

VIRTUAL: Vector-based Dynamic Power Estimation via Decoupled Multi-Modality Learning

Yuntao Lu¹, Mingjun Wang^{1,2}, Yihan Wen¹, Boyu Han³, Jianan Mu², Huawei Li², Bei Yu¹

¹The Chinese University of Hong Kong

²Institute of Computing Technology, CAS

³Stanford University

October 27, 2025

Outline

- 1 At a Glance
- 2 Motivation
- 3 Problem Definition
- 4 Methodology
- **6** Evaluations
- 6 Conclusions & Future Work

At a Glance

Vector-based Dynamic Power Estimation via Decoupled Multi-Modality Learning

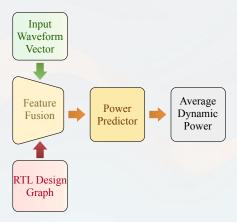


Fig. 1 An overview architecture of VIRTUAL.

Innovations

- Fast end-to-end power prediction.
 - Eliminate gate-level simulation.
 - Read input vector and RTL graph.
- Multi-modal decoupling and fusion.
 - Decouple input vectors & RTL graphs.
 - Eliminate toggle-rate computation.
- **Self-Supervised Contrastive Learning**
 - Power-aware vector encoding.
 - Functionally-focused RTL encoding.

Performance Highlights

# RTL Designs	Pearson	MAPE	Speedup
2004	0.84	23.43%	14.27×

Motivation: Traditional Power Analysis Workflow

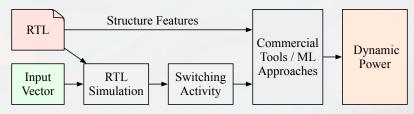


Fig. 2 Traditional power estimation workflow by commercial tools or ML approaches.

Bottlenecks

- Runtime: Simulation & synthesis hours to days.
- 2 Iteration: Full flow re-execution of each change.
- 6 Scalability: Larger designs, longer runtimes.

Impacts

- Higher feedback latency.
- Limited optimization iterations.

Motivation: Challenges & Limitations of Power Analysis

Challenges of Traditional Power Analysis Flow

- RTL/Gate-level(Netlist) simulation.
- VCD/SAIF files for switching activity.
- 3 Toggle rate extraction from VCD/SAIF files.

State-of-the-Art (SOTA) AI-driven Power Estimations

Tab. I SOTA AI-based approaches for power estimation.

Method	Netlist Req.	Gate-Level Sim.	RTL Sim.	Toggle Rate Req.	Speed
GRANNITE1	Yes	Yes	No	Yes	Slow
GRASPE ²	Partial	Partial	Partial	Yes	Medium
MasterRTL ³	No	No	Yes	Yes	Medium

⇒ Approaches rely on simulation results for modeling switching activities for each design.

³Wenji Fang et al. (2023). "MasterRTL: A Pre-synthesis PPA Estimation Framework for Any RTL Design". I Proc. ICCAD. IEEE, pp. 1–9.

¹Yanqing Zhang, Haoxing Ren, and Brucek Khailany (2020). "GRANNITE: Graph Neural Network Inference for Transferable Power Estimation". In: *Proc. DAC*. IEEE, pp. 1–6.

²MB Rakesh et al. (2023). "GRASPE: Accurate Post-synthesis Power Estimation from RTL using Graph Representation Learning". In: *Proc. ISCAS*. IEEE, pp. 1–5.

Motivation: Gaps for Fast and Accurate Power Estimation

Limitations of Current AI-driven Methods

- Weak input vector modeling (toggle rates, switching patterns).
- Require simulation for toggle rate extraction.
- Limited generalization across input vectors and RTL designs.

Bridging Gaps

Goal: Enabling fast and accurate power estimation for diverse inputs and RTLs.

- Representations for input vectors and RTL designs.
- Direct RTL-level estimation without simulation.
- Generalize across diverse inputs and RTLs.

