
1638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Floorplet: Performance-Aware Floorplan
Framework for Chiplet Integration

Shixin Chen , Shanyi Li , Zhen Zhuang , Su Zheng , Zheng Liang, Graduate Student Member, IEEE,
Tsung-Yi Ho, Bei Yu , Senior Member, IEEE, and Alberto L. Sangiovanni-Vincentelli

Abstract—A chiplet is an integrated circuit (IC) that encom-
passes a well-defined subset of an overall system’s functionality.
In contrast to traditional monolithic system-on-chips (SoCs),
chiplet-based architecture can reduce costs and increase reusabil-
ity, representing a promising avenue for continuing Moore’s law.
Despite the advantages of multichiplet architectures, floorplan
design in a chiplet-based architecture has received limited
attention. Conflicts between cost and performance necessitate
a tradeoff in chiplet floorplan design since additional latency
introduced by advanced packaging can decrease performance.
Consequently, balancing performance, cost, area, and reliability is
of paramount importance. To address this challenge, we propose
floorplan chiplet (Floorplet), a framework comprising simulation
tools for performance reporting and comprehensive models
for cost and reliability optimization. Our framework employs
the open-source Gem5 simulator to establish the relationship
between performance and floorplan for the first time, guiding
the floorplan optimization of multichiplet architecture. The
experimental results show that our method decreases interchiplet
communication costs by 24.81%.

Index Terms—2.5-D integrated circuits (ICs), chiplet floorplan-
ning, computer architecture, hardware/software co-design.

I. INTRODUCTION

HOW CAN we design complex electronic systems with
high performance and low cost? This is a fundamental

challenge that has driven the development of integrated circuit
(IC) design for the past 50 years. Moore’s law [1] has been
the dominant paradigm that describes how advances in chip
technology improve chip performance and reduce cost by inte-
grating more transistors on a single die. However, as the cost
of finer lithography patterns increases, the economic benefits
of Moore’s law are diminishing. Therefore, many foundries,
such as TSMC, Samsung, and Intel, are exploring alternative
solutions to reduce wafer costs and improve yields [2]. One
of the promising solutions is the utilization of advanced
heterogeneous integration and multichiplet architecture.

Manuscript received 3 August 2023; revised 2 November 2023; accepted
10 December 2023. Date of publication 28 December 2023; date of current
version 21 May 2024. This work was supported in part by The Research
Grants Council of Hong Kong, SAR, under Project CUHK14210723. This arti-
cle was recommended by Associate Editor C. Zhuo. (Corresponding author:
Shixin Chen.)

Shixin Chen, Shanyi Li, Zhen Zhuang, Su Zheng, Tsung-Yi Ho, and Bei Yu
are with the Department of Computer and Science, The Chinese University
of Hong Kong, Hong Kong (e-mail: sxchen22@cse.cuhk.edu.hk).

Zheng Liang and Alberto L. Sangiovanni-Vincentelli are with the
Department of Electrical Engineering and Computer Science, University of
California at Berkeley, Berkeley, CA 94720 USA.

Digital Object Identifier 10.1109/TCAD.2023.3347302

Fig. 1. Architecture of chiplet-based 2.5-D package.

A chiplet is an IC with a specific function obtained by
partitioning a traditional monolithic system-on-chip (SoC).
Chiplets can also be considered intellectual property (IP) com-
ponents for reuse in multiple systems to reduce design costs.
Additionally, chiplets provide an opportunity for heteroge-
neous integration with different technology nodes [3], [4], [5].
In chiplet-based architecture, less important components can
use cheaper technology nodes. In contrast, some specified
components like analog, power, and memory modules can use
more advanced technology to reduce overall costs further and
improve yield [6].

The chiplet-based design method needs advanced package
techniques to utilize its characteristics fully. Chiplets can be
assembled in three dimensions (i.e., 3-D ICs) or placed on
a silicon interposer (i.e., 2.5-D ICs). Fig. 1 illustrates an
example of advanced 2.5-D package using multichiplet archi-
tecture [7]. In the figure, the chiplets with various functions
are placed on a silicon interposer using microbumps. Data
communication between chiplets occurs through wires within
the interposer. Then, the interposer is bonded to the package
substrate with C4 bumps.

The multichiplet architecture has attracted significant atten-
tion from academia and industry due to the advantages
mentioned above. However, challenges and drawbacks are also
associated with chiplets that hinder their popularity in practical
usage. If not handled properly, these challenges may result in
decreased performance and higher fabrication costs instead of
reducing costs.

First, from a performance perspective, the multichiplet
architecture can suffer from degraded performance due to the
extra physical wirelength between chiplets on the interposer.
Interchip nets are routed on the redistribution layers (RDLs) by
chip-scale wires [8]. Therefore, deciding the proper locations
of chiplets on the interposer, i.e., floorplan design of multiple

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9401-0482
https://orcid.org/0009-0008-0971-070X
https://orcid.org/0000-0002-2972-8770
https://orcid.org/0000-0003-1159-1611
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0003-1298-8389

CHEN et al.: FLOORPLET: PERFORMANCE-AWARE FLOORPLAN FRAMEWORK FOR CHIPLET INTEGRATION 1639

Fig. 2. Floorplan design of chiplets in 2.5-D package.

chiplets shown in Fig. 2, will greatly impact the communica-
tion between chiplets. Consequently, the overall performance
of chiplet-based architecture is highly dependent on the quality
of floorplan design.

Second, from a cost standpoint, the use of the advanced
package can introduce more reliability issues. The reliability
issues of the 2.5-D package will potentially affect IP function-
ality and reduce the service life of the chiplet system. Due
to a higher degree of mismatch in the coefficient of thermal
expansion (CTE) in advanced packages, the bump reliability
may affected by stress, and chiplet cracking may be caused
by package warpage [9], [10], [11].

Third, from design automation tools, design methodologies
and electronic design automation (EDA) tools do not provide
adequate support to practical advanced 2.5 packages specif-
ically. Much literature on the chiplet-based floorplan design
is based on abstract chiplets without specific functionality.
In [6], the automated design of the chiplet was analyzed from
a high-level architecture perspective, and the results have not
been tested in realistic circuit designs. Prior art [12] focuses
on partitioning SoC into chiplets based on cost analysis.
Zhuang et al. [2] simply considered package reliability and
ignored performance degradation caused by extra package
cost and die-to-die interfaces. Therefore, designing practical
methodologies and EDA tools based on actual circuits is
important to boost the performance of chiplet.

To address these challenges and drawbacks, we propose
Floorplet, a performance-aware framework for co-optimizing
floorplan and performance of chiplet-based architecture.
Unlike previous papers that use abstract chiplets without
specific functionality or ignore performance metrics in floor-
plan design, we consider realistic chiplets with complex
data flow and incorporate performance factors into floorplan
optimization. Our framework consists of three main compo-
nents with corresponding contributions as follows.

1) parChiplet: An algorithm to partition realistic SoC into
functional chiplets that can be fabricated and analyzed
by EDA tools. The chiplets have specific functions
so that we can bring more hardware information to
enable an analysis of complex data flow in chiplet-based
architecture.

