DiffCCD: Differentiable Concurrent Clock and Data
Optimization

Yuhao Ji'® Yuntao Lu!

Zuodong Zhang?

Zizheng Guo®? Yibo Lin?>3* Bei Yu!

!Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR
2School of Integrated Circuits, Peking University, Beijing, China
3Tnstitute of Electronic Design Automation, Peking University, Wuxi, China
4 Advanced Innovation Center for Integrated Circuits, Beijing, China

Abstract—Timing optimization following clock tree synthesis (post-
CTS) is a crucial step in very large scale integration (VLSI) physical
design for achieving timing closure. During this stage, clock skew
significantly impacts circuit timing performance, making useful skew
optimization essential for enhancing design quality. However, traditional
skew optimization methods face challenges due to their insufficient
consideration of physical implementation constraints. To overcome these
limitations, we propose a GPU-accelerated differentiable concurrent clock
and data (CCD) optimization framework, which simultaneously optimizes
clock skew and logic delays to enhance overall timing performance
with the consideration of physical constraints. We implement the CCD
optimization method as a step involving buffer sizing in the clock
network and refining placement results. The key innovation of our
approach lies in formulating a smooth and differentiable process for
CCD optimization with a calibration mechanism to ensure accurate
gradient computations. Additionally, we employ an alternating direction
method of multipliers (ADMM)-based strategy to decompose the entire
optimization problem into several manageable subproblems, effectively
balancing timing optimization with physical implementation constraints.
Experimental results on open-source industrial benchmarks demonstrate
that our CCD optimization framework achieves superior timing closure
compared to a baseline approach within an open-source physical design
tool. Our method yields an average improvement of 22.4% in worst
negative slack (WNS) and 45.0% in total negative slack (TNS), along
with a 9.434 X runtime speedup. To our knowledge, this is the first work
to incorporate clock skew effects into gradient-based timing optimization.

I. INTRODUCTION

As circuit complexity in VLSI design continues to increase, achiev-
ing timing closure remains a critical challenge due to sophisticated
timing models and tight coupling with other design objectives. This
challenge is exacerbated in the post clock tree synthesis (CTS) stage,
where timing analysis must account for clock net delays. The variation
in clock signal arrival times at different locations, known as clock
skew, significantly affects the overall circuit timing performance.

As illustrated in Fig. 1(a), by properly controlling clock skew,
designers can improve both system robustness and performance [1].
However, traditional CTS methodologies primarily aim to minimize
skew by constructing balanced clock networks [2]-[4]. While this
simplifies implementation, it fundamentally prevents using clock
skew as a valuable timing optimization resource, which becomes
particularly problematic for high-speed designs. Similarly, research
in other physical design flows, such as placement, typically operates
under the assumption of an ideal clock net, i.e. zero skew [5], [6].
This assumption leads to either overly optimistic timing estimations
that result in closure failures, or pessimistic estimations that cause
over-design, wasting power and area while extending optimization
cycles.

Recognizing these limitations, numerous efforts have emerged to
leverage useful skew to improve timing performance. Specifically,
carefully adjusted clock skew is adopted to resolve timing violations.
Existing works [1], [7]-[11] have presented effective algorithms for

wo. skew

(1 DFF1 CLK slad\<0®
DFF1 Q
DFF2 D |
DFF2 CLK w. sku\
¢ m :rslaclo()
--- clock net — data net A clock buffer slack=rat-at
(a) Useful skew optimization to avoid timing violation
skew-aware post CTS timing opt.
S——
Circuit Data proposed Concurrent Cell
(.def .sdc .lib .lef) Clock and Data T
Optimization
Conventional .
[Placement Clock Tree Routing
Synthesis

(b) Physical design workﬂow w./wo. CCD optimization
Fig. 1 One example of useful skew optimization and the proposed
physical design workflow. The netlist diagram distinguishes between
clock net (dashed line) and data net (solid line), showing how proper
clock skew can compensate for delays to prevent timing violations.

deriving useful skew solutions. However, traditional useful skew opti-
mizations face a chicken-and-egg dilemma due to the interdependence
and lack of integration between skew optimizations and other physical
design flows [8]. Although researchers have explored approaches such
as iterative back-annotation [7] or predictive optimization flow [8],
they implement clock skew scheduling as an isolated step. This
isolation limits the global view and makes it difficult to capture
the intricate interplay between clock net optimization and other
optimization processes. Consequently, most works neglect physical
implementation constraints for their proposed useful skew solutions,
leading to poor optimization performance in practice. For instance, it
is shown that there should be a compromise in area efficiency and
power consumption when skew significantly differs among nearby
flip-flops [12]. While [13] considers useful skew scheduling and
implements the solution during CTS, the fixed placement limits the
solution space for further timing improvement.

Furthermore, we argue that useful skew optimization presents
a highly non-smooth solution space where greedy methods easily
converge to local optima. Unlike conventional timing optimizations
that primarily focus on delay reduction in datapaths [14], [15], useful
skew optimization requires bidirectional delay adjustments where
certain flip-flops must receive accelerated clock signals while others
require deliberately delayed clock delivery. This fundamental dif-
ference necessitates a comprehensive global optimization framework
capable of handling the complex and competing requirements across
the entire design.

To overcome these limitations, we propose DiffCCD, a GPU-

accelerated differentiable concurrent clock and data (CCD) optimiza-
tion approach, which simultaneously optimizes clock skew and logic
delay to enhance timing performance. Since clock net delay is primar-
ily attributed to buffer and wire delays, our method performs clock
buffer sizing and refines placement results in the post-CTS stage.
Specifically, our approach leverages a gradient-based optimization
framework, analogizing timing optimization to quantization-aware
training (QAT) in deep learning, with an integrated calibration mech-
anism to ensure gradient correctness. In contrast to traditional step-
by-step optimizations, our solution explores a broader design space
while considering physical implementation constraints, resulting in
a fine balance between clock net and data net requirements. Also,
our proposed CCD optimization can be integrated seamlessly with
existing EDA flows, the overall workflow of which is illustrated in
Fig. 1(b). Comprehensive experiments demonstrate superior timing
closure results compared to conventional methods. Our key contribu-
tions are summarized as follows:

e We build a differentiable CCD optimization framework that
enables effective and efficient useful skew optimization in the
post-CTS stage.

