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Face-to-Face bonded 3D ICs: HowWe Place Them

Top die, bottom die, and hybrid bonding terminals HBTs).
 Enables direct metal-to-metal and dielectric-to-dielectric bonding.
 Achieve ultra-high vertical integration density.
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 An example layout of ICCAD'23 case3h from [TCAD’24]1.
1Yuxuan Zhao et al. “Analytical Heterogeneous Die-to-Die 3D Placement with Macros”. In: IEEE TCAD 44.2 2024,
pp. 402–415.
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Analytical 3D Placement

True 3D placers2345 build upon the methodology of ePlace-3D6 to model the 3D density.

Iter. WL 107) #HBTs OVFL
0 3.60 88507 1.00

Iter. WL 107) #HBTs OVFL
1000 4.49 1254 0.89

Iter. WL 107) #HBTs OVFL
1800 10.30 30961 0.34

Iter. WL 107) #HBTs OVFL
2142 10.51 13798 0.07

2Yan-Jen Chen et al. “Late breaking results: Analytical placement for 3D ICs with multiple manufacturing technologies”.
In: Proc. DAC. IEEE. 2023, pp. 1–2.
3Peiyu Liao et al. “Analytical Die-to-Die 3D Placement with Bistratal Wirelength Model and GPU Acceleration”. In: IEEE
TCAD 43.6 2023, pp. 1624–1637.
4Yan-Jen Chen et al. “Mixed-size 3D analytical placement with heterogeneous technology nodes”. In: Proc. DAC. 2024,
pp. 1–6.
5Yuxuan Zhao et al. “Analytical Heterogeneous Die-to-Die 3D Placement with Macros”. In: IEEE TCAD 44.2 2024,
pp. 402–415.
6Jingwei Lu et al. “ePlace-3D Electrostatics based placement for 3DICs”. In: Proc. ISPD. 2016, pp. 11–18.
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Analytical 3D Placement
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7Yuxuan Zhao et al. “Analytical Heterogeneous Die-to-Die 3D Placement with Macros”. In: IEEE TCAD 44.2 2024,
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Density Gradient Accumulation

 What is density gradient accumulation?
Generally, it is a process to calculate the gradient of a node by accumulating gradients on all
its covered bins.
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 Vanilla Algorithm: Compute gradients for macros in 3D placement (in every iteration) is
rather more expensive!
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Observation: Divergence Theorem

 Any Better Idea?

Consider the fundamental theorem of calculus:
ˆ b

a
f′(t)dt = f(b)− f(a).

What happens inside can be understood by looking at the boundary.

 Divergence Theorem. ˚
Ω

∇ · FdΩ =

‹
∂Ω

F · n̂dS.

Total divergence inside a region is the total outward flux across the boundary  Dimension
Reduction?
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Apply Divergence Theorem

 How to apply divergence theorem to density gradient computation?

Gradient Theorem
The Gradient Theorem between electric potential ϕ and electric field E states that −E = ∇ϕ.

The following is then intuitive, with Fx := (ϕ,0,0).
˚

Dvi

Ex dDvi =

˚
Dvi

∇ · Fx dDvi =

‹
∂Dvi

n̂xϕdS,

where n̂x is the x component of normal vector n̂.

It is a dimension reduction technique if ϕ is easier to compute!

 Is ϕ easier to compute?
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Apply Divergence Theorem

ρ(x, y, z) =
n∑
i=1

χDvi
(x, y, z)

Density Map

ajkl =
1
|B|

∑
x,y,z

ρ cos(ωjx) cos(ωky) cos(ωlz)

Coefficients: one DCT_3D required.

ϕ =
∑
j,k,l

ajkl
ω2
j + ω2

k + ω2
l
cos(ωjx) cos(ωky) cos(ωlz)

Potential Map: one IDCT_3D required.

Ex =
∑
j,k,l

ajklωj

ω2
j + ω2

k + ω2
l
sin(ωjx) cos(ωky) cos(ωlz)

Field Maps: 3 IDCT/IDXST combinations required.

Forward Pass

gi =
˚

Dvi

Ex dDvi

Density Gradient Accumulation
Backward Pass
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Backward Pass

Outcomes:

 The computation of E can be saved!

 Three IDCT/IDXST operations (e.g.
IDXST_IDCT_IDCT) to compute E can be
saved in each forward computation.

 The density gradient accumulation in
each backward computation can be ac-
celerated by reducing the dimension of
integral region.

 How to compute the integral?
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Apply Divergence Theorem

The new rule of calculating gi (the x-direction density derivative w.r.t. node vi).

gi =
‹

∂Dvi

n̂xϕdS ≈
¨

∂Dyz−vi

(ϕ(x, y, z)− ϕ(x+wi, y, z)) dS.

 An example illustrating the density gradient accumulation via the potential map ϕ.

D

Ex(x, y, z)

∑
b∈B(Dvi )

−µ(Dvi ∩ b)Ex(b)

b b′
∂D+

yz

∂D−
yz

ϕ(x, y, z)

∑
b∈B(∂Dyz−vi

)

A(∂Dyz−vi
∩ b)(ϕ(b′) − ϕ(b))

 It is the difference of two 2D integral of potential values on a pair of faces.
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Experimental Results

Benchmarks 7 mixed-size designs from ICCAD’23 contest
Metrics die-to-die HPWL and runtime

Platform Intel(R) Xeon(R) Platinum 8480C CPUs Max 3.8 GHz)
H800 GPU 80G VRAM

 Compare to SOTA analytical 3D placer8: more than 3× speedup on CPU, and 4× speedup
on GPU, without quality loss.

Bench. Statistics [TCAD’24]7CPU Ours-CPU [TCAD’24]7GPU Ours-GPU
|V| |VM| Score RT Score RT Score RT Score RT

case2 14K 6 15540090 76 15639790 26 15635352 38 15443965 15
case2h1 14K 6 16719713 80 16706960 20 16569703 35 16775356 9
case2h2 14K 6 16759058 80 16773536 20 16820960 36 16721757 9
case3 124K 34 97388944 236 100684926 78 98206238 92 99997072 21
case3h 124K 34 109518959 239 109096510 73 108166770 86 107974746 20
case4 740K 32 1041523590 3070 1040956218 964 1037676163 335 1038139180 77
case4h 740K 32 635991850 2640 631972730 980 635259476 361 630601092 76

AVERAGE 0.996 3.300 1.000 1.000 1.000 4.029 1.000 1.000

8Yuxuan Zhao et al. “Analytical Heterogeneous Die-to-Die 3D Placement with Macros”. In: IEEE TCAD 44.2 2024,
pp. 402–415.
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Experimental Results

 Ablation Study: Results of different algorithms on the
samemachine: about 36% faster on CPU and 43% faster
on GPU (end-to-end runtime).

Bench. Vanilla Ours
Score RT Score RT

CPU

case2 15657924 39 15639790 26
case2h1 16723968 29 16706960 20
case2h2 16748488 29 16773526 20
case3 101738290 96 100684926 78
case3h 109580966 86 109096510 73
case4 1037251354 1315 1040956218 964
case4h 632423856 1310 631972730 980

AVERAGE 1.002 1.359 1.000 1.000

GPU

case2 15587229 21 15443965 15
case2h1 16850092 12 16775356 9
case2h2 16801938 12 16721757 9
case3 101196054 34 99997072 21
case3h 107621590 33 107974746 20
case4 1035731150 102 1038139180 77
case4h 632611980 103 630601092 76

AVERAGE 1.004 1.431 1.000 1.000

Backward runtime on CPU
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