2) simChiplet: A simulation platform based on Gem5 sim-
ulator [13] that evaluates the performance impact of
different floorplan solutions for chiplet-based architec-
ture. The communication latency of chiplet-to-chiplet
depends on the latency in the interposer, which builds a
connection between the floorplan design and architecture
performance.

3) optChiplet: A floorplan framework for chiplet architec-
ture that considers reliability, cost, and area in addition
to performance metrics. We tested our work on various
benchmarks to show that it outperforms previous meth-
ods and achieves co-optimization of architecture and
technology.

The remainder of this article is organized as follows.
Section II introduces the cost and reliability model for the
chiplet-based architecture and important issues in floorplan
design. Section III provides detailed components of Floorplet
and corresponding algorithms. Section IV conducts experi-
ments to demonstrate the superiority of Floorplet and analyzes
experimental results. Finally, Section VI concludes this article.

II. PRELIMINARIES

A. Chiplet and Cost Model

Chiplet Definition: A chiplet is a small chip that is obtained
by partitioning a large monolithic SoC chip. Chiplets can
be fabricated using different technologies and integrated into
a larger system using advanced package techniques like
interposer-based 2.5-D packages. Chiplets can offer several
benefits over monolithic SoC chips, such as lower fabrication
and design costs, higher yield, and better performance. At the
same time, the chiplet-based architecture also poses several
challenges and drawbacks that need to be addressed. One of
the main challenges is how to optimize the floorplan of chiplets
on the interposer, which affects the performance, reliability,
cost, and area of the system.

Yield and Defect Density: According to Moore’s law, the
number of transistors in an IC doubles every 18–24 months,
which has been well proved in the past half-century [1].
However, the size of transistors in IC has now met its
physical limit and cannot be reduced as in the past [14].
Therefore, advanced package techniques like interposer-based
2.5-D packages are proposed to address this issue to build
large-scale systems [15]. Compared to a large monolithic SoC
chip, the 2.5-D package contains many smaller chiplets, which
are partitioned from the monolithic SoC. With chiplets, a larger
system can be constructed, and the fabrication and design costs
will be reduced substantially.

One of the main factors that affect the fabrication cost is
yield, which is the probability that a chip die is functional
and free of defects. The yield depends on the die area and
the defect density of the technology. A widely used model to
estimate yield is the negative binomial model [16]

Y(s) =
(

1 + d0s

α

)−α

(1)

where Y is the yield, s is the die area, d0 is the defect density,
and α is the cluster parameter. In the 7-nm technology, the
typical value of d0 is 0.09 cm−2, and the typical value of α

is 10 [15]. With this equation, the manufacturing costs can be
estimated based on the processed wafer’s yield Y and unit price
P0. Fig. 3 shows that the yield decreases and the cost increases
as the area increases, especially for advanced technologies
with higher defect density.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

1640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Fig. 3. Relation between yield/cost and area of different technologies.
The figure shows that the yield decreases and the cost increases as the area
increases, especially for advanced technologies with higher defect density.

The Taylor expansion can be used to approximate the
manufacturing cost per yielded area as follows:

y(s) = P0

Y
≈ P0

(
1 + d0s + α − 1

2α
d2

0s2
)

(2)

where y(s) is the manufacturing cost per yielded area, which
will rise quickly as the die sizes increase. This equation
implies that with smaller chiplets partitioned from a monolithic
SoC, y(s) can be lower, thereby decreasing overall manufac-
turing expenses.

Cost Model of 2.5-D Package: In addition to the man-
ufacturing cost of chiplets, the bonding cost and yield of
chiplets and the interposer in the 2.5-D package should be
considered as well. As shown in Fig. 2, the raw cost of a 2.5-D
package consists of several components: raw chiplets Cchip,
raw substrate Csub, raw package Cpack, raw silicon interposer
Cinter, and bonding cost Cbond of each chiplet. The bonding
process involves attaching chiplets to an interposer and the
interposer to a substrate using micro-bumps or through-silicon
vias (TSVs). The bonding process may introduce defects or
failures that affect the functionality of the package.

Therefore, by considering raw cost and bonding cost, the
overall cost of the 2.5-D package can be expressed as follows:

Cpackage = Cpack + Cinter ×
(

1

y1 × yn
2 × y3

− 1

)

+ Csub ×
(

1

y3
− 1

)
(3)

where n is the number of chiplets, y1 is the yield of the
interposer, y2 is the bonding yield of chiplets, and y3 is the
bonding yield of interposer.

The overall cost of the 2.5-D package is

C2.5D =
Cpack
Ypack

+ ∑
i∈n

(
Cchip_i
Ychip_i

+ Cbond_i

)
Yn

bond
(4)

where Ypack, Ychip, and Ybond are, respectively, the yield of the
package, the yield of chiplets, and the yield of the bond. The
values of each term in our cost model are validated based on
data from public information and in-house sources [15].

B. Reliability Issues of 2.5-D Package

Warpage: Warpage is a major reliability concern in
advanced packages that refers to abnormal bending of shape
due to the mismatch in the CTE of different materials.
Warpage can cause the package to bend and result in the
cracking of chiplets and substrates. The critical parameters
affecting warpage include mold thickness, molding materi-
als, and the ratio of chiplet to package area [9], [10], [11].
Warpage can be measured by the variation in vertical height
at different positions on a package. In this work, the warpage
from the center to the edges of packages can be controlled by
an effective warpage computing model introduced in previous
works [17], [18]. The model is given as follows:

w(x) = t · �α · �T

2 · λ · D

[
1

2
x2 − cosh(kx) − 1

k2cosh(kl)

]
(5)

where �α represents the difference in CTE between the
chiplets and the substrate, and �T represents the thermal
load. The coefficients t, λ, D, and k are related to the material
properties. The center of the package is used as the origin
for building this model. The variables x and l represent half
the length of a chiplet and half the length of a substrate,
respectively.

Bump Stress: Bump stress is another major reliability
concern in advanced packages that refers to the mechanical
stress induced by bumps during the bonding process. Bump
stress can increase the risk of bump cracks or component
deformation, which can affect the functionality of the package.
Bump stress depends on the location and size of bumps, as
well as the placement and shape of components near the
bumps.

Hotspot bumps are defined as the bumps at the edge of
the silicon interposer that have a higher risk of deformation
than the bumps in the interposer center with uniform stress.
Analysis has shown that the edges of bumps experience high
stress due to the proximity of components, especially for
hotspot bumps that have a higher possibility of deformation
or crack [19], [20]. In this work, the bump stress can be con-
trolled by avoiding the overlap between chiplets and hotspot
bumps. Specifically, margin space around hotspot bumps is
ensured to prevent chiplets from overlapping with each other
and reduce bump stress.

C. Floorplan of Chiplets

The floorplan is an important stage in designing chiplet-
based systems that allocates the major functional blocks on the
interposer. The floorplan affects the overall area, the routing
wirelength, the thermal effects, and the reliability of the
design. Prior arts [21], [22] consider the area and wirelength
of the floorplan, while ignoring the performance metrics, such
as the data movement frequency and communication latency
between different chiplets. If the optimization of the floorplan
can consider the performance metrics, the final performance
of the chiplet system can be improved.

