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Abstract—Source mask optimization (SMO) is vital for mit-
igating lithography imaging distortions caused by shrinking
critical dimensions in integrated circuit fabrication. However, the
computational intensity of SMO, involving multiple integrals in
Abbe’s theory, hinders its widespread adoption and advancement.
In this article, we present Diff-SMO, a highly efficient and
accurate SMO framework with a primary emphasis on enhancing
source optimization techniques. Previous research was confined
to mask optimization acceleration due to the constraints of
the academia lithography model. Diff-SMO extends the scope
of optimization by concurrently refining the intricate interplay
between the source and mask. We first develop a GPU-accelerated
lithography simulator grounded in Abbe’s theory, enabling full
GPU acceleration throughout the SMO process. Furthermore, we
propose a discrete diffusion model for generating quasi-optimal
sources, significantly improving computational efficiency. Our
experimental results demonstrate exceptional imaging fidelity,
surpassing the state-of-the-art, with over 200 times higher
throughput compared to traditional SMO methods.

Index Terms—Deep learning, design automation, design for
manufacture.

I. INTRODUCTION

OPTICAL lithography plays a vital role in integrated
circuit (IC) manufacturing, using light to selectively

expose a photosensitive material and meticulously pattern IC’s
thin film layers. State-of-the-art (SOTA) resolution enhance-
ment techniques like source mask optimization (SMO) and
multiple patterning have facilitated the creation of complex
ICs, characterized by smaller feature sizes and enhanced
transistor densities. In essence, source optimization (SO)
adjusts the incidence angles or intensity distributions of light
rays emitted from the illumination system. Conversely, mask
optimization (MO) regulates the amplitude of the transmitted
light rays via mask, as shown in Fig. 1. Compared to
MO, which is more commonly known as optical proximity
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Fig. 1. (a) Illustration of DUV lithography system. (b) Flow of SMO. The
pattern error of the printed image will be significantly reduced through SMO.

correction (OPC), SMO can gain a larger manufacturing
process window by adjusting the source intensity distribu-
tion. This feature has generated significant interest among
semiconductor foundries, inciting extensive research to pro-
long the viability of 193-nm optical lithography [1], [2].
The advent of freeform illumination has enabled pixelated
SMO techniques to enhance optimization freedom degrees,
consequently boosting the imaging performance of lithography
systems [3], [4]. However, the intricate source representation
significantly affects the pixelated SMO method’s performance.
Additionally, the escalating density of IC layouts triggers
a surge in the data volume processed by SMO algorithms.
Pixel-based optimization introduces numerous optimization
variables, thereby escalating the computational complexity of
the optimization process. Collectively, these factors impose
substantial challenges on the computational efficiency of SMO
algorithms.

The advent of Hopkins’ approach [5] and its simplified
formulation, the “sum of coherent systems” (SOCS) [6],
have triggered a significant reduction in MO computa-
tional complexity via singular value decomposition (SVD).
Consequently, research has veered toward the explo-
ration of distinct acceleration techniques for SO and
MO [7], [8], [9], [10].

Recent years have seen a notable surge in research dedicated
to MO acceleration [11], [12], [13], [14] using GPU and deep
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neural network (DNN) technologies, facilitated by lithography
simulators grounded in the Hopkins model provided by the
ICCAD 2013 contest [15]. GAN-OPC [11] utilizes generative
adversarial networks (GANs) to predict initial solutions for
traditional MO solvers [7]. DevelSet [12] employs a DNN to
forecast the level set of masks, which are subsequently refined
and optimized using a GPU-accelerated level set MO solver.
A2ILT [13] employs on-neural-network inverse lithography
techniques (ILT) and reinforcement learning to expedite MO.
Multi-ILT [14] leverages multilevel ILT combined with sub-
resolution assist features (SRAFs). These strategies, relying on
DNNs to predict a superior initial solution followed by GPU-
accelerated MO fine-tuning, yield impressive results in terms
of both speed and MO outcome.

The illumination system of advanced lithography machines
has made significant progress, achieving what is called freeform
illumination. This intensity distribution of source map is
composed of many pixelated illuminators, and the intensity
of each pixel can be controlled by computer programs. The
pixelated illumination system is necessary for SO. However,
SO, which is dictated by Abbe’s imaging approach, presents
a challenge for the direct application of GPU acceleration
techniques. Wang et al. [16] proposed to use compressive
sensing to reduce the computational complexity of the
SMO algorithm. ICC-CPU [17] puts forth a sampling-based
imaging model employing heuristic algorithms to augment
SMO efficiency and performance. SoulNet [18] utilizes an
autoencoder to learn the model-based source correlating with
each layout. Despite this, SoulNet falls short in accomplishing
iterative SMO and offers limited optimization capabilities for the
overall result. At present, while MO optimization time has been
reduced to seconds for the ICCAD13 benchmark [15], CPU-
based SO still requires several hours of optimization, creating
a substantial bottleneck within the overall SMO workflow.

To navigate these challenges and foster advancements in
SMO research, we introduce the Diff-SMO framework, com-
posed of three key components. Initially, we have constructed
a lithography algorithm tailored for GPU parallel accelera-
tion, exploiting the intrinsic properties of the rigorous Abbe
model. Subsequently, building on previous accomplishments
in GPU/DNN acceleration for MO, we have achieved GPU
acceleration of the SO algorithm (GPU-SO), culminating in
full GPU acceleration of the entire SMO workflow. Lastly,
we present Diff-SO, which incorporates a conditional discrete
diffusion model for quick production of mask-aware, near-
optimal sources. The diffusion process imitates the progressive
turning off/on of the source in a discrete state space. The resul-
tant solution of diffusion model provides an improved initial
choice for GPU-SO to facilitate further precise optimization.
By reducing the number of iterations required by GPU-
SO, Diff-SO expedites the SMO process and enhances the
optimization results. Our contributions can be summarized as
follows.

1) We present the first academic effort, to our knowledge,
to design a GPU-accelerated lithography simulator based
on Abbe’s aerial imaging theory.

2) We devise GPU-SO, a GPU acceleration algorithm
specifically for SO, thus facilitating the comprehensive

Fig. 2. Flowchart of lithography simulation, including aerial imaging and
resist modeling.

integration of GPUs across the entire SMO
process.

3) We propose Diff-SO, an innovative conditional discrete
diffusion model that generates near-optimal sources,
enhancing the efficiency and performance of SMO
significantly.

