
Floorplanning with Edge-aware Graph Attention Network

and Hindsight Experience Replay

BO YANG, University of Science and Technology of China, Hefei, China

QI XU, University of Science and Technology of China, Hefei, China

HAO GENG, ShanghaiTech University, Shanghai, China

SONG CHEN, University of Science and Technology of China, Hefei, China

BEI YU, The Chinese University of Hong Kong, NT, Hong Kong SAR

YI KANG, University of Science and Technology of China, Hefei, China

In this article, we focus on chip floorplanning, which aims to determine the location and orientation of circuit

macros simultaneously, so the chip area and wirelength are minimized. As the highest level of abstraction

in hierarchical physical design, floorplanning bridges the gap between the system-level design and the phys-

ical synthesis, whose quality directly influences downstream placement and routing. To tackle chip floor-

planning, we propose an end-to-end reinforcement learning (RL) methodology with a hindsight experience

replay technique. An edge-aware graph attention network (EAGAT) is developed to effectively encode the

macro and connection features of the netlist graph. Moreover, we build a hierarchical decoder architecture

mainly consisting of transformer and attention pointer mechanism to output floorplan actions. Since the RL

agent automatically extracts knowledge about the solution space, the previously learned policy can be quickly

transferred to optimize new unseen netlists. Experimental results demonstrate that, compared with state-of-

the-art floorplanners, the proposed end-to-end methodology significantly optimizes area and wirelength on

public GSRC and MCNC benchmarks.

CCS Concepts: • Hardware → Partitioning and floorplanning;

Additional Key Words and Phrases: Floorplanning, Reinforcement Learning, Graph Attention Network, Trans-

former

ACM Reference Format:

Bo Yang, Qi Xu, Hao Geng, Song Chen, Bei Yu, and Yi Kang. 2024. Floorplanning with Edge-aware Graph

Attention Network and Hindsight Experience Replay. ACM Trans. Des. Autom. Electron. Syst. 29, 3, Article 56

(May 2024), 17 pages. https://doi.org/10.1145/3653453

This work is supported by USTC Research Funds of the Double First-Class Initiative under Grant YD2100002012. The

authors would like to thank Information Science Laboratory Center of USTC for the hardware & software services.

Authors’ addresses: B. Yang, Q. Xu (Corresponding author), Song Chen, and Y. Kang, School of Microelectronics,

University of Science and Technology of China, Hefei, China; e-mails: yangbo19@mail.ustc.edu.cn, xuqi@ustc.edu.cn,

songch@ustc.edu.cn, ykang@ustc.edu.cn; H. Geng, School of Information Science and Technology, ShanghaiTech Uni-

versity, Shanghai, China; e-mail: genghao@shanghaitech.edu.cn; B. Yu, Department of Computer Science and Engineering,

The Chinese University of Hong Kong, NT, Hong Kong SAR; e-mail: byu@cse.cuhk.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1084-4309/2024/05-ART56

https://doi.org/10.1145/3653453

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.

https://orcid.org/0009-0009-1288-293x
https://orcid.org/0000-0002-0375-9800
https://orcid.org/0000-0002-0943-7714
https://orcid.org/0000-0003-0341-3428
https://orcid.org/0000-0001-6406-4810
https://orcid.org/0000-0002-5487-6855
https://doi.org/10.1145/3653453
mailto:permissions@acm.org
https://doi.org/10.1145/3653453
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3653453&domain=pdf&date_stamp=2024-05-03


56:2 B. Yang et al.

1 INTRODUCTION

In modern chip design, the back-end physical design dramatically affects the final performance of
integrated circuit (IC) chips. Therefore, the earlier the physical design elements are considered
in the design phase, the better the design optimization of the high-level architecture will be. As the
first stage in the IC physical design, the input to floorplanning is a circuit netlist containing a set of
macros with various sizes and their interconnection relationships with the aim of determining the
location and orientation of macros simultaneously to optimize chip area and wirelength metrics.

Floorplanning has been proven to be an NP-hard problem with a vast solution space [1], even
more than the number of atoms in the universe. Thus, exploring high-quality floorplan solutions
in polynomial time is a big challenge. As a result, we need to rely on significantly specialized
knowledge to design exact or approximate algorithms for solving floorplanning. Generally, tradi-
tional floorplanning methods are roughly divided into two categories. One category is the hand-
crafted heuristics, such as the partitioning method based on min-cut [2] and simulated annealing

(SA)-based algorithm [3, 4]. However, these approaches cannot guarantee good performance and
converge too slowly for large-scale netlists. Another class is the non-linear analytical solvers, i.e.,
ePlace [5] and RePlAce [6]. Through modeling the objective metrics as a differentiable function,
a gradient descent algorithm is directly adopted to achieve the optimization. Although analytical
solvers are widely used due to the short runtime and ability to address complex constraints, the
solvers are not suitable for handling netlists with various macro sizes. In addition, both types of
floorplanning approaches lack the transferability, meaning that the prior learned knowledge can-
not be generalized to new unseen netlists. Hence, it is necessary to optimize the floorplan for each
new design from scratch, significantly limiting the reduction in runtime.

Over the past decade, considerable improvements in computer systems and hardware have ex-
tensively promoted the development of artificial intelligence (AI) technologies. Meanwhile, AI
techniques also support the relevant hardware design and shorten the development cycle. Recently,
reinforcement learning (RL)-based approaches have been developed to solve chip floorplanning.
He et al. [7] exploits a deep Q-learning algorithm to explore local search heuristics for floorplan-
ning, achieving higher efficiency and better results than the SA method. The main idea of the
work is to replace the probabilistic sampling process of solutions in SA with an RL strategy for
space exploration. Based on a similar scheme, GoodFloorplan [8] further introduces the graph neu-
ral network to realize more efficient information encoding. But due to the characteristic of local
heuristics, these methods are not able to transfer learned experience to unseen circuits and thus do
not show great advantages over the traditional approach. Google’s pioneered work proposes a deep
RL strategy to address the macro placement [9], analogous to playing Go [10]. It first discretizes
the chip canvas to grid cells, then the RL agent places macros onto the placable cells sequentially,
and finally the reward signal is calculated to train the RL agent. Besides, to reduce the redundant
output of the grid-based action space, Amini et al. [11] uses the corner block list (CBL) repre-
sentation to encode the actions. However, this approach ignores the connection between actions,
and the learning process becomes a partially observable Markov Decision Process (MDP) [12],
making it difficult to generalize a reasonable policy due to the lack of information.