Li et al. [23] utilized the modular design scheme, which
means that each chiplet is placed on the tiles with an equal
size on the interposer. The scheme improves the reusability

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FLOORPLET: PERFORMANCE-AWARE FLOORPLAN FRAMEWORK FOR CHIPLET INTEGRATION 1641

of each chiplet IP, while it may increase the potential of
extensive interposer area cost due to some tiles being free
on the interposer. In our framework, a different scheme of
chiplet floorplanning is utilized. Routers in the interposer are
not involved in the floorplan scheme in our work, instead, more
flexibility is added to the routing wire in the interposer and
minimize the interposer area. In this way, the chiplet-based
architecture can benefit from the router-free scheme with a
larger floorplan solution space to obtain the optimal floorplan
solution.

The chiplet-based architecture makes it possible to reduce
time to market by utilizing existing IPs. By combining various
chiplets with different functions in the 2.5-D package, design
companies can create new electronic systems without starting
from designing and testing to manufacturing SoC. For exam-
ple, in the recent AMD ZEN 2 architecture [24], server and
desktop processors can share the identical chiplet named core
complex die (CCD), which contains the CPU cores and caches.
Given such existing chiplets, it is challenging to achieve a
tradeoff between cost and performance. In our framework,
we combine the performance metric with the floorplan of the
chiplet by building a chiplet simulation platform to evaluate
the chiplet design, which will be elaborated in Section III.

D. Problem Formulation

The input of our framework is a set of chiplets C partitioned
from a monolithic SoC, a netlist N that connects the chiplets,
and the bump positions of the silicon interposer. The output the
framework is a floorplanning solution that provides the loca-
tion and orientation of each chiplet on the silicon interposer.
The objective of the optimization is

min β1 × wl + β2 × αp + β3 × C2.5D

s.t. wpgp ≤ wpgtp (6)

where wl represents half-perimeter wirelength (HPWL)
between chiplets, αp represents the warpage of the package,
and C2.5D is the cost of 2.5-D package from (4). βi represents
a user-defined coefficient that can be modified for a tradeoff
between multiple objectives.

During optimization, three types of constraints are consid-
ered.

1) Overlap Constraints: Each chiplet cannot overlap with
other chiplets or hotspot bumps.

2) Warpage Constraints: As shown in (6), the warpage of
the package p cannot exceed a threshold in both the x-
axis and y-axis directions.

3) Bump Margin Constraints: A margin space is defined
around hotspot bumps to avoid overlap with chiplets and
reduce bump stress.

III. FLOORPLET FRAMEWORK

A. Overview of the Framework

Fig. 4 shows the overview of the proposed Floorplet, which
consists of three main steps: 1) chiplet partitioning; 2) floor-
plan optimization; and 3) performance evaluation.

First, we propose the parChiplet algorithm to partition a
monolithic SoC into a set of chiplets with different functions

Fig. 4. Overall flow of the Floorplet.

and area constraints. The algorithm recursively divides the
hierarchical tree structure that represents the SoC components
and their connections.

Second, we propose optChiplet to formulate the floorplan
of the chiplet as a mathematical programming (MP) problem
that considers multiple objectives, such as package cost,
wirelength, warpage, and bump stress. We solve the MP
problem to obtain a primary floorplan solution that provides
the location and orientation of each chiplet on the silicon
interposer.

Third, we evaluate the performance of the chiplet design
using simChiplet built based on Gem5 garnet3.0 [13]. The
simulation platform can report the data movement frequency
and latency of different chiplet pairs based on various bench-
marks. The data movement frequency is utilized as feedback
to further optimize the floorplan results. In the simulation
platform shown in Fig. 5, the data are sent or received in
packages, which have an equal volume. In this way, more
data movement frequency can be seen as more data movement
volume. The details of each step will be elaborated as follows.

B. parChiplet: Chiplet Generation Method

Some previous works [2], [6] target highly abstract chiplets
without specific functions, while we choose an actual hardware
design of SoC and utilize synthesis tools in very-large-scale
integration (VLSI) flow to obtain the area and netlist of the
design. Then, based on various functions and area information,
an algorithm is developed to partition chiplets from the SoC
and obtain a chiplet pool.

Zhuang et al. [2] do not discuss the integrity of chiplet func-
tions when obtaining chiplets, i.e., some circuit macros that
communicate tightly may be partitioned to distinctive chiplets.
To bring more practical design information into chiplet design,
we use Python language to design a script to process the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

1642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Fig. 5. Simulation flow embedded into Gem5 platform.

Fig. 6. Hierarchical tree of SoC components.

synthesis result of SoC from VLSI tool like Hammer [25].
The output of the script is a hierarchical tree of SoC, and
an example is shown in Fig. 6. The hierarchical tree takes
functional integrity and area into consideration. In this way, the
partitioned chiplets have relatively independent functions that
can be reused as IPs by other designs. Meanwhile, the number
of chiplets divided from the SoC system can be controlled
within an acceptable range.

Furthermore, the granularity of the partition is very impor-
tant during constructing a chiplet pool. On the one hand,
if the chiplet area is too large like a part of a monolithic
SoC, the benefit from the decreasing of area cost will be
eliminated. On the other hand, if the chiplet area is too small
like a fine-grained fragmentation with incomplete function, it
is impossible for fabrication to provide such an IP.

Therefore, the rule is given to make sure the area
range(amin, amax) is given as

amin = aSoC × rr

|C|max
, amax = aSoC × rr

|C|min
(7)

Algorithm 1 parChiplet(T, amin, amax)

Input: (T, amin, amax), T is the hierarchical tree structure like
Fig. 6, amin is the minimal threshold of chiplet area, amax
is the maximal threshold of chiplet area.

Output: The chiplet pool C.
1: C = ∅;
2: N =child(T); � child(·) gives the children nodes of T .
3: nr = ∅
4: for ni ∈ N do
5: if area(ni) > amax then � area(·) gives node’s area.
6: parChiplet(ni, amin, amax);
7: else if area(ni) < amin then
8: nr =comb(ni, nr); � comb(·) combines two nodes.
9: else

10: C = C ⋃{ni};
11: end if
12: C = C ⋃{nr};
13: end for
14: return C;

where |C|min and C|max represent the typical minimal and
maximal number of chiplets in the chiplet-based architecture,
respectively. aSoC and rr represent the overall area of the
monolithic SoC given by the synthesis tool and the relaxation
ratio of aSoC, respectively. rr is set to make sure to avoid the
failure of the chiplet partition. The total area of partitioned
chiplets should be larger than the original aSoC to avoid failure
of the floorplan because extra areas of interfaces die-to-die are
introduced.

By combining all analyses into an algorithm, we propose
Algorithm 1. The algorithm is straightforward to process the
SoC hierarchical tree recurrently. The input of the algorithm is
the synthesis results given by Hammer [25] from different SoC
designs. For various SoC designs, once given the synthesis
results, the hierarchical tree can be constructed automatically
with function integrity and area information. Since we have

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FLOORPLET: PERFORMANCE-AWARE FLOORPLAN FRAMEWORK FOR CHIPLET INTEGRATION 1643

(a) (b)

Fig. 7. Latency-wirelength model. (a) Distribution of the wirelength between
chiplets. (b) Latency weight versus wirelength relation.

designed the parser to analyze the chiplet interconnection
relationship, the algorithm can be generalized across different
SoC.