4) Our experimental data showcase the effectiveness of our
method, demonstrating an average improvement of 9%
over SOTA MO techniques. Furthermore, in comparison
to prevalent CPU-based SOTA SMO methods, Diff-
SMO provides an 8% performance increase along with
a remarkable speed boost of nearly 225 times.

II. PRELIMINARIES

In this section, we will discuss the fundamental concepts
of lithography imaging theory. We will specifically focus
on Abbe’s method, which serves as the foundation for SO
algorithms. Additionally, we will explore Hopkins’ method,
a widely used approach for MO algorithms. Furthermore, we
will define the SMO problem and delve into the evaluation
metrics associated with it.

A. Lithography Simulation

In a typical lithography simulation, the lithographic imaging
model comprises two essential components: 1) the illumination
source and 2) the projector system, as depicted in Figs. 1 and 2.
During the manufacturing process, the light rays propagate
through the mask and produce diffracted light with feature
pattern information. The intensity distribution of aerial image
can be formulated via lithography theory [4] as

I(x, y) =
∫∫∫∫∫∫ ∞

−∞
J(f , g) F(M)

(
f ′, g′

)
F(M)∗

(
f ′′, g′′

)

H
(
f + f ′, g+ g′

)
H∗

(
f + f ′′, g+ g′′

)
exp

(−j2π((f ′ − f ′′)x+ (g′ − g′′)y)
)

df dg df ′ dg′ df ′′ dg′′ (1)

where I is the aerial intensity distribution; J is the lithographic
illumination source; H denotes the optical transfer function
(OTF) of the projector system; F(M) represents the frequency
spectrum of the mask pattern M obtained via 2 − D fast
Fourier transform (FFT) F(·); ∗ is the Hermitian transpose
operator; (x, y) denotes the spatial coordinates on the image
plane; (f , g), (f ′, g′) and (f ′′, g′′) represent the normalized-
frequency-domain coordinates of the pupil, mask spectrum
and its conjugate, respectively. Two formulas are used to
calculate the partially coherent aerial image formation in (1).
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Fig. 3. Comparison of Abbe’s (a) and Hopkins’ (b) imaging. The source is
discretized and the contribution from each source point toward the final aerial
image is summed in the Abbe’s formulation. In the Hopkins’ approach, the
transmission cross correlation matrix (TCC) of the source with the projector
and its complex conjugate is computed for an arbitrary mask geometry with
a fixed size.

As illustrated in Fig. 3, one is Abbe’s approach [19] and the
other is Hopkins’ method [5].

Abbe’s Approach: In Abbe’s approach, the source illumina-
tor is discretized, as illustrated in Fig. 3(a). The contribution
from each source point toward the final aerial image is
calculated independently and then summed. For convenience,
we introduce the illumination cross-coefficients (ICC) as

ICC(x, y; f , g) = ∣∣
∫∫ ∞
−∞

H
(
f + f ′, g+ g′

)
F(M)

(
f ′, g′

)

exp
(−j2π(f ′x+ g′y)

)
df ′ dg′

∣∣2
. (2)

Equation (1) can be formulated in Abbe’s approach

I(x, y) =
∫∫ ∞
−∞

J(f , g) ICC(x, y; f , g) df dg. (3)

Hopkins’ Approach: As depicted in Fig. 3(b), Hopkins’
approach separating the illuminator and projector system from
mask has the following expression that is:

I(x, y) =
∫∫∫∫ ∞

−∞
T

(
f ′, g′; f ′′, g′′

)
F(M)

(
f ′, g′

)
F(M)∗

(
f ′′, g′′

)

exp
(−j2π((f ′ − f ′′)x+ (g′ − g′′)y)

)
df ′dg′df ′′dg′′ (4)

where T is the transmission cross-coefficients TCC given by

TCC
(
f ′, g′; f ′′, g′′

) =
∫∫ ∞
−∞

J(f , g)

H
(
f + f ′, g+ g′

)
H∗

(
f + f ′′, g+ g′′

)
df dg. (5)

To reduce the calculation complexity, an approximation
solution for the Hopkins imaging equations called Sum of
coherent source (SOCS) decomposes the TCC spectrum by
applying SVD as follows:

TCC
(
f ′, g′; f ′′, g′′

) =
∞∑

q=1

κq�q
(
f ′, g′

)
�∗q

(
f ′′, g′′

)
(6)

where κq and �q are q’th eigenvalue and eigenvector of TCC.
Because the eigenvalue κq is rapidly decay with increasing q,
we can keep the Q largest eigenvalues for faster calculation.
Substituting (6) into (4) then performing Inverse Fast Fourier

Transform (IFFT), the SOCS can be expressed to spatial
position via (7) that is

I(x, y) =
Q∑

q=1

κq
∣∣φq(x, y) ⊗M(x, y)

∣∣2 (7)

where φq(x, y) and M(x, y) are the spatial distribution of �q
and F(M), respectively. ⊗ and | · | are the convolution and
absolute operator.

Hopkins’ Approach Versus Abbe’s Approach: Hopkins’
method (7) applies the SOCS to decrease computational
complexity from O(n6) to O(Q×n4), considering M ∈ R

n×n.
Importantly, it separates mask from optical system, rendering
Hopkins’ method more suitable for simulating images while
optimizing masks. With constant optical imaging conditions,
Hopkins’ method outperforms Abbe’s in runtime, making it
a favored choice in MO algorithms [7], [11], [12], [13], [14].
In contrast, Abbe’s method in (3), sums up the impact of all
source points to generate the final aerial image. This method
is inherently suited for SO due to the source’s discretization.
Consequently, to achieve SO and SMO, devising a lithography
simulator founded on Abbe’s method is a prerequisite. The
comparison of Hopkins’ and Abbe’s imaging is illustrated in
Fig. 3.

B. Evaluation Metrics

Definition 1 (Squared L2 Error): Given target pattern Zt

and wafer pattern under nominal process condition Z, the
squared L2 error is calculated as ‖Z− Zt‖22.

Definition 2 (Process Variation Band (PVB)): PVB [15]
is used in manufacturing to represent the expected range of
variation in a production process. PVB denotes the XOR area
between the aerial images Zin and Zout under the min and max
lithography process conditions

Definition 3 (Edge Placement Error (EPE)): EPE [15]
refers to the deviation between the intended position of a
feature on a wafer and its actual position after lithography.

