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. At a Glance

Vector-based Dynamic Power Estimation via Decoupled Multi-Modality Learning
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Fig. 1 An overview architecture of VIRTUAL.

Performance Highlights

# RTL Designs Pearson
2004 0.84

Innovations
@ Fast end-to-end power prediction.

¢ Eliminate gate-level simulation.
¢ Read input vector and RTL graph.

@ Multi-modal decoupling and fusion.

¢ Decouple input vectors & RTL graphs.
¢ Eliminate toggle-rate computation.

@ Self-Supervised Contrastive Learning

¢ Power-aware vector encoding.
¢ Functionally-focused RTL encoding.

MAPE
23.43%

Speedup
14.27x




. Motivation: Traditional Power Analysis Workflow
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Fig. 2 Traditional power estimation workflow by commercial tools or ML approaches.

Bottlenecks Impacts
Runtime: Simulation & synthesis hours to days. Higher feedback latency.
Iteration: Full flow re-execution of each change. Limited optimization iterations.

Scalability: Larger designs, longer runtimes.




. Motivation: Challenges & Limitations of Power Analysis

Challenges of Traditional Power Analysis Flow
RTL/Gate-level(Netlist) simulation.
VCD/SAIF files for switching activity.
Toggle rate extraction from VCD/SAIF files.

State-of-the-Art (SOTA) Al-driven Power Estimations

Tab. I SOTA Al-based approaches for power estimation.

[ Method [ Netlist Req. [ Gate-Level Sim. [ RTL Sim. [ Toggle Rate Req. [ Speed ‘
GRANNITE' | Yes Yes No Yes Slow
GRASPE? Partial Partial Partial Yes Medium
MasterRTL? | No No Yes Yes Medium

=> Approaches rely on simulation results for modeling switching activities for each design.

1Yanqing Zhang, Haoxing Ren, and Brucek Khailany (2020). “GRANNITE: Graph Neural Network Inference for
Transferable Power Estimation”. In: Proc. DAC. IEEE, pp. 1-6.

2MB Rakesh et al. (2023). “GRASPE: Accurate Post-synthesis Power Estimation from RTL using Graph
Representation Learning”. In: Proc. ISCAS. IEEE, pp. 1-5.

3Wenji Fang et al. (2023). “MasterRTL: A Pre-synthesis PPA Estimation Framework for Any RTL Design”. In:
Proc. ICCAD. IEEE, pp. 1-9.




. Motivation: Gaps for Fast and Accurate Power Estimation

Limitations of Current Al-driven Methods
Weak input vector modeling (toggle rates, switching patterns).
Require simulation for toggle rate extraction.

Limited generalization across input vectors and RTL designs.

Bridging Gaps

Goal: Enabling fast and accurate power estimation for diverse inputs and RTLs.
Representations for input vectors and RTL designs.
Direct RTL-level estimation without simulation.

Generalize across diverse inputs and RTLs.




. Problem Definition

Problem Formula

Given
@ Input Waveform Matrix: W € [0, 1]¥*7,

® M: # of input ports.
® T: # of clock cycles.

® RTL Graph: G = (V,E).

® V: Set of functional units.
® E: Set of signal connections between units.

Objective:

* Learn a mapping function F,,,,..(W,G) — P




. VIRTUAL: Framework Overview
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Fig. 3 Overview of the VIRTUAL framework for dynamic power estimation.
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. VIRTUAL: Three-Stage Learning Strategy
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Fig. 4 Three-stage learning strategy of VIRTUAL.

Extract

1. Pretraining Structural Features

2. Fusion Training Global Features

3. End-to-End Finetuning

Stage 1: Pretraining Stage 2: Fusion Training  Stage 3: Fine-tuning

¢ Power-relevant features. ¢ Temporal features. ¢ Joint optimized modul

¢ Functional-focused features. ¢ Structural features. ¢ Supervised learning



. Input Vector Encoding: Pattern Extraction

Transformer-Based Pattern Extraction
Tokenization:

Split fixed-length segments.
Add positional encoding.

Multi-head Self-Attention:

Capture long-range dependencies.
Learn ports correlation.
Identify switching patterns.

Feed-forward Networks:

Transform attention outputs.
Extract power-relevant temporal features.

= Temporal embedding Eyecror € R? capturing switching patterns.




. Input Vector Encoding: Power-Aware Contrastive Learning

Vectors with similar power distributions should have similar embeddings
Pairing Strategy

¢ Normalization: normalize power distributions for each vector by port count on multiple

designs.

