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Abstract—Inverse lithography technique (ILT) is one of the
most widely used resolution enhancement techniques (RETs) to
compensate for the diffraction effect in the lithography process.
However, ILT suffers from runtime overhead issues with the
shrinking size of technology nodes. In this article, our proposed
L20O-ILT framework unrolls the iterative ILT optimization algo-
rithm into a learnable neural network with high interpretability,
which can generate a high-quality initial mask for fast refinement.
Experimental results demonstrate that our method achieves bet-
ter performance on both mask printability and runtime than the
previous methods.

Index Terms—Design for manufacture, mask optimization,
learning to optimize.

I. INTRODUCTION

ITH the continuous scaling-down of technology nodes,
Wthe proximity effect and optical diffraction are becom-
ing non-neglectable, which seriously affects the yield of
integrated circuits. Resolution enhancement techniques (RETSs)
are developed to reduce printing errors during the lithogra-
phy process. Optical proximity correction (OPC) is one of the
widely used RETs to compensate for lithography proximity
effects by correcting mask pattern shapes and inserting assist
features.

Typical OPC methodologies include model-based
approaches [1], [2], [3] and inverse lithography technol-
ogy (ILT)-based methods [4], [5], [6], [7], [8], [9]. For
model-based OPC, the edges of polygons in the mask are
first divided into segments, and these edges are moved under
the guidance of the lithography simulation model. ILT-based
methods represent the mask as a pixel-wise function [4], [5],
[6], [7], [10] or level-set function [8], [9], [11], [12]. Then,
the OPC process is modeled as an inverse problem, which
can be effectively solved by optimizing the misfit between the
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printed image on the wafer and the target pattern. Compared
with model-based methods, ILT-based methods optimize the
mask within a larger solution space and thus achieve better
performance.

ILT algorithms usually adopt iterative methods, such
as gradient descent to optimize the objective func-
tion, which requires a lot of iterations for convergence.
Although ILT has shown satisfactory performance on mask
optimization [13], [14], [15], the shrinking size of the tech-
nology node and increasing complexity of mask patterns pose
significant challenges to the runtime overhead. There have
been many exciting explorations of ILT acceleration in recent
years, and these works can be generally divided into two
categories. The first one is to design GPU-accelerated algo-
rithms by fully utilizing the massive computing resources in
GPUs. For example, Yu et al. [8] relied on the CUDA toolkit
to implement a GPU-accelerated Fourier transform algorithm,
accelerating a critical and time-consuming step in the lithog-
raphy simulation model. The second one is to learn the whole
ILT solver using stacked convolutional layers. As illustrated
in Fig. 1(b), related methods [5], [6], [7], [9] utilize a pre-
trained CNN-based generation model such as GAN [16], [17]
or U-Net [18], [19] to quickly approximate an initial mask
solution of the test target and then conduct further refine-
ments on the initial mask to improve the solution quality. We
summarize these methods as “generative ILT.”

Although ILT acceleration has made signification progress
with the push of previous works [5], [6], [7], [8], [9], there
are still some issues with these methods. GPU-accelerated ILT
mainly focuses on accelerating the runtime of each iteration
but does not necessarily reduce the number of iterations,
thus still causing a long time to execute the entire algo-
rithm. For example, the GPU-accelerated algorithm GLS-ILT
proposed in [8] still spends around 100.1 s optimizing a
2048 %2048 mask clip, which is unacceptable, especially when
applied to a large full-chip mask. We hope that such an
optimization task should be finished within a few seconds,
and only in this way can we achieve efficient VLSI design.
As for “generative ILT” depicted in Fig. 1(b), the initial mask
solution approximated by the generation model may contribute
to reducing the number of iterations, effectively improving
the ILT runtime. However, there still exist some drawbacks.
(1) According to our empirical study, we find that the quality
of the initial solution is always low, thus demanding a long-
time refinement. Take Neural-ILT [7] as an example, when
evaluated on the ICCAD 2013 benchmark [20], the average
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Fig. 1.

L, loss between the target image and the wafer image of the
initial mask is around 74023.7. Such a loss result is far away
from their final loss result after refinement (37515.30) [7].
Even though the initial mask can be generated within 0.1 s by
Neural-ILT [7], it still takes a significant amount of iterations
for refinement. We suppose that such a drawback is mainly
caused by the black-box nature of generation models. We are
unaware of what these black-box models learn during the train-
ing process. The structures of these models are not specifically
customized for mask optimization tasks, making it challeng-
ing to capture the domain-specific knowledge of OPC. (2) To
model the ILT process more accurately, some works [21], [22]
adopt convolution kernels with the same size as optical ker-
nels in the lithography process. However, the optical kernel
is usually large, e.g., 35x35, and convolving such a kernel
with a 2048x2048 mask consumes excessive computation
resources. Therefore, these works fail to achieve acceleration
on large-scale OPC problems. Moreover, to reduce the model
complexity, these models are usually built on simple ILT algo-
rithms [23], [24], which only consider optimizing the design
target under the nominal process condition but neglect the
process window with different process corners.

In this work, we propose L20-ILT, a deep learning-based
framework keeping both advantages of conventional ILT and
“generative ILT” and overcoming their issues. The basic
framework is illustrated in Fig. 1(c), which is totally differ-
ent from previous methods [5], [6], [7], [8], [9]. The novel
ILT method is inspired by the learning-to-optimize (L20)

test target images  final mask images

=]

T

=

high-quality
initial mask images

efficient
refinement

learned L20-
ILT model

Three ILT acceleration methodologies. (a) GPU-accelerated ILT. (b) Generative ILT. (c) Learning to optimize ILT.

scheme [25], [26], [27], [28], [29] in machine learning, which
aims to incorporate prior knowledge of the optimization algo-
rithm into a learning model. Specifically, we build up an
ILT-inspired learning model by unrolling the entire algorithm.
The structure of our model is no longer stacking convolu-
tional layers like previous methods [5], [6], [7], [9]. Instead,
each layer is customized to represent each iteration of the
ILT algorithm. This representation projects the ILT problem
into a hyperspace that can be more efficiently solved by deep
learning algorithms. And the model training can be regarded
as automatically tuning the algorithm parameters, which are
hand-crafted in the conventional ILT algorithm. In addition,
such a model is inherently equipped with interpretability
and prior knowledge of mask optimization, which will con-
tribute to robustness and ensure a high-quality initial mask
for efficient refinement. Besides, a specialized optimization
mechanism called alternating optimization is designed for our
model to jointly optimize the printed image under different
process conditions. An adaptive solution space is developed
to accelerate the convergence rate of our algorithm while sav-
ing computation resources. We summarize the contributions of
this article as follows.

