
Understanding Graphs in EDA: From Shallow to Deep Learning
Yuzhe Ma

CUHK
Zhuolun He

CUHK
Wei Li
CUHK

Lu Zhang
CUHK

Bei Yu
CUHK

ABSTRACT
As the scale of integrated circuits keeps increasing, it is witnessed
that there is a surge in the research of electronic design automation
(EDA) to make the technology node scaling happen. Graph is of
great significance in the technology evolution since it is one of the
most natural ways of abstraction to many fundamental objects in
EDA problems like netlist and layout, and hence many EDA prob-
lems are essentially graph problems. Traditional approaches for
solving these problems are mostly based on analytical solutions or
heuristic algorithms, which require substantial efforts in designing
and tuning. With the emergence of the learning techniques, dealing
with graph problems with machine learning or deep learning has
become a potential way to further improve the quality of solutions.
In this paper, we discuss a set of key techniques for conducting ma-
chine learning on graphs. Particularly, a few challenges in applying
graph learning to EDA applications are highlighted. Furthermore,
two case studies are presented to demonstrate the potential of graph
learning on EDA applications.

ACM Reference Format:
Yuzhe Ma, Zhuolun He, Wei Li, Lu Zhang, and Bei Yu. 2020. Understanding
Graphs in EDA: From Shallow to Deep Learning . In Proceedings of the 2020
International Symposium on Physical Design (ISPD ’20), March 29-April 1,
2020, Taipei, Taiwan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3372780.3378173

1 INTRODUCTION
Modern electronic design automation (EDA) flow is constituted by
multiple stages. On each step, dedicated optimization is performed
to achieve desired quality of results (QoR). As the integration keeps
increasing, more and more design constraints are imposed and lead
to performance bottleneck and severe runtime overhead. Various
optimization techniques have been proposed to improve or renovate
the existing methodologies in EDA flow.

Graph is one of the core subjects in enormous EDA problems
and optimization algorithms. It is a mathematical structure that
models pairwise relationships among different items, which makes
it a natural and powerful representation for many fundamental
objects in EDA applications, such as Boolean functions, netlists and
layout. Over the past few decades, a lot of problems are investigated
by leveraging graph abstraction and a rich set of elegant graph al-
gorithms are developed to solve these problems [1–7]. It can be
observed that graph algorithms can assist the problem-solving of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISPD ’20, March 29-April 1, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7091-2/20/03. . . $15.00
https://doi.org/10.1145/3372780.3378173

A

B

C D

FE G

(a)

A

B
C D

G

E F

(b)

Figure 1: (a) A circuit; (b) The graph representation.

EDA in a few ways. Firstly, since a problem is abstracted into a
graph representation, numerous well-known graph algorithms can
be directly applied or slightly modified to form a solution. However,
it may be still non-trivial to develop an effective approach for those
complicated problems after being modeled with graphs. Besides,
mathematical programming is another useful approach to utilize.
By defining an objective function and a set of constraints over the
constructed graph, mathematical optimization methodologies can
be applied to derive a solution, in which certain highly optimized
software and libraries can be of great help. It is commonly seen
many problems are tackled with integer linear programming (ILP)
[5, 6, 8], linear programming [9, 10], etc. However, given the fact
that many EDA problems are NP-hard and problem sizes are usu-
ally very large, the efficiency will be a major concern. Heuristic
algorithms or approximation algorithms over graphs have been
intensively developed to achieve a balance between performance
and efficiency [11, 12].

As traditional optimization becomes more and more sophisti-
cated, data-driven learning techniques have drawn much attention
in hardware design automation. Classical machine learning tech-
niques require manual extraction of the features which are fed into
a downstream learning model for training, and several such at-
tempts have been made in EDA applications [13–17]. Deep learning
has demonstrated that feature representation can be automatically
learned in the presence of a large amount of data, which achieves
noticeable performance gain in EDA area [18–21]. However, a few
issues may emerge when it comes to graphs. On one hand, ap-
plying classical machine learning approaches on graphs relies on
non-trivial heuristics for feature extraction to encode structural
information, which consumes lots of endeavors to achieve desired
performance. On the other hand, it is not straightforward to trans-
fer conventional grid-based operations (e.g., convolution, pooling,
etc.) in deep neural networks to tackle irregular structured data like
graphs. Recently, many approaches have emerged in graph learn-
ing research covering a wide range of sub-fields, including node
classification [22–24], graph generation [25–27], model robustness
[28], etc. Inspired by such recent progress in graph learning, there
are also a few attempts trying to apply graph learning techniques
to solve certain problems in EDA [29], which demonstrate the great

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

119

https://doi.org/10.1145/3372780.3378173
https://doi.org/10.1145/3372780.3378173
https://doi.org/10.1145/3372780.3378173

(a) (b)

(c) (d)

Figure 2: Examples of routing graphs. (a) Channel model; (b)
Channel graph; (c) Grid model; (d) Grid graph.

potential of graph-based learning methods on overcoming perfor-
mance bottleneck in the existing design flow and push forward the
advance in the industry.

In this paper, a number of general graph-based learning tech-
niques are briefly introduced. Particularly, several special properties
that are critical in circuits design are highlighted, including hyper-
graph, graph heterogeneity and scalability. Then we focus on ap-
plying graph-based learning techniques to assist EDA applications.
Two case studies of graph learning in EDA are presented, includ-
ing testability analysis for design-for-testing and timing model
selection in a netlist.

The rest of this paper is organized as follows. Section 2 reviews
a set of graph-based problems and widely used graph algorithms
in the EDA field. Section 3 introduces some fundamental idea of
graph learning and some conventional graph learning algorithms.
Section 4 presents two case studies and Section 5 concludes the
paper.

2 TRADITIONAL GRAPH-BASED
METHODOLOGIES IN EDA APPLICATIONS

Graph model is widely leveraged in a wide range of applications in
the modern design flow, which can greatly simplify the problem
formulation and algorithm analysis. On top of that, many problems
in typical EDA flow can be addressed effectively, e.g., technology
mapping [1, 30, 31], testability analysis [2], circuit partitioning
[3, 32], placement [4, 33], etc. The most intuitive modeling for a
circuit is a graph whose nodes represent gates and edges represent
wires, as shown in Figure 1. In addition, different ways of graph
construction may be applied based on different characteristics in
applications. In logical verification, a Boolean function is modeled
with a rooted, directed graph [34]. Global routing leverages graph
to capture the adjacencies and capacities of the routing region, in
which channel graph model [35] (Figure 2(a) – Figure 2(b)) and
grid graph model are applied [8, 36] (Figure 2(c) – Figure 2(d)). In
detailed routing, horizontal and vertical constraint graphs are used
to model the relative positions of different nets in a channel routing
instance [37]. In the post-layout stage, graph representation is still

