

H3D: Heterogeneous Resources Aware Global Router for Face-to-Face Bonded 3D ICs

Yuxuan Zhao, Feng Gu, Siting Liu, Peiyu Liao, Bei Yu

Department of Computer Science & Engineering The Chinese University of Hong Kong

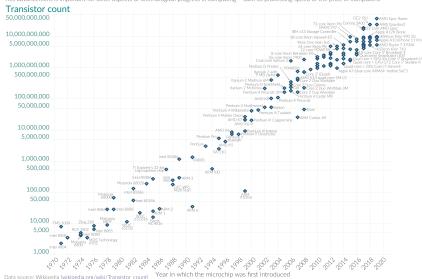
{yxzhao21,byu}@cse.cuhk.edu.hk

Outline

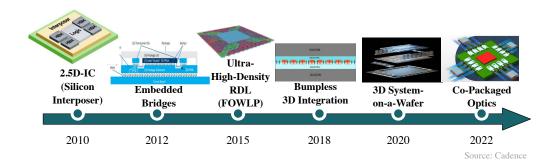
Introduction

2 H3D Global Router

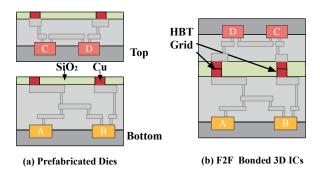
3 Experimental Results


Introduction

Cramming More Components onto Integrated Circuits

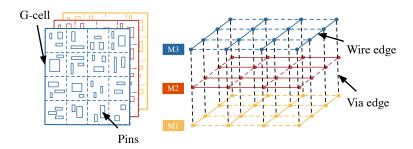

Moore's Law: The number of transistors on microchips doubles every two years Our World Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

More-than-Moore Heterogeneous Integration



- Heterogeneous integration (HI) is a promising solution for better PPA, cost, and memory bandwidth.
- 3D integration is a key technology for HI to achieve Moore style gains.

Face-to-Face Bonded 3D ICs

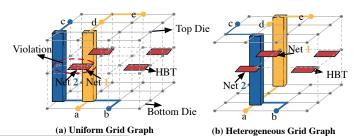


- Hybrid bonding technology enables direct metal-to-metal and dielectric-to-dielectric bonding at BEOLs of prefabricated dies.
- With hybrid boning terminal (HBT) pitches below $2\,\mu m$ becoming feasible, we can achieve ultra-high vertical integration density.

Global Routing

- Signal routing establishes connections between circuit elements using metal tracks across multiple layers.
- Routing problem is divided into two phases:
 - **Global routing**: partitions the layout into a grid map and constructs a rough routing solution in grid units.
 - Detailed routing: connects all the nets using actual metal tracks and vias while satisfying all the design rules.

Conventional grid graph model in global routing.

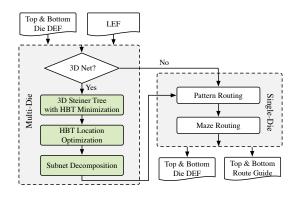

How to Handle the HBT in Routing?

Connection Type	C4 Bump	TSV & µbump	Hybrid Bond	Metal Via*
Typical Pitch	250 µm	50 µm	$<$ 10 μm	0.1 μm
# of Connection [†]	16	400	$> 10^4$	10^{8}

^{*:} Via below top-most metal in 28 nm node.

- Existing pseudo-3D flows [TCAD'19]¹ using commercial tools require a post-routing legalization [TCAD'24]² step to avoid spacing violations.
- Existing 3D pattern routing methods face similar issues.
- We propose a heterogeneous grid graph to model both routing and HBT resources.

¹Bon Woong Ku, Kyungwook Chang, and Sung Kyu Lim (2019). "Compact-2D: A physical design methodology to build two-tier gate-level 3-D ICs". In: *IEEE TCAD* 39.6, pp. 1151–1164.


 $[\]dagger$: In mm^2 area.

²Yen-Hsiang Huang et al. (2024), "On Legalization of Die Bonding Bumps and Pads for 3D ICs", In: IEEE TCAD.