1) A deep learning-based and ILT-inspired neural network
called L2O-ILT is developed, which incorporates
domain-specific prior knowledge of mask optimization.

2) The network architecture is designed by unrolling the
ILT algorithm and modeling each iteration as a neural
network layer.
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3) We develop an alternating optimization mechanism and
an adaptive solution space method to improve the con-
ventional ILT algorithm and further the performance.

4) L20O-ILT is able to generate high-quality initial mask
solutions, which can be efficiently refined. Experimental
results show that our model achieves better performance
on both mask printability and runtime than previous
methods.

The remainder of this article is organized as follows.
Section II gives an introduction preliminaries about lithogra-
phy model and inverse lithography technologies. Section III
gives the detailed elaboration of the L20O-ILT model with
an alternating optimization strategy and an adaptive solution
space mechanism. Section IV details experimental results and
comparisons, followed by conclusion in Section V.

II. PRELIMINARIES

In this section, we will introduce the problem formulation
and some preliminary knowledge related to this work.

A. Lithography Simulation Model

During the lithography process, an input mask M is first
transformed through an optical projection system into the
aerial image I. The distribution of light intensity at the wafer
plane then undergoes development and etching processes to
form the printed image Z.

To simulate the lithography process, a mathematical model
is proposed in [30], which is composed of two components,
optical projection model and photoresist model. For the optical
projection process, the Hopkins diffraction model of the par-
tially coherence imaging system is used to approximate the
projection behavior. In mathematics, the aerial image I can
be obtained by convolving the mask M with a set of optical
kernels H, formulated as

NZ
I(x,y) =) wilM(x, ) ® hi(x, ) ()
k=1

where “®” represents the convolution operation, Ay is the
kth optical kernel of the optical kernel set H, and wy is
the corresponding weight of the coherent system. To save the
computation resources, an Njth order approximation to the
partially coherent system is proposed in [4], represented as

Ni

I(x,y) =) wilM(x, y) ® hi(x, ) )
k=1

where the kernel number N, is 24 in our work. After opti-
cal simulation, the aerial image I is input into the photoresist
model with an intensity threshold /Iy, which indicates the expo-
sure level. And the final binary printed image Z is calculated
by the following step function:

la I(-x7 y) = Ith

0, Ix,y) < I @)

Z(x,y) = {

Following the ICCAD 2013 contest settings [20], I, is set as
0.225 in our implementation.

D(z,y)
PV Band ’
I:l target outermost innermost printed o EPE
design contour contour image violation
(a) (b)
Fig. 2. (a) Visualization of PV Band measurement. (b) Visualization of EPE
measurement.

B. OPC Evaluation Metrics

Process Variation Band (PVB): In the real-world lithogra-
phy system, process variations will cause deviations in the
final printed image, leading to printing failure. Under differ-
ent lithography conditions, such as focus/defocus depth and
incident light intensity, printed images have various contour
results. PVB computes the bitwise-XOR region between the
outermost and innermost contour as shown in Fig. 2(a) to
evaluate the printing robustness.

Square L, Error: Given the target image Ziger and the
printed image Znominal, Which represents the image printed via
nominal lithography process condition, the square L, loss is
calculated as ||Znominal — Ztarget| |%

Edge Placement Error (EPE): EPE is used to evaluate the
difference of the contour between the target design Z; and
the image Znom. To calculate the EPE, a series of points are
sampled along the contour of the target design, as shown
in Fig. 2(b). If the distance D(x, y) between the target design
to the printed image is larger than an EPE constraint thgpg,
the point (x, y) is labeled as a EPE violation

1, D(x,y) > thgpg

0, D(x,y) < thgpg @)

EPE_Violation(x, y) = {

Mask Manufacturing Shot Count: Since ILT naturally gener-
ates purely curvilinear features, conventional fracturing meth-
ods require a large number of small rectangles to approximate
the shape. Mask data preparation (MDP) is used to fracture the
shapes on the masks into nonoverlapping rectangles, known as
variable shaped-beam (VSB) shots, to ensure mask printabil-
ity. The shot count is used to evaluate the complexity of mask
patterns.

With the evaluation metrics defined above, we formulate the
mask optimization problem as follows:

Problem 1 (Mask Optimization): Given a target image Z;,
the objective of mask optimization is to find a mask M, whose
printed image through the lithography process is supposed to
be close to the target image and keep stable under different
process conditions, such that the EPE, L, loss, PV Band and
manufacturing shot count are minimized.

C. Inverse Lithography Techniques

The objective of the conventional ILT-based method is to
find an optimized mask My = g‘l(Zt, Chom), Where Z; is
the design target, and g(-, Cyhom) stands for the lithography
process under the nominal process condition. Usually, we can
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not obtain the inverse function of g to compute the closed-
form solution. The optimal mask is searched by computing the
gradient of an objective function Fop; and using the gradient
to guide the adjustment of each pixel value.

To calculate the gradient, all variables during the lithogra-
phy process have to be continuous. Therefore, the binarized
and constrained pixel values of mask M and printed image
Z should be relaxed. To achieve this, we first introduce an
auxiliary and unconstrained variable P and assume that M is
determined by P. The relationship between them is depicted
by a sigmoid function in (6)

1

M= —— 5)
1 + exp (—6yP)

where 6y, defines the steepness of the sigmoid function.

Then, the whole lithography process can be represented as:
P — M — I — Z. Note that the original function that maps I
to Z is a threshold function as formulated in (3), which is also
undifferentiable. Therefore, we approximate it using another
sigmoid function

1
Z =

1+ exp (—0z(I — In))
where 6z defines the steepness and Iy, represents the inten-
sity threshold as shown in (3). In this way, the whole process
becomes differentiable and each iteration of the optimization

algorithm can be formulated as follows:

0Fop;
) A

(6)

PV = pi-b _ n (7)

where 7 is the step size of gradient descent. PY) indicates the
variable P at the jth iteration. After finally obtaining the Popt
by minimizing the objective function Fypj, we binarize Pop to
M ¢, which is the final optimized mask solution.

III. L20O-ILT ALGORITHM

In this section, we first discuss an optimization mechanism
in Section III-A called alternating optimization, which solves
the issue that the conventional ILT [4] does not achieve sat-
isfactory joint optimization of design targets under different
conditions. Then, we develop our learning model L20O-ILT
in Section III-B, where each layer is constructed based on our
proposed ILT algorithm with alternating optimization, and the
whole architecture is equipped with strong prior knowledge
and highly interpretable. The model training and refinement
strategy is explained in Section III-C and III-D. A technique
called adaptive solution space is proposed in Section III-E to
help our model accelerate the convergence rate as well as keep
the solution quality.