C. simChiplet: Chiplet Simulation Method

In this step, we build a platform based on Gem5 gar-
net3.0 [13] to evaluate the data movement frequency of the
chiplet-based architecture and the overall latency of running
various workloads. The detailed simulation flow is shown in
Fig. 5, where we set the characteristics of various hardware
components to mimic the functionality of the original mono-
lithic SoC. In the original simulation tool, network-on-chip
(NoC) in Gem5 garnet3.0 combines different modules in the
chiplet-based architecture. The NoC module in gem5 is used
to record the data request and data volume, which can assist
in obtaining the data movement between chiplets. However,
the original platform does not support setting various values
of latency between different chiplet-pair flexibly. Instead, we
improve the flexibility of the original topology by embedding
the latency weight given by the latency-wirelength model in
Fig. 7(b), which is going to be introduced as follows.

In the 2.5-D package, the interchiplet communication
latency is determined by the length of the routed wires
inside the interposer, the microbumps, and the die-to-die
interfaces. In the monolithic SoC, the communication latency
is determined by the critical path in the circuit with a typical
max wirelength of about 1.4 mm, while in the chiplet-based
architecture, the max wirelength can be much longer than
that of SoC. For example, in the chiplet-based architecture
containing 64 cores [26], the max wirelength can reach about
10 mm.

The latency introduced by the chiplet architecture cannot
be ignored, as it can affect the performance of the system. In
UCIe 1.0 [27], an open industry standard for on-package con-
nectivity between chiplets, the latency of the interface should
be smaller than 2 ns. If the system runs with 2 GHz, extra
clock cycles will be introduced to chiplet communication. To
show the latency influence, we choose an SoC containing two
Rockets cores and two BOOM cores and use their HPWL
distribution to estimate their latency weights as shown in
Fig. 7.

Kim et al. [26] designed and constructed a chiplet-based
64-core processor to illustrate the chiplet design flow. It built

and verified the interposer delay model consisting of resis-
tance, inductance, conductance, and capacitance. According
to the results, in the 0.2–10.0 mm length range, as the
wire becomes longer, both communication delay and energy
increase linearly. In our experiment, the wire length falls into
the wire length range mentioned above, so we assume that it
is reasonable to utilize the wirelength-latency model in our
framework. Therefore, we suggest using this conclusion to
build our interposer delay model.

Therefore, according to the HPWL between the chiplets on
the silicon interposer and the relationship between the latency
and wirelength [26], the wirelength is mapped into six ranges
in Fig. 7(a), and each range has a specific latency weight. With
the latency-wirelength model in Fig. 7(b), the file containing
latency information and connections of chiplet is embedded
into our simulation platform with an option -CHIPLET_SIM
in the command line shown in Fig. 5.

D. optChiplet: Floorplan Optimization Method

The goal of our floorplan framework is to optimize the
placement of chiplets on the silicon interposer while mini-
mizing wirelength and improving reliability. The simulation
platform needs more time than the iteration time of the MP-
solver to obtain the data movement frequency among chiplets.
Therefore, combining the time-consuming simulation with
the existing solver together is unpractical. To decrease the
running time of the performance-aware floorplan solution, the
optimization is divided into two stages, i.e., primary floorplan
and performance-aware floorplan.

In this section, our MP models for solving the floorplan
problem are presented. First, the primary floorplan model
that considers the chiplet dimensions, locations, rotations,
warpage, and bump stress is introduced. Then, we describe
the performance-aware floorplan model that incorporates the
data movement frequency between chiplets obtained from our
simulation platform.

Primary Floorplan: The input data consists of n chiplets
C = {c1, c2, . . . , cn}, each with a fixed outline and a vari-
able location and orientation. The center area of the silicon
interposer is a bounding box W × H, where we aim to place
the chiplets without overlap. xck and yck are used to denote
the x-coordinate and y-coordinate of the lower-left corner of
chiplet ck, respectively. wck and hck are used to denote the
width and height of chiplet ck, which depend on whether it is
rotated or not.

To formulate the floorplan problem as an MP model, we
introduce some auxiliary variables and constraints as follows.
The notations used in this part are listed in Table I.

1) In practical chiplet-based architecture, there exists a
small distance to allow routing wire between two
near chiplets. After the floorplan stages, there are
follow-up stages like routing stages for the final
chiplet-based design fabrication. Therefore, we simpli-
fied the optimization process by omitting the small
distance between two nearby chiplet. To prevent over-
lap between chiplets, the binary variables pi,j and qi,j

are used to indicate the relative positions of chiplet

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

1644 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

TABLE I
NOTATIONS USED IN OPTCHIPLET

ci and chiplet cj. The nonoverlap constraints can be
expressed as

xci + wci ≤ xcj + W · (
pi,j + qi,j

)
(8)

yci + hci ≤ ycj + H · (
1 + pi,j − qi,j

)
(9)

xci − wci ≥ xcj − W · (
1 − pi,j + qi,j

)
(10)

yci − hci ≥ ycj − H · (
2 − pi,j − qi,j

)
(11)

pi,j, qi,j ∈ {0, 1}, 1 ≤ i < j ≤ |C|. (12)

If (pi,j, qi,j) = (0, 0), the chiplet ci is constrained to
place on the left of chiplet cj; if (pi,j, qi,j) = (0, 1), the
chiplet ci is constrained to place on the bottom of chiplet
cj; if (pi,j, qi,j) = (1, 0), the chiplet ci is constrained to
place on the bottom of chiplet cj; if (pi,j, qi,j) = (1, 1),
the chiplet ci is constrained to place on the top of chiplet
cj. In other words, by optimizing this pair, the location of
various chiplet can be changed to avoid overlap between
chiplets.

2) To allow rotation of chiplets, another binary variables rk

is used to indicate whether chiplet ck is rotated by 90
degrees or not. The width and height of chiplet ck can
be calculated as

wk = rk · ho
k + (1 − rk) · wo

k (13)

hk = rk · wo
k + (1 − rk) · ho

k (14)

where wo
k and ho

k are the original width and height of
chiplet ck, respectively.

