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Split Manufacturing

The notion of integrated circuit split manufacturing which delegates the
front-end-of-line (FEOL) and back-end-of-line (BEOL) parts to di�erent
foundries [McCants 2011], is to prevent overproduction, piracy of the
intellectual property (IP) [Shamsi et al. 2019], or targeted insertion of
hardware Trojans [Li et al. 2018] by adversaries in the FEOL facility.

M1
V1
M2
V2
M3
V3
M4
V4
M5
V5
M6
V6
M7
V7
M8
V8
M9
V9

M10

Front-end-of-line (FEOL)
Back-end-of-line (BEOL)

We challenge the security promise of split manufacturing by formulat-
ing various layout-level placement and routing hints as vector-based and
image-based features. We construct a sophisticated deep neural net-
work which can infer the missing BEOL connections with high accuracy.
Compared with the network-flow a�ack [Wang et al. 2018] for the same
set of ISCAS-85 designs, we achieve 1.21× accuracy when spli�ing on
M1 and 1.12× accuracy when spli�ing on M3 with less than 1% running
time.
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Available FEOL design, cell library, database of layouts generated in a
similar manner.
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Objective correct connection rate:

CCR =

∑m
i=1 cixi∑m
i=1 ci

, (1)

where m is the number of sink fragments, c1, c2, . . . , cm are the numbers
of sinks in every fragment, xi = 1 when a positive virtual pin pair (VPP)
is selected for the i-th sink fragment, xi = 0 when a negative VPP is
selected for the i-th sink fragment.

Feature Extraction

Vector-based Features
I Distances for VPPs along the preferred and the non-preferred routing

direction.
I Maximum capacitance of the driver and pin capacitance of the sinks.
I Number of sinks connected within the sink fragment.
I Wirelength and via contribution in each FEOL metal layer.
I Driver delay based on the underlying timing paths.

Image-based Features
We represent the routing layout of the local regions centering the virtual
pin as gray-scale layout images. We consider three di�erent scales with
the same image shape but di�erent precisions.

Feature Image 1

Feature Image 2

Feature Image 3

Each image is 99 pixels wide and high, representing 99× 99 consecutive
regions. Since wires closer to the BEOL carry more information about
the connection, those in higher metal layers are encoded in more signif-
icant bits.
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Sample Selection

We select n candidate VPPs for each sink in training and testing based
on three criteria.

Direction Criterion
For a VPP (p, q), if q is on the opposite side of one of the wire segments
directly connected to p, we then say the virtual pin p prefers virtual pin
q.

Metal 3

Via 3
Source A Source B

Sink A

Sink B

A VPP is not considered as a candidate in case both source and sink pins
do not prefer each other.

Sk Sc Sk Prefers Sc Sc Prefers Sk Direction Criterion
A A 3 7 3

A B 3 3 3

B A 7 7 7

B B 3 3 3

Non-duplication Criterion
If a sink fragment or source fragment have multiple virtual pins, for each
pair of sink fragment and source fragment, only the VPP with the short-
est distance apart in the non-preferred routing direction of the split layer
is considered as candidate.

Distance Criterion
If the number of VPPs remaining is greater than n, the VPPs with shorter
distance in the non-preferred routing direction of the split layer have
higher priority to be selected.

Model Architecture

Input:
I a batch of features corresponding to a sink fragment including the

vector-based features of n selected VPPs with the sink fragment;
I the image-based features of n source fragments in the related VPPs;
I the image-based features of the sink fragment itself.
Output:
I scores for every VPP in the batch.
To handle vector-based and image-based features in the same network,
the proposed neural network first extracts underlying features from het-
erogeneous input by processing vector-based features (shown in the up-
per le�) and image-based features (shown in the upper middle) individ-
ually, and then processing them together (shown in the lower le�) a�er
concatenating the output of the vector and image part together.
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For the image part of the network, note that the image-based features
of the sink fragment are the same in the batch, so we only process them
once to save runtime and its output is distributed to the output of every
source images. Besides, all the image-based features go through the
same shared network.

Part Layer Parameter Output
Vector fc1 27× 128 n× 128
part fc2 [128× 128]× 12 n× 128

conv1 [3× 3, 16]× 3 (n + 1)× 99× 99× 16
conv2 [3× 3, 32]× 3 (n + 1)× 33× 33× 32

Image conv3 [3× 3, 64]× 3 (n + 1)× 11× 11× 64
conv4 [3× 3, 128]× 3 (n + 1)× 4× 4× 128

part fc3 128× 256 (n + 1)× 256
fc4 256× 128 (n + 1)× 128
fc5 256× 128 n× 128
fc5 256× 128 n× 128

Merged fc2 [128× 128]× 9 n× 128
part fc6 128× 32 n× 32

fc7 32× 1 n× 1

Both fully connected layers and convolutional layers are followed by a
leaky rectified linear unit (LReLU)

y = max(0.01x, x), (2)

as activation, where x is the input and y is the output [Maas, Hannun,
and Ng 2013].

So�max Regression Loss

Conventional Approach
The loss of the two-class classification is

lr = −
1
n

log
es+t

es−t + es+t
+
∑
j 6=t

log
es−j

es−j + es+j

 , (3)

whose partial derivative is

∂lr
∂s+j

= − ∂lr
∂s−j

=



− es−j

n
(

es−j + es+j
) if j = t,

es+j

n
(

es−j + es+j
) otherwise.

(4)

The partial derivative in the last FC layer is

∂lr
∂w+

i
= − ∂lr

∂w−i
=
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es+j xi,j
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 . (5)

Misprediction of one VPP, which significantly influences CCR, barely
a�ects the average loss. It also has a serious imbalance problem as it can
easily gain a high accuracy by simply classifying all VPPs as negative,
which is meaningless.

Our Method
We propose the following so�max regression loss

lc = − log
est∑n
j=1 esj

, (6)

whose partial derivative is

∂lc
∂sj

=


esj∑n
j=1 esj

− 1 if j = t,

esj∑n
j=1 esj

otherwise.
(7)

The partial derivative in the last FC layer is

∂lc
∂wi

=

∑n
j=1 esjxi,j∑n

j=1 esj
− xi,t. (8)

The source fragment with higher score contributes much more signifi-
cantly in the gradient with an exponential factor. The summation of the
coe�icients in the positive part equals to that of the negative part, so
there is no imbalance issue.

Experimental Results

Comparison between Ours and Wang (TVLSI’18)
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Conclusion

I Demonstrate vector-based and image-based features.
I Process heterogeneous features simultaneously in a neural network.
I Propose a so�max regression loss that directly reflects on the

accuracy for the virtual pin pair matching problem of split
manufacturing.
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