A. Alternating Optimization

As illustrated in Section II-C, the general implementation
of ILT-based methods is to first define an objective function of
the mask, which is then optimized using numerical approach.
Therefore, the quality of final solution is closely related to
the definition of the objective function. Given an input P, the
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Fig. 3. Change of loss terms and PV Band in (a) conventional ILT and

(b) proposed alternating optimization scheme.

classical pixel-based ILT [4] gives the objective function to be
minimized as follows:

F target — Lnominal + Lout + Lin
= ”Znominal - Ztarget”; + ”Zout - Ztarget”;

+ ”Zin - Ztarget”; 3

where Zpominal = g(P, Crominal)> Zout = &P, Cour), and Zj, =
g(P, Cip). Coyt and Cjj, stand for two extreme conditions, under
which the outer-most and inner-most images will be printed.

Under the guidance of Fiarget, the printed images under dif-
ferent process conditions are jointly pushed toward the target
pattern, which is actually a desired property of an optimized
mask. However, according to our empirical study as shown
in Fig. 3(a), we find that while all three loss terms are gradu-
ally minimized, the PV Band metric is negatively optimized.
This is because minimizing ||Zout — Ztarget! |5 + 11Zin — Ziarget| 3
cannot guarantee the minimization of ||Zyy; — Ziy| |% in math-
ematics. We also depict the change of Lyominals Lin, Lout, and
PV Band in Fig. 3(b). Therefore, although optimizing Fiarget
contributes to reducing the error between the printed image
and the real target, it results in a high PV Band value, leading
to a large process window. We call such an objective function
optimization “target-driven optimization” and we propose that
the optimization configuration is supposed to be improved.

It can be easily seen that convergence rates of all three
loss terms are drastically reduced after a certain number of
iterations. Based on such an observation, we replace sev-
eral iterations of optimizing Frager With optimizing Fpyb,
formulated as

vaband = ||Zout — Zin“% 9
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which is directly related to PV Band performance. Optimizing
Foyband can be regarded as “PV Band-driven optimization.”
Instead of optimizing a weighted sum of Fiyrger and Fpyband,
we choose to decouple the optimization of these two objec-
tives. This will make it more convenient to encapsulate basic
modules in our deep learning-based framework, which will
be shown in the following Section III-B. And according to
our experimental results shown in Fig. 3(b), we find that
alternating “target-driven optimization” and “PV Band-driven
optimization” can achieve satisfactory improvement in PV
Band while slightly affecting Lyominal, Lin, and Loy. Our
designed optimization scheme can be represented as

i—1 0Fpyband -
G _ pU )—Tlalf(,-_n,] 0 0
PY = j—1) aFlargct . (1 )
P —N3pi-n- J >0

where Q is a hyper-parameter to balance the performance of
the process window and the L, error between the printed image
and target design.

B. Model Architecture of L20-ILT

Classic ILT-based mask optimization algorithms are built
upon numerical approaches in a theoretically justified manner.
In spite of the high interpretability, the performance heavily
depends on human experiences, such as how to select appro-
priate parameters in the algorithm. Since these algorithms
are sensitive to initial conditions and parameters chosen, the
optimization results may be easily stuck in a local optimum
state. Furthermore, a large number of optimization iterations
are usually required to achieve an acceptable performance
level, and thus these algorithms can be computationally expen-
sive.

As explained in Section I, “generative ILT” methods use
learning-based models to quickly generate initial mask solu-
tions and conduct further refinement. Regardless of its higher
efficiency compared with conventional ILT, we notice that the
quality of the initial mask is always low, which still requires
a long-time correction to improve the solution quality. The
inferior mask is mainly caused by the black-box property
of generation models, structures of which are difficult to be
customized for mask optimization problems.

In accordance with the aforementioned observations, we
propose an ILT algorithm-inspired learning model, L20O-ILT,
which can generate a high-quality mask solution for fast
refinement. The structure of L2O-ILT is not simply composed
of stacking convolutional layers like “generative ILT” meth-
ods [5], [6], [7], [9]. Instead, each layer of our model is
customized with prior knowledge for mask optimization tasks.
To be specific, we unroll the entire ILT algorithm and use a
neural network layer to represent each iteration of gradient
descent as formulated in (10), where the PY and PV~ can
be regarded as the output and input of the jth layer.

Based on our proposed alternating optimization scheme
in Section III-A, two kinds of neural network layers, target-
driven block and PV Band-driven block, are, respectively,
designed as shown in Fig. 4. The architecture of L2O-ILT can
be regarded as a time-unfolded recurrent neural network. In
addition, our model can also keep the consistency advantage of

99
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Target-Driven
Gradient
Descent Block

Fig. 4. Each iteration of L20O-ILT algorithm is represented as a neural
network layer.

ILT algorithms, i.e., we can still get a similar mask even if the
pattern is offset. This is ensured by the translation invariance
property of the lithography process as proved in [31].

The computation of the Target-Driven block exactly repre-
sents P = P —1(0Farget/0P). To further illustrate the concrete
computation operation, we first represent the (9Frget/0P)

as follows:
oF target 0 Lnominal 9Lout dLin
= . 11
oP oP + oP + oP (i
The gradient calculations of all three terms are similar,
and here we take (0Lpominal/0P) as an example, which is

computed by

0 Lnominal

3P = 20z0MM o (1 — M) {Hnominal ® [(Znominal

- Ztarget) © Znominal © (1 = Znominal) © (M ® Hﬁominal)]
+ H:omina] ® [(Znominal — Z+) © Zyominal © (1 — Znominal)
o(M ® Hnomina)1} 12)

[Pl

where “o” indicates the matrix element-wise multiplication
and “®” stands for the convolution operation. The PV Band-
driven block is designed in a similar way, which precisely
represents the computation of (0F pybanda/9P). In addition, all
convolution operations in our algorithm are implemented via
FFT convolution to save computation resources. Since the opti-
cal kernel size is quite large, given a k x k (e.g., 35 x 35)
optical kernel and N x N mask (e.g., 2048 x 2048), the com-
putation complexity of FFT convolution is O(N? log N?), less
than the complexity O(k>N?) of direct convolution. All the
matrix computations can be easily implemented with the deep
learning toolkit, such as Pytorch [32], which provides matrix
computing with strong acceleration implemented by CUDA
kernel.