Although recent works have investigated RL-based floorplanning, these arts face training inef-
ficiencies due to the high complexity of the floorplanning and the sparse reward challenge. Fun-
damentally different from prior methods, We propose an end-to-end RL methodology with a hind-
sight experience replay technique, which can efficiently explore the solution space and learn from
previous poor-quality floorplans. An edge-aware graph attention network (EAGAT) is devel-
oped as an encoder to extract the netlist information. Compared with the traditional graph neural

network (GNN), the proposed EAGAT can not only encode the netlist’s connection relations but

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:3

also realize the information interaction between macros. Besides, we build a hierarchical decoder
based on the encoder part of Transformer architecture [13] to carry out the multi-actions. Because
the aggregation pattern in transformer is global and input-dependent, each macro can capture the
global information on the current floorplan structure. Our main contributions are summarized as
follows:

— An end-to-end RL-based floorplanning methodology is proposed to greatly reduce the action
space without representation loss, including a novel representation state and multi-action
mechanism.

— An edge-aware graph attention network (EAGAT) is developed to encode edge informa-
tion between macros (nodes) and further realize the feature interactions between nodes and
edges.

— A transformer-based hierarchical policy network is leveraged to output multi-actions, en-
abling each macro to capture the entire floorplan structure information.

— A hindsight experience replay technique is presented for chip floorplanning, which allows
sample-efficient learning from a huge floorplan solution space.

The rest of this article is organized as follows: Section 2 presents the preliminaries and then gives
the floorplanning problem formulation. Section 3 describes the proposed end-to-end floorplanning
methodology in detail. Section 4 records the experimental results, followed by the conclusions in
Section 5.

2 PRELIMINARIES

2.1 Reinforcement Learning

Reinforcement learning can be formulated as an infinite-horizon Markov Decision Process

(MDP), which is defined by a tuple (S,A,p0,p,R,γ ). Considering an MDP, the initial state s0 ∈ S
is sampled from an initial distribution p0. At each timestep t , the agent takes an action at ∈ A
according to the policy π (at | st ). When the environment receives at , it produces a reward signal
rt ∈ R and transfers to a next state st+1 ∈ S based on the transition distribution p. The goal of RL is
to optimize the expected discounted cumulative return Eπθ

[
∑∞

k=0 γ
krt+k |st ], where θ denotes the

network parameters and γ ∈ (0, 1) is the discount factor.

2.2 Floorplanning Formulation

Let M = {m1, . . . ,mn} be a set of rectangular macros, where each macro mi has a width wi and
a height hi , and N = {n1, . . . ,nm} indicates a netlist, which describes the connection relations
among macros. Besides, let oi represent the orientation of macromi ; oi = 1 if the macro is rotated
by 90 degrees, else oi = 0. A floorplan f needs to simultaneously assign the coordinate (xi ,yi )
and the orientation oi to each macromi to minimize area and wirelength metrics with no overlap
between any two macros. The objective function of floorplanning is defined in Equation (1):

min
f

A(f ) + η · W(f ), (1)

where η is a coefficient, and A(·) and W(·) refer to the area and wirelength function, respec-
tively. The wirelength is estimated by the half-perimeter wirelength (HPWL) model, which
is the most common approximation method for wirelength. The specific calculation of HPWL in
Reference [14] is as follows:

HPWL =
∑

i

{(
max
b ∈i

{xb } − min
b ∈i

{xb }
)
+

(
max
b ∈i

{yb } − min
b ∈i

{yb }
)}
, (2)

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



56:4 B. Yang et al.

Fig. 1. (a) The O-tree representation of a floorplan with five blocks is (0011001101, aecbd) and the root r is a

dummy node; (b) the encoding of the corresponding O-tree.

where i and b are the indexes of the hypernet and the macro, and xb and yb represent the coordi-
nates of the macro b.

2.3 O-tree Representation

O-tree is a rooted ordered tree representing a non-slicing floorplan, which is encoded as a tuple
(T ,π ) [15]. The bit string T is a realization of the tree structure, where a “0” means a traversal
descends an edge in the tree, and a “1” indicates when it ascends an edge in the tree. The permu-
tation π is the label sequence when we traverse the tree in the depth-first search (DFS) order.
Thus, given a floorplan with n rectangular blocks, n(2 + �lgn�) bits are required to store the tuple
with 2n bits for T and n lgn bits for π . Given an O-tree representation, it takes only linear time to
construct the placement and its constraint graph, i.e., O(n). An example of O-tree representation
is shown in Figure 1(a).

3 END-TO-END METHODOLOGY

In this section, we elaborate the proposed end-to-end floorplanning methodology. First, a rein-
forcement learning model is built for the floorplanning problem. Then, the developed end-to-end
floorplanning network is illustrated in detail. Finally, a novel reinforcement learning technique
called hindsight experiential replay is fully described.

3.1 Reinforcement Learning Formulation

3.1.1 Netlist Graph. As depicted in Section 2.2, a netlist is a description of the connectivity of an
integrated circuit with each net containing macros that need to be interconnected by metal wires
in the physical design. Generally, it is difficult for deep neural networks to directly extract the
connection relationships in netlist. But, inspired by the simple fact that circuit netlist is a graph, as
shown in Figure 2, the circuit topology representation can be generated through the graph neural
network. Occasionally, a metal wire may connect more than two macros in a net. To represent
the case in the graph, an edge is introduced between any two macros to form a clique [16]. For
example, a net with k macros builds a k-clique, and all the edges in the clique receive a weight of
2/k . We define the summation of the weights received by an edge as the edge’s connection degree.
Thus, the circuit netlist is represented by an undirected graph G(V ,E), where V denotes the set
of circuit macros (nodes), while E is an n × n adjacency matrix with Ei j = ci j if nodes i and j are
connected by an edge (ci j refers to the connection degree), otherwise Ei j = 0.

