G-Contour: GPU Accelerated Contour Tracing For
Large-Scale Layouts

Shuo Yin!, Jiahao Xu!, Jiaxi Jiangl, Mingjun Li!, Yuzhe Ma?,
Tsung-Yi Ho', Bei Yu!

'The Chinese University of Hong Kong

2Hong Kong University of Science and Technology (Guangzhou)
{syin22}@cse.cuhk.edu.hk

October 27, 2025




. Outline o

@ Introduction
@ G-Contour Framework
©® Experimental Results

@ Conclusion

2/24



Introduction



. Rasterization ="
I K

Rasterization

The process of converting a vector graphics image, composed of shapes, into a 2D image.

The rasterization of a triangle.

Mask rasterization for ILT: [DAC"15]!
What is the inverse process of rasterization?

1Yixiao Ding, Chris Chu, and Xin Zhou (2015). “An efficient shift invariant rasterization algorithm for all-angle
mask patterns in ILT”. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1-6. 424



. Rasterization ="
pI 1

Rasterization

The process of converting a vector graphics image, composed of shapes, into a 2D image.

The rasterization of a triangle.

Mask rasterization for ILT: [DAC"15]!
What is the inverse process of rasterization? Contour Tracing

1Yixiao Ding, Chris Chu, and Xin Zhou (2015). “An efficient shift invariant rasterization algorithm for all-angle
mask patterns in ILT”. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1-6. 424



. Why Contour Tracing is Important for DFM?

@ Print image should be in GDSII format.

fe

a

(a) 3D resist computation using "full" simulation; (b) resist contour computation using compact models (Mentor Graphics
Calibre CAD).

524



. Why Contour Tracing is Important for DFM? )

@ Mask Rule Checking (MRC) should take GDSII as input.

/ Format Conversion
/
’
/ v
Preprocessing Sampling
Spacing

v

Candidate Pair Generation

v
Space Checking Sweepline

Width Checking
Sweepline

A

Report 4—,

Overall flow of mask rule checking.

6/24



Jw

. Contour Tracing Algorithms 3

Contour Tracing Algorithms

Most contour tracing algorithms are based on BFS (Breadth-First Search) walking.

® Square Tracing Algorithm
® Moore-Neighbor Tracing

© Radial Sweep

® Theo Pavlidis’ Algorithm

724



Contour Tracing on CPU )

+ findContours() 11/2)

void cv::findContours ( InputOQutputArray image,

OutputArrayOfArrays contours,

OutputArray hierarchy,

int mode,

int method,

Point offset = Point()
)

Python:
cv.findContours( image, mode, method], contours|, hierarchy], offset]]] ) -> image, contours, hierarchy
#include <opencvz/imgproc.hpp>
Finds contours in a binary image.
The function refrieves contours from the binary image using the algorithm [201] . The contours are a useful tool for shape analysis and object detection

and recognition. See squares.cpp in the OpenCV sample directory.

The cv: : findContour API in OpenCV.2

2Satoshi Suzuki et al. (1985). “Topological structural analysis of digitized binary images by border following”. In:
Computer vision, graphics, and image processing 30.1, pp. 32—46. 8/24



. The Needs of Contour Tracing on GPU 3

© Extract optimized mask for later manufacturing

@ Most ILT algorithms perform on GPU: [DATE 2113, [ICCAD 204, [DAC"18]3, ...
@ We can avoid data transfer between CPU and GPU.

® Preserving lithography simulation results

@ The full-chip simulation result is too large to preserve in image format.
@ Use KLayout® for efficient handling and visualization.

® More reliable wafer image evaluation (EPE, L,, ...), mask rule checking

3Ziyang Yu et al. (2021). “A GPU-enabled Level Set Method for Mask Optimization”. In: Proc. DATE.
“Bentian Jiang et al. (2020). “Neural-ILT: Migrating ILT to Nerual Networks for Mask Printability and
Complexity Co-optimizaton™”. In: Proc. ICCAD.
SHaoyu Yang et al. (2018). “GAN-OPC: Mask Optimization with Lithography-guided Generative Adversarial
Nets”. In: Proc. DAC, 131:1-131:6.
SKLayout (2024). https: //www.klayout .de/. 924


https://www.klayout.de/

w

. Polygon Representation 3

Left Hand Rule

When traversing the edges of a polygon, the foreground will always be on the left side of the
traversal direction.