Stacking Npyband PV Band-driven blocks and Niarge target-
driven blocks forms a deep neural network, which is exactly
our L20-ILT as shown in Fig. 5, and passing through the
entire neural network is equivalent to executing the ILT algo-
rithm a number of iterations. In L20O-ILT, we set both Npyband
and Nger as 5. The convergence rate of our L2O-ILT can
be boosted via model training. All learnable parameters, such
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Fig. 6. Convergence rate comparison between conventional ILT and L20-ILT
model during inference.

as the step size of gradient descent, updated during the train-
ing process are all from the original ILT algorithm. Therefore,
the model training can be naturally interpreted as a param-
eter auto-tuning process to achieve much faster convergence
than nonlearning ILT with hand-crafted parameters. We show
the convergence rate comparison in Fig. 6. Compared with
conventional nonlearning ILT, L2O-ILT is able to achieve
convergence within a much smaller number of iterations,
resulting in significant ILT acceleration. Passing through one
layer can be regarded as executing the original nonlearning
ILT algorithms for multiple iterations. In addition, the learn-
able parameters can also help avoid the local optimum state,
contributing to the robustness of our algorithm.

Note that the number of iterations also indicates the number
of layers in L2O-ILT. The training strategy will be explained
in Section III-C. Overall, our proposed framework seamlessly
incorporates the prior knowledge of mask optimization and
achieves ILT acceleration with deep learning, and therefore
we call it “learning to optimize ILT.”

C. Interpretable Self-Supervised Learning

In order to accelerate the convergence rate of L20O-ILT, a
specialized interpretable training strategy is proposed. As illus-
trated in Section III-B, each layer of our neural network is
equivalent to an optimization iteration, and each layer outputs
a mask that has not been fully optimized. Therefore, we can

directly supervise the intermediate-generated mask M @ com-
puted from Z) using the training target design Zigraer- Such
a training strategy can be regarded as providing a look-ahead
mechanism, which forces Z”) to be close to the real target

Z{;?g‘et As a result, the error between the printed image Z

of the final mask M™ and Zm‘mt will be reduced efficiently.

target
The training loss function can be formulated as

n
e = 3 0 (a9, 235,)
i=1

where n is a configurable hyper-parameter, representing the

(13)

number of intermediate masks that we supervise with Zg?g%v
as shown in Fig. 5. The loss between M and zgiggt is

decided by its printed image Z”, and the computation of /)
is calculated as

. 12
10 = |20~z |+ 2022 a9
where Zi’gmma], Zf,'dt, and Zi(l? stands for the printed image

through our lithography module under different conditions.
Such a training loss function design contributes to jointly opti-
mizing PV Band, L, error, and EPE. It should be reminded
that the parameters of all lithography modules mapping from
MD 10 ZO are fixed and unlearnable, so as to ensure the
correctness of the lithography process.

In addition, it can be observed that our training scheme is
self-supervised learning. To be specific, we directly adopt the
target design as the supervision signal, which is totally dif-
ferent from previous “generative ILT” methods [6], [7], [9].
When given a set of training target design Zt‘ﬁ‘égt, they demand
a corresponding optimized mask set M* acting as the “ground
truth” signal to supervise the mask output by the black-box
generation model. We argue that this training scheme is not
reasonable. This is because when given a target design, there
is no way to know what its actual corresponding mask is.
Therefore, the optimized masks M* utilized by previous meth-
ods [6], [7], [9] are actually approximated optimized masks,
which are obtained from conventional ILT algorithms. In this
way, the “ground truth” signals themselves are not accurate
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fixed mask solution space

\

Fig. 7. Mask optimization result of a simple target design pattern.

to act as the supervision signals for training. Moreover, the
model training process will further accumulate the error. This
also provides another reason to explain why the initial solution
generated by these generation models is inferior.

D. Inference and Refinement

We have finished discussions about the model architecture
and training process, both of which are highly interpretable.
Overall, the model architecture is unrolling the iterative algo-
rithm, and the model training can be regarded as tuning
the parameters to improve the original manual parameter
configuration to accelerate optimization convergence.

Finally, when applied to design targets from the test dataset,
our learned L20O-ILT model is able to generate a superior
initial mask solution instantly. To further improve the mask
quality, refinement is conducted on the initial mask. When
given a test target Z!I°*', the mask refinement is achieved by
finetuning the parameters of the last layer by optimizing the
following loss function:

2
, 19

Lﬁnetune

_ Ztest

target

Z(”)

nominal

2 1
(n) (n)
2 + ; HZ‘)“‘ —Zin

where y is an adaptive factor to balance these two loss terms,
and it is computed as the ratio between the Ly error and PV
Band of the initial mask. Because of the high-quality initial
mask, the refinement can be quickly converged within a very
small number of iterations.

E. Adaptive Solution Space

Conventional ILT algorithms [4], [5], [6], [7], [8], [9]
optimize the mask pixel within a determined wide-ranging
area, e.g., 1280 x 1280. However, we observe that the areas
of the optimized mask are always close to the targets.
Specifically, the updated pixels always lie in the neighbour-
hood of the target patterns. Therefore, we try to leverage this
prior knowledge in our framework. We propose that the space
can be suitably narrowed while keeping a high-quality mask
solution. Based on such a motivation, we design an adap-
tive solution space in our algorithm, and this mechanism can
also effectively avoid the emergence of outlier features in the
optimized masks. In addition, a smaller solution space will
also contribute to a faster convergence rate as well as saving
computation resources. The experimental results show that the
convergence rate of mask optimization will increase, as shown
in Fig. 8.

-10*

Fixed Space
| —— Reduced Space

Lo Error

60

Iteration

Fig. 8. Comparison of the convergence rate in fixed solution space and
reduced solution space.

