,” IEEE Signal Process. Mag.,
vol. 34, no. 6, pp. 96–108, Nov. 2017.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Annu. Conf. North Amer. Chapter Assoc. Comput. Linguist. (NAACL),
2019, pp. 4171–4186.

[39] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection by
deep multi-task learning,” in Proc. 13th Eur. Conf. Comput. Vis. (ECCV),
2014, pp. 94–108.

[40] H. Wang et al., “GCN-RL circuit designer: Transferable transistor sizing
with graph neural networks and reinforcement learning,” in Proc. 57th
ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1–6.

[41] E. Goan and C. Fookes, “Bayesian neural networks: An introduction
and survey,” in Case Studies in Applied Bayesian Data Science: CIRM
Jean-Morlet Chair. Cham, Switzerland: Springer, 2020, pp. 45–87.

[42] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859–877, 2017.

[43] C. Villani, Optimal Transport: Old and New, vol. 338, Berlin, Germany:
Springer, 2009.

[44] W. Zellinger, T. Grubinger, E. Lughofer, T. Natschläger, and
S. Saminger-Platz, “Central moment discrepancy (CMD) for domain-
invariant representation learning,” 2019, arXiv:1702.08811.

[45] Z. Xiao, X. Zhen, L. Shao, and C. G. Snoek, “Learning to generalize
across domains on single test samples,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2022, pp. 1–20.

[46] J. Zhang, C. Zhao, B. Ni, M. Xu, and X. Yang, “Variational few-
shot learning,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2019,
pp. 1685–1694.

[47] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2014, pp. 1–14.

[48] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell, “Characterizing and
avoiding negative transfer,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2019, pp. 11293–11302.

[49] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” in Proc. Annu. Conf. Neural Inf. Process. Syst. (NeurIPS),
2013, pp. 1–9.

[50] X. Zhang et al., “Disentangle, align and Generalize: Learning a timing
predictor from different technology nodes,” in Proc. 61st ACM/IEEE
Design Autom. Conf. (DAC), 2024, pp. 1–6.

[51] M. Y. Wang, “Deep graph library: Towards efficient and scalable deep
learning on graphs,” in Proc. ICLR Workshop Represent. Learn. Graphs
Manifolds, 2019, pp. 1–18.

[52] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. 33rd Annu. Conf. Neural Inf. Process. Syst.
(NeurIPS), 2019, pp. 8026–8037.

[53] “Freecores.” Accessed: Jan. 1, 2023. [Online]. Available: https://github.
com/freecores

[54] “Chipyard.” Accessed: Jan. 1, 2023. [Online]. Available: https://github.
com/ucb-bar/chipyard

[55] “Skywater open source PDK.” Accessed: Jan. 1, 2023. [Online].
Available: https://github.com/google/skywater-pdk

[56] “Nangate45 open source PDK.” Accessed: May 1, 2023. [Online].
Available: https://github.com/The-OpenROAD-Project/OpenROAD-
flow-scripts/tree/master/flow/platforms/nangate45

[57] L. T. Clark et al., “ASAP7: A 7-nm finFET predictive process design
kit,” Microelectron. J., vol. 53, pp. 105–115, Jul. 2016.

Xinyun Zhang received the B.Eng. degree from
the School of Electrical Engineering, Xi’an Jiaotong
University, Xi’an, China, in 2018, and the
M.S. degree from the School of Engineering, The
Hong Kong University of Science and Technology,
Hong Kong, in 2020. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong.

His current research interests include machine
learning in EDA and computer vision.

Binwu Zhu received the B.E. degree from the
Department of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou, China,
in 2020, and the Ph.D. degree from the Department
of Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong, in 2024.

He is currently an Associate Professor with the
School of Integrated Circuit, Southeast University,
Nanjing, China. His research focuses on the com-
bination of AI and EDA, especially in the DFM
domain.

Fangzhou Liu received the B.Eng. degree from
the School of Electronic Science and Engineering,
Nanjing University, Nanjing, China, in 2023. She
is currently pursuing the Ph.D. degree with The
Chinese University of Hong Kong, Hong Kong,
under the supervision of Prof. Bei Yu.

Her research focuses on applying machine
learning techniques to EDA and logic synthesis
optimization.

Jiaxi Jiang received the B.E. degree in computer
science from Northwestern Polytechnical University,
Xi’an, China, in 2023. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong.

His current research interests include physical
design and machine learning applications in EDA.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

2710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

Ziyi Wang received the B.S. degree from the
Department of Computer Science and Technology,
Fudan University, Shanghai, China, in 2021. He
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.
His research interests include graph learning appli-
cations in electronic design automation and logic
synthesis.

Peng Xu received the B.S. degree from Central
South University, Changsha, China, in 2019, and
the M.S. degree from the Harbin Institute of
Technology (Shenzhen), Shenzhen, China, in 2021.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong,
under the supervision of Prof. Bei Yu.

His research interests include machine learning
for analog physical design and optimization in EDA
problems.

Hong Xu (Senior Member, IEEE) received the
B.Eng. degree from The Chinese University of
Hong Kong, Hong Kong, in 2007, and the M.A.Sc.
and Ph.D. degrees from the University of Toronto,
Toronto, ON, Canada, in 2009 and 2013, respec-
tively.

He is an Associate Professor with the Department
of Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong. From 2013
to 2020, he was with The City University of Hong
Kong, Hong Kong. His research area is computer

networking and systems, particularly big data systems and data center
networks.

Dr. Xu was the recipient of an Early Career Scheme Grant from the Hong
Kong Research Grants Council in 2014. He received three best paper awards,
including the IEEE ICNP 2015 Best Paper Award. He is a Senior Member
of ACM.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received 11 Best Paper Awards from
ICCAD 2024 and 2021 and 2013, IEEE TSM 2022,
DATE 2022, ASPDAC 2021 and 2012, ICTAI 2019,
Integration, the VLSI Journal in 2018, ISPD 2017,
SPIE Advanced Lithography Conference 2016, six

ICCAD/ISPD contest awards, the IEEE CEDA Ernest S. Kuh Early Career
Award in 2021, the DAC Under-40 Innovator Award in 2024, and the Hong
Kong RGC Research Fellowship Scheme Award in 2024. He has served as
a TPC Chair for ACM/IEEE Workshop on Machine Learning for CAD in
2019, International Symposium of EDA in 2025, and in many journal editorial
boards and conference committees.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2025 at 01:40:12 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

