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Lithography Proximity Effect
_ W

m What you see # what you get
m RETs: OPC, SRAF, MPL
m Still exists hotspots: low fidelity patterns

m Lithography simulation: time consuming




Hotspot Detection Problem

Definition: Accuracy

The ratio of correctly predicted hotspots among the set of actual hotspots.
#TP

#TP + #FN

Definition: False Alarm

The number of incorrectly predicted non-hotspots.
False Alarm = #FP

Problem: Hotspot Detection

Given a dataset that contains hotspot and non-hotspot instances, train a classifier
that can maximize the accuracy and minimize the false alarm.

Accuracy =




Hotspot Detection Methods

Two Classes:
- Pattern matching-based

- Machine learning-based




Pattern Matching-based Hotspot
Detection

m Characterize the hotspots as explicit patterns and identify the hotspots by
matching these patterns

m [Yu+,ICCAD’14] [Nosato+,JM3’14] [Kahng+,SPIE’06] [Su+, TCAD’15]
[Wen+,TCAD'14] [Yang+, TCAD’'17]

m Fast but hard to detect unseen patterns




Machine Learning-based Hotspot
Detection

m Build implicit models by learning from existing training data
- SVM, Bayesian, Decision-tree, Boosting, NN, ...

m [Ding+,ASPDAC’ 11] [Yu+,DAC’13] [Matsunawa+,SPIE’15] [Zhang+,ICCAD’16]
[Wen+,TCAD’14]

m Possible to detect the unseen hotspots but may cause false alarm issues




Deep Learning-based Hotspot Detection

m Belongs to ML-based hotspot detection but different from conventional ML
models:

- Feature Crafting v.s. Feature Learning
- Stronger scalability

m [Yang+,DAC'17]

m Drawback: not storage and computational efficient
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m Proposed Binarized Neural Network-based Hotspot Detector




Parameter Quantization

m Problem with deep neural networks:
- Enormous computational and storage consumption

m To alleviate this problem:

- Parameter Quantization

- 32-hit floating-point weights not necessary: quantized to fixed-point of 8-bit,
3-bit, 1-bit...

- [Arora+,ICML'14] [Hwang+,SiPS’14] [Soudry+,ANIPS’ 14]
[Rastegari+,ECCV’16]




Binarized Neural Network

m Binarized neural network (BNN): =
- Extremely quantized to 1 bit 32bit Float
- . ) =)
- Inherently suitable for hardware - " Float Inner Non_-nn_ear.
implementation Real-valued - Rt
Neural Networks L]
m Layout patterns are binary images N
- BNN might be suitable for that Ibit Binary
mm e m % ,pgonm
XNOR Sign
. Function
Binarized Neural ||
Networks o




Binarization Approach

Definition

Let W be the kernel which is an n-element vector and X be the vector of the
corresponding block in the input tensor, n = w;, X h;. Let Wy, X5 be the binarized
kernel and input vector and ay,, ay be the corresponding scaling factors. Here W, X €
R™, Wy, Xg € {—1,+1}" and ay, ay € R*.

Problem: Binarization

Given the kernel and input vector W, X, find best Wy, Xg, ayy, ax that minimizes the
binarization loss L;. L;(Wg, X5, ay, ax) = |[W © X — ay, W © axXg||? where © means
inner product.




Binarization Approach

m Solving the minimization problem:

Wz = sign(W), Xg = sign(X)
ay =—|Wll;1, ay =—||X
v = Wi, o =Xl
m The estimated weight and corresponding input vector W, X are:
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Training BNN

m Gradient for sign function [Hubara, 2016]

dsign(x)
o Hwl<t

m Back propagation through the Binarizing Layer
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Network Architecture

m Information loss caused by binarization: need a stronger network

m Residual block-based architecture
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Implementation Detalls

BatchNorm

m Typical BNN block structure v v

3x3 B_conv, 64 < Binarizing

A 4
: Binary Convolution
Output channel: 64

\ Kernel size: 3x3

m Speedup scaling factor calculation [Rastegari, 2016]
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Implementation Detalls

Biased Learning [Yang, 2017]
- Loss function: Softmax cross entropy
- Trained with hotspot’s label y;, = [0,1] and non-hotspot’s label y;, = [1, 0]
- Trained model is fine-tuned with non-hotspot’s label changed to y, = [1 —
€, €] and hotspot’s label keeps the same. € is set to 0.2.
Data preprocessing
- Down-sampled to 128x128

Training hyperparameters
- Batch size:128
- Learning rate: Initial 0.15, exponentially decay each time loss plateaus
- Optimizer: NAdam optimizer [Dozat, 2016]
- Initializer: Xavier initializer [Glorot, 2010]
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Performance Comparisons with Previous

Hotspot Detectors

m Benchmark: ICCAD 2012 Contest

Method Accuracy (%) False Alarm # Runtime (s)
SPIE'15 84.2 2919 2672
ICCAD’16 97.7 4497 1052
DAC’17 98.2 3413 482

Ours 99.2 2787 60

m Accuracy improved from 84.2% to 99.2%
m Fewest False Alarms: 2787

m Lowest Runtime: 60s, 8x faster
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