A

B

C D

(a)

A

B

C

D

(b)

B

C

D

A1
<latexit sha1_base64="vyWfX0mmmyMfsu7oknOlPh/5R5w=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstERtLDERJIEL2VvmYMPe3mV3z4Rc+A02Fhpj6w+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4duY/PqHSPJYPZpKgH9Gh5CFn1FipdV3te9V+ueLW3DnIKvFyUoEczX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NgpObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88jMuk9SgZItFYSqIicnsczLgCpkRE0soU9zeStiIKsqMzadkQ/CWX14l7XrNu6jV7+uVxk0eRxFO4BTOwYNLaMAdNKEFDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fcQSNxw==</latexit>

A2
<latexit sha1_base64="SU7PbLKnjQ8MtPXISwC7EXRxb4Q=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRNp60CPqxSMmFkmgIdtlCxu2u83u1oQ0/AYvHjTGqz/Im//GBXpQ8CWTvLw3k5l5UcqZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx+hiNb2f+4xNVmknxYCYpDRM8FCxmBBsrBdf1vl/vV2tuw50DrRKvIDUo0OpXv3oDSbKECkM41rrruakJc6wMI5xOK71M0xSTMR7SrqUCJ1SH+fzYKTqzygDFUtkSBs3V3xM5TrSeJJHtTLAZ6WVvJv7ndTMTX4U5E2lmqCCLRXHGkZFo9jkaMEWJ4RNLMFHM3orICCtMjM2nYkPwll9eJW2/4V00/Hu/1rwp4ijDCZzCOXhwCU24gxYEQIDBM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AXKJjcg=</latexit>

(c)

Figure 3: An example of decomposition graph in layout de-
composition problem. (a) Layout pattern; (b) Decomposition
graph; (c) Decomposition graph with stitch edge.

a powerful method. Layout decomposition is a challenging problem
when using multiple patterning lithography for manufacturing in
advanced technology nodes. The problem can be modeled using a
conflict graph and a stitch graph [5, 6, 38–40], as shown in Figure 3.

Since many problems can be modeled as graphs, a convenient
way to solve these problems is to apply graph algorithms directly.
For example, critical path extraction can be transformed into find-
ing the longest path in a weighted and directed graph, which can be
solved based on Bellman-Ford algorithm [41, 42]. The construction
of a power network with a minimum wirelength can be modeled as
a minimum tree construction (MST) problem [42]. Other widely ap-
plied graph algorithms in EDA include network flow for placement
[9, 10], graph partitioning [32], graph coloring for layout decom-
position [5, 6, 12, 39, 43, 44], etc. Besides, many NP-complete and
NP-hard problems are prevalent in EDA field. Considering the scale
of the problem is huge in modern designs, it is difficult to derive an
optimal solution for these problems. Therefore, heuristic algorithms
are also commonly applied, which empirically yield good solutions.
Previous studies have shown that heuristic algorithms can achieve
high quality results efficiently in floorplanning [45, 46] and layout
decomposition [12, 47, 48]. In addition, mathematical optimization
is another category of approach which optimizes the value of an
objective function and subject to a set of constraints. It is also used
intensively to solve graph problems in EDA applications. For exam-
ple, integer linear programming (ILP) is used for solving a variety
of problems such as routing [49], layout decomposition [6, 50], etc.

Apart from traditional analytical or heuristic algorithms, a few
attempts have exploited machine learning techniques to tackle
graph-based problems. Most of these approaches utilized classical
machine learning models which are “shallow” learning in contrast
to conventional deep neural networks.

Samanta et al. [51] performed wire and buffer sizing based on
support vector regression (SVR) to minimize variation on non-tree
clock networks. In [52], a machine learning approach is proposed
to model wire delay and slew based on the timing graph, which
utilizes a set of classical analytical values extracted from the timing
graph as features for regression to obtain the wire delay/slew. A

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

120

Layer 1 Layer k

……

Input graph Embedding

Task

Figure 4: Graph neural networkwith k layers for embedding
generation. Obtained embedding is fed to downstream tasks.

Gaussian Process Regression-based active learning flow is proposed
for high performance adder design space exploration based on prefix
graph representation [16]. A timing failure prediction technique is
proposed in [53] given the information of netlist, timing constraints,
and floorplan. In place-and-route (P&R) stage, routability is a critical
issue and has large impact on the final quality. Some previous works
investigate routability estimation with a particular routing graph
model based on manually extracted features. Qi et al. [54] and Zhou
et al. [55] applied multivariate adaptive regression splines (MARS)
to detailed routing congestion estimation. Pui et al. [17] proposed
a hierarchical hybrid model for congestion estimation in FPGA
placement, which consists of linear regression and support vector
regression.

3 GRAPH REPRESENTATIONWITH DEEP
LEARNING METHODOLOGIES

The main challenge of conducting learning algorithms on graphs is
how to encoding structural information of graphs, which have been
intensively investigated in the machine learning community. In
this section, we introduce a bunch of graph representation methods
based on neural networks, and highlight some challenges on how
to apply to EDA applications.

3.1 Graph Learning with Neural Networks
Graph-based learning is a new approach to machine learning with
a wide range of applications [56]. Before performing a certain task,
representation of node or graph should be obtained first, which
is known as embedding and can be fed to downstream models, as
shown in Figure 4.

The blossoms of deep learning in various disciplines have pro-
moted the application of neural networks in graph learning. Typi-
cally, neural networks expertise in extracting latent representations
from Euclidean data, such as an image (a grid of pixel) or a text (a
sequence of letters). While a graph lies in non-Euclidean domain,
which could be quite irregular. Therefore, it is natural and necessary
to extend deep learning approaches to graph data.

The seminal works of graph neural network (GNN) are mostly
inspired by recurrent neural networks, where nodes recurrently
exchange information with adjacent nodes until a stable state is
reached. Formally, the hidden state of a node v is updated recur-
rently as following:

h(t+1)v =
∑

u ∈Nv

f (h(t)u ,xu ,xv ,xuv), (1)

where htv is the hidden state of node v at time step t , Nv the set
of adjacent vertices of v , xv the feature of node v , xuv the feature
of edge uv , and f the parametric function for local state transi-
tion, which should be carefully design (specifically, a contraction
map [57]) to ensure convergence. Despite the conceptual signifi-
cance, public interest towards recurrent GNNs was limited due to
the restricted expressive power of a contractive operation and the
heavy computational burden to reach its equilibrium.

Given the drawbacks of recurrent GNNs, the emergence of Graph
Convolutional Networks (GCNs) is no surprise. Taxonomically,
GCNs fall into two categories, viz., spectral-based and spatial-based,
with the former based on graph spectral analysis, while the latter
inherits the paradigm of message passing from recurrent GNNs.
We introduce the two approaches in the following paragraphs.