« We propose a logits-based parameterization to model buffer
sizing decisions, allowing for smooth transitions between dis-
crete choices. Also, we innovatively introduce straight-through
estimator (STE) approaches with a calibration mechanism that
effectively bridge the gap between accurate timing analysis
and gradient generation, ensuring stable convergence during
optimization.

We introduce an alternating direction method of multipliers
(ADMM) optimization approach that effectively handles the
gradient conflicts between timing, wirelength, and density ob-
jectives.

o« We implement the entire framework with GPU acceleration,

demonstrating superior timing performance and runtime im-

provement compared to the baseline.

II. PRELIMINARIES
A. Static Timing Analysis

Static timing analysis (STA) is essential for validating a design’s
timing compliance with specified performance requirements, given
input clock definitions and external constraints. The STA flow consists
of three fundamental stages, as shown in Fig. 2. First, STA constructs
routing trees based on cell positions to extract parasitic parameters.
The Elmore model [16] is predominantly employed to compute key
electrical parameters, including net delay, impulse response, and
downstream capacitive load. The model’s results depend on both rout-
ing tree topology and pin capacitances that vary with cell sizes. Sec-
ond, STA performs level-by-level slew propagation through the circuit
graph to derive cell delay. While the Elmore model provides analytical
equations for interconnect analysis, cell timing characterization relies
on nonlinear delay model (NLDM). NLDM employs a comprehensive
set of look-up tables (LUTs) that characterize cell delay and output
slew as functions of input slew and output load capacitance. Each
cell type corresponds to a unique set of LUTs, providing accurate
timing information across different operating conditions. Finally, STA
generates a timing graph by transforming the circuit netlist into a
directed acyclic graph (DAG). In this representation, nodes correspond
to cell pins while edges represent timing relationships through both
cell and net arcs. The analysis then propagates arrival times through
this DAG and incorporates timing constraints to compute critical
timing metrics, specifically the total negative slack (TNS) and worst
negative slack (WNS), which quantify the timing violations.

Cell Positions

| Routing Tree Construction |o—Pin Positions ~
! Pin Offset

| Elmore Model |o—Pin Cap

PIs —jl Net Level 0 Propagation |<~ Net Delay,
4 Impulse, LUTs
1 Load

{/,l Cell LeveIOPropagatlon L
(Circuit Graph y-,‘é\\| ’>< NLDM

! Net Level 1 Propaganon

N Cell Delay,
Cell Level 1 Propagation I.' eSle:Vay

POs
Required Arrival Times |

Arrival Times

|

| Slack Calculation |

Fig. 2 Overview of STA flow, showing the computational process
from cell positions and cell sizes to timing metrics, i.e. TNS and
WNS.

Timing
Constraints

B. Gradient-based Optimizations

Gradient-based optimizations have been widely adopted in physical
design stages, such as placement [5], [15], [17] and routing [18].
This methodology computes gradients of the objective function with
respect to design variables, such as cell positions, through backward
propagation, and iteratively updates them using gradient descent.

To enable timing-driven optimization, existing works explicitly
incorporate timing terms, typically TNS and WNS, into the ob-
jective function, thus requiring the entire timing analysis process
to be differentiable. As discussed in Section II-A, accurate timing
analysis requires constructing a routing tree for each net for accurate
extraction of RC parasitics. Rectilinear Steiner Minimal Tree (RSMT)
has been demonstrated to be a reliable approximation for routing
solutions, closely representing the real implementation. However,
the construction of RSMT is inherently non-continuous [19], i.e.,
small perturbations in pin positions can trigger abrupt topological
transitions in the RSMT structure, leading to discrete jumps in RC
parasitics and subsequent timing calculations. This non-differentiable
behavior poses significant challenges when integrated into gradient-
based optimization frameworks, where smooth and continuous ob-
jective functions are essential for convergence. [5] proposed directly
applying gradients of steiner points to corresponding branches while
periodically reconstructing the RSMT to maintain gradient accuracy.
However, this approximation merely enforces differentiability without
addressing the fundamental discontinuity in RC tree construction.

To establish a truly differentiable framework for routing tree
construction, we draw inspiration from the straight-through estimator
(STE) approach [20], a technique widely used in quantized neural
network training in deep learning. STE enables optimization through
non-differentiable operations by maintaining precise computations in
forward propagation while approximating their gradients in backward
propagation. Specifically, our methodology preserves accurate RSMT-
based delay calculations during forward timing analysis while imple-
menting a continuous and smooth degenerated RC model with cali-
brated gradients for backward propagation. The details are elaborated
in Section IV-C.

TABLE I Summary of notations.

[Notation | Description]
™ Timing objective function
N Set of all circuit instances
Ne Set of clock buffer instances (subset of N)
8 Set of available clock buffer sizes
P Coordinates of all instances
Le Logits for clock buffer sizes
Sc Vector of chosen clock buffer sizes
ly Logit value for buffer b selecting size s
0y Probability of buffer b selecting size s
Sp Chosen size for clock buffer b
T Temperature parameter for Gumbel-Softmax
Loadgs(u) Load capacitance at node v (RSMT/SPT based)
Delayg,s(u) Elmore delay at node v (RSMT/SPT based)
Impulsep,g(u) | Impulse value at node u (RSMT/SPT based)
ATcrx Arrival time at the clock port (CLK)
ATpara Arrival time at the data port (DATA)
Tperiod Target clock period
Teikog Flip-flop clock-to-output delay

III. OVERVIEW

Unlike previous timing-driven frameworks [5], [15] that assume
zero clock skew, our approach incorporates clock skew effects to
achieve more accurate timing analysis and unlock a broader opti-
mization solution space. The key idea is to simultaneously optimize
clock skew and logic delays through gradient-based optimization.
Specifically, our framework optimizes both clock buffer sizes and cell
positions to improve timing performance. We keep the sizes of other
clock elements, e.g. integrated clock gating (ICG) cells, fixed, since
their impact on clock net delay is relatively small. Also, to maintain
routability and prevent excessive cell overlap, the objective function
incorporates wirelength and density. The complete formulation of
CCD optimization is as follows:

r}gusn Z TMep (P, sc) + ZWLe(fP, sc) + ADensity (P, s¢).