O | y
| y
2,2 (2,6)
1 =
v
A (7.,6) (7,10) |
1 <
4
St 1
 (10,2) (10,10) |
I ||
v X

lp = {(2,2),(10,2), (10, 10), (7, 10), (7, 6),(2,6)}]

Illustration of polygon representation in the context of contour tracing. 10/24



G-Contour Framework



. G-Contour Framework to

w

Contour Tracing

Given a layout image I, the goal of contour tracing is to identify all the contours in the
counterclockwise direction of the patterns within the layout, represented as the set C.

12/24



. G-Contour Framework to

Contour Tracing

Given a layout image I, the goal of contour tracing is to identify all the contours in the
counterclockwise direction of the patterns within the layout, represented as the set C.

G-Contour Framework

Input Image Boundary Extraction Component Analysis I—-| Starting Point Selection Parallel Searching

@ﬁ@ ik @ﬁgﬁ ikl

The overall flow of G-Contour.

12/24



@

. Boundary Extraction 3

Boundary

The boundary of a layout image I is defined as the set of pixels that separate the foreground and
background of the image.

B={I(x,y)| 3|6x+dy| =1,s.t. [(x+ ox,y + dy) =0} (1)
B [ OI(x,y) <T,VI(x,y) ¢ B
or= Vi) = { dl(x,y) > T,VI(x,y) € B @

=>

Boundary
Extraction

13/24



@

. Boundary Extraction 3

Boundary

The boundary of a layout image I is defined as the set of pixels that separate the foreground and
background of the image.

B={I(x,y)| 3|6x+dy| =1,s.t. [(x+ ox,y + dy) =0} (1)
B [ OI(x,y) <T,VI(x,y) ¢ B
or= Vi) = { dl(x,y) > T,VI(x,y) € B @

=>

Boundary
Extraction

We launch a 2D kernel for each pixel to extract the boundary image, 01, in parallel. 13/24



. Parallel Component Analysis 3

@

Connected Component

A connected component is defined as a set of pixels forming a foreground, where for any two pixels
(xi,yi) and (x;,y;) in this set, there exists a path composed of pixels that also belong to the set.

Each boundary in the boundary image OI is a connected component.
The union-find structure maintains a label image OI’, where each pixel in OI' is assigned a
unique label.

find (x;,y;) : Returns the label of the component to which the pixel (x;, y;) belongs.

union ((x;,y:), (%j,y;)): Joins the components containing (x;,y;) and (x;, y;) with the
smaller label.

14/24



. Parallel Component Analysis

Input: Boundary image OI with shape [H, W].
Output: Labeled image dI’ with shape [H, W].
1: // Merge two labels under atomic lock
2: function union(dl’, (xi, i), (xj,;))

11:
12:
13:
14:

—
SV RXI;UNER

done < false;
while done = false do
label; < £ind(0I’, (xi,¥:));
label; + £ind(Al’, (xj,y}));
if label; < label; then
xj,yj + Index™!(label));
I’ [xj][yj] < atomicMin(dI' [x][yj], label;);
else if label; > label; then
Xi,yi < Index~!(label;);
oI [x][yi] +— atomicMin(OI' [xi][yi], label));
else
done < true;

label

@

: function kernel(9l, OI')

idy < blockldx.x * blockDim.x + threadldx.x;
idy < blockldx.y * blockDim.y + threadldx.y;
if idy < H and idy < W then

OI'lidy][idy] < Index(idy, idy); // Initialize the

cudaSyncThreads ();
for (x,y) € neighbors of (idx, idy) do
if 0Ix][y] = Ollidy][idy] then
union(dl', (idy, idy), (x,y));

15/24



@

. Starting Point Selection 3

Inflection Point

An inflection point is defined as a pixel on the boundary, where the direction of its neighbors
changes.

An inflection point on the component is a vertex on the contour.

V[0x+ 6x'| + |6y +0y'| =0
st OI'(x + 0x,y + 0y) # OI' (x + 6x',y + 8y),

where (dx, dy) is the unit displacement of one direction, and (6x’, §y’) is the unit
displacement of the opposite direction.

16/24



. Starting Point Selection 3

Inflection Point

An inflection point is defined as a pixel on the boundary, where the direction of its neighbors
changes.

An inflection point on the component is a vertex on the contour.

V[0x+ 6x'| + |6y +0y'| =0
st OI'(x + 0x,y + 0y) # OI' (x + 6x',y + 8y),
where (dx, dy) is the unit displacement of one direction, and (6x’, §y’) is the unit
displacement of the opposite direction.