We design an adaptive mechanism to dynamically adjust
the solution space according to the specific target patterns.
It is based on such an observation that the optimized mask
area always lies in the neighborhood of the target pattern.
Therefore, our adaptive solution space is achieved by expand-
ing the target pattern. Usually, this can be implemented by
convolution with a square kernel 1 € R%**, where 1 is a
matrix in which all elements are 1, and N is the image size.
Such a dilation operation is feasible but not efficient, which
has O(s?N?) complexity. In this work, an agile algorithm
is designed to satisfy our requirements. To specific, we can
directly move the vertices to adjust the solution space. It is
noted that the layout patterns tested in this work are from
ICCAD 2013 CAD Contest [20] where all patterns are regu-
lar polygon shapes and represented as a vector of vertices as
shown in Fig. 9. Therefore, all vertices are off the shelf. And
there are no extra workloads to transfer the pixel representation
to the vertex representation. The movement direction of each
vertex v; = (x;,y;) is determined by its convexity-concavity
and two neighborhood vertices v;_; and v;;, which can be
formulated as

u = Vip1 — Vi) X (Vi — Vi—1)
= (0,0, (xig-1 —x) i —Yi—1) — ix1 — Y (xi — xi—1))

(16)
¢ = sign(uy) (17)
x;» = x; + ¢ - sign((x; — xi—1) — (x;41 — x;)) - offset (18)
y; = yi +c-sign((vi — yi—1) — Qig1 — yi)) - offset. ~ (19)

In (16), to compute the cross product, we assume that vectors
(Vix1 — ;) and (¥; — V;_1) have a 0 z-axis component. The
coefficient ¢ is to determine whether the vertex is convex or
concave according to the positive or negative of the z-axis
component u, of u, and sign(-) represents the sign function.
We have ¢ = 1 when the vertex is convex. (x},y;) indicates
the coordinate of vertex v; after movement, and “offset” is a
configurable hyper-parameter to control the size of solution
space and further accelerates the convergence rate.

Adjusting the space by moving vertices requires O(p)
computation complexity, where p represents the number of ver-
tices, typically less than 100. Therefore, such an algorithm is
much more efficient than the traditional dilation operation with
complexity O(s?N?). The generated adaptive solution space
Sada can be incorporated into our original gradient descent for-
mulation in Fig. 4 to restrict the range of mask pixels update.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 22,2024 at 01:33:38 UTC from IEEE Xplore. Restrictions apply.



ZHU et al.: L20-ILT

text representation of pattern

PGON N M1 128 128 992 128 |
992 209 209 209 | ,

209 444 128 444 | | e
1

adaptive mask
solution space

Fig. 9. Adaptive solution space via the movement of vertices.
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Fig. 10. Adaptation of L2O-ILT on full chip.
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As shown in Fig. 9, we only allow the pixels within the space
to be updated during the optimization process. The gradi-
ent descent formulations combined with the adaptive solution
space are now represented as

N oF

PO = pi-H _ 8;53?)‘1 o Sada (20)
N oF

PV =pi-b _y apzjigf; 0 Sada 1)

where S,q, acts as a filter. In S,4,, the values within the
adaptive solution space are 1 and others are 0.

F. Applied on Full Chip

The above methodology mainly discusses mask
optimization on layout patterns of small size, i.e., 2048 x 2048.
With the development of semiconductors and the shrinking
size of transistors, the chip scale is constantly growing, which
is usually much larger than the patterns used in academic
research. To overcome this issue, we also explore the adap-
tion of our L20O-ILT on the full chip. Inspired by [33], our
proposed algorithm is illustrated in Fig. 10, a combination of
our L20-ILT and the large tile global perception algorithm
proposed by [33]. As shown in Fig. 10, we adopt a sliding
window to scan over the entire chip, dividing the large full
chip into smaller chips. It is noted that each window includes
two parts, the core region and the boundary region. The
layout patterns within the boundary region in each sliding
window will be ignored, and the core part is the mask region
that we want to obtain its mask optimization result. As
discussed in [33], such a sliding-window manner can help
minimize boundary distortion effects. After feeding each tile
into our L2O-ILT framework, the optimized mask of all core
parts can be obtained, which will then be concatenated back.
The stitching result is the optimized mask of the full chip.

IV. EXPERIMENTAL RESULTS

We implement our entire framework L2O-ILT with the
Pytorch library [32] and test it on a Linux system with
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TABLE I
BENCHMARK INFORMATION OF ICCAD 2013 DATASET

Bench Area (nm?2)
casel 215344
case? 169280
case3 213504
cased 82560
case5 281958
caseb 286234
case’ 229149
case8 128544
case9 317581
casell 102400

2.3 GHz Intel Xeon CPU and a single Nvidia GeForce RTX
3090 GPU. The evaluation data to test the model performance
are from ICCAD 2013 CAD Contest [20], which includes ten
industrial M1 designs on the 32 nm design node and also pro-
vides the lithography engine. The dataset used for training our
L2O-ILT is obtained from the authors of GAN-OPC [6].

A. Comparison With State-of-the-Art

We compare the performance of the proposed L20-ILT
with other state-of-the-art mask optimization methods, and the
detailed results are listed in Tables II and III. We learned that
there exists offsets between the initial generated mask between
the work in [4], [6], [7], [9], and [34] and we noted that
the offset of the initial mask would slightly affect the mask
printability and complexity. To make a fair comparison, we
set two versions of L2O-ILT results following corresponding
experimental settings.

As listed in Table II, compared with classical ILT [4]
(denoted as ILT), the L, and PV Band are reduced by
47.1% and 21.6%, respectively, and the EPE count is less
than one-third of [4]. Compared with two “generative ILT”
GAN-OPC [6], and DevelSet [9], which, respectively, adopt
GAN [16] and U-Net [18] to generate initial mask solution,
our model L2O-ILT also shows superiority. The performance
of L achieves 33.5% and 28.3% enhancements, and PV Band
could obtain 19.3% and 16.3% improvements. For the EPE
count, the number of our EPE is only 2.60 on average, which
is much smaller than GAN-OPC [6] (11.30) and DevelSet [9]
(8.00). As for the runtime, our model is also faster than prior
work. According to Table II, compared with ILT [4], GAN-
OPC [6] and DevelSet [9], our L2O-ILT achieves 396.712x,
508.630x and 1.523x speedup, respectively.

As for the other experimental results listed in Table III,
when following the same settings as [7], L2O-ILT also
achieves the best performance. Specifically, our model aver-
agely outperforms Neural-ILT [7] with 33.3% and 28.6%
reduction in Lp error and PV Band. And the EPE count
is only one-third of Neural-ILT [7]. Compared with A2-
ILT [34], which relies on the reinforcement learning technique
to improve the ILT performance, the L, and PV Band of
our model are still reduced by around 30.1% and 26.6%.
Also, our average EPE count is 2.50, much smaller than the
EPE count of A2-ILT [34]. For the total runtime, L2O-ILT
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TABLE II
MASK PRINTABILITY AND RUNTIME COMPARISON WITH STATE-OF-THE-ART METHODS (EXPERIMENTAL SETTINGS FOLLOW [4])