¢ endpoint ep net e
)]
The timing objective TM can be further formulated as:
TMep = —t1WNS¢, — t2TNS,p, 2)

where P represents coordinates of instances, s. denotes clock buffer
sizes, and A\, t1, to are weighting factors for different objectives.
Considering that hold time violations can be relatively easily resolved
by inserting delay cells like buffers, this work primarily focuses
on addressing setup violations. The proposed CCD optimization
is followed by DREAMPIlace’s [17] greedy legalization to resolve
potential cell overlaps. The whole process should be regarded as skew-
aware post-CTS timing optimization.

In order to optimize the objective function in Equation (1) using
GPU-accelerated gradient descent, we employ differentiable models
for timing, wirelength, and density. The differentiable wirelength and
density models are adapted from prior work [6]. Gradients for wire-
length and density are computed solely with respect to cell positions,
as clock buffer sizing has a negligible effect on these objectives, more
details of which are discussed in Section IV-A. Therefore, the next
section focuses on detailing our novel differentiable timing model
with the consideration of clock buffer sizing.

IV. DIFFERENTIABLE TIMING MODEL

This section presents our well-designed differentiable timing
model, detailing the forward propagation and gradient flow in back-
ward propagation. Section IV-A introduces the key parameters and

definitions, focusing on the initialization of clock buffer sizes and
their logit-based parameterization. Section IV-B explains our skew-
aware timing objective formulation, which incorporates RC tree
construction and delay modeling to explicitly account for clock skew.
Section IV-C elaborates the gradient generation process using the
idea of straight-through estimator (STE), covering both an RC tree
calibration mechanism and a novel method for approximating clock
buffer sizing gradients. This approach ensures robust and stable
convergence.

A. Parameters Definition

The optimization process begins with parameter initialization. After
CTS, we obtain the cell coordinates P = {(z4,vyy) | ¢ € N} and
the vector of chosen clock buffer sizes sc = {s;, | s» € §,b €
Ne € N}. Here, N is the complete set of circuit instances, N, is
the set of clock buffer instances, and 8 is the set of available clock
buffer sizes. Evidently, the solution space of clock buffer sizing grows
exponentially with the cardinality of S.

We propose a logit-based continuous parameterization to enable
gradient-based optimization for the discrete sizing problem. Specifi-
cally, we model the clock buffer sizes using logits Lo = {ly | Iy €
RIS b e N.}, initialized as follows:

g it]S
1’

where s is the initial buffer size of clock buffer b derived from CTS
and c is a constant which is greater than 1, indicating a higher initial
preference for the buffer size syo.

The adoption of logit-based parameterization is motivated by
two fundamental properties. First, unlike probability distributions
restricted to [0, 1] interval, logits operate in the unconstrained real
number space R. This property eliminates the need for complex
constraint handling mechanisms and facilitates gradient-based opti-
mization. Second, compared to directly interpolating discrete buffer
sizes as done in prior works [15], logits parameterization provides a
more principled way to model size preferences. Instead of working
directly in a continuous size space, this parameterization allows the
optimizer to express relative preferences between discrete choices
through smooth logit values, enabling more natural upsizing or
downsizing decisions during optimization.

Gumbel-Softmax [21] is then adopted to transform logits L. into
probabilities 8, followed by argmax to determine the actual sizes s.
For each clock buffer instance b € N, the formulation is shown as
follows:

if s =sp0

T, sESbeN,, 3)
otherwise

exp((ly + gumbel(u®))/T)
> ics exp((l + gumbel(u?))/7)’
be N, ©)

0; = s €S, “)

sp = argmax(6y),
sES

where the {u‘|i € 8} are iid samples drawn from a uniform
distribution over [0,1] and gumbel(u’) = —log(—log(u')) is the
corresponding Gumbel noise. 7 is the temperature parameter for
Gumbel-Softmax which controls the sharpness of the probability
distribution. The introduction of Gumbel-Softmax instead of standard
Softmax is crucial for useful skew optimization. Our empirical study
reveals that optimal buffer configurations often differ substantially
from the initial solutions provided by CTS, suggesting the necessity
of extensive solution space exploration in the early stage. In high-
dimensional discrete optimization, the randomization effect of Gum-
bel noise effectively prevents premature convergence to suboptimal
solutions by encouraging exploration of different buffer configura-
tions. Moreover, the temperature parameter 7 is used to control

the trade-off between exploration and exploitation. By gradually
decreasing 7 during optimization, we initially sample from a smooth
distribution over buffer configurations to encourage broad exploration,
and progressively sharpen the distribution to favor high-probability
configurations such that the optimization converges. In each gradient
descent iteration, the temperature parameter 7 updates as follows:

T:=7-(1—¢), (6)
where € € [0,1] is a decay hyperparameter.
Based on the definitions above, the optimization problem can be
reformulated as follows:

ng‘l:?sc Z TMep (P, Le) + Z WL (P, s¢) + ADensity (P, s.).
Q)

endpoint ep net e

Note that clock buffer sizing exhibits negligible impact on density
and wirelength. Thus, to reduce computational overhead, we omit the
calculation of sizing gradients for these objectives. Instead, parameters
such as buffer areas and pin offsets are updated directly according
to s. derived from Equation (5) within the density and wirelength
calculations. This strategy maintains accurate objective evaluation
while avoiding the complex differentiation of density and wirelength
with respect to clock buffer sizes.