C. Problem Formulation

To formulate the problem of SMO, we first introduce the
necessary terminologies. Given a target image represented as
Zt, we define a function F which represents the weighted sum
of three components: 1) the L2 error; 2) PVB; and 3) EPE that
arise after the lithography process. Under given circumstances:
1) if the source parameters J and the projector system are
predetermined, the task of MO is to discern the ideal mask
configuration that minimizes F and 2) conversely, with a fixed
mask in place, SO focuses on adjusting the source J to achieve
a minimal F. The overarching goal of SMO is to concurrently
identify the optimal configurations for both the source, denoted
as Ĵ, and the mask, denoted as M̂, to minimize F. This can
be mathematically represented as

(
Ĵ, M̂

)
= arg min

(J,M)

F(J, M). (8)
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Fig. 4. Flowchart of the Diff-SMO framework.

III. ALGORITHM

This section outlines the Diff-SMO framework, as visual-
ized in Fig. 4. Initially, we address the GPU-accelerated SO
algorithm in Section III-A. Then, Section III-B introduces
the diffusion model, crucial for mask-aware source creation.
Finally, Section III-C delves into the entire Diff-SMO process.
We simplify our terminology as follows: GPU-SO for the
GPU-accelerated SO algorithm, Diff-SO for the application of
diffusion in source generation and its subsequent optimization
with GPU-SO, and Diff-SMO for the combined framework of
Diff-SO and the MO algorithm, as depicted in Fig. 4.

A. GPU-Accelerated SO Algorithm

Computation Complexity Analysis of Vanilla SO: In numer-
ical terms, (3) must be resolved for a discrete number of
mutually independent source points as follows:

I(xi, yi) =
Ns∑

f=1

Ns∑
g=1

J(f , g) ICC(xi, yi; f , g) (9)

where Ns denotes the lateral dimension’s pixelated source
sampling number. We designate the S operator as the
reshape operation

R
n×n S−→ R

n2×1 S−1−→ R
n×n. (10)

As a result, (9) can be translated into (11) via matrix multi-
plication

I = S−1(ICC S(J)) (11)

where I ∈ R
N×N , ICC ∈ R

N2×N2
s , and J ∈ R

Ns×Ns ,
respectively, and N is the mask spatial domain’s sampling
number. The computational complexity is O(n6). In our imple-
mentation, specifically, N = 2048 and Ns ranges from 35 to 58.
The computation of large matrix products, between ICC and
J, incurs significant time cost and necessitates careful memory
allocation. This computational demand serves as a substantial
impediment to the execution time of the forward aerial imaging

Algorithm 1 GPU-Accelerated Abbe Aerial Imaging
Input: Source pattern J; Mask pattern M.
Output: Aerial image I.
1: function ABBE_LITHO(J, M)
2: J← Select J where J > 10−5;
3: F(M)← fftshift(fft2(M));
4: Jsum ←∑

J;
5: for all source points si ∈ J, parallelly do
6: si ← Assign a GPU thread to si;
7: Hs ← Transfer function for si � Eq. (12);
8: F(M)s ← Valid spectrum for si; � Eq. (13)
9: Es ← F−1(Hs � F(M)s);

10: Ii ← si · |Es � E∗s |;
11: end for
12: I←∑

Ii/Jsum; � Normalization
13: return I;
14: end function

Algorithm 2 GPU-Accelerated SO
Input: Initial source J0; Mask M; Target Zt.
Output: Optimal source Ĵ.
1: Jθ ← Initialize Jθ using Eq. (14);
2: repeat
3: J← Sigmoid(α · Jθ ); � Eq. (15)
4: I← Abbe_litho(J, M); � Algorithm 1
5: Z← Sigmoid(β · (I − Itr));
6: L← ‖Z− Zt‖2;
7: Jθ ← Jθ − lr · Adam(∂L/∂Jθ );
8: until 	L < δ

9: return Optimal source Ĵ;

process. Furthermore, the situation worsens during gradient
calculation, where the process often necessitates a duration
several magnitudes greater than the forward computation time.

GPU-Accelerated Abbe Aerial Imaging: Historically, the
literature has largely depended on acceleration techniques
employing compressive sensing or heuristic approaches [17]
to selectively observe certain points from the extensive ICC
matrix. These strategies often tradeoff a degree of accuracy
for computation speed enhancement. However, our approach
distinguishes itself by leveraging GPU acceleration to fun-
damentally address the slow computation issue inherent in
the Abbe model. Importantly, we recognize that each discrete
light source computation in the Abbe model, as per (9), is
independent and noninterfering. This characteristic renders
the Abbe model particularly amenable to parallel computing
acceleration via GPUs.

The algorithm outlined in Algorithm 1 presents a new
approach to GPU-accelerated aerial imaging generation based
on Abbe’s approach. It starts with noise elimination and the
selective retention of source points that contribute to the gen-
eration process, as indicated in line 2. By applying a threshold,
we can reduce computational overhead caused by zero-valued
sources. The method contrasts with prior techniques which
relied on fixed-dimensional matrix multiplication. Instead,
our algorithm allows for finer acceleration granularity at the
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Fig. 5. Illustration of GPU-accelerated Abbe’s aerial imaging in Algorithm 1.
Each discretized source is assigned to an individual thread for computation.
The contributions of all source points are summed up to generate the aerial
image.

individual source level, providing both increased acceleration
potential and flexibility. This is achieved by allowing inde-
pendent filtering and computation for each source point, as
detailed in line 5 and Fig. 5. Building on Abbe’s imaging
theory, the projector transfer function is computed as per
line 7, and can be visualized as a low-pass filter of the spatial
frequency domain, given by (12)

H(f , g) =
{

1,
√

f 2 + g2 ≤ NA/λ

0, otherwise
. (12)

Similarly, J(f , g) is expressed by (13), where NA/λ is the
cut-off spatial frequency defined by the wavelength λ and
numerical aperture NA of the projection system

J(f , g) =
{

J(f , g),
√

f 2 + g2 ≤ σNA/λ

0, otherwise
. (13)

Further, the partial coherence factor σ is determined by the
size ratio of the source image and the pupil. σNA/λ represents
the maximum spatial working region of the source, relative to
the spatial frequency space of the image domain, as evaluated
in line 8. By applying the IFFT to the result of an element-
wise product (�) of Hs and F(M)s as shown in line 9,
we can compute the contribution from each point. The final
aerial image I is obtained by summing up these individual
contributions from each source point, each calculated within
a separate thread, as summarized in line 12.

