

SDM-PEB: Spatial-Depthwise Mamba for **Enhanced Post-Exposure Bake Simulation**

Ziyang Yu¹, Peng Xu¹, Zixiao Wang¹, Binwu Zhu², Qipan Wang³, Yibo Lin³, Runsheng Wang³, Bei Yu¹, Martin Wong⁴

³Peking University ⁴Hong Kong Baptist University

 1 The Chinese University of Hong Kong 2 Southeast University&NCTIEDA

Highlights

- Precise & Fast PEB Modeling: We introduce SDM-PEB, a streamlined pipeline for accurate, high-speed post-exposure-bake simulation.
- Hierarchical ViT Encoder: Extracts multi-scale spatial features within each photoacid depth layer.
- Spatial-Depthwise Mamba Attention: A lightweight unit that captures cross-depth dependencies efficiently.
- PEB Focal Loss & Depthwise Divergence Reg.: Tailored objectives that handle data imbalance and refine layer-wise learning.
- Industry Validation: On S-Litho benchmarks, SDM-PEB outperforms existing methods in both accuracy and runtime.

Background and Motivaton

Predictive Lithography Simulation comprises two key stages:

- Optical Simulation: models ligh-mask interaction and pattern projection onto the photoresist.
- Photoresist Simulation: captures resist chemistry and physics from exposure, through post-exposure bake (PEB), to final development.

Figure 1. A typical flow of lithography simulation for chemically amplified resist: from optical simulation to photoresist simulation.

Post-Exposure Bake Process: Thermal-driven PEB process for chemically amplified resist contain

- 1. Catalytic reaction between inhibitor $[\mathcal{I}]$ and photoacid $[\mathcal{A}]$ Equation (1),
- 2. neutralization-diffusion between photoacid and base quencher $[\mathcal{B}]$ Equation (2),
- 3. photoresist development with rate R Equation (4).

$$\frac{\partial[\mathcal{I}]}{\partial t} = -k_c[\mathcal{I}][\mathcal{A}],\tag{1}$$

$$\frac{\partial[\mathcal{A}]}{\partial t} = -k_r[\mathcal{A}][\mathcal{B}] + D_{\mathcal{A}}\nabla^2[\mathcal{A}],$$

$$\frac{\partial[\mathcal{B}]}{\partial t} = -k_r[\mathcal{A}][\mathcal{B}] + D_{\mathcal{B}}\nabla^2[\mathcal{B}].$$
(2)

$$\vec{R}(x,y,z) = R_{max} \frac{(a+1)(1-[\mathcal{I}])^n}{a+(1-[n])^n} + R_{min}, \ a = (1-M_{th})^n \frac{n+1}{n-1}.$$
 (4)

Existing Problems:

- Finite element analysis (FEA) and finite difference methods (FDM) demand significant computational resources due to 3D distribution characteristic.
- DeePEB [2] cannot fully capture continuous spatial and depthwise dependencies in 3D space using FNO and CNN.

Figure 2. Vertical visualization of distributions: (a) photoacid at the initial stage and (b) inhibitor at the final stage.

State Space Models-based Methodologies

- Feature representations in 3D photoresist can be naturally modeled as sequences of depth-levels (from shallow to deep).
- Linear time-invariant SSM: maps scalar input sequence x_t to scalar output y_t through hidden state $h_t \in \mathbb{R}^N$, for $t = 1, \dots, L$.
- Dynamics: $h_{t+1} = A h_t + B x_t$, $y_t = C^{\top} h_t$.
- Parameters:
 - $A \in \mathbb{R}^{N \times N}$ state matrix, HiPPO-initialized.
 - $B, C \in \mathbb{R}^{N \times 1}$ input/output projection vectors.
- Mamba ties SSM parameters to the input, spotlighting relevant signals and filtering out the rest.

$$\vec{B} = \operatorname{Linear}_{N}(\vec{x}), \ \vec{C} = \operatorname{Linear}_{N}(\vec{x}),$$
 (5)

(6)

$$ec{\Delta} = \mathtt{softplus}(\mathtt{Broadcast}_K(\mathtt{Linear}_1(ec{x})) + ec{D}),$$

Overall flow

Figure 3. The architecture overview of our proposed SDM-PEB framework.

Hierarchical Contextual Feature Extractor

Depthwise Overlapped Patch Merging:

Reduce information loss at patch boundaries **Efficient Spatial Self-Attention:**

- C: feature dimension of \vec{K} ; r: reduction ratio
- Computational complexity: $O(L^2) \to O(L^2/r)$

$$\hat{\vec{K}} = \operatorname{Reshape}\left(\frac{L}{r}, C \cdot r\right)(\vec{K}), \quad \vec{K} = \operatorname{Linear}_{C}(\hat{\vec{K}}), \quad (7)$$

Figure 4. (a) Non-overlapped patch merging and (b) overlapped patch merging.

Spatial-Depthwise Mamba-based Attention Unit

Structure of SDM Unit:

- Input reshaping: The i-th layer feature map is flattened to a sequence q_i and normalized.
- Dual projection: q_i is linearly split into two streams x_i and z_i .
- Directional scans: For every scan direction, x_i passes through a 1-D conv + SiLU to yield x_i' , which drives a spatial-depthwise selective scan.
- Attention fusion: Scan outputs are gated by z_i and aggregated to form feature p_i , capturing inter-/intra-layer dependencies.

Figure 5. The architecture of the spatial-depthwise Mamba-based attention unit.

Spatial-Depthwise PEB Selective Scan:

- Spatial scan: at a fixed (x, y) location, sweeps through all depth layers.
- Depth-Forward Scan: traverses layers shallow → deep
- Depth-Backward Scan: traverses layers deep → shallow (reverse of depth-forward)

Figure 6. From left to right: spatial scan, depth-forward scan, and depthbackward scan.

Customized PEB Optimization Objectives

- Maximum squared error: $\mathcal{L}_{\mathsf{MaxSE}} = \max_{d,h,w} \left(\hat{\mathcal{Y}}_{d,h,w} \mathcal{Y}_{d,h,w} \right)^2$
- PEB focal loss: $\mathcal{L}_{\mathsf{PEB-FL}} = \sum_{d}^{D} \sum_{h}^{H} \sum_{w}^{W} \left| \hat{\mathcal{Y}}_{d,h,w} - \mathcal{Y}_{d,h,w}
 ight|^{\gamma} \left(\hat{\mathcal{Y}}_{d,h,w} - \mathcal{Y}_{d,h,w}
 ight)^{2}$
- $\mathcal{L}_{\text{Div}} = \sum_{d=1}^{D-1} \sigma(\Delta \hat{\mathcal{Y}}_d) \log \frac{\sigma(\Delta \hat{\mathcal{Y}}_d)}{\sigma(\Delta \mathcal{Y}_d)}$, where: $\Delta \mathcal{Y}_d = \mathcal{Y}_{d+1} - \mathcal{Y}_d, \quad \sigma(\Delta \mathcal{Y}_d) = \frac{\exp(\Delta \mathcal{Y}_d/\tau)}{\sum_{h=1}^H \sum_{w=1}^W \exp(\Delta \mathcal{Y}_{d,h,w}/\tau)}$

Differential Depth Divergence Regularization:

Evaluation Results

Table 1. Comparison with different PEB solvers.

	Inhibitor		Develop Rate		CD Error		
Methodologies	RMSE	NRMSE	RMSE	NRMSE	X	У	RT/s
	(e-3)	(%)	(nm/s)	(%)	(nm)	(nm)	
DeepCNN [3]	8.25	12.53	0.65	1.63	3.14	6.26	1.01
TEMPO-resist [4]	7.67	12.55	0.50	1.26	2.12	2.45	6.48
FNO [1]	7.91	11.68	0.68	1.69	2.34	3.71	1.15
DeePEB [2]	3.99	5.70	0.48	1.19	0.98	1.24	1.37
SDM-PEB	2.78	3.70	0.35	0.86	0.74	0.93	1.06

Figure 7. Percentage counts of CD errors using different methods: (a) error in the \boldsymbol{x} direction and (b) error in the y direction.

Figure 8. Vertical visualization of predicted results: the upper row shows the center contact, the lower row shows the corner contact. (a) Ground truths, (b) predictions, (c) differences.

References

- [1] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.
- [2] Qipan Wang, Xiaohan Gao, Yibo Lin, Runsheng Wang, and Ru Huang. Deepeb: A neural partial differential equation solver for post exposure baking simulation in lithography. In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, pages 1-9, 2022.
- [3] Yuki Watanabe, Taiki Kimura, Tetsuaki Matsunawa, and Shigeki Nojima. Accurate lithography simulation model based on convolutional neural networks. In Optical Microlithography XXX, volume 10147, pages 137-145. SPIE, 2017.
- [4] Wei Ye, Mohamed Baker Alawieh, Yuki Watanabe, Shigeki Nojima, Yibo Lin, and David Z Pan. Tempo: Fast mask topography effect modeling with deep learning. In Proceedings of the 2020 International Symposium on Physical Design, pages 127-134, 2020.