B. Skew-aware Timing Objective

Our timing analysis framework explicitly models clock net delays
and data path propagation, enabling comprehensive timing optimiza-
tion. The framework begins with accurate parasitic modeling through
routing tree construction. We employ FLUTE [22] to generate Rec-
tilinear Steiner Minimal Tree (RSMT) during forward propagation,
which provides a realistic approximation of the eventual routing
topology. The structure of RSMT is illustrated in Fig. 3. The parasitic
effects are then characterized using the Elmore model, capturing the
first-order moment of impulse response in RC networks:

Loadg(u) = cap,, + Z Loadg (v),
v Echildren(u)

Delayg(u) = Delayg(fa(u)) + resp(u)y—w - Loadr(u),
LDelaygy(u) = cap,, - Delayy(u) + Z LDelayy(v), (&)

v Echildren(w)

Betag(u) = Betag(fa(u)) + resp(u)—u - LDelayg(u),
Impulses(u) = 2 - Betag(u) — Delay?(u),
where R denotes RSMT, cap represents pin capacitance (from liberty
files, .lib), and res represents wire resistance (from extracted parasitic
parameters). LDelay and Beta serve as intermediate computational
values. fa(u) is the parent node of node u. This computation is
typically implemented through four dynamic programming passes
on the tree structure, alternating between bottom-up and top-down
traversals [5]. Signal transition times (slews) are then propagated
through the circuit topology according to the signal flow, as shown
in Fig. 4(a). For an edge from node ©v — v, the formulation is as
follows:

Slew® (v) = Slew® (u) + Impulse® (v).)

Since Impulse® is directly used in slew propagation, we don’t need
to calculate the value of Impulse in practice.

Following slew propagation, we proceed to construct a timing
graph that models the complete circuit timing behavior. The graph
incorporates combinational arcs representing signal gate or net delays
and clock arcs capturing clock net delays. As shown in Fig. 4(b),
we also model sequential timing behavior by establishing CLK-to-
OUTPUT timing arcs with delay T,ix2, from each flip-flop’s CLK

f&%) %R&\g <P %S SPT <>

O source <> sink l:’ Steiner point

Fig. 3 Mlustration of RSMT and SPT structures.

port to its OUTPUT port. Signal arrival times are then systematically
propagated through this graph following topological ordering. To
maintain differentiability throughout the timing analysis, we employ
the Log-Sum-Exp (LSE) function as a smooth approximation for the
inherently discontinuous max operations in arrival time propagation.
For timing verification at each endpoint, typically a flip-flop DATA
port, we evaluate setup constraints by comparing the arrival time
at the endpoint’s input data pin with the arrival time at its related
clock pin: In this way, gradients can be naturally propagated to the
clock net during back propagation, enabling adjustment of clock skew.
where ATpara is the data net arrival time at the flip-flop’s DATA
port and ATreaed-cLx 1S the related clock signal arrival time at the
flip-flop’s CLK port. Tperioa is the target clock period specified in
.sdc timing constraints. The setup constraint Slack > 0 ensures
that data arrives prior to the required time at the receiving flip-flop.
Through the CLK-to-OUTPUT timing arcs and timing propagation,
both ATpara and AT eiared-cx have gradient paths back to the clock net.
This enables simultaneous optimization of logic path delays and clock
skew during backpropagation, allowing our framework to identify and
exploit useful clock skew for timing closure.

C. Gradients Generation with STE

Differentiable RC Tree with Calibration. As discussed in Sec-
tion II-B, the inherent discontinuity of RSMT construction poses
a critical challenge for gradient-based optimization approaches. To
overcome this limitation, we introduce a novel adaptation of the STE
methodology, using RSMT for accurate forward computation while
enabling smooth gradient propagation via SPT.

The key advantage of SPT lies in its continuous and differentiable
construction process since the source pins and sink pins are directly
connected without any Steiner point, which is illustrated in Fig. 3.
This enables the backward propagation of gradients from the timing
objective through the Elmore model outputs, i.e., net delay, impulse,
and downstream capacitance load, ultimately to both clock buffer sizes
and cell positions, as shown in Fig. 4(c). We can formulate the SPT-
based Elmore model through the following set of equations:

Loads(s) = Z Loads(v),

v Esinks
Delayg(v) = ress—. - Loads(v),

LDelayg(v) = cap, - Delay(v), (10)

Betag(v) = ress_y., - LDelayg(v),
Impulse; (v) = 2 - Betas(v) — Delay: (v),
where S denotes SPT, s is the driving source pin and sinks is the set
of sink pins in the net.

While SPT enables smooth gradient propagation, its structural
simplicity relative to RSMT can cause discrepancies in gradient
directions. To bridge this gap, we propose a calibration mechanism
that introduces scaling coefficients between SPT and RSMT compu-
tations. Although the relationship between SPT and RSMT Elmore

Forward Backward
Delayye Delay g¢
L
P R b o f a Loada SPT b ol
a Elmore Model e G- | Elmore Model | &
Slewa Slewe Slew, \—————J Slew,
Impulseg C}“\K Impulsee C}‘\K
Dela ; Dela - Delaygg '
Delayy,. | NLDM Load Yed Slewy C|>d Y be| NLDM Load, Slewg lcl)d
o ¢ RSMT ! e—oP>c App—— SPT | _____* !
Slew, b ¢ gl Elmore Model S‘lewbb c 4751ewc Elmore Model
Impulseq Impulseyq
(@)
skew-aware (T T T TS E T \
| Aremax . 1 Update Clock
' 2 !\ Buffer Sizes |
______ P _r(lb_aE)ility_ e
i Gumbel :k: Approximate
\ Softmax | | Gradients
------------------- Elmore Model
approximate
related-CLK Clock Buffer continuous —
© Cell Positions

(©)

Fig. 4 (a) Forward/Backward propagation of Elmore model computation and slew propagation. (b) Forward/Backward propagation of arrival
time propagation with clock skew. (c) The overall gradient flow of CCD timing model with respect to clock buffer size logits and cell positions.

a, b, .. are input or output pins of instances.

model outputs may not be strictly proportional, our empirical studies
suggest that using multiplicative coefficients provides an adequate
approximation for correcting the gradient direction. Specifically, these
coefficients, namely o, 8 and <, are dynamically updated at each
iteration following:

Loadg(s) ~ aLoads(s),
Delayy(v) ~ BDelayg(v),
Impulser(v) ~ vImpulse; (v).

an

The overhead introduced by this calibration primarily consists of
calculating the SPT-based Elmore model values using Equation (10)
and performing the divisions to obtain the coefficients «, 3,~. No-
tably, the SPT computations do not require explicit tree construction
and can be performed efficiently via direct calculations between
the source and each sink pin, resulting in minimal overall runtime
overhead.