GPU-Accelerated SO: The GPU-accelerated SO algorithm,
shown in Algorithm 2, employs freeform illumination in the
pixelated SMO process, which grids the source pattern J
into Ns × Ns pixels, as is depicted in Fig. 5. Each pixel’s
value signifies the intensity of the associated source point,
falling within the range of [0, 1]. To ensure the SMO flow’s
differentiability, we introduce the source parameters Jθ , as
initialized by

Jθ (f , g) =
{

1, J0(f , g) = 1
−1, J0(f , g) = 0

(14)

where Jθ ∈ R
Ns×Ns and can hold any real value in the

range (−∞,∞). Meanwhile, J0 represents the initial pixelated
source pattern derived from the parametric representations
of source templates. Some examples of J0 are visualized in
Fig. 6. During the optimization process, source J is obtained
by applying the Sigmoid function to the parameters Jθ

J = Sigmoid(α · Jθ ) = 1

1+ exp(−α · Jθ )
(15)

where α is a hyperparameter to define the steepness of the
Sigmoid function. Afterward, the aerial image I is calculated
using the Abbe_litho function (introduced in Algorithm 1),
with J and mask M as inputs. The Algorithm 2 utilizes a
simple resist model in line 5, which applies the Sigmoid
function to I

Z = 1

1+ exp(−β · (I − Itr))
(16)

where Z is the resist pattern; Itr is the intensity threshold; β

is a hyperparameter for steepness. In line 6, the mean-squared
error loss L is then computed between the predicted resist
image Z and the target Zt, where L = ‖Z− Zt‖2. The source
parameters Jθ are subsequently updated in line 7 via gradient
backpropagation using the Adam optimizer. The optimization
process persists until the change in loss 	L between successive
iterations falls below a threshold δ.

GPU-Accelerated SO Versus Multicore CPU-Accelerated
SO: Central processing units (CPUs) act as the primary com-
putational elements, executing essential logical, arithmetic,
and input/output operations. They also manage the distribution
of tasks to different components and subsystems in a computer
system. In modern times, CPUs are frequently designed with
a multicore structure, which means multiple processing units
are housed within a single IC. This design approach not
only conserves power but also improves performance, enabling
efficient parallel processing of simultaneous tasks.

The previously mentioned GPU-accelerated SO’s parallel
algorithm can be fully migrated to a multicore CPU. We have
also implemented a CPU parallel acceleration algorithm based
on multiprocessing. However, compared to the multicore CPU-
accelerated SO, the GPU-accelerated SO still has the following
advantages. First, because the entire SO optimization process
doesn’t require extensive IO reading operations, it can utilize
GPU pinned memory to speed up computations. Additionally,
GPUs offer greater memory bandwidth, saving significant time
during memory access. Furthermore, for large kernel size oper-
ations, GPUs can compute FFT/IFFT more quickly, which is
frequently invoked throughout the SO process. Also, previous
SOTA MO researches has shown that GPU-accelerated MO is
effective. A comprehensive GPU-accelerated SMO algorithm
can greatly reduce the time wasted transferring data between
the CPU and GPU. Lastly, multicore CPUs might be more
expensive than GPUs. For tasks like SO that require massive
parallelism, GPUs are not only more suitable but also more
cost-effective than CPUs.

B. Diffusion Models for Mask-Aware Source Generation

Currently, the estimation of our GPU-accelerated SO is
initiated from a template source as defined in (14) and
illustrated in Fig. 6. Intuitively, a mask-aware initialization
can reduce the number of iterations and accelerate the
optimization process. The task of exact source initialization
for our GPU-accelerated SO is difficult to formulate using
traditional rule-based methodology. However, an approximate
initialization is sufficient in this case. Therefore, we resort to
learning-based methods to solve this problem.
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(a) (b) (c) (d)

Fig. 6. Different representations and types of source templates. (a) Parametric
representation of annular illuminator source, defined by outer and inner radii
σo and σi; (b) pixelated representation of discrete annular source; (c) Quasar
source; and (d) dipole source.

The source initialization can be formulated as a conditional
binary discriminative task: given the mask and an empty
source matrix, the model learns to determine which pixels in
the source matrix should be turned on/off. Using a discrimi-
native model to judge the state of every source pixel can be
a natural choice but the large amount of discriminative heads
can be too heavy. Instead of that, we introduce an efficient
generative model, namely, the conditional discrete diffusion
model, in our method to generate source matrix from given
condition.

Conditional Discrete Diffusion Denoising Model: Typical
generative models, such as GANs and diffusion model [20],
are commonly applied in the continuous value space, where
each generated pixel is represented as a floating-point number
within a predefined range. However, in our source initialization
case, the state of each pixel in the source matrix is binary
(on/off). Applying a threshold to a continuous pixel value and
converting it into a binary value may result in information
truncation and compromise performance. In contrast to the
traditional diffusion models used in computer vision, we
have made several important customizations to enhance the
diffusion model and directly synthesize a discrete source
matrix from the given mask. To derive these enhancements,
we first reformulate the problem.

In our approach, we employ a forward process to simulate
the gradual turning off of the light in the given source matrix.
Similarly, we utilize a reverse process to mimic the gradual
turning on process. Our conditional discrete diffusion model
defines a Markov chain to represent both the forward turn-off
process and the reverse turn-on process, as illustrated in Fig. 7.
The lengths of both processes are denoted as K. During the
kth step of the forward process, xk ∈ {0, 1} represents an entry
in the source matrix J. The forward step can be described by
the equation

q(xk | xk−1) := Cat
(
xk; p = xk−1Qk

)
(17)

where xk is the one-hot version of the entry xk, Cat(x; p) is a
categorical distribution over the row vector x with probabilities
given by the row vector p, xk−1Qk can be understood as a
row vector-matrix product and the transition probability matrix
[Qk]ij = q(xk = j|xk−1 = i) is defined to describe the state
transition probability for each x at the kth step. The Qk is
applied to each entry in the source matrix independently and q
factorizes over these higher dimensions as well. On the other
side, in the reverse process, given the mask M, the neural
network aims to predict the conditional categorical distribution
probability pθ (xk−1|xk, M) over each pixel to recover the
original source matrix.

Fig. 7. Illustration of forward turn off process and reverse turn on process.
JK is an all-zero source matrix and Ĵ0 is the mask-aware source matrix, which
will be used as the initialization in our GPU-accelerated SO algorithm.