3.1.2 Action Design. Considerable action space brings a critical challenge for deep reinforce-
ment learning algorithms. Thus, to apply reinforcement learning to the floorplanning task with

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:5

Fig. 2. The graph structure of a gate-level circuit.

Fig. 3. The diagram of the proposed MDP model, where the RL agent sequentially places circuit macros onto

the chip.

high computation complexity, it is crucial to design a suitable action mechanism to simplify the
action space. In the past few decades, several representations methods for non-slicing floorplan
structures have been presented, including Sequence Pair [1], O-tree [15], B*-tree [17], Transitive

Closure Graph with a packing sequence (TCG-S) [18], and Corner Block List (CBL) [19].
In this work, we choose the well-designed O-tree representation, which is more concise than oth-
ers. Figure 1(b) depicts the horizontal O-tree for the non-slicing floorplan shown in Figure 1(a).
However, the O-tree floorplan representation must be encoded as a 2(n − 1) bits string T and a
permutation sequence π obtained by the DFS on the tree. To simplify the representation, we re-
place the bit stringT with another stringT ′ to fit the output of the neural network. For example, in
Figure 1(b), given the root (virtual) node r representing the left boundary of the floorplan, string
T ′ is {rarcr }, where the ith component refers to the parent node of the ith element in π . As a
result, only 2n�lgn� bits are used to store the new tuple (T ′,π ). Meanwhile, based on the new
representation, we can directly determine the positions of each macro on the floorplan.

Since the RL agent sequentially places circuit macros onto the chip, we propose a multi-action
mechanism to determine the position and orientation of a macro at each timestep. That is, for a
current macro to be placed, we should establish its position relationship with all placed macros and
simultaneously determine its placed orientation. For a better understanding, Figure 3 illustrates
the sequential decision process to progressively generate the tuple (T ′,π ). At each timestep, the
first sub-action is to select one macro, called adjacency macro, whose bottom-right corner is
the new insertion position. It is important to ensure that the Depth-First Search (DFS) order is
maintained while traversing the positions. The next sub-action determines which macro should
be placed at the current step. This selection is referred to as the macro index. Finally, the last
sub-action, called macro direction, involves assigning an orientation to the chosen macro, i.e.,
rotated (1) or not (0).

3.1.3 Floorplan Structure Extraction. Given the original netlist graph G, the EAGAT encoder
only extracts topological information between macros, while features of the floorplan structure
cannot be perceived. Since the floorplan structure reflects the relative positions between macros,
it directly influences the chip area. To capture the structure information, previous works [8, 9, 11]
introduce the coordinate of the macro into the node feature. But, in fact, the receptive field of the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



56:6 B. Yang et al.

Fig. 4. The binary tree-based floorplan structure.

nodes in a graph neural network can only increase gradually with the number of layers. With a
limited number of layers, even two closely placed macros may have no information interaction. In
this article, we develop a trick to explicitly construct the structure information without altering
the topological information extraction. As shown in Figure 4, the partial floorplan structure is
expressed as a binary tree structure proposed in Reference [17]. For macro mi with a width wi

and a height hi , we specify the macro’s coordinate as (xi ,yi ). If the macro mj is located on the
right-hand side and adjacent to macro mi in the floorplan, i.e., x j = xi + wi and yj = yi , then
we setmj as the left child ofmi in the binary tree. Similarly, ifmj is the right child ofmi , then the
macromj is located above and adjacent to the macromi , with x j = xi and yj = yi + hi .

After obtaining the binary tree-based floorplan structure, we directly convert it into another

undirected graph Ĝ, which is used to supplement the lack of floorplan structure information in

netlist graph G. For example, if an edge in Ĝ connects node i and node j but is not attached in G,
we then add a corresponding undirected edge in G. The connection degree of the added edge is
set to zero, i.e., ci j = 0, indicating the original connection relations among circuit macros are not
broken. As a result, we can use the graph neural network to extract two kinds of features on the
renewedG, namely, topological information and structural information. As the macros are placed
sequentially, the netlist graph G will be updated at each timestep.

3.1.4 Reinforcement Learning Model. In this work, we target the chip floorplanning problem,
and the RL agent sequentially places circuit macros to feasible positions on the layout, as presented
in Figure 3. Based on the key components described above, the reinforcement learning model for
floorplanning is defined as follows:

— State. Since the renewed netlist graph contains both topological and structural information,
we use it to represent a state. As described in Section 3.1.3, the netlist graph is dynamically
updated at each timestep. To learn effective representations for the netlist graph, node and
edge features are defined. The features of a node include the size and the coordinate of the
corresponding macro. In addition, we add an extra dimension to indicate whether the macro
has been placed and mask the coordinate information if the macro is not placed. The edge
features reflect the connection degree between nodes.

— Action. As introduced in Section 3.1.2, an action consists of three sub-actions: placement
position, ID of the macro to be placed (macro index), and orientation information. The place-
ment position is represented by the adjacency macro, because we only need to determine
which macro to place on the bottom-right to determine the placement position. Therefore,
we only need to select an index of an unplaced macro to determine the position. Com-
pared to the action design that generates the macros’ coordinates directly, the multi-action

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:7

mechanism significantly reduces the parameter space of the policy network, accelerating
the convergence of the end-to-end floorplanning methodology.

— State Transition. The policy decides the state transition, so it is deterministic.
— Reward. The floorplanning problem aims to minimize the weighted sum of area and wire-

length, as defined in Equation (1). The most straightforward approach is to adopt negative
objective function values as the reward signal in each floorplanning step. However, this leads
to a sparse reward problem, one of the biggest challenges in reinforcement learning [20]. To
address the problem, a dense reward strategy is designed, where the change in the normal-
ized area gap of the partial floorplan over two consecutive timesteps is set as a reward signal,
as shown in Equation (4).