Problem Definition

Problem Formula

Given

- **Input Waveform Matrix**: $W \in [0, 1]^{M \times T}$,
 - *M*: # of input ports.
 - T: # of clock cycles.
- **Q** RTL Graph: G = (V, E).
 - V: Set of functional units.
 - E: Set of signal connections between units.

Objective:

• Learn a mapping function $F_{power}(W,G) \rightarrow \hat{P}$

VIRTUAL: Framework Overview

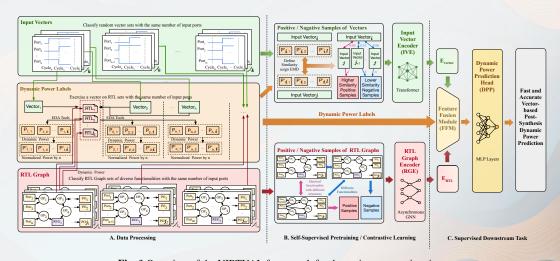


Fig. 3 Overview of the VIRTUAL framework for dynamic power estimation.

VIRTUAL: Three-Stage Learning Strategy

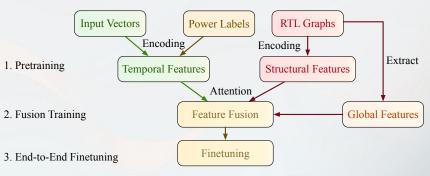


Fig. 4 Three-stage learning strategy of VIRTUAL.

Stage 1: Pretraining

- Power-relevant features.
- Functional-focused features.

Stage 2: Fusion Training

- Temporal features.
- Structural features.

Stage 3: Fine-tuning

- Joint optimized modules.
- Supervised learning.

Input Vector Encoding: Pattern Extraction

Transformer-Based Pattern Extraction

- **1** Tokenization:
 - Split fixed-length segments.
 - Add positional encoding.
- Multi-head Self-Attention:
 - Capture long-range dependencies.
 - Learn ports correlation.
 - Identify switching patterns.
- **6)** Feed-forward Networks:
 - Transform attention outputs.
 - Extract power-relevant temporal features.
- \Rightarrow Temporal embedding $E_{\text{vector}} \in \mathbb{R}^d$ capturing switching patterns.

Input Vector Encoding: Power-Aware Contrastive Learning

Vectors with similar power distributions should have similar embeddings

Pairing Strategy

- Normalization: normalize power distributions for each vector by port count on multiple designs.
- Positive pairs: vectors with similar power distributions.
- Negative pairs: others.
- Learn to push apart dissimilar vectors in embedding views.

InfoNCE Loss Function

$$\mathcal{L}_{ ext{vector}} = -\sum \log rac{\exp(\cos(E_{ ext{anchor}}, E_{ ext{pos}})/ au)}{\sum \exp(\cos(E_{ ext{anchor}}, E_{ ext{neg}})/ au)}$$

, where τ is temperature, \cos is cosine similarity.

Benefits

- Generalize across input waveforms.
- Capture switching patterns.
- Minimal labels required.

RTL Graph Encoding: Structure Extraction

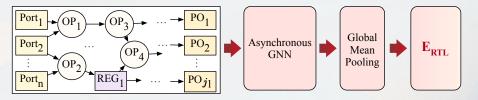


Fig. 5 GNN-based RTL functionality encoding.

RTL Graph Representation

- Nodes: Simple functional units (registers, logic gates, operators).
- Edges: Signal connections (data flow).
- Node features: Unit type, fan-in/out, depth, bit-width, etc.

RTL Graph Encoding: Asynchronous Message Passing

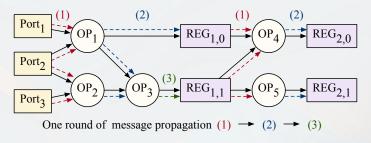


Fig. 6 Asynchronous message passing scheme mimicking signal propagation.

Asynchronous GNN Architecture

- Message Passing: Mimic hardware signal propagation.
- Multi-head Graph Attention: Aggregate neighbor information.
- Temporal Updates: Model sequential signal flow.
- Global Pooling: Aggregate node embeddings to the graph-level.
- \Rightarrow Structural embedding $E_{RTL} \in \mathbb{R}^d$ capturing circuit functionality.