Algorithm 3 Training of Discrete Diffusion Model

Input: Ground Truth Ĵ; Source template J0; Mask M.
Output: Well-trained model pθ .
1: repeat
2: k← Random(1, K);
3: Jk ← Turn_off(Ĵ, k); � Turn_off, Eq. (22)
4: Ĵ0 ← pθ (Jk, J0, M, k);
5: L← Loss(Ĵ0, Ĵ, Jk); � Eq. (21)
6: pθ ← Update(pθ , L);
7: until Finished
8: return Well-trained model pθ ;

The choice of transition probability matrix Qk is critical.
As we described before, in the forward turn-off process, the
stationary state of every entry in the source matrix should be
off (0 in our case) when k becomes large. So given any x0 and
mask M, the distribution of every entry xk should follows:

q(xk|x0, M)→ [1, 0], when k→ K. (18)

Therefore, we design a transition matrix Qk with an absorb-
ing state 0 for the turn off process

Qk =
[

1 0
βk 1− βk

]
(19)

where βk ∈ (0, 1) is the hyperparameter controlling the
flipping probability. In order to ensure that at the k of K step,
(k/K) information about given source matrix is lost, following
the suggestion of [21], we use an increasing noise schedule
for βk:

βk = 1

K − k + 1
, k = 1, . . . , K. (20)

Training Diffusion Model: To training the conditional dis-
crete diffusion model for source matrix generation, the training
objective at step k is to minimize the loss function

L = DKL
(
q(xk−1|xk, x0)‖pθ (xk−1|xk, M)

)
− η log pθ (x0|xk, M) (21)

where η is a hyperparameter to balance the loss terms.
Given a source matrix J0, we randomly sample a target step

k from an uniform distribution that is defined from 1 to K
first, and expect to get a noisy sample Jk. Fortunately, we can
explicitly derive that xk obeys the following categorical distri-
bution:

q(xk|x0) = Cat
(

xk; p = x0Qk

)
(22)
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Algorithm 4 Generating Mask-Aware Source
Input: Source template J0; Mask M; Model pθ .
Output: Estimated mask-aware source Ĵ0.
1: Jk ← All_zero_matrix;
2: for k ∈ {K, . . . , 1} do
3: Ĵ0 ← pθ (Jk, J0, M, k);
4: Jk ← Jk−1(Ĵ0, Jk); � Turn_on, Eq. (23)
5: end for
6: return Estimated mask-aware source Ĵ0;

where Qk = Q1Q2 . . . Qk. Then, we can directly sample from
the above distribution to obtain Jk, instead of turning off k
times.

After sampling Jk, we extract the real M̂ and imaginary
M̃ parts from the spectrum of given mask M. Then, we
concatenate Jk, M̂, M̃ and the template source together and
feed them into the neural network with the embedding of
the time step k. The template source is defined in (14).
The neural network will predict the logits of the posterior
distribution pθ (x0|xk, M), and then pθ (xk−1|xk, M) can be
calculated as following:

pθ (xk−1|xk, M) =
∑
x̃0

q(xk−1|xk, x̃0)pθ (̃x0|xk, M) (23)

where the term x̃0 will visit every possible state of x0. And
q(xk−1|xk, x̃0) has a closed form according to (17) and Bayes’
theorem

q(xk−1|xk, x0) = Cat

(
xk−1; p = xkQ�k � x0Qk−1

x0Qkx�k

)
(24)

where � is a pixel-wise multiplication.
So far, all items in the loss function have been obtained,

and the neural network can be trained by the commonly used
gradient descent method. The training process is summarized
in Algorithm 3.

Generating Mask-Aware Source Matrix: Once the model
is well-trained, given the mask M and the type of template
source, we can extract an mask-aware source matrix by starting
from a all-zero (dark) source matrix and gradually turn on the
pixel with the reverse procedure. The generating process can
be expressed by

pθ

(
Ĵ0|JK, M

)
= pθ

(
Ĵ0|J1, M

) K∏
k=2

pθ (Jk−1|Jk, M) (25)

where Jk is the estimated source matrix at step k and Ĵ0 is
the newly sampled source matrix. When generation finished,
the generated source matrix Ĵ0 is naturally a binary one
where each entry equals either zero or one. And the generated
source matrix will be utilized as the initialization of our
GPU-accelerated SO. The inference process is summarized in
Algorithm 4.

C. Diff-SMO Flow

As illustrated in Fig. 4, the process commences with the
loading of the source J0 and mask M. By using the source tem-
plate and mask spectrum as conditional factors, a well-trained

diffusion model is deployed to efficiently generate a near-
optimal source approximation, Ĵ0. This approximation is then
fed into our GPU-accelerated SO solver for a more precise
optimization, leading to the optimal source Ĵ. When the prede-
termined stopping criteria for SO are satisfied, a TCC matrix
will be calculated by integrating the optimized source with the
pupil data following (5). Subsequently, the TCC matrix is uti-
lized in MO solvers, as referenced in [7], [12], [13] and [14],
to further optimize the mask. The refined mask and source are
iteratively fed back into the Diff-SMO optimizer, guiding the
optimization process until convergence is achieved for both
the source and mask components.

IV. EXPERIMENTS

The Diff-SMO framework, developed in the Pytorch
framework, was tested on a Linux System using a single
Nvidia RTX 3090 GPU card. The multicore CPU-accelerated
SO algorithm runs on AMD EPYC 9554P with 64 cores using
the 7-nm Zen architecture. This architecture supports up to
64 cores and 128 threads. Hyperthreading and Multithreading
technologies allow each core to have two virtual cores,
enhancing performance. We conducted a calibration of the
lithographic system to match the simulator [15] used in
ICCAD 2013 before starting our experiments. The hyperpa-
rameter settings are as follows: σ = 1; α = 8; β = 30;
Itr = 0.225; δ = 10−4; λ = 193 nm; NA = 1.35; η = 0.001;
K = 100; inner radius σi = 0.63; outer radius σo = 0.95; and
refractive index is 1.414. For simplicity, we denote squared L2
error, PVB, and EPE as “L2,” “PVB,” and “EPE,” respectively.

We evaluate the performance of the Diff-SMO framework
on the ICCAD 2013 CAD contest benchmark [15] using ten
4 − μm2 tiles of 32-nm industrial layouts. The training set
for the diffusion model is obtained from [11], which contains
4K 4−μm2 generated tiles following the same design rules
as in [15]. The optimal ground-truth source for each mask is
obtained by fully optimizing the template source with GPU-
SO, using the corresponding mask as input.