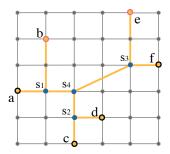
H3D Global Router

Our 3D Global Router Framework

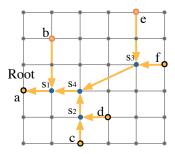

- H3D is a sequential global router that handles both 3D and 2D nets.
- H3D processes nets in ascending order of their HPWL.
- H3D efficiently minimizes the HBT counts and optimizes HBT locations to achieve minimal wirelength without spacing violations.

3D Steiner Tree Construction with HBT Minimization

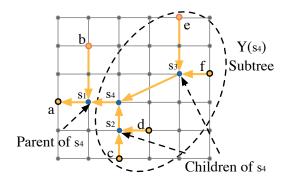
Planar RSMT Construction:


- Project the 3D pins to a 2D plane.
- Generate the rectilinear Steiner minimum tree (RSMT) using FLUTE [TCAD'08]³.

³Chris Chu and Yiu-Chung Wong (2008). "FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree Algorithm for VLSI Design". In: *IEEE TCAD* 27.1, pp. 70–83.

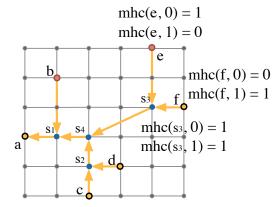

- Similar to layer assignment for via minimization [TCAD'08]⁴, we use a dynamic programming (DP) algorithm to minimize the HBTs.
- The two-pin net order is determined by a depth-first search (DFS) traversal.

⁴Tsung-Hsien Lee and Ting-Chi Wang (2008). "Congestion-constrained layer assignment for via minimization in global routing". In: *IEEE TCAD* 27.9, pp. 1643–1656.


- Similar to layer assignment for via minimization [TCAD'08]⁴, we use a dynamic programming (DP) algorithm to minimize the HBTs.
- The two-pin net order is determined by a depth-first search (DFS) traversal.

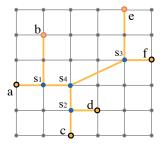
⁴Tsung-Hsien Lee and Ting-Chi Wang (2008). "Congestion-constrained layer assignment for via minimization in global routing". In: *IEEE TCAD* 27.9, pp. 1643–1656.

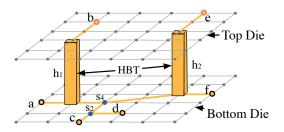
$$mhc(v,l) = \min_{\substack{1 \le l_i \le L \\ 1 \le l_k \le L}} \left(\underbrace{hc(v)}_{\substack{\text{#HBTs} \\ \text{connecting} \\ k \text{ children}}} + \sum_{j=1}^{\kappa} \underbrace{mhc(v_{c(j)}, l_j)}_{\substack{\text{HBT cost of} \\ \text{child } v_{c(j)} \text{ at die } l_j}} \right), \tag{1}$$



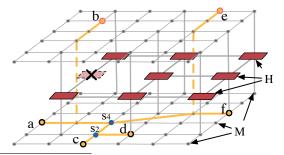
$$mhc(v, l) = \min_{\substack{1 \le l_i \le L \\ 1 \le l_k \le L}} \left(\underbrace{hc(v)}_{\substack{\text{#HBTs} \\ \text{connecting} \\ k \text{ children}}} + \sum_{j=1}^{k} \underbrace{mhc(v_{c(j)}, l_j)}_{\substack{\text{HBT cost of} \\ \text{child } v_{c(j)} \text{ at die } l_j}} \right), \tag{1}$$

$$\begin{aligned} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$




$$mhc(v,l) = \min_{\substack{1 \le l_1 \le L \\ 1 \le \ddot{l_k} \le L}} \left(\underbrace{hc(v)}_{\substack{\text{#HBTs} \\ \text{connecting} \\ k \text{ children}}} + \sum_{j=1}^{k} \underbrace{mhc(v_{c(j)}, l_j)}_{\substack{\text{HBT cost of} \\ \text{child } v_{c(j)} \text{ at die } l_j}} \right), \tag{1}$$

$$mhc(v,l) = \min_{\substack{1 \le l_1 \le L \\ 1 \le i_k \le L}} \left(\underbrace{hc(v)}_{\substack{\text{#HBTs} \\ \text{connecting} \\ k \text{ children}}} + \sum_{j=1}^{k} \underbrace{mhc(v_{c(j)}, l_j)}_{\substack{\text{HBT cost of} \\ \text{child } v_{c(j)} \text{ at die } l_j}} \right), \tag{1}$$



