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Typical Lithography Simulation Flow

Photoresist Simulation

Post-exposure Bake

A typical flow of lithography simulation for chemically amplified resist: from optical simulation to
photoresist simulation.

® Optical simulation: light exposure process

¢ Photoresist simulation: chemical and physical processes occurring within

(o photoresist layer @
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Post Exposure Bake Process

Step 1: incident light decomposes photoacid generators, generating photoacid (A).
Step 2: photoacid catalized inhibitor (Z) decomposition:
olz] _
Sp = —klTllA) M

Step 3: photoacid-base quencher(B) neutralization & diffusion:

O~ A8+ Dav?lA) @
agf] — K A[B] + DsV2[B]. 3)

(kC: catalysis coefficient; k;: reaction coefficient; D 4, Dg: the diffusion coefficients
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Development Process

Step 4: photoresist developed at a rate R:

_ (@+1)1-[Z])"
R(x,y,z) = Rypax PR TR

Rinax, Rypin: maximum (fully exposed) and minimum (unexposed) development
rates;
n: surface reaction order

n+1
Rypin, @ = (1 — My,)" .
+ Rypin, 4 ( th)n_l
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Importance of Improving PEB simulation

Accounts for 30% of the runtime in Synopsys Sentaurus Lithography (S-Litho)
Early Methods: significant computational burden

Simplified reaction-diffusion equations
3D diffusion profile simulations

Finite element analysis

Finite difference methods

DeePEB-Fourier Neural Operator (FNO) + CNN: Fails to capture full 3D
spatial-depth dependencies; information loss in frequency segmentation

Motivation: Fully capture the spatial and depthwise dependencies inherent in
complex physical and chemical reactions.
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Our Contributions

Hierarchical Contextual Feature Extractor

designed to capture both coarse and fine-grained spatial features at each depth
level

Spatial-Depthwise Mamba-based Attention Unit
developed to model cross-depth-level dependencies effectively.
Customized PEB Optimization Objectives

efficiently guide the optimization.



Hierarchical Contextual Feature Extractor

1. Depthwise Overlapped Patch Merging g___':]:
¢ Reduce information loss at patch boundaries '
¢ Enhance local continuity @
2. Efficient Spatial Self-Attention: iz‘b:
® C: feature dimension of K; r: reduction ratio ' —
* Computational complexity: O(L?) — O(L?/r) (b)
. L . N (a) Non-overlapped
K = Reshape <7 C-r)(K), K=Linearc(K), (5) patch merging and (b)
r overlapped patch
merging.



Spatial-Depthwise Mamba-based Attention Unit
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The architecture of the spatial-depthwise Mamba-based attention unit.

@ Feature map with dimension R&*D*HixWi reshaped into: g; € RE*PHW:,

@ g, linearly projected into x; and z; with hidden dimension C.

@ In each direction d: x; — 1D convolution — SiLU activation rightarrow d-direction
spatial-depthwise PEB selective scan

%f Weighted and combined to produce feature map p
beS



Spatial-Depthwise PEB Selective Scan

Layer 4+1 Layer i+1 Layer i+1
Layer 4 Layer 4 Layer 4
Layer i-1 Layer 4-1 Layer i-1

Ilustration of the three-direction PEB selective scan, from left to right: spatial scan, depth-forward
scan, and depthbackward scan.

® Spatial Scan: operates along the depth dimension to collect information at a specific
spatial position across all depth layers

¢ Depth-Forward Scan: processes the entire shallow level first before transitioning to
deeper levels

Q—O Depth-Backward Scan: processes deeper levels before moving to shallower ones
1
L J



State Space Model

State space model (SSM):
Capture long-range dependencies with parallel training

Map a scalar sequence x(f) to another scalar sequence y(t) via a hidden state
h(t) e RN

A € RN*N: evolution parameter; B, C € RN*!: projection parameters

W (t) = Ah(t) + Bx(t), y(t) = Ch(t).

Deep learning adaption: zero-order hold (ZOH) discretization assumption:

A =exp(AA), B=(AA) Yexp(AA) —1I)- AB,
Discretized version re-expression:

G hi = Ahy_1 + Bxy, y1 = Chy.