RTL Graph Encoding: Functionality-Focused Contrastive Learning

Functionally equivalent RTL designs should have similar embeddings.

Pairing Strategy

- Positive pairs: Functionally equivalent designs
 - Same logic function, different optimizations.
 - Generated via Design Compiler with different settings.
- Negative pairs: Others.
- Learn to push apart dissimilar graphs in embedding views.

Benefits

- Generalize across RTL designs.
- Capture structural patterns.
- Learn without labels.

VIRTUAL: Feature Fusion & Power Prediction

Feature Fusion Module

- Fusion Embeddings:
 - Temporal embedding: $E_{\text{vector}} \in \mathbb{R}^d$
 - Structural embedding: $E_{\text{graph}} \in \mathbb{R}^d$
 - Global features: $E_{\text{global}} \in \mathbb{R}^k$
- Multi-head Cross-Attention:
 - Learn correlations of E_{vector} and E_{graph} .
 - Weighted combination of both modalities.
- **6)** Concatenation:
 - Combine with global features.
 - Unified representation: $E_{\text{fused}} \in \mathbb{R}^{2d+k}$

Inference

• End-to-End Prediction: RTL graph G + Input vectors $W \rightarrow$ average dynamic power.

Power Prediction Head

- **1) Architecture**: 2-layer fully-connected neural network.
- Supervised Training:

$$\mathcal{L}_{\text{power}} = \text{MSE}(\hat{P}, P) = \frac{1}{N} \sum_{i=1}^{N} (\hat{P}_i - P_i)^2$$

6 End-to-End Fine-tuning:

$$\mathcal{L}_{total} = \mathcal{L}_{power} + \lambda_1 \mathcal{L}_{vector} + \lambda_2 \mathcal{L}_{graph}$$

Evaluation: Experimental Setup

Datasets

- Circuits: 2004 RTL designs from OpenCores, HuggingFade, and Github.
 - Scalability: ~ 500 to $\sim 30,000$ nodes.
 - Functionality: arithmetics, controllers, communication, etc.
- **Input Vectors**: 100 vectors per circuit.
 - \sim 60 to \sim 1,000 input ports.
 - 1,000 clock cycles per vector.
- **Ground Truth**: Average dynamic power values (switching + internal) of Design Compiler.

Metrics

- PCC: Correlation measurement.
- \mathbf{R}^2 : Goodness of fitness.
- MAPE: Relative error.
- **Speedup**: Runtime over traditional flow.

Evaluation: Performance Summary

Tab. II Performance comparison between VIRTUAL AND SOTA AI-based methods

Method	Circuit-based			Vector-based		
Method	PCC	R^2	MAPE	PCC	R^2	MAPE
MasterRTL	0.786	0.752	30.85%	0.757	0.692	30.79%
GRASPE	0.815	0.775	29.72%	0.780	0.647	30.41%
VIRTUAL w/o Contrastive	0.757	0.729	29.09%	0.745	0.765	26.48%
VIRTUAL (Full)	0.842	0.798	23.43%	0.834	0.776	24.56%

- Strong correlation with ground truth (PCC: 0.842).
- Relative low error across designs (MAPE: 23.43%).
- Significant speedup over the traditional workflow $(14\times)$.

Observations

- VIRTUAL outperforms SOTA AI-based methods in PCC and MAPE.
- Contrastive learning improves performance.
- Strong generalization across designs and inputs.

Conclusions & Future Work

Conclusions

- **Runtime**: Eliminates synthesis/simulation for power analysis.
- Effectiveness: Demonstrates the effectiveness of multi-modal contrastive learning.
- Rapid Feedback: Enables design optimizations with rapid feedback.

Future Work

- **Scalability**: Handle larger designs (thousands of nodes).
- Generalization: Few-shot learning for unseen design families.
- Transferability: Transfer learning across different technology nodes.

Thanks!

Q&A