Following [20], [22], the U-Net is selected as our backbone
for diffusion model. The model predicts the posterior distribu-
tion during the reverse diffusion process. All input images are
resized to 32×32 and consists of four feature map resolutions:
[32×32, 16×16, 8×8, 4×4]. Each resolution level contains
two convolutional residual blocks, with the number of convo-
lution channels being [128, 256, 256, 256] correspondingly. A
self-attention block is placed at the 16×16 resolution level.
Additionally, the time step k is incorporated into each residual
block through the sinusoidal position embedding [23].

A. Result Comparison With the SOTA

In this section, we will first validate the efficiency of
Diff-SO. Following that, we will compare Diff-SO with the
previous SOTA SO methods. The approach is to use different
MO methods as a foundation, combined with various SO
methods, to validate the performance of different SMO meth-
ods. Then, we compared the EPE and Runtime performance
of different SMO combinations. Finally, we compared the
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TABLE I
EFFECTIVENESS OF DIFF-SO

differences in SO methods brought about by different learning
models.

Diff-SO Effectiveness Evaluation: We conduct performance
evaluations of Diff-SO with various MO algo-
rithms [7], [12], [13], [14] in Table I and observe that
combining any MO algorithm with the Diff-SO algorithm
consistently improves L2 and PVB results. It is worth noting
that in Table I, the “ratio” row represents the percentages
calculated between results obtained using only MO (labeled
as “w/o SO”) and the results achieved by incorporating
Diff-SO with the corresponding MO method within the Diff-
SMO framework (labeled as “w/ Diff-SO”). When the vanilla
MO algorithm MOSAIC [7] is combined with the Diff-SO
algorithm, a significant reduction of 18% in L2 error and 7%
in PVB is achieved. The SOTA level set-based MO algorithm,
DevelSet [12], can reduce the L2 error by 12.5% and the
PVB by 7.1% when combined with Diff-SO. When combined
with A2ILT [13], the SOTA pixel-based MO algorithm, Diff-
SO achieves a reduction of 11.8% in L2 error and 8.1% in
PVB, respectively. The latest MO research, Multi-ILT [14],
has made groundbreaking progress by utilizing multilevel ILT
combined with SRAFs. However, Diff-SO still manages to
achieve an overall reduction of 9.5% in L2 error and 7.8% in
PVB. These experiments validate the effectiveness of Diff-SO
within the Diff-SMO framework, demonstrating its capability
to yield an average enhancement of approximately 13% in L2
error and 7.5% in PVB across various SOTA MO methods.

Diff-SMO Result Comparison With SOTA SMO Methods:
As depicted in Figs. 8 and 9, the x-axis represents different
MO algorithms. Each point represents a combination of
different SMO algorithms. We compare the performance of
Diff-SO with previous SOTA SO solvers, including ICC-
CPU [17] and SoulNet [18]. Regarding MO solvers, unlike
the original MOSAIC, our implementation entails GPU accel-
eration to enhance MOSAIC’s computational efficiency. From
Figs. 8 and 9, it can be observed that our approach, including
GPU-SO and Diff-SO, outperforms the previous SOTA SO

Fig. 8. L2 comparison of SMO algorithms.

Fig. 9. PVB comparison of SMO algorithms.

methods in terms of both L2 and PVB metrics. Specifically,
for Diff-SO, the L2 metric shows an average improvement
of 9.2% and 14.3% compared to ICC-CPU and SoulNet,
respectively. Regarding the PVB metric, Diff-SO demonstrates
an average enhancement of 4.7% and 6.9% over ICC-CPU and
SoulNet, respectively. It is noteworthy that the magnitude of
MO optimization objectives directly influences the potential
optimization space for Diff-SO. For example, when Multi-
ILT is chosen as the MO solver, Diff-SO exhibits a modest
9.5% improvement in L2 alone. However, employing a less
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Fig. 10. Visualizations for Diff-SMO results with annular source as initial
condition.

TABLE II
EPE COMPARISON

sophisticated MO solver, such as MOSAIC, allows Diff-SO to
achieve a significant 18% enhancement in L2. Several sample
results of Diff-SMO are depicted in Fig. 10, utilizing an
annular source as the initial source condition.

EPE and Runtime Comparison of SMO Algorithms: In
Tables II and III, we further compare the performance of
EPE and runtime. The “average” in Table II for the row
MO-solver represents the average results obtained by testing
MOSAIC, DevelSet, A2ILT, and Multi-ILT as MO solvers.
The table presents the average outcomes of these MO solvers
when different SO solvers are used. Diff-SO achieves a
reduction of 1.2% and 3.1% in EPE compared to ICC-CPU
and SoulNet, respectively, as shown in Table II. Table III
presents a comprehensive runtime comparison of the SMO
algorithm execution, encompassing both the SO and MO
phases. SoulNet [18] directly generates the source using an
autoencoder, omitting the iterative SMO optimization process.
Consequently, this leads to a modest 0.3-s increase in runtime
for Diff-SMO compared to SoulNet. The observed increase
can be attributed to the subsequent feeding of the generated
source from the diffusion model into GPU-SO for further fine-
grained optimization steps. However, the design has proven to
be valuable, as the 0.3-s increase in runtime has resulted in a
notable 14.3% decrease in L2 error. Moreover, in comparison
to the conventional SO algorithm, ICC-CPU [17], Diff-SMO
demonstrates a remarkable speed enhancement, achieving a
nearly 225-fold improvement in the overall SMO runtime
while producing better results.

SoulNet Versus Diffusion Model: In Table IV, we com-
pare our diffusion model with SOTA learning-based method
SoulNet [18]. The term “mIoU” stands for Mean Intersection
over Union, which represents the average ratio of intersection

TABLE III
SMO RUNTIME COMPARISON

TABLE IV
SOULNET VERSUS OUR DIFFUSION MODEL

Fig. 11. Runtime performance of multicore CPU-based SO by using different
threads is shown by blue solid line, and details can be found in Table V. The
GPU-SO is also illustrated in green dashed line for comparison.

over union. “pixelAcc” represents pixel accuracy, defined as
the percentage of pixels correctly classified in an image. Our
diffusion model exhibits improvements of 4.79% in mIoU and
2.44% in pixelAcc. Additionally, it requires less inference time
compared to SoulNet due to its simpler network architecture.