To account for reliability issues caused by warpage and
bump stress, continuous variables wpgx

p and wpgy
p are used to

represent the warpage on the x-axis and y-axis directions of
the whole package p, respectively. The bump constraints are
shown in the lower-left corner of Fig. 9, where continuous
variables dcc and dmr are used to represent the radius of the cir-
cumscribed circle of each chiplet and the radius of the margin
region around each hotspot bump, respectively. The warpage
constraints can be expressed as follows:

w(x) = t · �α · �T

2 · λ · D

[
1

2
x2 −

(
(kx)2 + 1

)
/2 − 1

k2cosh(kl)

]
(15)

where t, �α, �T , λ, and D are physical parameters related to
the packing materials and dimensions. The warpage in each

(a) (b) (c)

Fig. 8. Different floorplan designs of chiplet-based architecture. (a) Macros,
bumps, and nets are generated from input data. (b) Floorplan design with
eight chiplets without performance metrics. The wider line represents higher
data movement frequency between chiplets. (c) Performance-aware floorplan
design.

direction can be calculated by plugging in the corresponding
values of x. The warpage upper bound can be enforced as

wpgx
p ≤ wpgtp, wpgy

p ≤ wpgtp (16)

where wpgtp is a user-defined threshold for an acceptable
warpage. The bump margin constraints can be expressed as
follows: (

xci − xbs

)2 + (
yci − ybs

)2 ≥ (dcc + dmr)
2 (17)

where (xbs , ybs) are the coordinates of the center of hotspot
bump bs, and (xci , yci) are the coordinates of the center of
chiplet ci. This constraint ensures that there is enough spacing
between each chiplet and each hotspot bump to avoid excessive
stress.

The objective function of the primary floorplan model is
to minimize a weighted sum of wirelength (wl), area (αp),
warpage (wpgx

p and wpgy
p), and cost of 2.5-D package (C2.5D)

with bump constraints, which can be expressed as

β1wl + β2αp + β3

(
wpgx

p + wpgy
p

)
+ β4C2.5D (18)

where β1, β2, β3, and β4 are user-defined coefficients that
reflect different design priorities.

We solve this MP model using an off-the-shelf solver
to obtain an initial floorplan solution that satisfies all the
constraints and optimizes all the objectives. Fig. 8(a) shows
a set of chiplets partitioned from a monolithic SoC with
their connections represented by lines with different widths
indicating their data movement frequency. Fig. 8(b) shows an
example of a primary floorplan solution with eight chiplets
placed on a silicon interposer.

Performance-Aware Floorplan: After obtaining the primary
floorplan solution, we feed it into our simulation platform to
evaluate its performance in terms of data movement frequency
among chiplets, as shown in Fig. 9. The simulation platform
models the application workload, communication patterns,
and memory hierarchy of the chiplet-based architecture. The
simulation will report a set of frequency values for each pair of
chiplets, denoted by F = {f1, f2, . . . , fM}, M = C|C|

2 represents
two-combination of C.

These frequency values can be used as inputs for our
performance-aware floorplan model, which aims to further
optimize the placement of chiplets by reducing the latency
between frequently communicating pairs. The performance-
aware floorplan model has the same variables and constraints

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FLOORPLET: PERFORMANCE-AWARE FLOORPLAN FRAMEWORK FOR CHIPLET INTEGRATION 1645

Fig. 9. Simulation framework for chiplet-based architecture. The blue circles
represent chiplets, while the lines between them represent latency. After the
simulation, the data movement frequency between chiplets will be reported,
where the wider line represents a higher data movement frequency.

as the primary floorplan model, except for an additional term
that reflects the data movement frequency

β1wl + β2αp + β3

(
wpgx

p + wpgy
p

)
+ β4C2.5D + γ1

∑
i

fi (19)

where γ1 is a user-defined coefficient that controls the tradeoff
between data movement frequency and other objectives.

This MP model is also solved using an existing solver
to obtain a final floorplan solution that balances multiple
objectives and meets the performance constraints. Fig. 8(c)
shows an example of a performance-aware floorplan solution
with eight chiplets placed on a silicon interposer.

IV. EXPERIMENTS AND ANALYSIS

In this section, we evaluate the effectiveness of our proposed
floorplan framework on realistic chiplet-based architectures.
We construct the framework with actual chiplets considering
performance or reliability issues instead of using abstract
rectangles to represent chiplets. We also analyze the tradeoff
between different objectives and do some ablation studies to
check the effectiveness of reliability constraints.

A. Benchmarks and Baseline

We take advantage of Chipyard [28], an open-source SoC
generator tool, to generate various SoCs consisting of different
hardware components, such as CPU cores (e.g., Rocket [29]
and BOOM [30]), co-processors (e.g., Gemmini [31] and
Hwacha [32]), etc. To obtain the area information of each
chiplet, we utilize Hammer [25] tools with 7-nm standard
cell library ASAP7 [33] to synthesize various SoC designs.
The area information of each chiplet provides the input of
parChiplet to guide the floorplan optimization.

Each SoC can be partitioned into about 10–30 chiplets based
on their functions and build a chiplet pool consisting of about

TABLE II
SELECTED CHIPLETS FROM THE CHIPLET POOL CONSTRUCTED

FROM VARIOUS SOC DESIGNS

300 chiplets. The chiplet pool is constructed with various SoCs
to avoid time-consuming synthesis design. Once meeting the
same chiplet components, i.e., IPs, in the new chiplet-based
architecture, the physical information can be reused again.
Building a chiplet pool provides an opportunity to reuse the
synthesis results from Hammer to avoid the extra process of
synthesizing.

For practical chiplet fabrication, it is very time-consuming
to decide on the specific design for each chiplet. Only after
obtaining the final design of the chiplet, the width, and height
can be fixed. For our experiment, we cannot carefully design
each chiplet one by one in a limited time. Therefore, we
simplified the process by generating chiplets with a random
width/height ratio within a rational range. Our framework is
capable of handling practical chiplet whatever the width/height
ratio. Some selected chiplets are listed in Table II.

To boost the computation capability of the SoC architecture,
different SoCs are designed specifically with the target of
optimizing different applications. For instance, [34] specif-
ically designs the architecture for optimizing deep neural
network (DNN) applications on flagship mobile devices. [35]
designs an SoC architecture for mapping medical appli-
cations. Therefore, to optimize the performance of these
function-specific chiplet-based architectures, the correspond-
ing workloads are chosen to do the evaluation.

For chiplet-based DNN accelerators, ResNet-15 [36] and
MobileNet-v2 [37] are utilized as the workloads. For
chiplet-based general-purpose processors, some representative
workloads are utilized from the commonly used CPU bench-
mark SPEC2006 [38]. The benchmarks encompass a diverse
set of applications with varying performance characteristics,
effectively covering the states of all chiplets. The workloads
for various chiplet-based architectures are listed in Table III.

We compare our framework with the MP-based solver
method [2], which can give the primary floorplan solution
without performance consideration. Some ablation studies are
conducted to evaluate the effectiveness of warpage constraints
and bump stress constraints. Our framework and the baseline

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

1646 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

TABLE III
DIFFERENT CHIPLET-BASED ARCHITECTURE WORKLOADS FROM

RISC-V BENCHMARK, SPEC2006, AND DNNS ORDERLY

methods are implemented in C++ and use Gurobi [41] as the
MP solver. All experiments are conducted on a Linux machine
with an Intel Xeon CPU (E5-2630 v2@2.60 GHz) and 256-GB
RAM.

B. Experiment Setting and Results

The framework is tested on four SoC architectures with
different configurations, which are partitioned into 8, 16,
22, and 30 chiplets represented by C8, C16, C22, and C30.
The C8, C16, C22, and C30 are partitioned from a SmallRocket
core with the corresponding caches and peripheral modules,
a MediumBOOM core with the corresponding caches and
peripheral modules, a LargeBOOM core with peripheral mod-
ules, and a Gemmini accelerator with the processor core,
caches and corresponding DMA controllers.