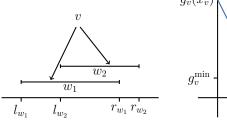
Heterogeneous Grid Graph:

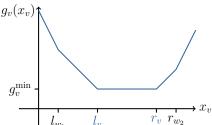
- We use a quad-tree to represent the coarse grid for the HBT resources.
- Some HBTs are occupied by already routed 3D nets.
- Rectilinear Steiner Tree Problem with Fixed Topology (**RSTPFT**) [MATH PROGRAM'75]⁵ [Oper. Res. Lett.'16]⁶: compute the (x, y) of Steiner nodes, $V(T) \setminus P$, to minimize the wirelength.

⁵David Sankoff and Pascale Rousseau (1975). "Locating the vertices of a Steiner tree in an arbitrary metric space". In: *Mathematical Programming* 9, pp. 240–246.

⁶Annika Kristina Kiefner (2016). "Minimizing path lengths in rectilinear Steiner minimum trees with fixed topology". In: *Operations Research Letters* 44.6, pp. 835–838.

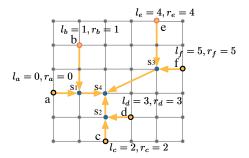
• Let $g_{\nu}(x_{\nu})$ denote the minimal x-wirelength of the subtree $Y(\nu)$, given x-coordinate of ν has value x_{ν} ,


$$g_{v}(x_{v}) = \sum_{w \in pch(v)} \underbrace{|x_{v} - x_{w}|}_{\substack{\text{distance to} \\ \text{child pin } w}} + \sum_{w \in sch(v)} \min_{\substack{x_{w} \\ \text{wirelength} \\ \text{of } Y(w)}} \{ \underbrace{g_{w}(x_{w})}_{\substack{\text{distance to child} \\ \text{Steiner node } w}} \}.$$
 (2)



• Let $g_{\nu}(x_{\nu})$ denote the minimal x-wirelength of the subtree $Y(\nu)$, given x-coordinate of ν has value x_{ν} ,

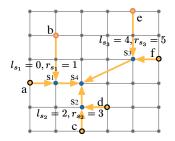
$$g_{v}(x_{v}) = \sum_{w \in pch(v)} \underbrace{|x_{v} - x_{w}|}_{\substack{\text{distance to child pin } w}} + \sum_{w \in sch(v)} \min_{\substack{x_{w} \\ \text{of } Y(w)}} \{ \underbrace{g_{w}(x_{w})}_{\substack{\text{wirelength of } Y(w)}} + \underbrace{|x_{v} - x_{w}|}_{\substack{\text{distance to child Steiner node } w}} \}.$$
 (2)



$$g_{\nu}(x_{\nu}) = \sum_{w \in ch(\nu)} \left(g_{w}^{\min} + \max\{0, x_{\nu} - r_{w}\} + \max\{0, l_{w} - x_{\nu}\} \right), \tag{3}$$

• Let $g_{\nu}(x_{\nu})$ denote the minimal x-wirelength of the subtree $Y(\nu)$, given x-coordinate of ν has value x_{ν} ,

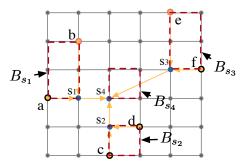
$$g_{v}(x_{v}) = \sum_{w \in pch(v)} \underbrace{|x_{v} - x_{w}|}_{\substack{\text{distance to child pin } w}} + \sum_{w \in sch(v)} \min_{\substack{x_{w} \\ \text{of } Y(w)}} \{ \underbrace{g_{w}(x_{w})}_{\substack{\text{wirelength of } Y(w)}} + \underbrace{|x_{v} - x_{w}|}_{\substack{\text{distance to child Steiner node } w}} \}.$$
 (2)



$$g_{\nu}(x_{\nu}) = \sum_{w \in ch(\nu)} \left(g_{w}^{\min} + \max\{0, x_{\nu} - r_{w}\} + \max\{0, l_{w} - x_{\nu}\} \right), \tag{3}$$