The corresponding gradient computations with these calibration
coefficients are then derived as follows:

VLoadr(s) ~ « Z VLoads(v),

v Esinks

VDelayy(v) ~ B(Vress—. - Loads(v) + ress—. - VLoads(v)),
Vimpulsey(v) ~ 2~ - (VBetas(v) — Delay(v) - VDelayy(v)),
VLDelayg(v) = Vcap(v) - Delayg(v) + cap(v) - VDelayg(v),

VBetas(v) =

Vress—v - LDelayg(v) + ress—. - VLDelayg(v).
(12

Our approach differs from existing calibration strategies in sev-
eral key aspects, particularly compared to the additive bias method
introduced in [23]. The fundamental distinction lies in how these
methods handle gradient calibration during optimization. The previ-
ous additive bias approach employs an offset term in the form of
Delayy = Delayg + 6, which can only affect the gradient relationship
between timing objectives and Elmore model outputs, as evidenced

by Vpeiay, TM #* VDglaySTM but VDelay, = VDelay,. This limited
modification constrains the flexibility to adjust the underlying gradi-
ents VDelayg, restricting its effectiveness for our gradient calibration
approach to consider structural differences between RSMT and SPT.
Instead, our multiplicative coefficient method introduces a more
comprehensive gradient adjustment, indicating that Vpeiay,, TM #
Vpeiays TM and VDelay, # VDelayg, which affects multiple steps
in the backward propagation chain. By maintaining accurate timing
analysis using RSMT in the forward pass and performing calibration
at each iteration, our method ensures the accuracy of the objective
evaluation and guides the optimization direction.

Approximate Clock Buffer Sizing Gradients. As illustrated in
Fig. 2, the cell sizes impact both Elmore model and NLDM cal-
culations for timing analysis. After determining each clock buffer
size following Equation (5), we can update the corresponding pa-
rameters for both RSMT-based Elmore model and NLDM in forward
propagation. Specifically, clock buffer sizes determine the input pin
capacitance, which affects the outputs of the Elmore model. Note that
we disregard the effects of clock buffer sizes on pin offsets during
gradient computation following prior work [15], as these effects
minimally impact the timing. Pin offsets are subsequently updated
for timing calculation after each clock buffer size modification to
maintain computational accuracy. For NLDM, different clock buffer
sizes correspond to different LUTSs, which are used to compute cell
delay and output slew. The mathematical formulations are as follows:

cap; = cap;",
Delay,_,, = LUTs, ;o
where s; is the clock buffer size, and 7 and o denote the input
and output pins of buffer b respectively. The delay value LUT, ;o
is formally expressed as LUTs, (Slew;, Load,), representing the cell
delay retrieved from NLDM lookup tables of s; indexed by input slew

, arc(i,o0) € buffer b, (13)

V@g T™M = V4, TM x VQg cap

VeapTM >0
b TM S $ Vo; cap
cap’t
less
9 Possible
cap
0 7L
51
cap _ % \‘”/‘\ cap®
cap®' cap®® cap®
(@)
VeapTM <0
b T™M 4 Vi cap
e2 5
(3(1]7517 cap™ more
possible
0
! cap eap®! cap®
cap® ca P2 cap®® g
(b)

Fig. 5 The function curves of approximate clock buffer sizing gradient
calculation. Here the variable cap is taken for illustration, where (a)
VepyTM > 0 and (b) V., TM < 0.

Slew; and output capacitive load Load,. To simplify the discussion,
we demonstrate our approach using pin capacitance (cap) and cell
delay (Delay) as representative variables in this subsection. The
handling of output transition time (Slew) follows a similar process.
We then use LUT to refer to the delay lookup table throughout this
paper for notational simplicity.

A fundamental challenge in this optimization is that the Elmore
model and NLDM outputs are not differentiable with respect to
clock buffer sizes. This non-differentiability stems from the discrete
mapping relationship between cell sizes and their corresponding
parameters like pin capacitance and lookup table selection. Therefore,
we must introduce an approach to approximate the gradients, thus
enabling gradient-based optimization. Here is the discussion:

(An Unsuccessful Exploration). Given that we model the probability
distribution of different clock buffer sizes, a natural approach would
be to approximate this process using mathematical expectation, as
shown in the following equations:

cap ~ Z Oycap®, Delay ~ Z 0, LUT,
s€s s€$ (14)
Vo cap ~ cap®, Vo; Delay ~ LUT.

For brevity, we omit the input and output pin indices ¢ and o
here. While the expectation-based approach appears mathematically
sound, it suffers from a practical limitation. During optimization, the
gradient descent algorithm inherently favors directions that maximize
objective improvement, leading to unstable buffer size selection. For
example, when the gradient suggests increasing input pin capacitance,
the optimization immediately moves toward buffer configurations
with maximum capacitance values, since Vegacap > VGgl cap iff
cap®® > cap®'. These sudden transitions between buffer sizes

severely impair the optimization’s convergence behavior.
To avoid this problem, we then propose a novel gradient approxi-
mation approach that enables smooth and controlled optimization. We

manually define two fundamental functions ¥, (x) and —¥, (2y —x)
and the gradient computations are formulated in Equation (15).

2y—z (2—y)*

€ 2y oy 7 x Z y?
\I/y(l‘) = s (z_y)Q 1
e2y oy —e2, otherwise,
vescap ~ \Ilmpsb (CGP‘)7 vL‘apTM 2 07 . (15)
b —W st (2cap® — cap®), otherwise,
\I]LUst (LUTS)7 VDe]ayTM 2 07

Vo; Delay >~ {_\pmsb (2LUT,, — LUT),
where o is a hyperparameter which controls the exponential decay.