We use atomic operations to select one inflection point as the starting point for each
component in parallel. (1D kernel)

16/24



. Parallel Searching e

Rotation

The rotation ¢ of the foreground is defined as a circular transformation, where the source moves
clockwise from one directional edge of the inflection point, across the foreground, to the other
directional edge.

I . . . . . — S . |
: ® Starting Point = Searching Direction > Direction Edges

|
J

\vl _‘
¢ i e
(a) (b) (c)

Illustration of the rotation ¢ of the foreground and the initial searching direction.

17/24



. Parallel Searching

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

function kernel(, oI, L, P)

id < blockldx.x * blockDim.x + threadldx.x;
label < Llid];
if id < N then
Initial: p < {P[id]}; visited < {P[id]};
cur < Plid); nexty, next, < —1,—1;
direction < init_direction(l, oI, P[id], label);
while next, # Plid], or next, # P[id], do
for d € counterclockwise directions do
newy, newy <— curx + dx, cury + dy;
if OI'[ny][ny] = label and new ¢ visited then
nexty, nexty <— newx, newy;
visited < visited U next;
direction’ < d,;
break;
if direction’ # direction then
D < p U (nexty,, nexty);
direction < direction’;
CUry, CUry 4— nexty, nexty;

C+CuUp;

¢ Each boundary component is assigned
to a thread for contour tracing in
parallel.

¢ The initial searching direction is
defined using ¢.

® Hole contours are traced in a clockwise
direction, while outer contours are
traced counterclockwise.

18/24



Experimental Results



G-Contour v.s. OpenCV I

@

Platform: 1x NVIDIA A800 GPU
Implementation: C++/CUDA (four kernels)

Benchmarks: Optimized masks using FulLT’

Contour Tracing Runtime (s)

. ; 2
Benchmark Layer Layout Size (um?*)  #Pattern  Avg. Degree OpenCV  G-Contour  Speedup

Metal 35.70 9722 20.66 2.05 022 9.36x
Via 3553 8171 10.90 0.86 0.19 447
ged Poly 34.97 4385 23.33 0.91 0.55 1.65x
Activate 35.59 2709 17.20 0.70 0.47 1.48%
Metal 249.45 89150 56.81 4229 6.16 6.86x
. Via 255.33 394404 10.42 168.90 9.86 17.12x
Poly 255.33 81776 24.13 12.08 2.12 5.69%
Activate 25472 277139 21.68 454.42 13.95 32.58x
Metal 176.29 663180 11.69 1566.19 15.94 98.26x
Cieew Via 152.57 170602 5.56 11.32 1.80 6.29x
Poly 147.11 670730 8.59 119335 14.19 84.11x
Activate 147.25 433960 6.75 136.74 6.09 22.45x
[ Average 26.64 2.46 10.83 % ‘

Table: ‘#Pattern’ refers to the number of patterns in the layout, and ‘Avg. Degree’ refers to the
average number of vertices in the patterns.

7Shuo Yin et al. (2024). “Fuilt: Full chip ilt system with boundary healing”. In: Proceedings of the 2024

International Symposium on Physical Design, pp. 13-20. 20124



;UJT

. Pattern Complexity v.s. Runtim

_ #fPattern X Avg. Degree

- 3
Layout Size ©)
100 I I I I I —F
+ Benchmark Cases
80 | | — Regression Line +
X
-~ 60 |- 8
=
hS
g 40| :
=%
n
20 + 8
0-4-1;- | | -\*- | | | |
05 1 15 2 25 3 35 4 45
Layout Density p 104

The relationship between the layout density p and the speedup of G-Contour across all benchmarks.

21/24



Conclusion



. Summary 3

We introduce G-Contour, the first GPU-accelerated framework addressing the contour tracing
problem for large-scale EDA layouts.

G-Contour incorporates a novel parallel component analysis algorithm and an efficient
search-based method for contour extraction on GPUs.

Experimental results show that G-Contour achieves significant speedups over the
state-of-the-art CPU implementation (OpenCV), reaching up to 10x on average and 98 x in
peak cases.

Beyond its primary application in EDA, G-Contour serves as a general-purpose tool
applicable to broader tasks in image processing and computer graphics.

23/24



Q&A



	Introduction
	G-Contour Framework
	Experimental Results
	Conclusion