• Let $g_{\nu}(x_{\nu})$ denote the minimal x-wirelength of the subtree $Y(\nu)$, given x-coordinate of ν has value x_{ν} ,

$$g_{v}(x_{v}) = \sum_{w \in pch(v)} \underbrace{|x_{v} - x_{w}|}_{\substack{\text{distance to child pin } w}} + \sum_{w \in sch(v)} \min_{\substack{x_{w} \\ \text{of } Y(w)}} \{ \underbrace{g_{w}(x_{w})}_{\substack{\text{wirelength of } Y(w)}} + \underbrace{|x_{v} - x_{w}|}_{\substack{\text{distance to child Steiner node } w}} \}.$$
 (2)

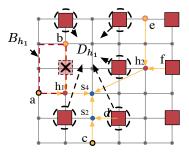


$$g_{\nu}(x_{\nu}) = \sum_{w \in ch(\nu)} \left(g_{w}^{\min} + \max\{0, x_{\nu} - r_{w}\} + \max\{0, l_{w} - x_{\nu}\} \right), \tag{3}$$

• Let $g_{\nu}(x_{\nu})$ denote the minimal x-wirelength of the subtree $Y(\nu)$, given x-coordinate of ν has value x_{ν} ,

$$g_{v}(x_{v}) = \sum_{w \in pch(v)} \frac{|x_{v} - x_{w}|}{\underset{\text{distance to child pin } w}{\text{distance to}}} + \sum_{w \in sch(v)} \min_{\substack{x_{w} \\ \text{wirelength} \\ \text{of } Y(w)}} \left\{ \underbrace{g_{w}(x_{w})}_{\text{wirelength}} + \underbrace{|x_{v} - x_{w}|}_{\text{distance to child Steiner node } w} \right\}.$$
(2)

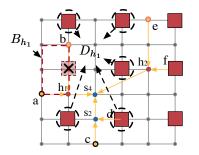
$$g_{\nu}(x_{\nu}) = \sum_{w \in ch(\nu)} \left(g_{w}^{\min} + \max\{0, x_{\nu} - r_{w}\} + \max\{0, l_{w} - x_{\nu}\} \right), \tag{3}$$

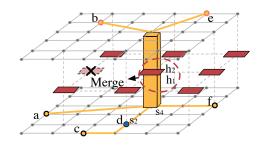

Discrete HBT Location Optimization

• An HBT node v can only be placed within the set of currently available HBT array locations, denoted as $S_v := H$,

$$g_{v}(s) = \sum_{w \in pch(v)} \|s - w\|_{1} + \sum_{w \in sch(v)} \min_{t \in S_{w}} \{g_{w}(t) + \|s - t\|_{1}\}, \quad \forall s \in S_{v}.$$
 (4)

- Considering all the candidate locations results in $O(|V||S_v|^2)$ time.
- We propose considering the available locations $(B_v \cap S_v)$ in the optimal region B_v and the closest points (D_v) to B_v in 8 directions.
- It takes $O(|V||S_{\nu}^c|^2)$ time, where $|S_{\nu}^c| \ll |S_{\nu}|$.


Discrete HBT Location Optimization



• An HBT node v can only be placed within the set of currently available HBT array locations, denoted as $S_v := H$,

$$g_{v}(s) = \sum_{w \in pch(v)} \|s - w\|_{1} + \sum_{w \in sch(v)} \min_{t \in S_{w}} \{g_{w}(t) + \|s - t\|_{1}\}, \quad \forall s \in S_{v}.$$
 (4)

- Considering all the candidate locations results in $O(|V||S_{\nu}|^2)$ time.
- We propose considering the available locations $(B_v \cap S_v)$ in the optimal region B_v and the closest points (D_v) to B_v in 8 directions.
- It takes $O(|V||S_v^c|^2)$ time, where $|S_v^c| \ll |S_v|$.

Subnet Decomposition, Pattern and Maze Routing

- Decompose the 3D net into single-die subnets by splitting at the HBT nodes.
- Conventional pattern routing and maze routing [DAC'24]⁷ are used to route the single-die nets.

Experimental Results

Experimental Setup

- **Benchmarks:** 7 real-world designs from OpenCores and open-source RISC-V designs. 3D placement results are generated by a true 3D placer⁸.
- **Metrics:** Wirelength after detailed routing, HBT count, and runtime.
- **Platform:** Intel Xeon Silver 4210R CPU (2.40GHz).