ILT [4] GAN-OPC [6] DevelSet [9] L20-ILT
Bench EPE Lo PVB TAT EPE Lo PVB TAT EPE Lo PVB TAT EPE Lo PVB TAT
(nm?) (nm?) (s) (nm?) (nm?) (s) (nm?) (nm?) (s) (nm?) (nm?) (s)
casel 6 49893 65534 318 8 52570 56267 358 10 49142 59607 1.50 3 39742 50432 0.73
case2 10 50369 48230 256 13 42253 50822 368 1 34489 52010 1.40 0 31550 42620 0.72
case3 59 81007 108608 321 51 83663 94498 368 64 93498 76558 1.29 22 67612 73850 0.76
case4 1 20044 28285 322 2 19965 28957 377 2 18682 29047 1.65 1 12550 20306 0.72
case5 6 44656 58835 315 8 44733 59328 369 1 44256 58085 0.91 0 34056 50982 0.72
case6 1 57375 48739 314 12 46062 52845 364 2 41730 53410 0.84 0 31830 47237 0.73
case’7 0 37221 43490 239 7 26438 47981 377 0 25797 46606 0.76 0 20443 37207 0.75
case8 2 19782 22846 258 0 17690 23564 383 0 15460 24836 1.14 0 13429 19702 0.74
case9 6 55399 66331 322 12 56125 65417 383 0 50834 64950 1.21 0 39652 58708 0.72
casel0 0 24381 18097 231 0 9990 19893 366 0 10140 21619 0.42 0 8363 17561 0.71
Average 9.10  44012.70  50899.50  289.60 1130 3994890  49957.20  371.30 8.00  38402.80  48672.80 1.11 2.60  29922.70 41860.50  0.73
Ratio 3.500 1.471 1.216 396.712 | 4.346 1.335 1.193 508.630 | 3.077 1.283 1.163 1.523 | 1.000 1.000 1.000 1.000
TABLE III

MASK PRINTABILITY AND RUNTIME COMPARISON WITH STATE-OF-THE-ART METHODS (EXPERIMENTAL SETTINGS FOLLOW [7])

Neural-ILT [7] A2ILT [34] L20-ILT
Bench | EPE Lo PVB TAT | EPE Lo PVB TAT | EPE Lo PVB TAT
(nm?) (nm?) (s) (nm?) (nm?) (s) (nm?) (nm?) (s)
casel 3 49817 55975 13.96 7 15824 59136 443 3 39636 46905 T.12
case2 3 38174 52010 15.87 3 33976 52054 448 0 29108 37099 111
case3 52 89411 91357 12.95 62 94634 82661 452 | 21 67263 69115 113
cased 2 16744 29982 9.53 2 20405 29435 444 1 10807 20694 1.12
case5 3 45598 58900 8.43 1 37038 62068 447 0 31909 48797 1.10
caseé6 5 43836 54969 8.50 2 40701 54842 444 0 31474 45453 1.14
case? 0 20324 50542 13.09 0 21840 48474 442 0 16942 35942 111
case8 0 13337 26353 12.94 0 14912 24598 447 0 12236 19496 1.13
case9 2 49401 68817 12.95 2 47489 68056 450 0 34849 56706 111
casel0 0 8511 20734 11.66 0 9399 20243 435 0 7203 15976 111
Average | 750 3751530 5096390 1199 | 790 36621.80 5015670 445 | 2.50 28142.70 3961830  L.12
Ratio | 3.000  1.333 1286 10705 | 3.160  1.301 1266 4.045 | 1.000  1.000 1.000  1.000
500 TABLE IV
1,400 R MEMORY USAGE COMPARISON WITH STATE-OF-THE-ART METHODS
1,200 4 a00) |
2 1,000 ,g [ [ Memory Usage(GB) |
* 200 1 # 300 H . GAN-OPC [7] 65
DevelSet [9] 8.0
600 ﬂ 0 [\ Ll H | Neural-ILT [7] 6.6
A2-ILT [34] 5.7
& SO S L20-ILT 7.4
S 5 S SV A0
[l A W v
(@) (b)
o 1L C ) i . ; il . i results are listed in Table IV. It can be seen that our proposed
. . omparison of the mask manufactural t th state-of-the-art . . .
Hftho s part tracturabiiity wi model requires 7.4 GB GPU memory, which is comparable

achieves 11.091x and 4.038x speedup in comparison with
Neural-ILT [7] and A2-ILT [34].

Besides, we also evaluate the mask manufacturability in
terms of the shot count, which stands for the number of rectan-
gles that are used to approximate the optimized mask patterns.
The comparison results are listed in Fig. 11(a) and (b). Among
the above-mentioned methods, the shot number of L2O-ILT is
reduced by 99.2%, 8.3%, and 7.2% compared with ILT [4],
GAN-OPC [6], and DevelSet [9]. Although the masks gener-
ated by L2O-ILT contain 21.7% and 28.8% more shots than
Neural-ILT [7] and A2-ILT [34], the mask printability and
runtime performance is much better as listed in Table V. The
quality and simplicity of the mask make a tradeoff, and we
think it is acceptable to remarkably improve the mask print-
ability within less runtime at the cost of a little bit higher
complexity.

In addition, the memory usage of L2O-ILT is also compared
versus other state-of-the-art methods, and the comparison

with other state-of-the-art methods. This also indicates that we
successfully incorporate the prior knowledge of ILT into the
deep learning-based model while not remarkably increasing
the complexity of the model.

B. Evaluation of Initial Mask Qualities

To prove the benefit of our model that high-quality
mask solutions can be generated by L20-ILT, we compare
the L, error of the initial solutions with other “genera-
tive ILT” methods. Also, considering different experimental
settings, we split the result comparison into two groups,
as shown in Fig. 12(a) and (b). The average L, error of
our initial masks is much lower than the initial masks
of GAN-OPC [6], DevelSet [9], and Neural-ILT [7]. (A2-
ILT [34] is not considered as “generative ILT” since it does
not adopt a generation model). Combined with the results
in Tables II and III, we can observe that for these “gen-
erative ILT” methods, there exists a large gap between the
performance of the initial mask and the final result. Therefore,
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Fig. 12.  Comparison of the initial mask solution with GAN-OPC [6] and

DevelSet [9], and with Neural-ILT [7].

TABLE V
NEURAL-ILT VERSUS NEURAL-L20O-ILT (NEURAL-L2O-ILT IS TO
ADOPT L20-ILT TO REFINE THE INITIAL MASK
GENERATED BY NEURAL-ILT)

[ [ EPE [ La(nm?) | PVBand(nm?) | TAT(s) |

Neural-ILT [7] 9.20 | 38567.90 50636.70 11.80
Neural-L20-ILT | 3.00 | 30412.70 39626.70 1.81

a long-time refinement is always required. As for the initial
solutions of L2O-ILT, the performance gap is really small,
and thus the refinement can be finished rapidly, i.e., within
20 iterations, which contributes to the remarkable runtime
improvement.