© Positive pairs: vectors with similar power distributions.

© Negative pairs: others.

¢ Learn to push apart dissimilar vectors in embedding views.
InfoNCE Loss Function Benefits

exp(cos(Eanchors Epos)/T) * Generalize across input waveforms.

= 1
vector Z Z exp COS(Eanchorv neg)/T)

¢ Capture switching patterns.

, where 7 is temperature, cos is cosine similarity. * Minimal labels required.




. RTL Graph Encoding: Structure Extraction
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Fig. 5 GNN-based RTL functionality encoding.

RTL Graph Representation
¢ Nodes: Simple functional units (registers, logic gates, operators).
¢ Edges: Signal connections (data flow).

® Node features: Unit type, fan-in/out, depth, bit-width, etc.




. RTL Graph Encoding: Asynchronous Message Passing
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Fig. 6 Asynchronous message passing scheme mimicking signal propagation.

Asynchronous GNN Architecture
Message Passing: Mimic hardware signal propagation.
Multi-head Graph Attention: Aggregate neighbor information.
Temporal Updates: Model sequential signal flow.

Global Pooling: Aggregate node embeddings to the graph-level.

= Structural embedding Egrrr, € R? capturing circuit functionality.
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. RTL Graph Encoding: Functionality-Focused Contrastive Learning

Functionally equivalent RTL designs should have similar embeddings.

Pairing Strategy

© Positive pairs: Functionally equivalent designs

® Same logic function, different optimizations.
® Generated via Design Compiler with different settings.

® Negative pairs: Others.

® Learn to push apart dissimilar graphs in embedding views.

Benefits
® Generalize across RTL designs.
® Capture structural patterns.

® Learn without labels.




Feature Fusion Module

Fusion Embeddings:

Temporal embedding: Eecior € R?
Structural embedding: Egppn € R
Global features: Egjopa € RF

Multi-head Cross-Attention:

Learn correlations of Eyecor and Egpaph.

Weighted combination of both
modalities.

Concatenation:

Combine with global features.
Unified representation: Efgeq € R2d+k

Inference

End-to-End Prediction: RTL graph G + Input vectors W — average dynamic power.

. VIRTUAL: Feature Fusion & Power Prediction

Power Prediction Head

Architecture: 2-layer fully-connected
neural network.

Supervised Training:
_— D —_— o » i . 2
Lpower = MSE(P, P) = Z(P, P)

End-to-End Fine-tuning:

Ltotal > Epower + /\lﬁveclor ar >\2£graph




. Evaluation: Experimental Setup

Datasets
Circuits: 2004 RTL designs from OpenCores, HuggingFade, and Github.

Scalability: ~ 500 to ~ 30,000 nodes.
Functionality: arithmetics, controllers, communication, etc.

Input Vectors: 100 vectors per circuit.

~ 60 to ~ 1,000 input ports.
1,000 clock cycles per vector.

Ground Truth: Average dynamic power values (switching + internal) of Design Compiler.

Metrics
PCC: Correlation measurement.
R?: Goodness of fitness.
MAPE: Relative error.

Speedup: Runtime over traditional flow.




. Evaluation: Performance Summary

Tab. II Performance comparison between VIRTUAL AND SOTA Al-based methods

Method Circuit-based Vector-based

PCC R? MAPE | PCC R? MAPE
MasterRTL 0.786 0.752  30.85% | 0.757 0.692  30.79%
GRASPE 0.815 0.775 29.72% | 0.780 0.647 30.41%
VIRTUAL w/o Contrastive | 0.757 0.729  29.09% | 0.745 0.765 26.48%
VIRTUAL (Full) 0.842 0.798 2343% | 0.834 0.776 24.56%

Strong correlation with ground truth (PCC: 0.842).
Relative low error across designs (MAPE: 23.43%).

Significant speedup over the traditional workflow (14 x).

Observations

VIRTUAL outperforms SOTA Al-based methods in PCC and MAPE.

Contrastive learning improves performance.

Strong generalization across designs and inputs. A
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. Conclusions & Future Work

Conclusions
Runtime: Eliminates synthesis/simulation for power analysis.
Effectiveness: Demonstrates the effectiveness of multi-modal contrastive learning.

Rapid Feedback: Enables design optimizations with rapid feedback.

Future Work
Scalability: Handle larger designs (thousands of nodes).
Generalization: Few-shot learning for unseen design families.

Transferability: Transfer learning across different technology nodes.
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