B. Ablation Study

CPU-SO Versus GPU-SO: We conducted a series of exper-
iments to validate the efficiency of the GPU-accelerated SO
algorithm. First, we compared it with the acceleration of SO
using a multicore CPU with multithreads, referred to as CPU-
SO. The CPU we used has 64 cores, supporting up to 128
threads. By varying the number of threads used (from 1 to
128), we averaged the CPU runtime for ten test cases, and
the results are plotted in Fig. 11. The detailed experimental
results for each sampled thread are shown in Table V. From
Fig. 11 and Table V, it can be observed that between 1 to 32
threads, the runtime shows a significant decrease as the number
of threads increases. When the number of threads exceeds
32, the runtime remains relatively stable. At 64 threads,
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TABLE V
RUNTIME DETAILS OF SO USING MULTICORE CPUS

(a)

(b)

Fig. 12. By controlling the illumination area, and thus changing the number
of effective light sources, we compare the runtime performance of a 64-thread
CPU and a GPU. (a) Runtime performance when calculating different source
points. (b) 64-thread CPU and GPU runtime ratio.

which is precisely the number of CPU cores, the best-runtime
performance is achieved, taking 65 s to complete SO. In
contrast, the GPU’s runtime is 16 s. Notably, when the number
of threads exceeds 64, even at 65, there’s a noticeable increase
in runtime. We believe this is due to CPU oversubscription,
causing different processes to compete for CPU resources,
resulting in reduced efficiency.

We also conducted another set of experiments. Given that
the best-experimental results are achieved with 64 threads,
how would the runtime for both the 64 threads CPU and
GPU be affected if we change the number of source points
that need to be optimized in each iteration, thereby altering
the overall computational load. The experimental results are
shown in Fig. 12. Observing (9), when ICC is fixed, the
total computational load of SO is directly proportional to
the source points of the illumination source J. By adjusting
the size of the source area, we controlled the number of
source points to be computed, ranging from 20 to 2500.
Now we can compare the runtime performance under varying
computational loads to observe how CPU-SO and GPU-SO
perform as the amount of computation changes. As seen in
Fig. 12(a), as the number of effective source points increases,

resulting in a larger computational load, the runtime required
for SO increases. However, it’s noteworthy that regardless of
whether the number of source points is greater or less than
64, the ratio of runtime between the 64-thread CPU and GPU
consistently remains around 4 times, as depicted in Fig. 12(b).

In summary, as shown in Fig. 11, when the computational
workload is constant, we observe that the total runtime dramat-
ically decreases with the increase in parallel threads, reaching
a minimum at 64 threads. The runtime is approximately
four times that of GPU-SO. Then, in Fig. 12, we vary the
computational workload and compare the 64-threads CPU-
based SO with the GPU-SO, maintaining a runtime that is
roughly four times longer. This confirms the necessity and
efficiency of our GPU-accelerated SO algorithm.

GPU-SO Versus Diff-SO: In Table III, we present a compar-
ative analysis of runtime between GPU-SO and Diff-SO under
the integration with various MO methods. It is observable
that in the absence of the MO process, GPU-SO, on average,
takes an additional 14.7 s to execute, approximately 12.6 times
that of Diff-SO. By utilizing a diffusion model to generate
near-optimal sources as initial inputs for GPU-SO iterations,
Diff-SO significantly curtails the SO time by 92%, leading
to enhanced optimization outcomes. From Figs. 8 and 9, it
is evident that compared to GPU-SO, Diff-SO also augments
the overall SMO performance, reducing the L2 error by 2%
and the PVB by 1.5%. Relative to MO, the diffusion model is
exceptionally suitable for SO. Typically, a mask clip handled
is of size 2048 × 2048 pixels, and employing the diffusion
model for such dimensions necessitates substantial memory
and entails extensive computation time. In contrast, common
source sizes range from 35 × 35 to 60 × 60. For sources of
these dimensions, a modest GPU can leverage the diffusion
model to generate sources with remarkable precision.

V. CONCLUSION

We introduce Diff-SMO, an advanced and accelerated
solution for SMO. Our framework innovatively expands on
existing MO algorithms, with a primary focus on accelerating
and refining SO. Our distinctive contribution is the formulation
of a GPU-accelerated algorithm grounded in Abbe’s imaging
theory, which enables full GPU acceleration throughout the
SMO flow. Moreover, we integrate a novel diffusion model
that gradually learns to activate or deactivate source points,
resulting in rapid generation of approximately optimal solu-
tions, significantly boosting the SMO process. Experimental
outcomes validate the superiority of Diff-SMO over com-
bined prior SOTA SO and MO algorithms. Remarkably, it
accomplishes an acceleration exceeding 200 times compared to
conventional SMO methods, concurrently producing superior
results. In future work, we plan to open-source our lithography
model and SMO framework, fostering further research in this
area.

REFERENCES

[1] A. E. Rosenbluth et al., “Optimum mask and source patterns to print
a given shape,” J. Micro/Nanolithogr., MEMS, MOEMS, vol. 1, no. 1,
pp. 13–30, 2002.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2024 at 01:52:32 UTC from IEEE Xplore.  Restrictions apply. 



2150 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

[2] X. Ma, L. Dong, C. Han, J. Gao, Y. Li, and G. R. Arce, “Gradient-based
joint source polarization mask optimization for optical lithogra-
phy,” J. Micro/Nanolithogr., MEMS, MOEMS, vol. 14, no. 2, 2015,
Art. no. 023504.

[3] J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization
(SMO),” in Proc. 24th SPIE, 2011, pp. 1–13.

[4] G. Chen, Z. Pei, H. Yang, Y. Ma, B. Yu, and M. Wong, “Physics-
informed optical kernel regression using complex-valued neural fields,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2023, pp. 1–6.

[5] H. H. Hopkins, “On the diffraction theory of optical images,” Proc.
Royal Soc. London. Series A. Math. Phys. Sci., vol. 217, no. 1130,
pp. 408–432, 1953.

[6] N. Cobb, Sum of Coherent Systems Decomposition by SVD, Univ.
California, Berkeley, CA, USA, 1995.

[7] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing
solution with process window aware inverse correction,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2014, pp. 1–6.

[8] G. Chen, W. Chen, Q. Sun, Y. Ma, H. Yang, and B. Yu, “DAMO:
Deep agile mask optimization for full-chip scale,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 41, no. 9, pp. 3118–3131, Sep. 2022.