As shown in Fig. 5(a), when V.,TM > 0, indicating that re-
duced capacitance improves timing, the approximation W, (cap®)
yields larger gradient magnitudes for size options s where cap®
is slightly smaller than the current cap®®, encouraging incremental
downsizing, while assigning smaller or negative gradients to options
with significantly smaller or larger capacitances. This mechanism
guides the optimization toward smaller capacitance values, thereby
improving timing performance. As our formulation introduces ex-
ponential terms, the gradient magnitude reaches its maximum when
the target capacitance is slightly smaller than the current value,
and gradually approaches zero as the target capacitance becomes
significantly smaller. This characteristic ensures that buffer sizes
change incrementally rather than abruptly, preventing sudden large
transitions in the optimization process. A similar analysis applies
when V., TM < 0, indicating increased capacitance is needed,
where the function —W s, (2cap®® — cap®) guides the optimization
towards larger capacitance values in a controlled manner. While this
formulation is empirically motivated rather than derived from physical
principles, comprehensive experiments demonstrate its effectiveness
in achieving stable convergence and high-quality timing results while
maintaining controlled size transitions throughout the optimization
process.

otherwise,

V. ADMM-BASED CCD OPTIMIZATION

As shown in Section III, CCD optimization is a multi-objective
optimization task, which is inherently complex, particularly when the
objectives are conflicting. In our case, the three primary objectives,
including timing, wirelength and density, often generate opposing
gradients, potentially impeding convergence. We then leverage the
alternating direction method of multipliers (ADMM) to alleviate
this problem, which decomposes the original problem into several
manageable subproblems. Let Q = P, the augmented Lagrangian
function of Equation (7) is formulated as:

L(P,Q, L, W) = TMep(P, L) + > WLe(Q, 50)+
(16)
ADensity(Q, s¢) + (U, P — Q) + g P -0,

where ep and e denote each endpoint and net, respectively, following
Equation (1). These indices are omitted from the summation sym-
bols for brevity. U is the dual variable for the equality constraint
Q = P, p is a penalty factor. In simple terms, ADMM updates
are performed by alternatively minimizing the augmented Lagrangian
function £(P, Q, Lc,U) over the primal variables P, Q and £. and
the dual variable U at each iteration, as detailed in Algorithm 1. Note
that the updates of P and Q are based on the timing-driven gradient
descent method proposed in [5].

The ADMM-based decomposition enables effective optimization
by separating the timing, wirelength, and density objectives into
subproblems. Each subproblem can be solved independently while

Algorithm 1 ADMM-based CCD Optimization

1: Input: Initial clock buffer size logits £2 and positions P°;

2: Output: Optimized clock buffer sizes and instance positions;

3: k+ 0

4: while not converged do

5: Update instance positions PF*1; > Equation (17)
6: Update clock buffer size logits £+1; > Equation (18)
7: Update s***! based on £FH1; > Equations (4) and (5)
8: Update proxy instance positions QF*1; > Equation (19)
9: Update dual variables U**; > Equation (20)
10: k+ k+1;
11: end while
12: return Final s. and P;

2

PpEHL _ argminZTMep(fR £Ey 4k P — ok + ' HT —qF
! 2

2

a7

LF = argminZTMeP(Tk+1,Lc), (18)
Le

QFtt — argminEWLe(Q, sPTYY + ADensity(Q, sF1)
fe)
2
Uk, P —Q>+§Hﬂ>’“+1 —QH2, (19)
U = Uk 4 p(PFH — QR Y. 20)

maintaining coordination through the dual variable U and penalty
factor p, thus facilitating the search for solutions that balance these
competing objectives. As discussed in Section IV-A, since clock
buffer sizes only contribute as parameters to wirelength and density
computations, we exclude these terms from the optimization objective
in Equation (18). Also, building upon the observation that post-
placement cell positions typically provide sufficiently good solutions,
the optimization constrains cell positions P and Q to local adjustments
around their initial values, preserving solution quality while enabling
necessary refinements.

9% =22 <5, (10" — Q]2 <5,

where ¢ is a hyperparameter that controls the maximum allowed
change in cell positions.

The gradient descent approach employed in our problem incurs
significant computational costs, typically needing several hundred
iterations for convergence. To mitigate this, the DiffCCD framework
is implemented entirely on GPUs, capitalizing on their parallel
processing power for acceleration. For enhanced performance, core
computations, including the forward propagation for objective func-
tion evaluation and backward propagation for gradient generation, are
executed using dedicated CUDA kernels.

@n

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

Our proposed DiffCCD framework is implemented in C++ with
CUDA acceleration, and the experimental evaluation is performed
on a Linux server equipped with a 2.60GHz Intel Xeon CPU and
an NVIDIA RTX A800 GPU. Algorithmic performance is evaluated
using industrial designs from CircuitNet [24], synthesized using com-
mercial 28nm or 14nm process design kits (PDKs). These benchmarks
were selected to represent a diverse range of design complexities.
Detailed benchmark statistics are provided in TABLE II. We set the
hyperparameters ¢; and 2 to 0.1 and 0.001, respectively. To facilitate

)

TABLE II Benchmark statistics.

[Benchmark [Tech. Period #Cells #Nets #Pins #Macros |

VORTEX 14nm 2ns 112478 121142 430699 43

LARGEBOOM 14nm 2ns 787298 805963 3027324 636
OPENC910 14nm 2ns 798166 811653 3149667 32
PULPINO 28nm 2ns 20374 21248 75079 3
RISCY-a 28nm 2ns 56580 57168 220791 3
RISCY-FPU-a 28nm 2ns 78311 79253 300634 3
Zero-riscy-a 28nm 2ns 46206 45972 176171 3

early-stage exploration, the temperature parameter 7 is initialized at
3000 and iteratively decreased by a factor of ¢ = 0.02. o is set to
2000. The initial logit value c is set to 2.0. The Lagrangian penalty
factor p is set to approximately 1.0.

To validate the proposed algorithm’s effectiveness, we established
a test flow based on the widely used open-source EDA flow,
OpenROAD [25]. The flow commences with timing-driven global
placement to achieve initial timing optimization. Subsequently, Open-
ROAD’s repair_design command is employed for pre-CTS timing
optimization. This step utilizes strategic buffer insertion and gate
sizing to mitigate maximum slew, capacitance, and fanout viola-
tions, while also optimizing RC delay on long interconnects to
normalize signal transition times. Following the reduction of tim-
ing violations, OpenROAD’s detailed_placement command is exe-
cuted for detailed placement and instance locations legalization. The
clock_tree_synthesis (CTS) command is then applied to construct the
clock networks. During CTS, we carefully tune the parameters to
achieve balanced source-to-sink delays, thereby minimizing timing
degradation between the pre-CTS and post-CTS stages. This balanced
clock network ensures that subsequent timing improvements can be
primarily attributed to useful-skew optimization.