Wt = max
i ∈Pt

(xi +wi ), (3a)

Ht = max
i ∈Pt

(yi + hi ), (3b)

дt =

(
Wt · Ht −

∑
i ∈Pt

wi · hi

)
/(Wt · Ht ), (3c)

rt =

{
дt−1 − дt , if t < n

дt−1 − дt − η · W(f ), if t = n,
(3d)

wherePt is the set of macros already placed at timestep t ,Wt (Ht ) refers to the width (height) of the
current floorplan, and n denotes the number of macros in the netlist. Equation (3c) calculates the
normalized area gap дt for the partial floorplan at timestep t . The reward rt is defined as the cost
difference between normalized area gaps over two consecutive timesteps. For the last timestep,
rt requires an additional negative wirelength value calculated by the wirelength function W(f ),
where f denotes the final floorplan structure. Thus, the cumulative reward at timestep t can be
written as:

n∑
t

rt = дt−1 − дn − η · W(f ), (4)

where η denotes a coefficient and the value is set to 0.5 during the training and inference. Based
on the reward design, the agent can consistently achieve a meaningful reward signal, regardless
of whether the objective cost changes.

3.2 Hierarchical Floorplanning Network

In this section, the proposed Hierarchical Floorplanning Network (HFN) is described in detail.
As shown in Figure 5, HFN starts with an embedding layer, followed by an edge-aware graph

attention network (EAGAT) encoder. Compared with the traditional graph attention model that
only focuses on node-level features and cannot achieve feature interaction between nodes and
edges, the proposed EAGAT encoder can effectively realize the feature interactions between nodes
and edges. The detailed calculation processes are depicted in Equations (5) to (6). Then, based on the
node features extracted by the EAGAT encoder, a transformer-based hierarchical policy network
is performed to output three sub-actions; meanwhile, a multi-layer perceptron (MLP)-based
value network provides a value estimation. Since the value network is omitted from Figure 5, we
refer to the policy network as a decoder in the subsequent sections.

3.2.1 EAGAT Encoder. Most popular network architectures share a similar Embedding & GNN
paradigm [21], which we refer to as the base model, as shown in the middle part of Figure 5. The

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



56:8 B. Yang et al.

Fig. 5. The architecture of the Hierarchical Floorplanning Network (HFN). The arrows mark the forward

process that produces three sub-actions in sequence.

input to HFN is a renewed netlist graph, which contains macro information and an adjacency ma-
trix (edge information). Then, the embedding layer transforms the input low-dimensional numeri-
cal vectors into high-dimensional dense embeddings using linear layers. Given the generated node
and edge embeddings, the developed EAGAT encoder further extracts the features of nodes and
edges. Because edge features capture the connectivity information between nodes, when edge fea-
tures are incorporated into the node representations, information interaction between highly con-
nected nodes will be adequate. As a result, highly connected nodes are placed closely to achieve the
wirelength optimization. Besides, we use the attention mechanism to perform the process of node
feature aggregation. Compared with the average pooling operation, the aggregation mechanism
adaptively learns the weights between a node and its neighborhoods. Figure 6 shows the proposed
EAGAT encoder, where each layer l mainly consists of two calculation components: multi-head
attention and position-wise feed-forward networks.

First, node embeddings are linearly projected into query Q l , key K l , and value V l . Similarly,
edge embeddings are linearly projected into edge feature El and bias term Bl . Then, we calculate
the attention score of a node i with its neighbor node j in the kth head as follows:

ak,l
i j =

Qk,l T

i Kk,l
j√

dk

+ Bk,l
ji ,

sk,l
i j =

exp(ak,l
i j )∑

t ∈Ni
exp(ak,l

it )
,

(5)

whereQk,l
i ,K

k,l
j ∈ Rdk are obtained by linear projection of input node embeddings hl

i and hl
j . B

k,l
ji

is the kth element of the bias Bl
ji ∈ RH (H : the number of heads), which is formed by the learned

linear transformation of the input edge embedding el
ji . Since the bias term Bk,l

ji is added to the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:9

Fig. 6. The proposed EAGAT encoder.

scaled dot product between the queries and the keys, edge features influence the attention process.
Besides, Ni denotes the set of the neighbors of node i in the netlist graph. The calculated attention

score sk,l
i j indicates the weight on the edge from node j to node i .

Based on the attention mechanism, node and edge embeddings are updated as:

pk,l
i =

∑
j ∈Ni

sk,l
i j concat

(
V k,l

j ,E
k,l
ji

)
,

pl
i = concat

(
H
k=1p

k,l
i

)
+ (1 − β)hl

i ,

ql
ji = concat

(
H
k=1a

k,l
i j

)
+ el

ji ,

(6)

where V k,l
j ∈ Rdk is the learned linear transformed node embedding. Ek,l

ji is the kth element of

the edge feature El
ji ∈ RH , obtained by transforming edge embedding. hl

i and el
ji refer to the input

node and edge embedding of the layer l , and β denotes a learnable parameter. Besides, concat
represents the concatenation operation.

Following the multi-head attention module, the feed-forward sublayer consists of two consec-
utive position-wise fully connected linear layers with a non-linear activation in between, such as
Leaky_ReLU [22]. Note that at each timestep, two different types of nodes are fed into the HFN,
i.e., placed and unplaced nodes. To produce specific information about different types of nodes,
inspired by VLMo [23] and mixture-of-experts networks [24], we introduce a mixture of modal-

ity experts (MoE) as a substitute for the feed-forward network (FFN), where each MoE block
captures more interaction by switching to different modality experts. Three modality experts are
defined: unplaced expert (U-FFN), placed expert (P-FFN), and hybrid expert (H-FFN), as
shown in the dashed lines in Figure 6. In the shallow layer of the HFN architecture, we adopt

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



56:10 B. Yang et al.

U-FFN and P-FFN to encode the corresponding node features, respectively. H-FFN is then used at
the deep layer to capture more modality interaction. The final node and edge features are calcu-
lated as follows:

hl+1
i =MoE(pl

i ) + pl
i ,

el+1
ji = FFN(ql

ji ) + ql
ji ,

(7)

where MoE represents the defined three modality experts. Since edge features are inserted into
the calculation of attention scores, which are further adopted to update both node and edge em-
beddings, the information interactions between nodes and edges are effectively realized. More
importantly, due to the inner product operation, effective feature crosses are achieved, providing
additional interaction information beyond individual features [25].

3.2.2 Transformer-based Hierarchical Policy Network. Given the extracted features of nodes in
the netlist graph, the transformer-based hierarchical policy network needs to output three sub-
actions, namely, placed position, ID of the macro to be placed, and orientation information, as
depicted in Figure 5.

First, the encoder part of Transformer [13] is adopted to determine a placed position on the
current partial floorplan, which contains a self-attention layer and a feed-forward network. The
inputs to the transformer model are all legal positions that satisfy the DFS order, as described in
Section 3.1.2. Since choosing a placed location corresponds to selecting one of all placed macros
whose lower right corner is placed there, the output is a adjacency macro representing the first
sub-action. Besides, we apply the softmax function on the network output to get the probability
distribution of all legal positions.

Next, we exploit the pointer network [26] to determine which macro to be placed, i.e., to output
the macro index as the second sub-action. The macro information chosen by the adjacency macro,
which includes size and coordinates, is transformed into a query vector q̂ ∈ Rdv through a linear
layer, while the all unplaced macro features from the encoder are mapped into key vectors. The
calculation procedures of the pointer network are described in Equation (8).

ui = tanh

(
q̂Tk̂i√
dv

)
, pi =

exp(ui )∑
j ∈Ut

exp(uj )
, (8)

where k̂i ∈ Rdv is the transformed feature vector of the unplaced macro i , and Ut denotes the set
of all unplaced macros at timestep t .

Finally, the cross-attention mechanism [13] is further employed to decide the orientation of the
currently placed macro. We first permute the possible orientations and corresponding positions
of the macro selected by the macro index and then linearly embed the information into queries.
Meanwhile, the macro features output by the EAGAT encoder are linearly projected into keys and
values. By performing the cross-attention with the softmax activation function, the probability dis-
tribution of all possible orientations is produced. Once the placed macro’s orientation is achieved,
we directly insert it into the placed position generated by the first sub-action.

Throughout the entire forward pass of placing one macro, the data stream passes sequentially
through the encoder and the three parts of the decoder. Since the previous sub-actions are embed-
ded as a query to the next sub-action decoder, the multi-action mechanism is still a strict MDP
model.

3.3 Hindsight Experience Replay

Unlike current model-free RL algorithms, humans can learn almost as much from undesirable out-
comes as from desired ones [27]. For example, a standard RL algorithm would learn little from the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:11

Fig. 7. The process of the hindsight experience replay for floorplanning.

cases of failed trajectories, hindering the exploration of solution space. The ineffective exploration
is infinitely magnified in solving floorplanning with a vast solution space, resulting in a highly long
learning time. To realize sample-efficient learning, a hindsight experience replay technique [27] is
presented for floorplanning. The idea behind it is elementary: After experiencing some episodes,
we store them in the replay buffer and change the sizes of the macros and the connections between
them to reach a designed goal. The updated state is then passed back to the neural network and
enforces the network to perform the previous actions repeatedly. Thus, the process is similar to
supervised learning.

Figure 7 illustrates the process of updating a state. To satisfy area optimality, we constantly
adjust each macro’s top and right-hand edges to fill in as much whitespace as possible without vio-
lating the density constraint. Accordingly, to optimize the wirelength metric, closely placed macros
are allocated to more connection degrees. In this case, swapping the position of any two macros
will increase the wirelength, which has been proved in Reference [28]. Through these operations,
the updated higher-quality floorplans are stored in the buffer. By the supervised learning method,
we force RL agents to learn the stored knowledge and improve exploration efficiency. Since the
hindsight experience replay technique can be combined with an arbitrary off-policy RL algorithm,
no additional optimization tasks are introduced into our end-to-end floorplanning methodology.

4 EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed end-to-end RL methodology using aca-
demic benchmarks and presents several ablation experiments.

4.1 Experiment Setting

The implementation of our methodology is in Python with Pytorch [29], and we execute it on
a Linux server with one Nvidia GeForce RTX 3090 GPU. We first train the RL model using the hind-
sight experience replay technique and then test it on representative MCNC [30] and GSRC [31]
benchmarks, including five MCNC circuits (ami33, ami49, apte, hp, and xerox), and six GSRC cir-
cuits (n10, n30, n50, n100, n200, and n300). Besides, we manually generated a larger netlist “de-
sign” to further verify the effectiveness of our method. The macros in the netlist have the same
size ranges as the publicly available benchmarks n200 and n300, while the connection relation-
ships are adjusted to be consistent with the actual netlist connections. We have open-sourced the
netlist on GitHub.1 Since the macro sizes in these benchmarks vary considerably, which poses a
significant challenge to the end-to-end methodology, a fast post-processing is further adopted to
fine-tune macros’ coordinates and orientations.

1https://github.com/yangbo19/Floorplanning-with-EGAT-and-HER

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.

https://github.com/yangbo19/Floorplanning-with-EGAT-and-HER


56:12 B. Yang et al.

Table 1. Comparison with State-of-the-arts on MCNC and GSRC Benchmarks

(Area Unit:×106μm2 , Wire Unit:×105μm , RT Unit:s)

Circuit #Macro #Net
SA ICCD’20 [7] KDD’22 [11] Ours

Area Wire RT Area Wire RT Area Wire RT Area Wire RT

apte 9 97 47.310 3.43 38 47.080 4.03 16 − − − 47.080 3.22 24
xerox 10 203 20.640 6.62 99 20.420 6.33 17 − − − 20.403 5.80 25

hp 11 83 9.400 2.62 44 9.210 1.95 12 − − − 9.233 1.98 31
ami33 33 123 1.275 0.59 82 1.240 0.69 43 − 0.82 − 1.235 0.64 102
ami49 49 408 39.053 14.22 165 38.650 17.24 67 − 13.75 − 38.028 13.25 242
n10 10 118 0.238 0.18 32 0.239 0.17 18 − 0.41 − 0.234 0.14 30
n30 30 349 0.228 0.48 67 0.223 0.49 52 − 1.12 − 0.218 0.46 74
n50 50 485 0.221 0.99 132.3 0.215 1.02 89 − 1.63 − 0.211 0.95 301
n100 100 576 0.205 1.54 396 0.195 1.55 389 − 3.37 − 0.190 1.37 1,513
n200 200 1,274 0.207 3.34 1,102 0.215 3.48 785 − 3.52 − 0.197 3.26 3,875
n300 300 1,632 0.329 5.44 2,062 0.340 5.25 3,767 − 4.77 − 0.301 4.86 8,322

design 500 2,746 0.694 8.12 5,203 0.688 7.72 6,203 − − − 0.662 7.11 16,101

average 109 675 9.983 3.96 785 9.892 4.16 955 − − − 9.833 3.59 2,553

4.2 Baselines

To verify the effectiveness of our end-to-end floorplanning methodology, in addition to comparing
the Simulated Annealing (SA) algorithm, we also compare with two state-of-the-art reinforce-
ment learning-based floorplanners, including ICCD’20 [7] and KDD’22 [11].

SA: Simulated annealing-based floorplanning relies on the representation of the geometric re-
lationship among macros. The objective metric is optimized by introducing perturbations into
the floorplan representation through an annealing schedule process. Although the SA algorithm
adopts a hill-climbing technique to escape from the locally optimal solution, when faced with the
complex floorplanning problem, there is still a high probability of getting trapped in local optima
even if the number of iterations increases. For a more fair comparison, we conduct a batch of ex-
periments to adjust the parameters of simulated annealing and report the best results. The initial
temperature is chosen within the range of 106 and 108, while the termination temperature is set at
10−11. The number of iterations ranges from 50 to 200, and the cooling rate is fixed at 0.97. Upon
reaching the termination temperature, the SA algorithm is halted, and the result is recorded. The
Sequence Pair (SP) is adopted as the floorplan representation. Additionally, the neighborhood
function remains consistent with Reference [7].

ICCD’20 [7]: ICCD’20 exploits a Q-learning algorithm to explore the local search heuristic for
floorplanning. As in SA, perturbations are randomly sampled based on the current solution. Then,
the manual features are defined for each solution and fed into an MLP to estimate the acceptance
probability. Finally, the solution with the highest probability is selected at inference time. The
process is continued until a predefined termination condition is reached. Thus, the runtime of
ICCD’20 is dependent on the termination condition.

KDD’22 [11]: Following Google’s approach, KDD’22 also formulates floorplanning as a sequen-
tial decision-making process and each time the network needs to simultaneously output the ID and
position of the macro to be placed. Besides, the CBL floorplan representation is exploited to reduce
the redundant output of the grid-based action space.

4.3 Comparison with Baselines

Table 1 compares our methodology with all baselines on GSRC, MCNC and “design” benchmarks.
Columns “#Macro” and “#Net” are the number of macros and nets in each benchmark circuit.
Columns “Area” and “Wire” represent the area and wirelength costs of the generated floorplan,
while “RT” denotes the average runtime of the approaches. As the areas are not reported in KDD’22,

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:13

Table 2. Area Minimization on MCNC and GSRC Benchmarks (Area Unit:×106μm2, RT Unit:s)

Circuit #Macro #Net
SA ICCD’20 [7] Ours

Area RT Area RT Area RT

ami33 33 123 1.224 79 1.224 55 1.222 98
ami49 49 408 37.960 155 38.133 72 37.487 233
n100 100 576 0.187 407 0.185 399 0.181 1,429
n200 200 1,274 0.196 1,048 0.198 902 0.190 3,598
n300 300 1,632 0.299 2,525 0.306 3,542 0.289 7,996

average 137 803 7.973 843 8.009 994 7.874 2,671

Table 3. Wirelength Minimization on MCNC and GSRC Benchmarks (Wire

Unit:×105μm, RT Unit:s)

Circuit #Macro #Net
SA ICCD’20 [7] Ours

Wire RT Wire RT Wire RT

ami33 33 123 0.39 88 0.40 49 0.36 93
ami49 49 408 7.12 172 7.33 69 7.03 244
n100 100 576 1.22 403 1.25 411 1.09 1,498
n200 200 1,274 2.96 1,109 2.99 912 2.91 3,735
n300 300 1,632 4.63 2,133 4.54 3,744 4.47 8,134

average 137 803 3.26 781 3.30 1,037 3.17 2,741

we only list the wirelength results. The better results are emphasized in bold in the table. We can
see that, compared to SA, ICCD’20 [7], and KDD’22 [11], our methodology achieves 10.58%, 12.18%,
and 73.99% wirelength improvements, and 3.88%, 2.99% reductions in area, demonstrating that our
methodology can effectively produce high-quality chip floorplan. In particular, thanks to the pro-
posed EAGAT architecture, the wirelength optimization is quite obvious. Note that the wirelength
improvement is derived as follows: First, we separately calculate the wirelength improvements
of our method over other works on each benchmark. Then, the improvement values on all bench-
marks are averaged to achieve the final results. Besides, since the macro sizes vary considerably in
different circuits, the experimental results also reflect that our method can generalize to different
types of netlists. The reason is that the built RL model greatly reduces the action space without rep-
resentation loss, as described in Section 3.1. While the runtime of our method is longer than other
non-end-to-end approaches, i.e., SA and ICCD’20, it is negligible compared to the long runtime
of the entire chip design process. We further verify the performance of the proposed methodol-
ogy on the area and wirelength minimization problems. For the area minimization, we train our
RL model with the objective function defined in Equation (1) but only take the area optimization
into account and correspondingly remove rewards related to area from the reward function dur-
ing inference. That is, for area optimization, we set η in Equation (4) to 0. A similar procedure is
for wirelength minimization; we only consider the final wirelength as the reward for wirelength
optimization. The results are listed in Table 2 and Table 3. We notice similar performance results
to those in Table 1, which further demonstrate the superiority of our methodology.