C. L20-ILT Acts as Plugin

Another benefit of L20-ILT is that our model can be
incorporated into other models like Neural-ILT [7] and
GAN-OPC [6] as a plugin, which can improve their mask
optimization performance. We take the Neural-ILT [7] as an
example. Given an initial mask solution generated by Neural-
ILT [7], the original refinement process in Neural-ILT [7] has
to finetune the entire model, including the U-Net [18], which
contains a lot of parameters. Therefore, the refinement process
is not efficient.

An improved method is to combine L2O-ILT with Neural-
ILT [7] by directly feeding the low-quality mask into our
model. As explained in Section III-D, given an initial solution
and a test target pattern, the refinement process is achieved
by tuning the last layer of our model, which includes fewer
parameters than Neural-ILT [7]. Therefore, the refinement
process is much more efficient to execute.

To verify the effectiveness of L20O-ILT as a plugin, we
conduct further experiments using the ICCAD 2013 CAD
benchmark [20]. We list the average performance of the mask
refined by our L2O-ILT along with the required runtime
in Table V, where we use Neural-L2O-ILT to denote the com-
bination of Neural-ILT [7] and L2O-ILT. It can be seen that
in spite of the low-quality initial mask, with the L20O-ILT,
the mask generated by Neural-ILT [7] can still be more effi-
ciently refined and even achieve better results in comparison
with original Neural-ILT [7]. Note that the “TAT” of Neural-
L20-ILT has considered the generation runtime of the initial
mask.
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Fig. 13. Comparison of the full-chip mask optimization performance with

Neural-ILT [7].

D. Evaluation on Full Chip

We also evaluate the performance of L20O-ILT on a large-
scale chip of size 144 um? using the pipeline illustrated
in Section III-F. In our experiment, the large-scale chip is
divided into smaller chips of size 2048 x 2048 and the size
of the core region is set as 1024 x 1024. Such a setting effec-
tively reduces the distortion effect while achieving satisfactory
runtime performance.

We compare the performance of our proposed L20O-ILT and
Neural-ILT [7] method in terms of L, and PV Band met-
rics. When evaluating the performance of Neural-ILT on the
full-chip, we directly replace L2O-ILT in the pipeline shown
in Fig. 10 with Neural-ILT. The presented results demonstrate
that L2O-ILT achieves a reduction of 8.0% and 12.2% in L,
error and PV Band, respectively. These results illustrate the
benefit of L20O-ILT for full-chip mask optimization.

V. CONCLUSION

In this work, we present L20O-ILT, a deep learning based-
model that achieves mask optimization acceleration and keeps
remarkable printability performance. Our model structure is
implemented by unrolling our ILT algorithm, and thus the
model structure is highly incorporated into prior knowl-
edge of mask optimization. Such an ILT algorithm-inspired
model is able to generate an initial mask solution with bet-
ter performance than previous methods, and the high-quality
initial mask can be instantly refined to obtain the final solu-
tion. The experimental results demonstrate the superiority of
our framework over current ILT acceleration works on both
accuracy and efficiency.

REFERENCES

[1] J. Kuang, W.-K. Chow, and E. F. Y. Young, “A robust approach for
process variation aware mask optimization,” in Proc. Design, Autom.
Test Europe Conf. Exhibit. (DATE), 2015, pp. 1591-1594.

[2] Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee,
“Fast lithographic mask optimization considering process variation,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8,
pp. 1345-1357, Aug. 2016.

[3] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction with
hierarchical bayes model,” J. Micro/Nanolithography, MEMS, MOEMS,
vol. 15, no. 2, 2016, Art. no. 21009.

[4] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimiz-
ing solution with process window aware inverse correction,” in Proc.
ACM/IEEE Des. Automa. Conf. (DAC), 2014, pp. 1-6.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 22,2024 at 01:33:38 UTC from IEEE Xplore. Restrictions apply.



954

[5]

[6]

[7]

[8]

[10]

[11]

(12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

T. Cecil, K. Braam, A. Omran, A. Poonawala, J. Shu, and C. Vandam,
“Establishing fast, practical, full-chip ILT flows using machine learning,”
in Proc. SPIE, 2020, Art. no. 1132706.

H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Y. Young, “GAN-
OPC: Mask optimization with lithography-guided generative adversarial
nets,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 10, pp. 2822-2834, Oct. 2020.

B. Jiang, L. Liu, Y. Ma, B. Yu, and E. F Y. Young, “Neural-ILT
2.0: Migrating ILT to domain-specific and multitask-enabled neural
network,” [EEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 41, no. 8, pp. 2671-2684, Aug. 2022.

Z. Yu, G. Chen, Y. Ma, and B. Yu, “A GPU-enabled level set method
for mask optimization,” in Proc. Design, Autom. Test Eurpoe (DATE),
2021, pp. 1835-1838.

G. Chen, Z. Yu, H. Liu, Y. Ma, and B. Yu, “DevelSet: Deep neural
level set for instant mask optimization,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2021, pp. 1-9.

Y. Ma, J.-R. Gao, J. Kuang, J. Miao, and B. Yu, “A unified framework
for simultaneous layout decomposition and mask optimization,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2017, pp. 81-88.
Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography
for photomask synthesis,” Opt. Exp., vol. 17, no. 26, pp. 23690-23701,
Dec. 2009.

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse
lithography,” Opt. Exp., vol. 19, no. 6, pp. 5511-5521, 2011.

K. Hooker, B. Kuechler, A. Kazarian, G. Xiao, and K. Lucas, “ILT
optimization of EUV masks for sub-7nm lithography,” in Proc. SPIE,
2017, pp. 9-20.

R. Pearman et al., “How curvilinear mask patterning will enhance
the EUV process window: A study using rigorous wafer+ mask dual
simulation,” in Proc. SPIE, 2019, pp. 59-67.

L. Pang, “Inverse lithography technology: 30 years from concept to prac-
tical, full-chip reality,” J. Micro/Nanopatterning, Mater., Metrol., vol. 20,
no. 3, 2021, Art. no. 30901.

1. Goodfellow et al., “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139-144, 2020.

M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014, arXiv:1411.1784.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Interv., 2015, pp. 234-241.

H. Huang et al., “UNet 34: A full-scale connected unet for medical
image segmentation,” in Proc. ICASSP IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), 2020, pp. 1055-1059.

S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in
mask optimization and benchmark suite,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2013, pp. 271-274.