In the post-CTS stage, OpenROAD’s repair_timing command,
which optimizes timing while accounting for clock skew, serves as
our baseline. We then conduct comparative experiments between the
baseline, our proposed Diff CCD optimization framework, and a com-
bined flow that integrates both approaches. For CCD implementation,
clock buffer candidates covering multiple drive strength options were
carefully selected from the respective technology libraries: 25 buffers
from the 14nm library and 10 from the 28nm library. To ensure a
fair comparison, timing metrics WNS and TNS are evaluated using
the open-source timer OpenSTA [26]. Additionally, we measure the
computational runtime to assess the efficiency of each approach.

B. Post-CTS Timing Performance Improvements

TABLE III demonstrates that our DiffCCD framework yields
significant improvements in both timing quality and computational ef-
ficiency. Compared to the initial post-CTS designs, Diff CCD achieves
average reductions of 50.1% (1-0.499) in WNS and 70.2% (1-
0.298) in TNS across the benchmarks. Compared to the baseline
repair_timing, our approach yields average improvements of 22.4%
(1-0.499/0.643) in WNS and 45.0% (1-0.298/0.542) in TNS.

For the PULPINO design, the baseline method exhibits an anoma-
lously long runtime 10977s, suggesting potential instability or in-
efficiency in some situations. In contrast, Diff CCD demonstrates
superior efficiency and maintains predictable runtime scaling relative
to design complexity. This high efficiency stems from our CUDA-
accelerated implementation, enabling efficient parallel processing and
resulting in an average 9.434 (1/0.106)x runtime reduction compared
to the baseline. This consistent performance advantage underscores
the value of our approach for modern, large-scale circuit designs
where optimization runtime is often a critical constraint.

TABLE III WNS, TNS and runtime comparisons. The average ratio represents the mean absolute ratio across all benchmarks, with lower values

indicating superior performance for all metrics.

Benchmark OpenROAD CTS [25] OpenROAD CTS + repair_timing [25] OpenROAD CTS [25] + Our DiffCCD
WNS (ns) TNS (ns) WNS (ns) TNS (ns) Runtime (s) | WNS (ns) TNS (ns) Runtime (s)
VORTEX -1.034 -3324.667 -1.529 -3354.724 1221 -1.099 -1709.71 261
LARGEBOOM -0.617 -881.285 -0.764 -1354.435 4870 -0.581 -664.672 805
OPENC910 -0.917 -331.766 -0.498 -268.719 4802 -0.504 -152.962 1101
PULPINO -0.641 -22.708 -0.049 -0.945 10977 0 0 133
RISCY-a -0.559 -554.164 -0.128 -4.59 2187 -0.097 -6.424 264
RISCY-FPU-a -1.097 -2515.743 -0.493 -853.758 5443 -0.475 -830.637 333
Zero-riscy-a -0.339 -46.185 -0.165 -2.153 206 -0.114 -0.567 239
Average Ratio 1.000 1.000 0.643 0.542 1.000 0.499 0.298 0.106
VORTEX PULPINO OPENC910 RISCY-FPU-a
g — full s M — full £ Ao — fun £ — full
£ ——— w/o Gumbel noise b1 ——— w/o Gumbel noise b5 ‘«J L\\ ——— w/o Gumbel noise = ——— w/o Gumbel noise
E —— w/o calibration E w/o calibration § [% —— wio calibration § —— w/o calibration
= = = |1 =
D]]]
Z Z 2 2
2 2 2 2
= = = =
=] =] =) it o
0 100 200 300 400 0 100 200 300 400 500 0 200 400 600 800 0 200 400 600 800

Iterations # Iterations

(a) (b)

Iterations # Iterations

(©) (d)

Fig. 6 Loss curves of Equation (18) optimization under three configurations, where full method is our complete CCD optimization framework

with both Gumbel noise and calibration mechanism.

TABLE IV Comparison between our DiffCCD and combined flow,
i.e. OpenROAD repair_timing [25] followed by DiffCCD.

Benchmark Our DiffCCD Combined Flow
WNS (ns) TNS (ns) | WNS (ns) TNS (ns)
VORTEX -1.099 -1709.71 -1.400 -1643.371
LARGEBOOM -0.581 -664.672 -0.601 -723.397
OPENC910 -0.504 -152.962 -0.502 -205.938
PULPINO 0 0 -0.006 -0.006
RISCY-a -0.097 -6.424 0 0
RISCY-FPU-a -0.475 -830.637 -0.17 -102.216
zero-riscy-a -0.114 -0.567 -0.064 -0.219
Average -0.410 -480.710 -0.391 -382.164

It is worth noting that for certain benchmarks like VORTEX, while
TNS shows significant improvement, WNS may degrade slightly. We
believe this could potentially be attributed to slight discrepancies
between the differentiable timer used during optimization, which
indicates consistent improvements in WNS, and the final evaluation
timer, OpenSTA, or to the inherent trade-off in the loss function
aiming to balance both WNS and TNS improvements.

Furthermore, TABLE IV shows that for several benchmarks, e.g.,
RISCY-a, RISCY-FPU-a, an integrated flow combining repair_timing
and DiffCCD achieves superior timing metrics compared to either
method applied individually. These complementary improvements
likely stem from the distinct optimization targets of each method.
While repair_timing primarily focuses on data path optimization
via gate sizing, our DiffCCD framework specifically targets clock
network optimization through strategic clock buffer sizing. This
suggests that integrating DiffCCD into existing timing optimization
flows may yield comprehensive timing improvements.

