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Introduction
t As VLSI technology scales to deep submicron

› Interconnect dominates timing issues
› Global routing – integral part of timing convergence flow
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Previous Works on GR and LA

t Example papers on global routing and layer assignment: 
› Timing-driven GR [Liu et al. TCAD’13]
› Via count and overflow minimization during layer assignment -

NVM [Liu+, ASPDAC’11]
› Delay-driven layer assignment [Yu+, ICCAD’15]

t Limitations of previous layer assignment:
› Net-by-net method may lead to sub-optimal results
› Focus on sum of net delays
› Lack global optimization
› Linear approximation of via delays influences accuracy.
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Contributions of this Work

t A novel incremental layer assignment framework for
critical path timing with via delays

t Semidefinite programming (SDP) modeling for better 
optimal solutions

t Self-adaptive partitioning methodology based on K*K
partitions for speed-up

4



Problem Formulation
t Critical Path Layer Assignment (CPLA)

› Given a 3-D grid graph, edge and layer information, initial layer 
assignment solution and set of critical nets

› Minimize: critical path timing (Elmore delay)
› Subject to: edge capacity constraints
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CPLA Algorithm
t Mathematical Formulation

t Constraints:
› Each segment should be assigned on one and only one layer

› Edge capacity constraint:

› Via capacity constraint:

6

Segment costs Via costs



Self-adaptive Quadruple Partition
t K x K division [Yu+, ICCAD’15]

› Unbalanced computation overhead

t Limit the number of segments in each partition
› Each thread deals with workload in a well-balanced manner
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Semidefinite Programming

t Input: parameter matrix T
t Output: variable matrix X
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Example
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t Segments S1 and S2
t 4 layers:

› Layer 1 and 3 for x-dimension
› Layer 2 and 4 for y-dimension

t Post mapping strategy provides integer solutions
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Experimental Results
t Implemented the framework in C++
t ILP solver -- GUROBI
t SDP solver – CSDP
t Parallel implementation – OpenMP

t Evaluation on ISPD’08 global routing benchmarks
t Performance Metrics

› Average Critical Path Timing
› Worst Critical Path Timing
› # of Via capacity violation
› # of Via
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Evaluation on ISPD’08 Benchmarks
t Initial global routing input:

› Generated by NCTU-GR 2.0 [Liu et al. TCAD’13]
t Initial layer assignment:

› From NVM [Liu et al. ASPDAC’11]
› Targeting via number and overflow minimization

t Wire resistance and capacitance values obtained from 
industry settings

t Release 0.5% critical and non-critical nets
t Compared with TILA [Yu et al. ICCAD’15]
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Delay Comparison Results
t ISPD’08 Global Routing Benchmarks

› 14% improvement in Avg(Tcp)
› 4% improvement in Max(Tcp)
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Via Comparison Results
t ISPD’08 Global Routing Benchmarks

› Via Overflow (#OV) decreases by 10% 
› Similar number of vias
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Conclusion

t Propose Incremental Layer Assignment for Critical Path
Timing (CPLA) algorithm 

› Self-adaptive partition provides balanced workload for multiple
threads and potential speed-up

› Semidefinite programming (SDP) relaxation

› Post mapping satisfies constraints

t CPLA suitable for future heterogeneous layer structures
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Overview

t Introduction
t Problem Formulation
t Algorithms
t Experimental Results
t Conclusion
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Model Description
t Elmore timing model:

› Consider both segment delay and via delay
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Partition Size Impact
t Different number of segments in each partition
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Mapping Algorithm
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t Provide integer solutions
› For each edge with critical nets:

Find the current highest 
layer j to assign segments

cap(j) = allowable number 
of segments to assign

Finish all layers?

Assign these segments 
on layer j of edge

 Select cap(j) segments 
with highest solutions
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