X. Ma, Q. Zhao, H. Zhang, Z. Wang, and G. R. Arce, “Model-driven
convolution neural network for inverse lithography,” Opt. Exp., vol. 26,
no. 5, pp. 32565-32584, 2018.

X. Zheng, X. Ma, Q. Zhao, Y. Pan, and G. R. Arce, “Model-informed
deep learning for computational lithography with partially coherent
illumination,” Opt. Exp., vol. 28, no. 26, pp. 39475-39491, 2020.

A. Poonawala and P. Milanfar, “OPC and PSM design using
inverse lithography: A nonlinear optimization approach,” in Proc. Opt.
Microlithogr. 19th, 2006, pp. 1159-1172.

X. Ma and G. R. Arce, “Generalized inverse lithography meth-
ods for phase-shifting mask design,” Opt. Exp., vol. 15, no. 23,
pp. 15066-15079, 2007.

K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. Int. Conf. Mach. Learn. (ICML), 2010, pp. 399-406.
T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and
W. Yin, “Learning to optimize: A primer and a benchmark,” 2021,
arXiv:2103.12828.

H. Vu, G. Cheung, and Y. C. Eldar, “Unrolling of deep graph total
variation for image denoising,” in Proc. ICASSP IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), 2021, pp. 2050-2054.

V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18-44, Mar. 2021.

S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks:
Interpretable neural networks for graph signal denoising,” IEEE Trans.
Signal Process., vol. 69, pp. 3699-3713, Jun. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9453145

H. H. Hopkins, “The concept of partial coherence in optics,” in Proc.
Royal Soc. A. Math. Physic. Sci., 1951 pp. 263-2717.

(31]

(32]

(33]

[34]

W. Zhao et al., “AdaOPC: A self-adaptive mask optimization framework
for real design patterns,” in Proc. 41st IEEE/ACM Int. Conf. Comput.-
Aided Design, 2022, pp. 1-9.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” 2019, arXiv:1912.01703.

H. Yang et al., “Generic lithography modeling with dual-band optics-
inspired neural networks,” in Proc. 59th ACM/IEEE Des. Autom. Conf.,
2022, pp. 973-978.

Q. Wang, B. Jiang, M. D. F. Wong, and E. F. Y. Young, “A2-ILT: GPU
accelerated ILT with spatial attention mechanism,” in Proc. ACM/IEEE
Des. Autom. Conf. (DAC), 2022, pp. 967-972.

Binwu Zhu received the B.Eng. degree in
information engineering from Zhejiang University,
Hangzhou, China, in 2020. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong.

His current research interest includes machine
learning for EDA.

Su Zheng received the B.Eng. and M.S. degrees
from Fudan University, Shanghai, China, in 2019
and 2022, respectively. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, under the supervision of
Prof. B. Yu and Prof. M. D. F. Wong.

His research interest is to solve critical prob-
lems in electronic design automation with advanced
artificial intelligence methods.

Ziyang Yu received the B.S. degree from the
Department of Physics, University of Science and
Technology of China, Hefei, China in 2018, and
the M.Phil. degree from the Department of Physics,
The University of Hong Kong, Hong Kong, in 2020.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

His current research interests include design space
exploration in electronic design automation and
machine learning on chips.

Guojin Chen received the B.Eng. degree in soft-
ware engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2019.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

His current research interests include machine
learning in VLSI design for manufacturability and
physics-informed networks for solving EDA area
problems.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 22,2024 at 01:33:38 UTC from IEEE Xplore. Restrictions apply.



ZHU et al.: L20-ILT

Yuzhe Ma (Member, IEEE) received the B.E. degree
from the Department of Microelectronics, Sun
Yat-sen University, Guangzhou, China, in 2016, and
the Ph.D. degree from the Department of Computer
Science and Engineering, Chinese University of
Hong Kong, Hong Kong, in 2020.

He is currently an Assistant Professor with
the Microelectronics Thrust, The Hong Kong
University of Science and Technology (Guangzhou),
Jil Guangzhou. His research interests include agile
VLSI design methodologies, machine learning-aided

)

VLSI design, and hardware-friendly machine learning.

Prof. Ma received the Best Paper Awards from ICCAD 2021, ASPDAC
2021, and ICTAI 2019, and the Best Paper Award Nomination from ASPDAC
2019.

Fan Yang (Member, IEEE) received the B.S. degree
from Xi’an Jiaotong University, Xi’an, China, in
2003, and the Ph.D. degree from Fudan University,
Shanghai, China, in 2008.

From 2008 to 2011, he was an Assistant
Professor with Fudan University. He is currently
a Professor with the Microelectronics Department,
Fudan University. His research interests include
model order reduction, circuit simulation, high-
level synthesis, yield analysis, and design for
manufacturability.

955

Bei Yu (Senior Member, IEEE) received the Ph.D.
degree from the University of Texas at Austin,
Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Prof. Yu received the nine Best Paper Awards
from DATE 2022, ICCAD 2021 and 2013, ASPDAC
2021 and 2012, ICTAI 2019, Integration, the VLSI

/ Journal in 2018, ISPD 2017, SPIE Advanced

Lithography Conference 2016, and six ICCAD/ISPD

contest awards. He has served as the TPC Chair of ACM/IEEE Workshop

on Machine Learning for CAD, and in many journal editorial boards and
conference committees. He is an Editor of IEEE TCCPS Newsletter.

v,
A)
,ro

Martin D. F. Wong received the B.Sc. degree
in mathematics from the University of Toronto,
Toronto, ON, Canada, in 1979, and the M.S. degree
in mathematics and the Ph.D. degree in com-
puter science from the University of Illinois at
Urbana—Champaign (UIUC), Champaign, IL, USA,
in 1981 and 1987, respectively.

He was a Faculty with The University of Texas at
Austin (UT-Austin), Austin, TX, USA, from 1987 to
2002 and UIUC from 2002 to 2018. He was a Bruton
Centennial Professor of Computer Science with UT-
Austin and an Edward C. Jordan Professor of Electronics and Communication
Engineering with UIUC. From August 2012 to December 2018, he was the
Executive Associate Dean of the College of Engineering, UIUC. Since January
2019, he has been joined The Chinese University of Hong Kong, Hong Kong,
as the Dean of Engineering and Choh-Ming Li Professor of Computer Science
and Engineering. He has published around 500 papers and graduated over 50
Ph.D. students in Electronic Design Automation (EDA). His main research
interest is in EDA.

Prof. Wong is a Fellow of ACM.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 22,2024 at 01:33:38 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