[9] Z. Yu, G. Chen, Y. Ma, and B. Yu, “A GPU-enabled level-set method for
mask optimization,” IEEE Trans. Comput. Aided Design Integr. Circuits
Syst. (TCAD), vol. 42, no. 2, pp. 594–605, Feb. 2023.

[10] B. Zhu et al., “L2O-ILT: Learning to optimize inverse lithography
techniques,” IEEE Trans. Comput. Aided Design Integr. Circuits Syst.
(TCAD), early access, Oct. 10, 2023, doi: 10.1109/TCAD.2023.3323164.

[11] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask
optimization with lithography-guided generative adversarial nets,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), 2018, pp. 1–6.

[12] G. Chen, Z. Yu, H. Liu, Y. Ma, and B. Yu, “DevelSet: Deep neural
level set for instant mask optimization,” in Proc. IEEE/ACM Int. Conf.
Comput. Aided Design (ICCAD), 2021, pp. 1–9.

[13] Q. Wang, B. Jiang, M. D. F. Wong, and E. F. Y. Young, “A2-ILT: GPU
accelerated Ilt with spatial attention mechanism,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), 2022, pp. 967–972.

[14] S. Sun, F. Yang, B. Yu, L. Shang, and X. Zeng, “Efficient ILT via multi-
level lithography simulation,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), 2023, pp. 1–6.

[15] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in
mask optimization and benchmark suite,” in Proc. IEEE/ACM Int. Conf.
Comput. Aided Design (ICCAD), 2013, pp. 271–274.

[16] Z. Wang, X. Ma, R. Chen, S. Zhang, and G. R. Arce, “Fast pixelated
lithographic source and mask joint optimization based on compressive
sensing,” IEEE Trans. Comput. Imag., vol. 6, no. 1, pp. 981–992,
Jun. 2020.

[17] Y. Sun, Y. Li, G. Liao, M. Yuan, P. Wei, Y. Li, L. Zou, and L. Liu,
“Sampling-based imaging model for fast source and mask optimization
in immersion lithography,” Appl. Opt., vol. 61, no. 2, pp. 523–531, 2022.

[18] Y. Chen et al., “SoulNet: Ultrafast optical source optimization
utilizing generative neural networks for advanced lithography,” J.
Micro/Nanolithogr., MEMS, MOEMS, vol. 18, no. 4, pp. 1–11, 2019.

[19] P. Evanschitzky, A. Erdmann, and T. Fuehner, “Extended abbe approach
for fast and accurate lithography imaging simulations,” in Proc. Eur.
Mask Lithogr. Conf., 2009, pp. 1–11.

[20] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Proc. 34th Conf. Neural Inf. Process. Syst., 2020, pp. 1–12.

[21] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
unsupervised learning using nonequilibrium thermodynamics,” in Proc.
Int. Conf. Mach. Learn. (ICML), 2015.

[22] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg,
“Structured denoising diffusion models in discrete state-spaces,” in Proc.
35th Conf. Neural Inf. Process. Syst., 2021, pp. 1–13.

[23] A. Vaswani et al., “Attention is all you need,” in Proc. Annu. Conf.
Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 1–11.

Guojin Chen received the B.Eng. degree in soft-
ware engineering from Huazhong University of
Science and Technology, Wuhan, China, in 2019.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

His current research interests include machine
learning in VLSI design for manufacturability and
physics-informed networks for solving EDA area
problems.

Zixiao Wang received the B.Eng. degree in automa-
tion and the M.Sc. degree in computer science
from Tsinghua University, Beijing, China, in 2019
and 2022, respectively. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong.

His research interests include generative AI ×
EDA.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received ten Best Paper Awards from IEEE
TSM 2022, DATE 2022, ICCAD 2021 and 2013,
ASPDAC 2021 and 2012, ICTAI 2019, Integration,
the VLSI Journal in 2018, ISPD 2017, SPIE
Advanced Lithography Conference 2016, and six

ICCAD/ISPD contest awards. He has served as a TPC Chair for ACM/IEEE
Workshop on Machine Learning for CAD and in many journal editorial boards
and conference committees. He is the Editor of IEEE TCCPS Newsletter.

David Z. Pan (Fellow, IEEE) received the B.S.
degree from Peking University, Beijing, China,
in 1992, and the M.S. and Ph.D. degrees from
the University of California at Los Angeles, Los
Angeles, CA, USA, in 1994, 1998, and 2000,
respectively.

From 2000 to 2003, he was a Research Staff
Member with IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA. He is currently a
Silicon Labs Endowed Chair Professor with the
Chandra Department of Electrical and Computer

Engineering, The University of Texas at Austin, Austin, TX, USA. He has
published over 480 refereed journal/conference papers and nine US patents.
His research interests include electronic design automation, synergistic AI
and IC co-optimizations, design for manufacturing, and design/CAD for
analog/mixed-signal and emerging technologies.

Dr. Pan has received many awards, including 20 Best Paper Awards, the
SRC Technical Excellence Award, the DAC Top 10 Author Award in Fifth
Decade, and the ASP-DAC Frequently Cited Author Award, among others.
He has served in many editorial boards and conference committees, including
various leadership roles, such as the DAC 2024 Technical Program Chair,
the ICCAD 2019 General Chair, and the ISPD 2008 General Chair. He is a
Fellow of ACM and SPIE.

Martin D. F. Wong (Fellow, IEEE) received
the B.Sc. degree in math from the University of
Toronto, Toronto, ON, Canada, in 1979, and the
M.S. degree in math and the Ph.D. degree in CS
from the University of Illinois at Urbana-Champaign
(UIUC), Champaign, IL, USA, in 1981 and 1987,
respectively.

He was a Bruton Centennial Professor of CS with
The University of Texas at Austin, Austin, TX, USA,
and an Edward C. Jordan Professor of ECE with
UIUC. From August 2012 to December 2018, he

was the Executive Associate Dean of the College of Engineering, UIUC. From
January 2019 to August 2023, he was the Dean of Engineering and the Choh-
Ming Li Professor of Computer Science and Engineering with The Chinese
University of Hong Kong (CUHK), Hong Kong. Since August 2023, he was
with Hong Kong Baptist University (HKBU), Hong Kong, as the Provost of
HKBU and a Chair Professor of Computer Science. He has published around
500 papers and graduated over 50 Ph.D. students in EDA. His main research
interest is in electronic design automation (EDA).

Dr. Wong is a Fellow of ACM.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2024 at 01:52:32 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCAD.2023.3323164


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