To visualize the comparison results, Figure 8 shows the floorplan of ami49 circuit generated
by SA and our end-to-end methodology, respectively. Obviously, our method produces a more
compactly placed floorplan with less whitespace.

4.4 Transferability Study

To verify the transferability of our proposed floorplanning methodology, another experiment is
conducted based on two settings, as shown in Table 4. We first divide the training netlists into

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



56:14 B. Yang et al.

Fig. 8. Visualization of ami49 floorplans from (a) SA algorithm; (b) the proposed end-to-end methodology.

Table 4. Comparison of the Transferability Performance of the Proposed

Methodology and ICCD’20 [7]

Setting Circuit Method
Area Wire RT

Trans. Orig. Trans. Orig. Trans. Orig.

Group1

↓
Group2

ami33
Ours 1.242 1.235 0.66 0.64 113 102

ICCD’20 1.257 1.240 0.73 0.69 49 43

ami49
Ours 38.503 38.028 13.10 13.25 251 242

ICCD’20 39.102 38.65 17.11 17.24 78 67

Group2

↓
Group1

n100
Ours 0.195 0.190 1.47 1.37 1,598 1,513

ICCD’20 0.208 0.195 1.69 1.55 402 389

n200
Ours 0.204 0.197 3.31 3.26 3,903 3,875

ICCD’20 0.231 0.215 3.59 3.48 831 785

n300
Ours 0.315 0.301 4.88 4.86 8,411 8,322

ICCD’20 0.352 0.34 6.33 5.25 4,014 3,767

Group3

↓
Group4

apte
Ours 47.245 47.080 3.34 3.22 29 24

ICCD’20 47.313 47.080 4.15 4.03 21 16

xerox
Ours 20.489 20.403 6.53 5.80 31 25

ICCD’20 20.633 20.420 6.52 6.33 24 17

hp
Ours 9.394 9.233 2.01 1.98 39 31

ICCD’20 9.454 9.210 1.98 1.95 17 12

Group4

↓
Group3

n10
Ours 0.242 0.234 0.16 0.14 38 30

ICCD’20 0.245 0.239 0.18 0.17 23 18

n30
Ours 0.224 0.218 0.50 0.46 82 74

ICCD’20 0.231 0.223 0.48 0.49 59 52

n50
Ours 0.215 0.211 0.99 0.95 346 301

ICCD’20 0.219 0.215 1.05 1.02 105 89

Groupi → Groupj means the model is trained on Groupi and tested on the netlists

with the different distribution as Groupj and vice versa. (Area unit:×106μm2, Wire

unit:×105μm, RT unit:s .)

two groups, where Group1 (Group2) represents that the number of the macro is greater (less) than
100, and the training netlists with the identical distribution include n100, n200, and n300 (ami33
and ami49). In addition, to further validate the transferability between different types of designs,
we partition two additional groups, where Group3 comprises the training netlists with the same
distribution as GSRC, including n10, n30, and n50. Group4 is composed of training netlists with an
identical distribution to MCNC, including apte, xerox, and hp. Columns “Trans.” and “Orig.” denote

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:15

Fig. 9. Comparison of agents trained using PPO algorithm with and without HER technique on the ami49

netlist.

Table 5. Ablation Study of the MOE Block (Area Unit:×106μm2,

Wire Unit:×105μm, RT Unit:s)

Circuit #Macro #Net
FFN MoE

Area Wire RT Area Wire RT

ami33 33 123 1.263 0.67 133 1.235 0.64 102
ami49 49 408 38.533 15.22 271 38.028 13.25 242
n100 100 576 0.197 1.57 1,645 0.190 1.37 1,513
n200 200 1,274 0.211 3.28 3,987 0.197 3.26 3,875
n300 300 1,632 0.317 5.10 8,573 0.301 4.86 8,322

average 137 803 8.104 5.17 2,922 7.990 4.68 2,811

the transferability result and the original data, as listed in Table 1. As shown in the table, when the
network model is tested on the netlists with different distributions, there is a certain degradation
in performance. However, our methodology still behaves better than ICCD’20 [7], demonstrating
that the proposed approach can generalize the prior learned knowledge to new unseen netlists.

4.5 Ablation Studies

4.5.1 Hindsight Experience Replay. An ablation experiment is performed in Figure 9 to explore
the impact of the hindsight experience replay (HER) technique on the performance. “PPO” and
“PPO+HER” refer to the models trained using the proximal policy optimization algorithm

(PPO) [32] without and with the HER technique, respectively. The experiment is performed on
the ami49 netlist. As shown in the figure, the PPO algorithm with the HER technique starts from
a lower floorplan cost at the beginning of the inference process and ultimately produces better
results. It demonstrates that the HER technique can not only generalize the prior knowledge of
other netlists but also combine well with RL learning algorithms to achieve significant performance
gains.

4.5.2 MoE Block. We also investigate how the MoE block affects performance. As described
in Section 3.2.1, a mixture of modality experts (MoE) is proposed to capture information inter-
action between different types of nodes. In the comparison case, we replace the MoE blocks in
the EAGAT encoder with a simple feed-forward network (FFN), that is, all types of node fea-
tures are aggregated through the same neural network for non-linear transformation. As shown in
Table 5, the MoE blocks produce better floorplan results, demonstrating that MoE blocks used in
the EAGAT encoder positively contribute to the network architecture.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



56:16 B. Yang et al.

5 CONCLUSION

In this work, we have proposed an end-to-end RL-based floorplanning methodology, which jointly
learns an EAGAT encoder and a hierarchical policy network with a transformer backbone. The
developed EAGAT encoder realizes the efficient interactions of node and edge information. Mean-
while, a mixture of modality experts are introduced in the encoder to capture specific information
for each type of node. In addition, the proposed hindsight experience replay technique allows
the RL model to benefit directly from valuable experience and be trained efficiently, which pro-
vides a good training scheme for applying reinforcement learning to combinatorial optimization
problems. Experimental results demonstrate that our methodology outperforms previous state-of-
the-art methods on various circuit benchmarks.

REFERENCES

[1] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. 1996. VLSI module placement based on

rectangle-packing by the sequence-pair. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 15, 12 (1996), 1518–1524.

[2] K.-S. The and D. F. Wong. 1991. Area optimization for higher order hierarchical floorplans. In IEEE International

Conference on Computer Design (ICCD’91). 520–521.

[3] Tung-Chieh Chen and Yao-Wen Chang. 2005. Modern floorplanning based on fast simulated annealing. In ACM Inter-

national Symposium on Physical Design (ISPD’05). 104–112.

[4] Song Chen and Takeshi Yoshimura. 2008. Fixed-outline floorplanning: Block-position enumeration and a new method

for calculating area costs. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 27, 5 (2008), 858–871.

[5] Jingwei Lu, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-Chih Chang, Yiu-Chung Wong, Lu Sha, Dennis

Huang, Yufeng Luo, Chin-Chi Teng, and Chung-Kuan Cheng. 2015. ePlace-MS: Electrostatics-based placement for

mixed-size circuits. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 34, 5 (2015), 685–698.

[6] Chung-Kuan Cheng, Andrew B. Kahng, Ilgweon Kang, and Lutong Wang. 2018. Replace: Advancing solution quality

and routability validation in global placement. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 38, 9 (2018), 1717–1730.

[7] Zhuolun He, Yuzhe Ma, Lu Zhang, Peiyu Liao, Ngai Wong, Bei Yu, and Martin D. F. Wong. 2020. Learn to floorplan

through acquisition of effective local search heuristics. In IEEE International Conference on Computer Design (ICCD’20).

324–331.

[8] Qi Xu, Hao Geng, Song Chen, Bo Yuan, Cheng Zhuo, Yi Kang, and Xiaoqing Wen. 2021. GoodFloorplan: Graph convo-

lutional network and reinforcement learning-based floorplanning. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 41,

10 (2021), 3492–3502.

[9] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee,

Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc

V. Le, James Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. 2021. A graph placement methodology for fast chip

design. Nature 594, 7862 (2021), 207–212.

[10] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrit-

twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,

Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis

Hassabis. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[11] Mohammad Amini, Zhanguang Zhang, Surya Penmetsa, Yingxue Zhang, Jianye Hao, and Wulong Liu. 2022. Gen-

eralizable floorplanner through corner block list representation and hypergraph embedding. In ACM International

Conference on Knowledge Discovery and Data Mining (KDD’22). 2692–2702.

[12] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. MIT Press.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Il-

lia Polosukhin. 2017. Attention is all you need. In Conference on Neural Information Processing Systems (NIPS’17).

6000–6010.

[14] Khushro Shahookar and Pinaki Mazumder. 1991. VLSI cell placement techniques. ACM Comput. Surv. 23, 2 (1991),

143–220.

[15] Pei-Ning Guo, Chung-Kuan Cheng, and Takeshi Yoshimura. 1999. An O-tree representation of non-slicing floorplan

and its applications. In ACM/IEEE Design Automation Conference (DAC’99). 268–273.

[16] Sung Kyu Lim. 2008. Practical Problems in VLSI Physical Design Automation. Springer.

[17] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. 2000. B*-trees: A new representation for non-

slicing floorplans. In ACM/IEEE Design Automation Conference (DAC’00). 458–463.

[18] Jai Ming Lin and Yao Wen Chang. 2004. TCG-S: Orthogonal coupling of P*-admissible representations for general

floorplans. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 23, 6 (2004), 968–980.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.



Floorplanning with EAGAN and Hindsight Experience Replay 56:17

[19] Xianlong Hong, Sheqin Dong, Gang Huang, Yici Cai, Chung-Kuan Cheng, and Jun Gu. 2004. Corner block list repre-

sentation and its application to floorplan optimization. IEEE Trans. Circ. Syst. II: Expr. Briefs 51, 5 (2004), 228–233.

[20] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo,

and Charles Blundell. 2020. Agent57: Outperforming the Atari human benchmark. In International Conference on

Machine Learning (ICML’20). 507–517.

[21] Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. 2022. Global self-attention as a replace-

ment for graph convolution. In ACM International Conference on Knowledge Discovery and Data Mining (KDD’22).

655–665.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level

performance on ImageNet classification. In IEEE International Conference on Computer Vision (ICCV’15). 1026–1034.

[23] Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Subhojit Som, Songhao

Piao, and Furu Wei. 2022. VLMo: Unified vision-language pre-training with mixture-of-modality-experts. In Confer-

ence on Neural Information Processing Systems (NIPS’22). 32897–32912.

[24] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with

simple and efficient sparsity. J. Mach. Learn. Res. 23, 1 (2022), 5232–5270.

[25] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. 2021. DCN V2: Improved

deep & cross network and practical lessons for web-scale learning to rank systems. In the Web Conference (WWW’21).

1785–1797.

[26] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In Conference on Neural Information

Processing Systems (NIPS’15). 2692–2700.

[27] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh To-

bin, Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight experience replay. In Conference on Neural Information

Processing Systems (NIPS’17). 5055–5065.

[28] Yiting Liu, Ziyi Ju, Zhengming Li, Mingzhi Dong, Hai Zhou, Jia Wang, Fan Yang, Xuan Zeng, and Li Shang. 2022.

Floorplanning with graph attention. In ACM/IEEE Design Automation Conference (DAC’22). 1303–1308.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS Workshop.

[30] MCNC Benchmark. 2007. University of Michigan. Retrieved from http://vlsicad.eecs.umich.edu/BK/MCNCbench

[31] GSRC Benchmark. 2007. University of Michigan. Retrieved from http://vlsicad.eecs.umich.edu/BK/GSRCbench

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347 (2017).

Received 17 October 2023; revised 6 March 2024; accepted 14 March 2024

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 3, Article 56. Publication date: May 2024.

http://vlsicad.eecs.umich.edu/BK/MCNCbench
http://vlsicad.eecs.umich.edu/BK/GSRCbench