C. Ablation Study

To validate the effectiveness of the components within our pro-
posed approach, we conducted ablation studies on four representative
benchmarks. Fig. 6 illustrates the loss curves corresponding to the
optimization of Equation (18) under three configurations: (1) without

Gumbel noise, (2) without the calibration mechanism, and (3) our
complete method incorporating both components. The results demon-
strate that introducing Gumbel noise significantly influences the early-
stage optimization dynamics. Although these perturbations induce
objective function fluctuations in the early stage, they consistently
lead to superior final timing results across all test cases, thereby
validating the importance of exploration during the early optimization
stages. Furthermore, despite this initial volatility, all configurations
exhibit stable convergence, highlighting the overall robustness of our
algorithm. The impact of the calibration mechanism, while beneficial,
appears less pronounced than that of Gumbel noise. This might be
attributed to the inherent structural similarity between the SPT and
RSMT models. Empirically, combining both Gumbel noise and the
calibration mechanism yields the best performance in most test cases.

VII. CONCLUSION

This paper presents a differentiable concurrent clock and data opti-
mization framework to achieve useful skew optimization in post-CTS
timing closure. Specifically, we propose a well-designed gradient-
based approach that optimizes clock buffer sizes while simultaneously
refining placement solutions to enhance timing performance. Experi-
mental results on open-source industrial benchmarks demonstrate that
our CCD optimization framework achieves superior timing closure
compared to a baseline post-CTS timing optimization approach,
achieving an average reduction of 22.4% in WNS and 45.0% in TNS,
along with a significant runtime speedup of 9.434x. These results
validate the effectiveness of our framework as a practical solution for
modern timing closure challenges. We believe this work provides a
new perspective on applying differentiable optimization to discrete
EDA problems, paving the way for future research in this direction.

ACKNOWLEDGEMENTS

The project is supported in part by Research Grants Council of
Hong Kong SAR (No. RFS2425-4S02 and No. CUHK14211824).

[1]

[2]

[3

[t}

[4]

[5]
[6]

[8]

[9]
[10]
(11]
[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

V. Nawale and T. W. Chen, “Optimal useful clock skew scheduling in
the presence of variations using robust ILP formulations,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2006, p.
27-32.

T.-H. Chao, Y.-C. Hsu, J.-M. Ho, and A. Kahng, “Zero skew clock
routing with minimum wirelength,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 39, no. 11, pp. 799-814, 1992.

J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew
clock and Steiner routing,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 3, no. 3, pp. 341-388, 1998.

K. Han, A. B. Kahng, and J. Li, “Optimal generalized h-tree topology
and buffering for high-performance and low-power clock distribution,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 39, no. 2, pp. 478-491, 2018.

Z. Guo and Y. Lin, “Differentiable-timing-driven global placement,” in
DAC. ACM, 2022, pp. 1315-1320.

J. Lu, P. Chen, C. Chang, L. Sha, D. J. Huang, C. Teng, and C. Cheng,
“ePlace: Electrostatics-Based Placement Using Fast Fourier Transform
and Nesterov’s Method,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 20, no. 2, pp. 17:1-17:34, 2015.

K. Wang, L. Duan, and X. Cheng, “ExtensiveSlackBalance: an approach
to make front-end tools aware of clock skew scheduling,” in ACM/IEEE
Design Automation Conference (DAC), 2006, pp. 951-954.

T. Chan, A. B. Kahng, and J. Li, “NOLO: A no-loop, predictive
useful skew methodology for improved timing in IC implementation,”
in ISQED, 2014, pp. 504-509.

L. Chao and E. H. Sha, “Retiming and clock skew for synchronous
systems,” in ISCAS, 1994, pp. 283-286.

R. B. Deokar and S. S. Sapatnekar, “A graph-theoretic approach to clock
skew optimization,” in ISCAS, 1994, pp. 407-410.

I. S. Kourtev and E. G. Friedman, “Clock skew scheduling for improved
reliability via quadratic programming,” in /CCAD, 1999, pp. 239-243.
M. Saitoh, M. Azuma, and A. Takahashi, “Clustering based fast clock
scheduling for light clock-tree,” in DATE, 2001, pp. 240-245.

J. G. Xi and W. W. Dai, “Useful-skew clock routing with gate sizing for
low power design,” in DAC. ACM Press, 1996, pp. 383-388.

L. P. Van Ginneken, “Buffer placement in distributed RC-tree networks
for minimal Elmore delay,” in IEEE International Symposium on Circuits
and Systems (ISCAS), 1990, pp. 865-868.

Y. Du, Z. Guo, Y. Lin, R. Wang, and R. Huang, “Fusion of Global Place-
ment and Gate Sizing with Differentiable Optimization,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2024.
W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55-63, 1948.

Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “DREAMPIlace: Deep Learning Toolkit-Enabled GPU Acceleration
for Modern VLSI Placement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 40, no. 4, pp.
748-761, 2021.

W. Li, R. Liang, A. Agnesina, H. Yang, C.-T. Ho, A. Rajaram, and
H. Ren, “DGR: Differentiable Global Router,” in ACM/IEEE Design
Automation Conference (DAC), 2024.

B. Fu, L. Liu, M. D. Wong, and E. F. Young, “Hybrid Modeling and
Weighting for Timing-driven Placement with Efficient Calibration,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2024.

Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or Propagating
Gradients Through Stochastic Neurons for Conditional Computation,”
CoRR, vol. abs/1308.3432, 2013.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

C. C. N. Chu and Y. Wong, “FLUTE: Fast Lookup Table Based
Rectilinear Steiner Minimal Tree Algorithm for VLSI Design,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 27, no. 1, pp. 70-83, 2008.

W. Li, Y. Kukimoto, G. Servel, I. Bustany, and M. E. Dehkordi,
“Calibration-Based Differentiable Timing Optimization in Non-linear
Global Placement,” in ACM International Symposium on Physical Design
(ISPD), 2024, pp. 31-39.

[24]

[25]

[26]

Z. Chai, Y. Zhao, W. Liu, Y. Lin, R. Wang, and R. Huang, “CircuitNet:
An Open-Source Dataset for Machine Learning in VLSI CAD Applica-
tions With Improved Domain-Specific Evaluation Metric and Learning
Strategies,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 42, no. 12, pp. 5034-5047, 2023.
The-OpenROAD-Project, “Openroad,” GitHub repository, 2024, avail-
able online: https://github.com/The-OpenROAD-Project/OpenROAD.

T. O. Project, “Parallax static timing analyzer,” 2025. [Online].
Available: https://github.com/The-OpenROAD-Project/OpenSTA

https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenSTA

