Efficient OpAmp Adaptation for Zoom Attention to Golden Contexts Rui Ming** Haoyuan Wu[†] Haisheng Zheng[♡] Zhuolun He^{♠,♣} 椿 The Chinese University of Hong Kong, Hong Kong SAR 💛 Shanghai Artificial Intelligent Laboratory, China 📑 ChatEDA Tech, China #### Introduction #### Background: Figure 1. Normalized attention score. Transformers often miss the golden document in a noisy context. #### Contribution: Inspired by the operational amplifiers (OpAmp), we introduce OpAmp adaptation with adapters, an efficient approach for refining the attention mechanism to enhance focus on the most relevant context leveraging parameter-efficient fine-tuning (PEFT) techniques. Our contributions are as follows: - We introduce the OpAmp adaptation for zoom attention to the most relevant context in noisy contexts; - Implement OpAmp adaptation with adapters, which are fine-tuned with our noisy context dataset, achieving significant improvements; - Develop OpAmp models with our OpAmp adaptation method, surpassing current SOTA LLMs in various noisy-context benchmarks. ## **Operational Amplifier** Figure 2. The operational amplifier with two input voltages $V_{\rm in}^+$ and $V_{\rm in}^-$. The CMRR $\mathcal K$ is controlled by resistances R_1 , R_2 , R_3 , R_4 . $$\begin{split} V_{\text{out}} &= V_{\text{in}}^{+} \cdot (\frac{R_{4}}{R_{3} + R_{4}} \cdot \frac{R_{1} + R_{2}}{R_{1}}) - V_{\text{in}}^{-} \cdot \frac{R_{2}}{R_{1}} \\ &= A_{d}(V_{\text{in}}^{+} - V_{\text{in}}^{-}) + \frac{A_{c}}{2}(V_{\text{in}}^{+} + V_{\text{in}}^{-}). \end{split} \tag{1}$$ ## **OpAmp Adaptation** Inspired by the operational amplifier, we propose the OpAmp adaptation, which modifies the original attention mechanism into the OpAmp attention mechanism. $$\vec{M} = A_d(\vec{M}^+ - \vec{M}^-) + \frac{A_c}{2}(\vec{M}^+ + \vec{M}^-), \tag{2}$$ where \vec{M} is the denoised attention matrix via OpAmp adaptation, \vec{M}^+ and \bar{M}^- are formulated through adapters #### Architecture Figure 3. Overview of the OpAmp adaptation with adapters. #### **Zero Initialization** At the onset of training, we employ zero initialization to promote identity mapping. Specifically, \vec{W}_2 is initialized to zero to guarantee that $E_i^i(\vec{x}) = \vec{x}$. Furthermore, to prevent any disruption to the original M during the initial phase of training, we set $A_c = 1$ and regulate $\mathcal{K} = \frac{A_d}{A_c}$ by adjusting the values of A_d . As a result, at the initial stage, Equation (2) reduces to: $$\vec{M} = A_d \cdot (\vec{M} - \vec{M}) + \frac{A_c}{2} \cdot (\vec{M} + \vec{M}), = A_d \cdot 0 + \frac{A_c}{2} \cdot 2\vec{M} = \vec{M},$$ (3) ## **Experiment Settings** | | LongCite-45k | Neural-Bridge-RAG | Tulu3-SFT-Mix | |------|--------------|-------------------|---------------| | NCFT | 30k | 20k | 450k | Table 1. The proportion of LongCite-45k, Neural-Bridge-RAG and Tulu3-SFT-Mix in our training dataset. ## **Experiment Results** | | Qwen2.5
OpAmp-72B | Llama3
ChatQA2-70B | Qwen2.5
72B inst | Llama3.3
70B inst | DeepSeek
V3 | GPT-40
0806 | |-------------|----------------------|-----------------------|---------------------|----------------------|----------------|----------------| | LooGLE | 66.3 | 59.1 | 64.9 | 63.0 | 63.4 | 62.7 | | NarrativeQA | 61.7 | 59.8 | 60.2 | 61.5 | 60.5 | 61.5 | | MultiHopRAG | 89.6 | 78.2 | 89.2 | 83.7 | 88.6 | 87.7 | | HotpotQA | 77.5 | 70.5 | 76.0 | 74.5 | 77.0 | 77.5 | | MuSiQue | 48.0 | 39.0 | 44.0 | 47.5 | 52.5 | 53.0 | | CoQA | 92.4 | 80.2 | 85.8 | 88.2 | 88.4 | 88.6 | Table 2. Performance of Qwen2.5-OpAmp-72B on various noisy context benchmarks. We present a detailed comparison of the Qwen2.5-OpAmp-72B with current SOTA open-source and commercial LLMs. We bold the highest scores among all models. ### **Experiment Results** | | Llama3.1
OpAmp-8B | Llama3
ChatQA2-8B | Mistral
7B inst-v0.3 | Llama3.1
8B inst | Qwen2.5
7B inst | |------------------|----------------------|----------------------|-------------------------|---------------------|--------------------| | LooGLE | 56.6 | 50.7 | 51.6 | 56.1 | 53.8 | | NarrativeQA | 57.4 | 53.1 | 44.7 | 55.9 | 47.7 | | MultiHo-
pRAG | 70.5 | 50.9 | 69.5 | 63.9 | 66.9 | | HotpotQA | 61.0 | 56.5 | 58.0 | 58.5 | 59.5 | | MuSiQue | 35.0 | 23.0 | 28.5 | 29.5 | 31.5 | | CoQA | 85.4 | 78.2 | 70.6 | 82.2 | 84.2 | Table 3. Performance of Llama 3.1-OpAmp-8B on various noisy context benchmarks. We present a detailed comparison of the Llama3.1-OpAmp-8B with various open-source LLMs with similar parameters. We bold the highest scores among all models. #### Hallucination | Method | \mathcal{K} | FaithEval | | | | | |------------------|--------------------|------------------------------|------------------------------|------------------------------|--|--| | | | Inconsistent (EM) | Unanswerable (EM) | Counterfactual (EM) | Avg. | | | QLoRA | _ | 24.1 | 46.1 | 71.6 | 47.3 | | | OpAmp
Adapter | 1
5
10
20 | 45.5
42.1
45.3
22.3 | 53.1
53.7
53.0
58.8 | 76.3
75.9
75.1
73.8 | 58.3 (+11.0)
57.2 (+9.90)
57.8 (+10.5)
51.6 (+4.30) | | Table 4. Ablation studies on FaithEval using Llama 3.1-8B-base as the base model. We bold the highest scores. #### **Visualization of Attention** Figure 4. Normalized attention score. Our OpAmp model demonstrates significant attention denoise capability compared to the base model and QLoRA model. Figure 5. Normalized attention score with different values of \mathcal{K} utilizing for OpAmp adaptation