Graph convolution is defined [58] on Fourier domain in the spec-
tral approaches, where the eigen-decomposition of graph Lapla-
cian is computed. Specifically, graph Laplacian is defined as L =
I −D−

1
2AD

1
2 = VΛV⊤, where I is the identity matrix, D andA are

degree matrix and adjacent matrix of the graph, respectively. Let
дθ : R→ R be a filter defined on graph spectrum Λ and f : V → R
be features of nodes, graph convolution is given by:

дθ ∗ f = V (дθ (Λ) ⊙ V
⊤ f), (2)

which respects the Convolution Theorem. Equivalently, we write
д = diag(дθ (Λ)) and a convolutional layer with multiple (fl) chan-
nels is defined by:

H (l+1) = σ (

fl∑
i=1

V (дiV⊤H (l))), (3)

where H (l) is the output of previous convolutional layer with
H (0) := X the collection of node features, дi the i-th trainable
filter, and σ (·) a nonlinear activation function. Note that the filters
in spectral domain may not be localized, which could be alleviated
with some smoothing techniques [58]. Further, the computation
complexity of this line of methods is reduced through approxima-
tion and simplification [22, 59].

2
1

3

4

5

(a)

Encoding

Aggregation

1 [1 ⇥ d2]
<latexit sha1_base64="dK7Q7Rwf8Es7WLHBSVx9xxio7ps=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03Y3RRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwowzpR3n26psbe/s7lX3aweHR8cn9ulZV6W5JLRDUp7KfogV5UzQjmaa034mKU5CTnvh5H7h96ZUKpaKJz3LqJ/gkWAxI1gbKbDtxsBFQ80SqlAUeH4jsOtO01kCbRK3JHUo0Q7sr2GUkjyhQhOOlRq4Tqb9AkvNCKfz2jBXNMNkgkd0YKjAZpVfLC+foyujRChOpSmh0VL9PVHgRKlZEprOBOuxWvcW4n/eINfxnV8wkeWaCrJaFOcc6RQtYkARk5RoPjMEE8nMrYiMscREm7BqJgR3/eVN0vWa7k3Te/TqLa+MowoXcAnX4MIttOAB2tABAlN4hld4swrrxXq3PlatFaucOYc/sD5/AFyKkiE=</latexit>

1 [1 ⇥ d1]
<latexit sha1_base64="iuzoLUFRRSOK/BCTq64rBn1pfHU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+o3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFsEkiA=</latexit>

1 [1 ⇥ d1]
<latexit sha1_base64="iuzoLUFRRSOK/BCTq64rBn1pfHU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+o3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFsEkiA=</latexit>

2 [1 ⇥ d1]
<latexit sha1_base64="iuzoLUFRRSOK/BCTq64rBn1pfHU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+o3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFsEkiA=</latexit>

3 [1 ⇥ d1]
<latexit sha1_base64="iuzoLUFRRSOK/BCTq64rBn1pfHU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+o3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFsEkiA=</latexit>

4 [1 ⇥ d1]
<latexit sha1_base64="iuzoLUFRRSOK/BCTq64rBn1pfHU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+o3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFsEkiA=</latexit>

1 [1 ⇥ d0]
<latexit sha1_base64="eAlxPJyAFEIDQKrmdpeBpzJwvw0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+I3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFl+kh8=</latexit>

2 [1 ⇥ d0]
<latexit sha1_base64="eAlxPJyAFEIDQKrmdpeBpzJwvw0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+I3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFl+kh8=</latexit>

3 [1 ⇥ d0]
<latexit sha1_base64="eAlxPJyAFEIDQKrmdpeBpzJwvw0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+I3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFl+kh8=</latexit>

4 [1 ⇥ d0]
<latexit sha1_base64="eAlxPJyAFEIDQKrmdpeBpzJwvw0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwkxwDY7zbVW2tnd296r7tYPDo+MT+/Ssq9NcUdahqUhVPySaCS5ZBzgI1s8UI0koWC+c3C/83pQpzVP5BLOM+QkZSR5zSsBIgW03Bi4eAk+YxlHg+I3ArjtNZwm8SdyS1FGJdmB/DaOU5gmTQAXReuA6GfgFUcCpYPPaMNcsI3RCRmxgqCRmlV8sL5/jK6NEOE6VKQl4qf6eKEii9SwJTWdCYKzXvYX4nzfIIb7zCy6zHJikq0VxLjCkeBEDjrhiFMTMEEIVN7diOiaKUDBh1UwI7vrLm6TrNd2bpvfo1VteGUcVXaBLdI1cdIta6AG1UQdRNEXP6BW9WYX1Yr1bH6vWilXOnKM/sD5/AFl+kh8=</latexit>

Encoding Encoding Encoding Encoding

1 2 3 4
[4 ⇥ d0]

<latexit sha1_base64="Eh1b42pRgKYPxFI3kSS46lwB6Ao=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5JEQY8FLx4r2FpoQ9hsNu3SzSbsTgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5YSa4Bsf5tiobm1vbO9Xd2t7+weGRfXzS1WmuKOvQVKSqFxLNBJesAxwE62WKkSQU7Ckc3839pwlTmqfyEaYZ8xMylDzmlICRAttu9K/xAHjCNI4Cx28Edt1pOgvgdeKWpI5KtAP7axClNE+YBCqI1n3XycAviAJOBZvVBrlmGaFjMmR9QyUxq/xicfkMXxglwnGqTEnAC/X3REESradJaDoTAiO96s3F/7x+DvGtX3CZ5cAkXS6Kc4EhxfMYcMQVoyCmhhCquLkV0xFRhIIJq2ZCcFdfXiddr+leNb0Hr97yyjiq6Aydo0vkohvUQveojTqIogl6Rq/ozSqsF+vd+li2Vqxy5hT9gfX5A14xkiI=</latexit>

1 2 5
[3 ⇥ d0]

<latexit sha1_base64="R1ZfNX8av2JYxeUaA0Mvx7Ru29k=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5KkBz0WvHisYFuhDWGz2bRLN5uwOymU0H/ixYMiXv0n3vw3btsctPXBwOO9GWbmhZngGhzn26psbe/s7lX3aweHR8cn9ulZT6e5oqxLU5Gqp5BoJrhkXeAg2FOmGElCwfrh5G7h96dMaZ7KR5hlzE/ISPKYUwJGCmy7MWjhIfCEaRwFjt8I7LrTdJbAm8QtSR2V6AT21zBKaZ4wCVQQrQeuk4FfEAWcCjavDXPNMkInZMQGhkpiVvnF8vI5vjJKhONUmZKAl+rviYIkWs+S0HQmBMZ63VuI/3mDHOJbv+Ayy4FJuloU5wJDihcx4IgrRkHMDCFUcXMrpmOiCAUTVs2E4K6/vEl6XtNtNb0Hr972yjiq6AJdomvkohvURveog7qIoil6Rq/ozSqsF+vd+li1Vqxy5hz9gfX5A1ygkiE=</latexit>