The data movement frequency between chiplets is the
average of various benchmarks that are suitable for the specific
SoC design. The user-defined coefficients are set based on
some pre-experiments to obtain a good tradeoff between
multiple objectives and ensure convergence of optimization.
According to pre-experiments, β1, β2, β3, β4, and γ1 in (6)
are set to 1, 10, 100, 1, and 1, respectively. The floorplan
results demonstrate this setting can achieve a balance between
multiple objectives.

In Table IV, the experimental results are listed, where
HPWL, PA, WPG, ComCost, and AvgLat represent HPWL
of chiplet routing, package area, warpage of package and
interchiplet communication cost, and the average clock cycles
of finishing the workloads, respectively. The communication
cost is the multiplication of the data movement frequency
with the wirelength between two chiplets. Longer wirelength
will bring more latency in RDLs in chiplet-based architecture.
If frequent data movement occurs between two chiplet with
too long distances, the overall performance of the design
will deduct heavily because data movement costs can bring
more waiting time between components. Therefore, this metric
can represent the communication cost of the chiplet-based
architecture.

The floorplan framework can reduce communication costs
by placing chiplets with high data movement frequency close
to each other. As a result, the performance-aware floorplan

(a) (b)

(c) (d)

Fig. 10. Floorplan design of the chiplet-based architecture (C=16)
and (C=22). Our framework decreases communication costs by 36.8%
and 16.41%, respectively. (a) Primary floorplan solution (|C|=16).
(b) Performance-aware floorplan solution (|C|=16). (c) Primary floorplan
solution (|C|=22). (d) Performance-aware floorplan solution (|C|=22).

can decrease the average clock cycles of finishing workloads
by 13.18%. The column Latency in Table IV shows that the
performance improvement is more significant for architectures
with more chiplets.

The floorplan solutions are illustrated in Fig. 10. Fig. 10(a)
and (c) shows the results of a 16-chiplet floorplan and a
22-chiplet floorplan without performance consideration. The
width of the line indicates the data movement frequency
between chiplets, and the length of the line indicates the
communication latency between chiplets. The lines that
represent low data movement frequency are omitted for
clarity. Fig. 10(b) and (d) shows the results of the second
stage of floorplan optimization, which obviously reduces the
interchiplet communication cost. By reducing the HPWL
wirelength by 0.57% and the communication cost between
chiplets by 24.81%.

The performance-aware floorplan increases the overall area
of the package by 0.86%. This is the tradeoff between the
area cost and the performance improvement. The warpage
also increases by 0.93% compared to the floorplan without
performance. These overheads are acceptable considering
the significant communication cost reduction and obvious
performance enhancement by 13.18%.

Our framework improves the reliability of chiplet-based
architecture by considering the warpage and bump stress issues
in floorplan design and minimizing their effects. Moreover, the
framework is compared with the methods that do not consider
bump stress and warpage issues, and the result is shown in
Table V.

In our framework, metrics like performance, cost, area, and
reliability of chiplet-based architecture are considered. The
experimental results demonstrate that ignoring performance

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FLOORPLET: PERFORMANCE-AWARE FLOORPLAN FRAMEWORK FOR CHIPLET INTEGRATION 1647

TABLE IV
COMPARISON OF THE METHODS WITH/WITHOUT PERFORMANCE METRIC

TABLE V
ABLATION STUDY OF RELIABILITY CONSTRAINTS

metrics in floorplan design will degrade performance. By
incorporating performance factors into floorplan design early,
the co-optimization of architecture and technology is realized.

V. DISCUSSION AND LIMITATION

A. Comparison With Traditional Floorplan Algorithms

Some previous works [21], [22] lack discussion of reliabil-
ity issues in the 2.5-D package, i.e., the warpage threshold
and avoiding the overlap between chiplets and the hotspot
bumps. In our work, the constraint of the bump stress is
expressed in (17) and it is shown in the lower left corner of
Fig. 9. After introducing reliability in our framework, methods
like the enumeration-based algorithm [21], the branch-and-
bound algorithms [22], and other traditional algorithms like
B* Tree [42], Sequence Pair [43], and Corner Block List [44]
cannot fulfill the problem property. The main differences
between our framework and some traditional algorithms lie in
the complexity of the problem constraints.

Therefore, adopting MP methods in our framework can
solve problems with multiple complex constraints well. The
MP methods can take complex constraints like warpage thresh-
old, bump reliability, interposer area, and wire length into
consideration simultaneously during the iterative optimization.
Meanwhile, the solutions to the MP problems can be finished
by some excellent solvers like Gurobi [41]. Therefore, we
compare our methods with MP-based methods in [2], and the
results illustrate that our methods outperform previous work
and achieve a better performance-aware floorplan solution.

The timing complexity cannot be analyzed precisely in
the MP-solver-based optimization framework. That is because
the optimization problems in our framework are solved by
existing the MP solver Gurobi, so the timing complexity is
highly reliant on the scale of the chiplets in the problem. On
the contrary, the running time of the solver can be obtained
for different tasks. For simple chiplet-based architecture like
C8 and C16, the whole optimization process can be finished
in 20 min to 1 h. For larger architecture like C22 and C30,
to obtain a relative optimal solution will take 8–10 h. For
some common chiplet-based architecture with 10–30 chiplets,
our framework can give a good solution in an acceptable
time compared to some traditional methods like the simulated
annealing algorithm.

B. Limitation of the Framework

The thermal issue is important in 3-D IC or chiplet-based
2.5-D IC. The main reason is the thermal cannot be dissipated
well with materials in the vertical direction. Chong et al. [11]
have built the thermal model in their work to simulate the
heat flow in 3-D IC. An accurate thermal model is constructed
based on the actual physical parameters of the packaging.
Our method focuses on introducing performance metrics into
the floorplan stage to obtain an early optimization result, so
the information related to thermal (e.g., voltage and accurate
power) is not available in the current situation platform.

In the future, the framework will be developed continually
by incorporating more metrics. For example, the thermal will
be considered with a two-stage method in [23]. First, a thermal
simulation model will be used to set the threshold, and after
the first stage optimization, the optChiplet will continue to
optimize the floorplan. Even though our current framework
does not take into account the thermal effect, we hope the
idea of combining reliability, technology, and performance
can bring more insights into chip architecture into the IC
manufacturing community.

VI. CONCLUSION

In this article, we present Floorplet, a performance-aware
framework for co-optimizing the floorplan and performance
of chiplet-based architecture. We address the challenges and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

1648 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

drawbacks of using chiplets for complex circuit systems, such
as degraded performance due to interchiplet communication,
reliability issues due to warpage and bump stress, and lack of
realistic chiplet designs for analysis. We develop parChiplet
to partition realistic SoC into functional chiplets, a simula-
tion platform simChiplet to evaluate the performance impact
of different floorplan solutions, and a floorplan framework
optChiplet for chiplet-based architecture to consider reliability,
performance, cost, and area metrics. We test our method on
commonly used benchmarks and show its superiority over
previous methods. Our work demonstrates the potential of
using chiplets for designing high-performance and low-cost
circuit systems. We hope that our framework can provide use-
ful insights and guidance for future research and development
of chiplet-based architecture.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated cir-
cuits,” Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.