(6)
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Mamba: Selective Scan State Space Model

Selectively focuses on relevant information while ignoring irrelevant inputs.

® Associate SSM projection parameters with the input

Hardware-aware algorithm for SSM computation with linear scalability relative to
sequence length

Parallel scans: Kernel fusion and recomputation

B = Lineary(x), C = Lineary(x), 9)
A = softplus(Broadcastg(Lineari(x)) + D), (10)




Customized PEB Optimization Objectives

R 2
° Maximum squared error (MaxSE): Lyaxsg = maxg o (yih’w — J&Lh,w)

* PEB focal loss:
¢ distributions of both photoacid and inhibitor are highly imbalanced

D —H W | T 2
° EPEB—FL = Zd Zh Zw yd,h,w - yd,h,w‘ (yd,h,w - yd,h,w)

Photoacid value ranges Inhibitor value ranges
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Customized PEB Optimization Objectives

Differential depth divergence regularization: aligning inter-layer differences

For every pair ), Y € RP*H*W calculate layer-wise forward difference maps

AV, AY € RO-DXW Ay, = Yy = Vi, AV = Va1 — Va
convert the difference maps into probabilities to penalize high difference layers:

o(AY)) exp(AJ}d/T)A ’ 1
(&) Yt St XA/ 7) v
o(AVy) = OD(AY/7) (12)

Ethl Zuv;]zl exp(AVipw/T) ’

Lpiv: Kullback-Leibler divergence between difference maps:

ol

! O'(Aj}d)

GJ,, EDiv = 1 G(Ayd) log O'(Ayd) (1i
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Experimental Setup

Mask clip: 2 x 2um? with 80nm thickness
Resolution (x, y, z): 2nm, 2nm, 1nm.
Technology node: 28nm and below

Simulation parameter:

Table: Important parameters in photoresist simulation process.

PEB
Normal Diffusion Lateral Diffusion
Length Ly 1. Ly.s 70,15 nm Length L 4, LLs 10,10 nm
catalysis coefficient k. 09 /s reaction coefficient k, 8.6993 /s
transfer coefficient 714, hg | 0.027,0 | saturation concentration [Alsar, [Blsat 09,0
Z(t=0) 1.0 [B](t=0) 0.4
Baseline Time step 0.1s Duration 90s
Develop
Rpax 40 nm/s Rmin 0.0003 nm/s
M 05 n 30
Duration 60 s




Compare With Learning-based PEB Solvers

DeepCNN: convolutional neural network model with a residual connection
TEMPO-resist: conditional-GAN based model
FNO: Fourier neural network

DeePEB: extends FNO with CNN-based local learning branches

Table: Comparison with different PEB solvers.

Inhibitor Develop Rate CD Error
Methodologies | RMSE NRMSE | RMSE NRMSE X y RT/s
(e-3) (%) | (mmfs) () | (nm) (nm)

DeepCNN 8.25 12.53 0.65 1.63 3.14 626 | 1.01
TEMPO-resist | 7.67 12.55 0.50 1.26 212 245 | 648

FNO 791 11.68 0.68 169 | 234 371 | 115

. DeePEB 3.99 5.70 0.48 119 | 098 124 | 137

N SDM-PEB 2.78 3.70 0.35 0.86 | 074 093 | 1.06
O,



Comparison of CD Error
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Percentage counts of CD errors using different methods: (a) error in the x direction and (b) error in
the y direction.
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Top-down visualization examples of predicted distribution results. The upper row is the top surface
Gand the lower row is the bottom surface. (a) Ground truths, (b) predictions and (c) differences.
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Visualization of Simulation Results

Ver
‘f. ws the corner contact.
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tical visualization of predicted results: the upper row shows the center contact, the lower row
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(a) Ground truths, (b) predictions, (c) differences.
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Ablation Study

Table: Ablation study

. NRMSE/ % CD Error
Methodologies Inhibitor Rate | x/nm y/nm
Single Layer Encoder 13.09 171 | 293 349
2-D Scan 8.83 158 | 2.07  3.05
w/o. Focal Loss 591 122 | 1.14 137
w/o. Regularization 5.98 124 | 115 142
SDM-PEB 3.70 0.86 | 0.74 093
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