1 3
[2 ⇥ d0]

<latexit sha1_base64="BnQWivthPq2obYWxmNGU0l5q0nc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03Y3RRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwowzpR3n26psbe/s7lX3aweHR8cn9ulZV6W5JLRDUp7KfogV5UzQjmaa034mKU5CTnvh5H7h96ZUKpaKJz3LqJ/gkWAxI1gbKbDtxsBDQ80SqlAUOH4jsOtO01kCbRK3JHUo0Q7sr2GUkjyhQhOOlRq4Tqb9AkvNCKfz2jBXNMNkgkd0YKjAZpVfLC+foyujRChOpSmh0VL9PVHgRKlZEprOBOuxWvcW4n/eINfxnV8wkeWaCrJaFOcc6RQtYkARk5RoPjMEE8nMrYiMscREm7BqJgR3/eVN0vWa7k3Te/TqLa+MowoXcAnX4MIttOAB2tABAlN4hld4swrrxXq3PlatFaucOYc/sD5/AFsPkiA=</latexit>

1 4
[2 ⇥ d0]

<latexit sha1_base64="BnQWivthPq2obYWxmNGU0l5q0nc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5LEgx4LXjxWsB/QhrDZbNqlm03Y3RRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzwowzpR3n26psbe/s7lX3aweHR8cn9ulZV6W5JLRDUp7KfogV5UzQjmaa034mKU5CTnvh5H7h96ZUKpaKJz3LqJ/gkWAxI1gbKbDtxsBDQ80SqlAUOH4jsOtO01kCbRK3JHUo0Q7sr2GUkjyhQhOOlRq4Tqb9AkvNCKfz2jBXNMNkgkd0YKjAZpVfLC+foyujRChOpSmh0VL9PVHgRKlZEprOBOuxWvcW4n/eINfxnV8wkeWaCrJaFOcc6RQtYkARk5RoPjMEE8nMrYiMscREm7BqJgR3/eVN0vWa7k3Te/TqLa+MowoXcAnX4MIttOAB2tABAlN4hld4swrrxXq3PlatFaucOYc/sD5/AFsPkiA=</latexit>

Aggregation Aggregation Aggregation Aggregation

l = 2<latexit sha1_base64="fRaTxQ5ojt4n2ht7GBug69Ws30w=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFhPBKtydhTZCwMYygvmA5Ah7m02yZG/v2J0TwpEfYWOhiK2/x85/4ya5QhMfDDzem2FmXphIYdB1v53CxubW9k5xt7S3f3B4VD4+aZk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OJ3dzv/3EtRGxesRpwoOIjpQYCkbRSu2qJLfEr/bLFbfmLkDWiZeTCuRo9MtfvUHM0ogrZJIa0/XcBIOMahRM8lmplxqeUDahI961VNGImyBbnDsjF1YZkGGsbSkkC/X3REYjY6ZRaDsjimOz6s3F/7xuisObIBMqSZErtlw0TCXBmMx/JwOhOUM5tYQyLeythI2ppgxtQiUbgrf68jpp+TXvquY/+JW6n8dRhDM4h0vw4BrqcA8NaAKDCTzDK7w5ifPivDsfy9aCk8+cwh84nz8og44V</latexit>

l = 1<latexit sha1_base64="jhd8YxvX+zP9Gz++g6JJ1IAdtkc=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQhshYGMZwXxAcoS9zVyyZG/v2N0TwpEfYWOhiK2/x85/4ya5QhMfDDzem2FmXpAIro3rfjuFjc2t7Z3ibmlv/+DwqHx80tZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5G7ud55QaR7LRzNN0I/oSPKQM2qs1KkKcku86qBccWvuAmSdeDmpQI7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5N2veZd1eoP9UqjnsdRhDM4h0vw4BoacA9NaAGDCTzDK7w5ifPivDsfy9aCk8+cwh84nz8m/o4U</latexit>

(b)

Figure 5: An illustration to compute the embedding for a
node with l = 2. (a) Graph; (b) Procedure to compute the
embedding for node 1.

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

121

Spatial-based graph convolutions are defined based on the spa-
tial relationship of nodes, where information is propagated and
aggregated in a message passing scheme.

A representative work is GraphSAGE [23], which can generate
node embedding by leveraging node feature information from the
neighborhood. The fundamental procedure consists of two steps,
i.e., aggregation and encoding, which can be formulated as:

h(l)
N(v) ← AGGREGATEl ({h

(l−1)
u ,∀u ∈ N(v)}), (4)

h(l)v ← σ (W (l) · h(l)
N(v)), (5)

whereAGGREGATEl in Equation (4) is the aggregation function ap-
plied to nodev and its neighborhoodN(v). Equation (5) is encoding
operation consisting of an embedding projection and a non-linear
activation. An example illustrating a 2-layer network for generating
the embedding for node 1 is depicted in Figure 5, with encoding di-
mensions in l1 and l2 ared1 andd2, respectively. Specifically, if mean
function is selected as the aggregation function, the aggregation in
layer l is equivalent to Equation (6).

H (l)
N(v) = A ·H (l−1)

=

1 2 3 4 5



1 1 w1 w1 w1 0
2 w2 1 0 0 w1
3 w2 0 1 0 0
4 w2 0 0 1 0
5 0 w2 0 0 1

×





h(l−1)1

h(l−1)2

h(l−1)3

h(l−1)4

h(l−1)5

, (6)

whereA is the adjacency matrix of the graph, andH (l) contains the
embeddings for every node in the graph, w1 and w2 are weights
for input edges and output edges, respectively. Then the two-step
process can be calculated with matrix calculation:

H (l) = σ ((A ·H (l−1)) ·W (l)). (7)

Note that random walk is often introduced as a sampling technique.
For more representative work, see [60–62]. We refer readers to [57]
for a more comprehensive survey of graph learning.

3.2 Challenges in EDA Applications
3.2.1 Scalability. Unlike conventional graph learning tasks, graph
learning for EDA problems is prone to runtime overhead consider-
ing that the scale of circuits keeps soaring. Similar to conventional
CNNs, the most time-consuming process in the computation of a
GCN is the embedding generation. To tackle the issue of scalability,
several attempts have been made for efficient graph representation
learning. In [63], a forward computation method with personalized
PageRank is investigated to incorporate neighborhood features
without aggregation procedure. Besides, it is pointed out that the
inefficiency might be caused by duplicated computation under the
GraphSAGE-like framework [64]. To address this, PinSAGE [64] is
proposed to select important neighbors by random walk instead of
aggregating all the neighbors, and a MapReduce pipeline is lever-
aged for maximizing the inference throughput of a trained model.