[2] Z. Zhuang, B. Yu, K.-Y. Chao, and T.-Y. Ho, “Multi-package co-design
for chiplet integration,” in Proc. ICCAD, 2022, pp. 1–9.

[3] D. C. H. Yu, “Advanced heterogeneous integration technology trend for
cloud and edge,” in Proc. IEEE EDTM, 2017, pp. 4–5.

[4] S. S. Iyer, “Heterogeneous integration for performance and scal-
ing,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 6, no. 7,
pp. 973–982, Jul. 2016.

[5] S. Pal, D. Petrisko, R. Kumar, and P. Gupta, “Design space exploration
for chiplet-assembly-based processors,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 28, no. 4, pp. 1062–1073, Apr. 2020.

[6] A. Sangiovanni-Vincentelli, Z. Liang, Z. Zhou, and J. Zhang,
“Automated design of chiplets,” in Proc. ISPD, 2023, pp. 1–8.

[7] D. Greenhill et al., “3.3 A 14nm 1GHz FPGA with 2.5 D transceiver
integration,” in Proc. ISSCC, 2017, pp. 54–55.

[8] Y.-K. Ho and Y.-W. Chang, “Multiple chip planning for chip-interposer
codesign,” in Proc. 50th ACM/EDAC/IEEE Design Autom. Conf. (DAC),
2013, pp. 1–6.

[9] T. Hayashi, P. Y. Lin, R. Watanabe, and S. Ichikawa, “Development of
highly reliable crack resistive build-up dielectric material with low Df
characteristic for next-gen 2.5D packages,” in Proc. 71st ECTC, 2021,
pp. 570–576.

[10] F. Che, D. Ho, M. Z. Ding, and X. Zhang, “Modeling and design solu-
tions to overcome warpage challenge for fan-out wafer level packaging
(FO-WLP) technology,” in Proc. 17th EPTC, 2015, pp. 1–8.

[11] S. C. Chong, S. S. B. Lim, W. W. Seit, T. C. Chai, and D. C. Sanchez,
“Comprehensive study of thermal impact on warpage behaviour of
FOWLP with different die to mold ratio,” in Proc. 71st ECTC, 2021,
pp. 1082–1087.

[12] M. Ahmad, J. DeLaCruz, and A. Ramamurthy, “Heterogeneous integra-
tion of chiplets: Cost and yield tradeoff analysis,” in Proc. 23rd Int.
Conf. Therm., Mech. Multi-Phys. Simul. Exp. Microelectron. Microsyst.
(EuroSimE), 2022, pp. 1–9.

[13] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna, “Kite: A family of
heterogeneous interposer topologies enabled via accurate interconnect
modeling,” in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), 2020,
pp. 1–6.

[14] W. Haensch et al., “Silicon CMOS devices beyond scaling,” IBM J. Res.
Develop., vol. 50, nos. 4-5, pp. 339–361, Jul. 2006.

[15] Y. Feng and K. Ma, “Chiplet actuary: A quantitative cost model and
multi-chiplet architecture exploration,” in Proc. 59th ACM/IEEE Design
Autom. Conf. (DAC), 2022, pp. 121–126.

[16] J. A. Cunningham, “The use and evaluation of yield models in integrated
circuit manufacturing,” IEEE Trans. Semicond. Manuf., vol. 3, no. 2,
pp. 60–71, May 1990.

[17] R. Irwin, K. Sahoo, S. Pal, and S. S. Iyer, “Flexible connectors and
PCB segmentation for signaling and power delivery in wafer-scale
systems,” in Proc. 71st ECTC, 2021, pp. 507–513.

[18] M.-Y. Tsai and Y.-W. Wang, “A theoretical solution for thermal warpage
of flip-chip packages,” IEEE Trans. Compon., Packag. Manuf. Technol.,
vol. 10, no. 1, pp. 72–78, Jan. 2020.

[19] M. Jung, D. Z. Pan, and S. K. Lim, “Chip/package co-analysis of thermo-
mechanical stress and reliability in TSV-based 3D ICs,” in Proc. DAC,
2012, pp. 317–326.

[20] K. Sakuma et al., “3D die-stack on substrate (3D-DSS) pack-
aging technology and FEM analysis for 55μ-75μ mixed pitch
interconnections on high density laminate,” in Proc. ECTC, 2021,
pp. 292–297.

[21] W.-H. Liu, M.-S. Chang, and T.-C. Wang, “Floorplanning and signal
assignment for silicon interposer-based 3D ICs,” in Proc. DAC, 2014,
pp. 1–6.

[22] S. Osmolovskyi, J. Knechtel, I. L. Markov, and J. Lienig, “Optimal die
placement for interposer-based 3D ICs,” in Proc. 23rd ASP-DAC, 2018,
pp. 513–520.

[23] F. Li et al., “GIA: A reusable general interposer architecture for agile
chiplet integration,” in Proc. ICCAD, 2022, pp. 1–9.

[24] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “2.2 AMD
chiplet architecture for high-performance server and desktop prod-
ucts,” in Proc. ISSCC, 2020, pp. 44–45.

[25] H. Liew et al., “Hammer: A modular and reusable physical design flow
tool,” in Proc. 59th DAC, 2022, pp. 1335–1338.

[26] J. Kim et al., “Architecture, chip, and package codesign flow for
interposer-based 2.5-D chiplet integration enabling heterogeneous IP
reuse,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 11,
pp. 2424–2437, Nov. 2020.

[27] D. D. Sharma, G. Pasdast, Z. Qian, and K. Aygun, “Universal
chiplet interconnect express (UCIe): An open industry standard
for innovations with chiplets at package level,” IEEE Trans.
Compon., Packag. Manuf. Technol., vol. 12, no. 9, pp. 1423–1431,
Sep. 2022.

[28] A. Amid et al., “Chipyard: Integrated design, simulation, and imple-
mentation framework for custom SoCs,” IEEE Micro, vol. 40, no. 4,
pp. 10–21, Jul./Aug. 2020.

[29] K. Asanovic et al., “The rocket chip generator,” Elect. Eng. Comput. Sci.
Dept., Univ. California, Berkeley, CA, USA, Rep. UCB/EECS-2016-17,
2016.

[30] K. Asanovic, D. A. Patterson, and C. Celio, “The Berkeley out-
of-order machine (BOOM): An industry-competitive, synthesizable,
parameterized RISC-V processor,” Elect. Eng. Comput. Sci. Dept.,
Univ. California, Berkeley, CA, USA, Rep. UCB/EECS-2015-167,
2015.

[31] H. Genc et al., “Gemmini: Enabling systematic deep-learning architec-
ture evaluation via full-stack integration,” in Proc. 58th DAC, 2021,
pp. 769–774.

[32] Y. Lee, C. Schmidt, A. Ou, A. Waterman, and K. Asanovic, “The
Hwacha vector-fetch architecture manual, version 3.8. 1,” Elect. Eng.
Comput. Sci. Dept., Univ. California, Berkeley, CA, USA, Rep.
UCB/EECS-2015-262, 2015.

[33] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 predictive
design kit development and cell design technology co-optimization,” in
Proc. ICCAD, 2017, pp. 992–998.

[34] J. -W. Jang et al., “Sparsity-aware and re-configurable NPU architecture
for samsung flagship mobile SoC,” in Proc. 48th ISCA, 2021, pp. 15–28.

[35] S. R. Sridhara et al., “Microwatt embedded processor platform for
medical system-on-chip applications,” IEEE J. Solid-State Circuits,
vol. 46, no. 4, pp. 721–730, Apr. 2011.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[37] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[38] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Architect. News, vol. 34, no. 4, pp. 1–17,
2006.

[39] H. J. Curnow and B. A. Wichmann, “A synthetic benchmark,” Comput.
J., vol. 19, no. 1, pp. 43–49, 1976.

[40] A. Vaswani et al., “Attention is all you need,” in Proc. NeurIPS, 2017,
pp. 1–11.

[41] “Gurobi optimizer.” Accessed: Mar. 21, 2023. [Online]. Available:
http://\penalty\z@{}www.\penalty\z@{}gurobi.\penalty\z@{}com/
\penalty\z@{}.\penalty\z@{}

[42] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-trees: A
new representation for non-slicing floorplans,” in Proc. 37th DAC, 2000,
pp. 458–463.

[43] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” in Proc. ICCAD, 1995, pp. 472–479.

[44] X. Hong et al., “Corner block list: An effective and efficient topolog-
ical representation of non-slicing floorplan,” in Proc. ICCAD, 2000,
pp. 8–12.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: FLOORPLET: PERFORMANCE-AWARE FLOORPLAN FRAMEWORK FOR CHIPLET INTEGRATION 1649

Shixin Chen received the B.Eng. degree in
VLSI design and system integration from Nanjing
University, Nanjing, China, in 2022. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong, under the
supervision of Prof. B. Yu.

His research interests include agile hardware
design, hardware design space exploration, chiplet
integration, and machine learning in electronic
design automation.

Shanyi Li received the B.Eng. degree from Tsinghua
University, Beijing, China, in 2019. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong, under the
supervision of Prof. T.-Y. Ho.

His current research interest is electronic design
automation (EDA), especially EDA for 2.5-D/3-D
packaging.

Zhen Zhuang received the B.Eng. and M.Eng.
degrees from Fuzhou University, Fuzhou, China, in
2018 and 2021, respectively. He is currently pursu-
ing the Ph.D. degree with The Chinese University
of Hong Kong, Hong Kong, under the supervision
of Prof. T.-Y. Ho.

His current research interest is electronic design
automation (EDA), especially EDA for 2.5-D/3-D
packaging.

Mr. Zhuang was a recipient of three ICCAD/ISPD
contest awards.

Su Zheng received the B.Eng. and M.S. degrees
from Fudan University, Shanghai, China, in 2019
and 2022, respectively. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, under the supervision of
Prof. B. Yu and Prof. M. D. F. Wong.

His research interest is to solve critical problems
in electronic design automation with advanced arti-
ficial intelligence methods.

Zheng Liang (Graduate Student Member, IEEE)
received the B.S. degree from EECS, Peking
University, Beijing, China, in 2020. He is currently
pursuing the Ph.D. degree with the Department
of EECS, University of California at Berkeley,
Berkeley, CA, USA, under the supervision of Prof.
A. Sangiovanni-Vincentelli.

His research interests include optimization algo-
rithms and corresponding applications in electronic
design automation, computer systems, and machine
learning.

Tsung-Yi Ho received the Ph.D. degree in elec-
trical engineering from National Taiwan University,
Taipei, Taiwan, in 2005.

He is currently a Professor with the Department
of Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong.

Prof. Ho was a recipient of the Best Paper Award
at IEEE TCAD in 2015. He currently serves as the
VP Conference of IEEE CEDA, and the Executive
Committee of ASP-DAC and ICCAD. He is a
Distinguished Member of ACM.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received ten Best Paper Awards from
IEEE TSM 2022, DATE 2022, ICCAD 2021 and
2013, ASPDAC 2021 and 2012, ICTAI 2019,
Integration, the VLSI Journal in 2018, ISPD 2017,
SPIE Advanced Lithography Conference 2016, and

six ICCAD/ISPD contest awards. He has served as the TPC Chair of
ACM/IEEE Workshop on Machine Learning for CAD, and in many journal
editorial boards and conference committees. He is an Editor of IEEE TCCPS
Newsletter.

Alberto L. Sangiovanni-Vincentelli received the
Dottore in Ingegneria degree (summa cum laude)
in electrical engineering and computer science from
the Politecnico di Milano, Milan, Italy, in 1971,
and four Honorary Doctorate degrees from the
University of Aalborg, Aalborg, Denmark, in 2009;
the KTH Royal Institute of Technology, Stockholm,
Sweden, in 2012; the AGH University of Science
and Technology, Kraków, Poland, in 2022; and the
University of Rome “Tor Vergata,” Rome, Italy, in
2022.

He is the Edgar L. and Harold H. Buttner Chair of Electrical Engineering
and Computer Sciences with the University of California at Berkeley,
Berkeley, CA, USA. He is an author or coauthor of over 1000 papers,
17 books, and three patents in design tools and methodologies, large-scale
systems, embedded systems, hybrid systems, and AI. He was a Co-Founder of
Cadence, San Jose, CA, USA, and Synopsys, Sunnyvale, CA, USA, the two
leading companies in Electronic Design Automation. He was a Consultant
or a member of the Advisory Boards of several companies, such as BMW,
Mercedes, Magneti Marelli, Intel, ST microelectronics, HP, General Motors,
United Technologies, Lutron, Lendlease, and Elettronica. He is currently a
member of the following boards of directors: Cadence, KPIT Technologies,
eGap, Exein, and Cy4Gate. He is a Chairman of the Board of Quantum
Motion, Innatera, Phoelex, e4Life, and Phononic Vibes. He was a member of
the Scientific Council of the Italian National Science Foundation (CNR) from
2001 to 2015. From February 2010 to December 2020, he was a member
of the Executive Committee of the Italian Institute of Technology, where he
is currently a member of the Technical Scientific Committee. In September
2023, he has been appointed as the President of the Chips.it, the 250M Euro
Foundation of the Italian Government to foster integrated circuit design. He is
the Chairperson of the Strategy Board and the International Advisory Board
of the Milano Innovation District (MIND).

Dr. Sangiovanni-Vincentelli is the recipient of several academic honors,
and research awards, including the IEEE/RSE Wolfson James Clerk Maxwell
Medal “for groundbreaking contributions that have had an exceptional impact
on the development of electronics and electrical engineering or related
fields” and the BBVA Frontiers of Knowledge Award in the Information and
Communication Technologies category: “for transforming chip design from a
handcrafted process to the automated industry that power today’s electronic
devices.” He is an ACM Fellow and a member of the National Academy of
Engineering.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 22,2024 at 03:41:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