Table: The statistics of 7 evaluated real-world designs.

Bench.	#Cells	#Macros	#Nets	#3D Nets	ratio
rocket	24647	2	26084	1940	0.07
aes	13158	0	13158	381	0.03
ethmac	23714	0	23900	3487	0.15
jpeg	175352	0	205921	16 001	0.08
mor1kx	56951	0	57521	2927	0.05
ariane	145684	132	157129	12718	0.08
BP	273187	24	265585	3615	0.01

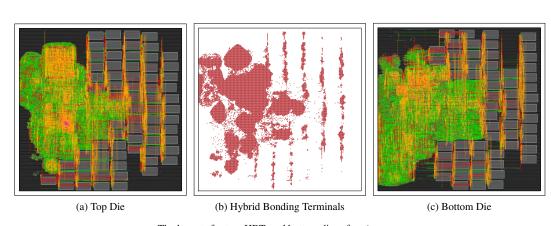
Table: The physical information of the technology node (NanGate 45nm PDK).

Name	Metal6	Via5	НВТ	G-cell
pitch (µm)	0.28	0.3	3.0	2.1

⁸Yuxuan Zhao et al. (2024), "Analytical Heterogeneous Die-to-Die 3D Placement with Macros". In: *IEEE TCAD*.

Experimental Results

Table: Comparison of experimental results between our router and SOTA global routers.


Dl.	FastRoute [ASPDAC'09]9 + Legal [TCAD'24]			CUGR 2.0 [DAC'23] + Legal [TCAD'24]				Ours				
Bench.	WL	#Vias	#HBTs	RT	WL	#Vias	#HBTs	RT	WL	#Vias	#HBTs	RT
rocket	374 421	200 585	2800	9.163	369 069	210 891	2581	4.370	336830	205 913	2179	2.441
aes	156 045	119 885	703	4.996	157 048	125 413	831	2.466	151657	123 480	526	1.335
ethmac	557 884	221 480	5912	13.436	545 503	238 256	5738	6.338	439322	223 486	4954	2.975
jpeg	3 056 841	1 402 528	25 552	64.726	2 679 224	1 441 034	22 064	33.901	2514129	1 413 384	19507	18.648
mor1kx	1516476	559 389	10 443	26.012	1 380 750	577 274	9413	14.769	1330973	562 741	7664	7.684
ariane	3 684 778	1 377 210	25 837	72.921	3 506 201	1 459 846	25 163	38.048	3142161	1 396 919	19504	18.736
BP	6 401 377	2018460	34 430	113.263	5 634 172	2094227	28 428	72.662	4700736	1 986 244	24315	35.960
Average	1.186	0.989	1.318	3.701	1.116	1.036	1.249	1.937	1.000	1.000	1.000	1.000

• 12% shorter wirelength, 25% fewer HBTs, and 1.9× speedup compared to the baseline.

⁹Yue Xu, Yanheng Zhang, and Chris Chu (2009). "FastRoute 4.0: Global router with efficient via minimization". In: *Proc. ASPDAC*. IEEE, pp. 576–581.

Routing Results Visualization

The layouts for top, HBT, and bottom dies of \mbox{ariane} .

Impact of HBT Pitch Size

Table: Comparison of different HBT pitch sizes.

Bench.		Ours-2	μm		Ours-3 µm			
Delicii.	WL	#Vias	#HBTs	RT	WL	#Vias	#HBTs	RT
rocket	317907	204 640	2275	2.427	336 830	205 913	2179	2.441
aes	150940	123 640	628	1.398	151 657	123 480	526	1.335
ethmac	382196	221 734	5563	2.666	439 322	223 486	4954	2.975
jpeg	2442417	1413078	20 297	18.067	2 514 129	1 413 384	19507	18.648
mor1kx	1315771	561 775	8030	7.708	1 330 973	562 741	7664	7.684
ariane	3037041	1 394 232	20739	18.645	3 142 161	1 396 919	19504	18.736
BP	4300681	1 974 723	27 324	35.543	4 700 736	1 986 244	24315	35.960
Average	0.950	0.997	1.091	0.985	1.000	1.000	1.000	1.000

 \bullet With the 2 μm pitch, H3D achieved a 5% improvement in wirelength while using 9% more HBTs.

Q&A