Recently, GraphZoom [65] is proposed for improving both accu-
racy and scalability of unsupervised graph embedding algorithms,
which is a multi-level spectral framework. In addition to designing
specific algorithms and models, there are also a few third-party
libraries like DGL [66] for users to make the network scalable.

3.2.2 Hypergraph. Another significant distinction is that hyper-
graph is commonly applied in EDA applications. Different from a
regular edge that connects exactly two vertices, a hyperedge may
connect more than two vertices. The basic idea to extend GCN to
handle hypergraphs is approximating the structural information
indicated by a hyperedge with normal edges. One way to perform
convolution on hypergraph is proposed in [67], which can be writ-
ten as:

H (l+1) = σ (D−1/2QWB−1Q⊤D−1/2H (l)P), (8)
where D,B are the degree matrices of the vertex and hyperedges,
respectively, P andW are trainable weights andQ is the incidence
matrix of the hypergraph. Intuitively, Equation (8) works through
clique expansion [67] which is one of the widely used methods to
handle hyperedge by replacing it of size k with a k-clique. There are
also a few variations of clique expansion such as attention-based
clique expansion [68], which assigns different weights to generate
normal edges by an attention mechanism. However, performing
clique expansion on hyperedge of size k requires a complexity of
O(k!) in terms of the number of edges.

In order to reduce the complexity and improve the efficiency, the
transformation procedure can be reduced by selection. Specifically,
a few normal edges are selected in the edge set generated by clique
expansion instead of keeping all the edges. The selection criteria is
based on the assumption that nodes in the same hyperedge share
similar features. Intuitively, an edge can be omitted if the repre-
sentations of two nodes are already similar during training, while
those nodes with relatively distinct representations should remain
connected. Therefore, one criterion is proposed in [69], which is to
select node pairs connected by the same hyperedge with maximal
feature difference. The procedure can be formulated as:

(i, j) = arg max
i , j ∈e

| |(hi − hj)| |2. (9)

where hi ,hj are the features of node i and node j, respectively. By
connecting (i, j) and {(i,u), (j,u) : u ∈ Se } where u ∈ Se is also
called “mediator", the complexity can be reduced to O(k). To do so,
the graph structure changes dynamically during training since the
node representations are going to be updated. [70] also proposes a
fast selection criteria which uses the input feature of each node to
compare the difference and selects the edges at the beginning such
that the graph structure is fixed regardless of potential change on
node representations during training, which requires a constant
number of edges for approximation.

3.2.3 Heterogeneous Graphs. Most of the existing works on graph
representation focus on homogeneous graphs, in which all ver-
tices are of the same type and all edges only represent one kind of
relation. However, graphs in EDA can be constructed in a heteroge-
neous manner, in which there may exist different types of nodes
and edges. For example, in the multiple patterning lithography
problem, a typical graph contains two types of edges: stitch edge
and conflict edge, as shown in Figure 3(c). A conflict edge implies

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

122

the connected nodes tend to be assigned different colors, while a
stitch edge implies the connected nodes should have the same color.
To address the issue of heterogeneity, several methodologies have
been proposed based on the fundamental knowledge of learning
on homogeneous graphs. The main difference lies in the selection
of neighborhood in the feature aggregation step.

Considering there are multiple types of nodes in heterogeneous
graphs, feature aggregation will naturally involve aggregating with
the same node type and with different node types. Zhang et al. pro-
posed HetGNN [71] to capture both structure and content hetero-
geneity in heterogeneous graphs. Aggregating the nodes with the
same type in the neighborhood is done as :

e(k+1)v =

∑
u ∈Nt (v) F(h

(k)
u)

|Nt (v)|
, (10)

where Nt (v) is the neighborhood of node v with the same type
t . F(·) is a user-defined transformation function, e.g., Bi-LSTM is
used in [71] and linear transformation is applied in [62]. Therefore,
there are in total |OV | embedding in the graph, where OV is the
set of all the node types in a graph. Then, embedding of different
types are combined through an attention mechanism as follows

h(k+1)v =
∑
t ∈OV

αte
(k+1)
v , (11)

where αt denotes the importance of node type t to node v .
Apart from node heterogeneity, there could also be multiple

types of edges in a graph, which denote different relationships
between items. In [72], a relational graph convolutional network
(R-GCN) is proposed to deal with different types of relations (edges)
in a graph. Essentially, a forward computation of a node in R-GCN
is performed as

h(l+1)i = σ
©­«
∑
r ∈R

∑
j ∈Nr

i

1
ci ,r

W (l)r h(l)j +W
(l)
0 h(l)i

ª®¬ , (12)

where Nr
i denotes the set of neighbor indices of node i under

relation r ∈ R. 1
ci ,r is a normalized constant which can be pre-

determined or learned, according to [72].
Besides feature aggregation by node type and edge type, Wang

et al. proposed HetGAN [73] and used the concept of meta-path
to select neighbors, where meta-path indicates composite relation
and is able to represent some semantic relationship, e.g., Author-
Paper-Author is one kind of meta-path in an academic graph and
represents a co-author relationship. HetGAN uses node-level at-
tention and semantic-level (meta-path level) attention to learn the
importance of each node and each meta-path, respectively.

zΦi = σ (
∑
j ∈NΦ

i

αΦi j · hj), (13)

where zΦi is the embedding of node i for meta-path Φ. NΦ
i denotes

the meta-path based neighbors of node i . αΦi j is weight coefficient
which is calculated through attention mechanism. Feature aggre-
gation via Equation (13) is based on single meta-path, which is
semantic-specific and able to capture a particular kind of semantic
information. To combine different semantic information reflected

BIST_mode

Control point

Observation point

(a)

Observation point

Control point

BIST_mode

0
1

(b)

Figure 6: Example of the test point insertion: (a) TPI with
AND/OR gate; (b) TPI with a multiplexer.

by different meta-paths, the importance of each semantic specific
embedding should be identified, which is calculated as:

wΦi =
1
|V|

∑
i ∈V

q⊤ · tanh
(
W · zΦi + b

)
, (14)

which essentially is a non-linear transformation with an attention
vector q. Then, the importance coefficient is normalized by softmax
function. One limitation of HetGAN is that the meta-path should
be pre-defined manually, which might not be able to capture all
meaningful meta-paths. Yun et al. proposed Graph Transformer
Networks (GTN) [74], in which meta-path is represented by matrix
multiplication of soft adjacency matrices.

4 CASE STUDIES
In this section, we present two case studies on applying graph
learning into EDA applications, including test point insertion and
timing model selection.

4.1 Test Point Insertion
4.1.1 Problem Background. Built-in self test (BIST) is an important
technique in design-for-testing, whose purpose is to design addi-
tional features into integrated circuits to allow them to perform
self-testing such that the controllability and the observability can be
improved. Test point insertion (TPI) is a broadly used approach that
involves adding extra control points (CPs) or observation points
(OPs) to the circuit. CPs can be used for setting signal lines to
desired logic values, while OPs are added as scan cells to make
a node observable. An example demonstrating two kinds of in-
sertion is given in Figure 6. In this case study, GCN is applied to
performs observation points insertion in a given netlist to improve
the observability of a design. Essentially, it can be cast as a binary
classification problem which is to determine whether an observa-
tion point should be added on the output port or not for each gate
in the design. A comprehensive study is in [29].

Table 1: Statistics of test point insertion benchmarks

Design Bench1 Bench2 Bench3 Bench4

#Nodes 1384264 1456453 1416382 1397586
#Edges 2102622 2182639 2137364 2124516

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

123

B1 B2 B3 B4 Average
70

80

90

Benchmarks

A
cc
ur
ac
y(
%)

LR SVM RF MLP GCN

Figure 7: Accuracy comparisonwith classicalmachine learn-
ing algorithms.

4.1.2 Implementation Details. SCOAP [75] is leveraged to set ini-
tial features for each node, which is a classical quantitative heuristic
measurement for testability evaluation. Specifically, each node is
associated with a four-dimensional vector [LL,C0,C1,O]. LL rep-
resents the logic level of the corresponding gate. [C0,C1,O] corre-
spond to controllability-0, controllability-1 and observability, re-
spectively, which are calculated with SCOAP method.

In order to demonstrate the superiority of the GCN model, we
compare the classification accuracy between GCN and another
four classical learning models, including logistic regression (LR),
random forest (RF), support vector machine (SVM) and multi-layer
perceptron (MLP). Since classical machine learning models require
handcrafted features extracted from a graph, neighborhood features
aremanually integrated by collecting the features of the nodes in the
fan-in cone and fan-out cone. 500 nodes in fan-in cone and 500 nodes
in fan-out cone are collected using breadth-first-search. Every time a
node is visited, the feature of this node is concatenated to the current
feature vector. The node embedding generation is conducted similar
to GraphSAGE, consisting of three aggregation layers and three
encoding layers whose dimensions are 32, 64 and 128, respectively.
The classification is performed with a set of fully-connected layers
whose dimensions are 64, 64, 128 and 2. Four industrial benchmarks
(Bench1 – Bench4) are used in the experiments, whose statistics
are shown in Table 1. It can be seen that the sizes of graphs are all
in million scale. To preserve the evaluation principle of a machine
learning model, each time three designs are used for training and
the remaining one is used for testing. The accuracy comparison is
presented in Figure 7. GCN achieves significantly higher accuracy
than all other classical machine learning models on average for all
test designs.

Data visualization can facilitate us to justify whether the rep-
resentation of a node is discriminative or not. Furthermore, we
visualize different node embedding generated with different net-
work depth, which denotes the representation after integrating
features of the nodes in 1-hop neighborhood, 2-hop neighborhood
and 3-hop neighborhood, respectively. In this experiment, we visu-
alize the feature representation obtained from different encoders
using t-SNE [76] for 1000 nodes, including 500 positive nodes and
500 negative nodes, as shown in Figure 8. It can be observed that
the representations obtained for positive class and negative class
become more discriminative as search depth increases.

4.2 Timing Model Selection
4.2.1 ProblemBackground. Gate sizing is a commonly usedmethod
to optimize the timing of a circuit, which is an intermediate step
to resize instances. In modern design flow, different nets require
different models for delay calculation, such as wire delay model and
buffer delay model with various parameters, to achieve accurate
outputs, shown as Figure 9. Conventional gate sizing flow suffers
from the inaccurate selection of delay model for each net in the
circuit, which relies on heuristics and is usually conservative. In
this case study, our goal is to train a classification model such that
the selection can be more accurate than heuristics.

Table 2: Statistics of timing model selection benchmarks

Design #Nodes #Edges #POS #NEG

D1 49559 109118 2961 46598
D2 46548 105534 2168 44380
D3 45986 95423 2783 43203
D4 41943 90992 1808 40135

4.2.2 Experiment Details. A netlist is represented as directed graph
G(V,E). Each node v ∈ V represents a driver node and each edge
e ∈ E represents the connection between two nodes. The dataset
consists of four 7nm designs. An initial attribute feature vector with
a dimension of 14 is supplied to each driver node, including fan-
out number, instance location, sensitivity, slew, arrival time, slack,
capacitance and resistances of net and sink, and delays of net and
arc. Labels of nodes are generated by comparing and analyzing the
netlists before and after the global optimization step in an industrial
tool. Statistic of designs are summarized in Table 2. #POS and #NEG
represent the number of nets using buffer delay model and wire RC
delay model, respectively.

Given the dataset, a GCN can be trained based on theGraphSAGE-
like framework [23]. A single GCN is trained for this task, which
contains two steps of aggregation-encoding process and a fully
connected layer with hidden dimension of 64. Similar to many clas-
sification problems in EDA applications, data imbalance is a severe
issue. To resolve that, a two-stage GCN is leveraged which is similar
to [29], and both models share the same structure. After the first
GCN model is trained, the parameters of the first model are fixed
and the second one starts to be trained, which is initialized by the
parameters obtained from the first stage.

Table 3 shows the results of numerical sizing baseline, single-
stage GCN and two-stage GCN. In every round of train-and-test,
we select one design as the testing dataset, while the other three
designs are split into training and validating dataset. The results
show that the two-stage GCN achieves the highest F1-score among
the three methods, which demonstrates the effectiveness of the
GCN approach.

5 CONCLUSION
In this paper, we discussed a few key techniques of extending
deep learning approaches to handle irregular structure data and
highlight several challenges that are commonly encountered in
EDA applications. Two case studies on timing model selection and

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

124

−40 −20 0 20 40

−40

−20

0

20

40

(a)

−40 −20 0 20 40

−40

−20

0

20

40

(b)

−40 −20 0 20 40

−40

−20

0

20

40

Negtive Positive

(c)

Figure 8: Visualization of node embedding with different search depth L. (a) L=1; (b) L=2; (c) L=3.

Buffer Model

Not Guarantee Timing Requirement
Guarantee Timing Requirement

Wire Model

(a)

Figure 9: Example of timing model selection. (a) Wire RC
delay model; (b) Buffer delay model.

Table 3: Results on the benchmarks

Design Model F1-score Precision Recall

D1
Baseline 0.502 0.597 0.433
GCN 0.561 0.466 0.706
GCN-2 0.581 0.523 0.652

D2
Baseline 0.529 0.528 0.530
GCN 0.462 0.326 0.791
GCN-2 0.574 0.532 0.623

D3
Baseline 0.527 0.660 0.438
GCN 0.526 0.396 0.782
GCN-2 0.538 0.437 0.699

D4
Baseline 0.549 0.542 0.556
GCN 0.497 0.364 0.785
GCN-2 0.556 0.454 0.715

Average
Baseline 0.527 0.582 0.490
GCN 0.511 0.388 0.766
GCN-2 0.565 0.493 0.669

test point insertion demonstrated the promising functionalities of
graph learning in the circuits design domain.

Despite that significant improvements have been achieved, there
are still lots of mysteries to be uncovered. For example, paths in
a graph can reveal important properties of a graph (e.g., critical
paths in a circuit), which is distinct from current developments

based on neighborhood aggregating. Dealing with paths in graph
with learning techniques may potentially broaden the availability
of graph learning in the EDA domain. In addition, conventional
learning algorithms focused on classification or regression tasks
which typically cannot yield the final solution to a combinatorial
optimization problem directly. Leveraging graph learning to solve
combinatorial problemsmight be a new direction for graph learning
to play a role in the EDA domain and beyond.

ACKNOWLEDGMENT
The authors would like to thank Dr. Qinghua Liu from Cadence
Design Systems and Dr. Mark H. Ren from NVIDIA Research for
their valuable support and insightful comments on the completion
of case studies. This work is supported by The Research Grants
Council of Hong Kong SAR (Project No. CUHK24209017).

REFERENCES
[1] K.-C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “Dag-map: Graph-

based fpga technology mapping for delay optimization,” IEEE Design & Test of
Computers, vol. 9, no. 3, pp. 7–20, 1992.

[2] K.-T. Cheng and C.-J. Lin, “Timing-driven test point insertion for full-scan and
partial-scan BIST,” in Proc. ITC, 1995, pp. 506–514.

[3] N. Selvakkumaran and G. Karypis, “Multiobjective hypergraph-partitioning al-
gorithms for cut and maximum subdomain-degree minimization,” IEEE TCAD,
vol. 25, no. 3, pp. 504–517, 2006.

[4] B. Hu and M. Marek-Sadowska, “Fine granularity clustering-based placement,”
IEEE TCAD, vol. 23, no. 4, pp. 527–536, april 2004.

[5] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition approaches
for double patterning lithography,” IEEE TCAD, vol. 29, pp. 939–952, June 2010.

[6] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposition for triple patterning
lithography,” IEEE TCAD, vol. 34, no. 3, pp. 433–446, March 2015.

[7] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerging nano-
lithography,” IEEE TCAD, vol. 32, no. 10, pp. 1453–1472, 2013.

[8] M. Cho and D. Z. Pan, “BoxRouter: a new global router based on box expansion
and progressive ILP,” in Proc. DAC, 2006, pp. 373–378.

[9] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert, and
D. Z. Pan, “MrDP: Multiple-row detailed placement of heterogeneous-sized cells
for advanced nodes,” IEEE TCAD, 2017.

[10] H. Li, W.-K. Chow, G. Chen, E. F. Young, and B. Yu, “Routability-driven and
fence-aware legalization for mixed-cell-height circuits,” in Proc. DAC, 2018, pp.
1–6.

[11] G. Chen and E. F. Young, “Salt: provably good routing topology by a novel steiner
shallow-light tree algorithm,” IEEE TCAD, 2019.

[12] S.-Y. Fang, Y.-W. Chang, andW.-Y. Chen, “A novel layout decomposition algorithm
for triple patterning lithography,” IEEE TCAD, vol. 33, no. 3, pp. 397–408, March
2014.

[13] H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online learning in lithography
hotspot detection with information-theoretic feature optimization,” in Proc. IC-
CAD, 2016, pp. 47:1–47:8.

[14] H. Geng, W. Zhong, H. Yang, Y. Ma, J. Mitra, and B. Yu, “Sraf insertion via
supervised dictionary learning,” IEEE TCAD, 2019.

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

125

[15] W.-H. Chang, L.-D. Chen, C.-H. Lin, S.-P. Mu, M. C.-T. Chao, C.-H. Tsai, and Y.-C.
Chiu, “Generating routing-driven power distribution networks with machine-
learning technique,” in Proc. ISPD, 2016, pp. 145–152.

[16] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high
speed adders: A pareto driven machine learning approach,” IEEE TCAD, vol. 38,
no. 12, pp. 2298–2311, 2018.

[17] C.-W. Pui, G. Chen, Y. Ma, E. F. Young, and B. Yu, “Clock-aware ultrascale fpga
placement with machine learning routability prediction,” in Proc. ICCAD, 2017,
pp. 929–936.

[18] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization
with lithography-guided generative adversarial nets,” in Proc. DAC, 2018, pp.
131:1–131:6.

[19] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout hotspot detection
with feature tensor generation and deep biased learning,” IEEE TCAD, vol. 38,
no. 6, pp. 1175–1187, 2019.

[20] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and J. Hu, “RouteNet:
Routability prediction formixed-size designs using convolutional neural network,”
in Proc. ICCAD, 2018, pp. 80:1–80:8.

[21] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “DeePattern: Layout pattern
generation with transforming convolutional auto-encoder,” in Proc. DAC, 2019,
pp. 148:1–148:6.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” Proc. ICLR, 2016.

[23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proc. NIPS, 2017, pp. 1024–1034.

[24] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems,” in
Proc. KDD, 2018, pp. 974–983.

[25] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by iterative
message passing,” in Proc. CVPR, 2017, pp. 5410–5419.

[26] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolutional policy
network for goal-directed molecular graph generation,” in Proc. NIPS, 2018, pp.
6410–6421.

[27] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “Graphrnn: Generating
realistic graphs with deep auto-regressive models,” in Proc. ICML, 2018, pp. 5694–
5703.

[28] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial attack
on graph structured data,” in Proc. ICML, 2018, pp. 1123–1132.

[29] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu, “High per-
formance graph convolutional networks with applications in testability analysis,”
in Proc. DAC, 2019, p. 18.

[30] R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping program
for lookup table-based field programmable gate arrays,” in Proc. DAC, 1990, pp.
613–619.

[31] R. Brayton andA.Mishchenko, “Abc: An academic industrial-strength verification
tool,” in International Conference on Computer Aided Verification, 2010, pp. 24–40.

[32] C. J. Alpert, A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Hypergraph parti-
tioning with fixed vertices,” IEEE TCAD, vol. 19, no. 2, pp. 267–272, 2000.

[33] B. Yu, X. Xu, J.-R. Gao, Y. Lin, Z. Li, C. Alpert, and D. Z. Pan, “Methodology for
standard cell compliance and detailed placement for triple patterning lithography,”
IEEE TCAD, vol. 34, no. 5, pp. 726–739, May 2015.

[34] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
TC, vol. 100, no. 8, pp. 677–691, 1986.

[35] J. Cong and P. H. Madden, “Performance driven global routing for standard cell
design,” in Proc. ISPD, vol. 14, no. 16, 1997, pp. 73–80.

[36] C. Albrecht, “Provably good global routing by a new approximation algorithm
for multicommodity flow,” in Proc. ISPD, 2000, pp. 19–25.

[37] T. Yoshimura and E. S. Kuh, “Efficient algorithms for channel routing,” IEEE TCAD,
vol. 1, no. 1, pp. 25–35, 1982.

[38] K. Yuan, J.-S. Yang, and D. Z. Pan, “Double patterning layout decomposition for
simultaneous conflict and stitch minimization,” IEEE TCAD, vol. 29, no. 2, pp.
185–196, Feb. 2010.

[39] H.-Y. Chang and I. H.-R. Jiang, “Multiple patterning layout decomposition con-
sidering complex coloring rules,” in Proc. DAC, 2016, pp. 40:1–40:6.

[40] Y. Ma, J.-R. Gao, J. Kuang, J. Miao, and B. Yu, “A unified framework for simulta-
neous layout decomposition and mask optimization,” in Proc. ICCAD, 2017, pp.
81–88.

[41] R. Bellman, “On a routing problem,” Quarterly of applied mathematics, vol. 16,
no. 1, pp. 87–90, 1958.

[42] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic design automation: syn-
thesis, verification, and test. Morgan Kaufmann, 2009.

[43] B. Yu and D. Z. Pan, “Layout decomposition for quadruple patterning lithography
and beyond,” in Proc. DAC, 2014, pp. 53:1–53:6.

[44] B. Yu, Y.-H. Lin, G. Luk-Pat, D. Ding, K. Lucas, and D. Z. Pan, “A high-performance
triple patterning layout decomposer with balanced density,” in Proc. ICCAD, 2013,
pp. 163–169.

[45] C. K. Cheng, S. Z. Yao, and T. C. Hu, “The orientation of modules based on graph
decomposition,” IEEE TC, vol. 40, pp. 774–780, June 1991.

[46] C.-W. Sham, F. Y. Young, and C. Chu, “Optimal cell flipping in placement and
floorplanning,” in Proc. DAC, 2006, pp. 1109–1114.

[47] J. Kuang and E. F. Y. Young, “An efficient layout decomposition approach for
triple patterning lithography,” in Proc. DAC, 2013, pp. 69:1–69:6.

[48] Y. Yang, W.-S. Luk, D. Z. Pan, H. Zhou, C. Yan, D. Zhou, and X. Zeng, “Lay-
out decomposition co-optimization for hybrid e-beam and multiple patterning
lithography,” IEEE TCAD, vol. 35, no. 9, pp. 1532–1545, 2016.

[49] M. Cho and D. Z. Pan, “BoxRouter: a new global router based on box expansion
and progressive ILP,” IEEE TCAD, vol. 26, no. 12, pp. 2130–2143, 2007.

[50] Y. Lin, X. Xu, B. Yu, R. Baldick, and D. Z. Pan, “Triple/quadruple patterning layout
decomposition via linear programming and iterative rounding,” JM3, vol. 16, no. 2,
2017.

[51] R. Samanta, J. Hu, and P. Li, “Discrete buffer and wire sizing for link-based
non-tree clock networks,” IEEE TVLSI, vol. 18, no. 7, pp. 1025–1035, 2009.

[52] A. B. Kahng, S. Kang, H. Lee, S. Nath, and J. Wadhwani, “Learning-based approxi-
mation of interconnect delay and slew in signoff timing tools,” in Proc. SLIP, 2013,
pp. 1–8.

[53] W.-T. J. Chan, K. Y. Chung, A. B. Kahng, N. D. MacDonald, and S. Nath, “Learning-
based prediction of embedded memory timing failures during initial floorplan
design,” in Proc. ASPDAC, 2016, pp. 178–185.

[54] Z. Qi, Y. Cai, and Q. Zhou, “Accurate prediction of detailed routing congestion
using supervised data learning,” in Proc. ICCD, 2014, pp. 97–103.

[55] Q. Zhou, X. Wang, Z. Qi, Z. Chen, Q. Zhou, and Y. Cai, “An accurate detailed
routing routability prediction model in placement,” in Proc. ASQED, 2015, pp.
119–122.

[56] H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph embedding:
problems, techniques and applications,” IEEE TKDE, vol. 30, no. 9, pp. 1616–1637,
2018.

[57] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey
on graph neural networks,” arXiv preprint arXiv:1901.00596, 2019.

[58] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[59] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in neural information
processing systems, 2016, pp. 3844–3852.

[60] A. Micheli, “Neural network for graphs: A contextual constructive approach,”
IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, 2009.

[61] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Ad-
vances in Neural Information Processing Systems, 2016, pp. 1993–2001.

[62] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[63] A. Bojchevski, J. Klicpera, B. Perozzi, M. Blais, A. Kapoor, M. Lukasik, and S. Gün-
nemann, “Is pagerank all you need for scalable graph neural networks?” 2019.

[64] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2018, pp. 974–983.

[65] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “Graphzoom: A multi-level
spectral approach for accurate and scalable graph embedding,” arXiv preprint
arXiv:1910.02370, 2019.

[66] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma
et al., “Deep graph library: Towards efficient and scalable deep learning on graphs,”
arXiv preprint arXiv:1909.01315, 2019.

[67] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural networks,” in
Proc. AAAI, vol. 33, 2019, pp. 3558–3565.

[68] S. Bai, F. Zhang, and P. H. Torr, “Hypergraph convolution and hypergraph atten-
tion,” arXiv preprint arXiv:1901.08150, 2019.

[69] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar, “Hypergcn:
A new method for training graph convolutional networks on hypergraphs,” in
Advances in Neural Information Processing Systems, 2019, pp. 1509–1520.

[70] T.-H. H. Chan and Z. Liang, “Generalizing the hypergraph laplacian via a diffusion
process with mediators,” Theoretical Computer Science, 2019.

[71] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph
neural network,” in Proc. KDD. ACM, 2019, pp. 793–803.

[72] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” in European Se-
mantic Web Conference. Springer, 2018, pp. 593–607.

[73] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous graph
attention network.” ACM, 2019, pp. 2022–2032.

[74] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer networks,”
in Proc. NIPS, 2019, pp. 11 960–11 970.

[75] L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia controllability/observability
analysis program,” in Proc. DAC, 1980, pp. 190–196.

[76] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

Session 6: Machine Learning for Physical Design (part 2)

ISPD ’20, September 20–23, 2020, Taipei, Taiwan
 Proceedings published March 29, 2020

126

