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Abstract—This paper presents a novel curvilinear optical proximity
correction (OPC) framework. The proposed approach involves repre-
senting mask patterns with control points, which are interconnected
through cardinal splines. Mask optimization is achieved by iteratively
adjusting these control points, guided by lithography simulation. To
ensure compliance with mask rule checking (MRC) criteria, we develop
comprehensive methods for checking width, space, area, and curvature.
Additionally, to match the performance of inverse lithography techniques
(ILT), we design algorithms to fit ILT results and resolve MRC violations.
Extensive experiments demonstrate the effectiveness of our methodology,
highlighting its potential as a viable OPC/ILT alternative.

I. INTRODUCTION

Integrated circuit (IC) manufacturing is a highly complex process
that transforms raw materials into tiny chips. It begins with the design
of the circuit layout, which is then transferred onto a photomask.
Lithography plays a central role in printing the mask patterns onto the
silicon wafer. As IC designs become more complex and feature sizes
continue to shrink, the demand for well-optimized masks increases
significantly.

Mask optimization [1]–[12] is a crucial process in semiconductor
manufacturing, involving techniques like rule-based optical prox-
imity correction (OPC), model-based OPC, sub-resolution assist
features (SRAF), and inverse lithography technology (ILT). Rule-
based OPC [13]–[15] uses predefined rules to correct distortions.
Model-based OPC [16]–[18] adopts lithography simulation to guide
the correction. SRAFs [19] are small, sub-wavelength features added
to the mask that impact the behavior of light passing through them.
ILT [20]–[30] treats mask optimization as an inverse problem and
iteratively modifies the mask to get desired wafer patterns.

Although ILT is recognized for its high pattern fidelity, model-
based OPC offers several advantages in terms of efficiency, reliability,
and mask manufacturability. OPC is more computationally efficient
and converges better, as the optimization problems of ILT are more
complex and resource-intensive. Additionally, OPC primarily relies
on geometric operations, whereas ILT typically requires intensive
image-based processes. This allows researchers to integrate mask
rule checking (MRC) into model-based OPC flows, resulting in
mask patterns with improved manufacturability. While multi-beam
mask writers (MBMW) can support curvilinear mask patterns, ILT-
generated masks often suffer from poor manufacturability due to
complex non-Manhattan geometries. Therefore, a methodology that
combines the efficiency, reliability, and mask manufacturability of
OPC with the high pattern fidelity of ILT would be highly beneficial.

Curvilinear OPC [31], [32] aims to bridge the gap between OPC
and ILT by allowing curvilinear mask shapes in OPC. It maintains
the ability to handle curvilinear shapes and any-angle edges while
having lower computational complexity than ILT. Furthermore, it can
produce more manufacturable masks, as the mask patterns can be
optimized to better comply with mask rules. This approach strikes
a balance between the simplicity of OPC and the precision of ILT,
providing a more practical solution for mask optimization.

In this paper, we propose a novel curvilinear OPC framework, Car-
dOPC. By representing mask patterns with control points connected
through cardinal splines, our approach allows for flexible and precise
mask representation. This method leverages the inherent smoothness
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Fig. 1 Illustration of the mask pattern representation in (a) traditional
OPC; (b) curvilinear OPC; (c) ILT. Curvilinear OPC combines the
reduced number of variables from traditional OPC and the flexibility
of curvilinear shapes from ILT.

and adaptability of splines to accurately capture intricate geometries.
As illustrated by Fig. 1, the control point representation in curvilinear
OPC can inherit the advantage of fewer variables from traditional
OPC while gaining the flexibility of curvilinear shapes from ILT.
Compared to the existing methods using Bézier splines [31], [32],
cardinal splines offer significant advantages, particularly in terms of
computational efficiency, without sacrificing the strengths of Bézier
splines like local control and smoothness. This reduces the compu-
tational overhead and simplifies the optimization process.

The iterative adjustment of control points, guided by lithography
simulation, achieves high-quality mask optimization. This process
ensures that the wafer patterns closely match the target design,
minimizing deviations that could affect the quality of products. The
utilization of control points and splines can maintain a small number
of variables while being able to optimize complex shapes, offering
superior efficiency and adaptability in mask optimization.

For the manufacturability of masks, we propose comprehensive
methods for checking MRC violations, covering width, space, area,
and curvature rules. We demonstrate that the analytical spline-based
representation simplifies mask rule checking and makes curvilinear
OPC superior to ILT in terms of MRC. Additionally, our framework
incorporates techniques to fit ILT results and resolve MRC violations,
positioning it as a promising alternative to traditional ILT methods.
By integrating ILT fitting capabilities, our approach can leverage the
strengths of ILT while mitigating its limitations. This hybrid approach
allows for more robust and effective mask optimization, combining
the best aspects of both OPC and ILT.

The major contribution of this paper can be summarized as follows:

• We propose a curvilinear OPC framework based on cardinal
splines. It combines the computational efficiency of traditional
OPC and the flexibility of ILT.

• We derive the methods for curvilinear mask rule checking, which
are the foundation of curvilinear OPC’s advantages in addressing
MRC violations.

• By integrating ILT fitting capabilities, the framework leverages
the strengths of ILT while mitigating its limitations, offering a
more robust and effective mask optimization solution.

• Extensive experiments reveal the superiority of the proposed
framework over existing methods, showcasing higher precision,
better scalability, and greater efficiency.
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Fig. 2 Overview of our CardOPC. In the initialization phase, we ➀ insert SRAFs and ➁ dissect the polygons as traditional OPC does. The
segments are converted to the control points of cardinal splines. During the optimization phase, we ➂ connect the control points with cardinal
splines to form the mask patterns, which are subsequently input to the ➃ lithography simulation engine. According to the lithography simulation
contours, we ➄ estimate the edge displacement and correct the distortions by moving the control points. After that, ➅ mask rule checking and
MRC violation resolving are performed to ensure the mask manufacturability.

II. PRELIMINARIES

A. Lithography Simulation

Lithography simulation is a crucial step in mask optimization,
essential for obtaining the desired printed patterns on the wafer. The
process starts with the input mask M , which is projected through an
optical system to form the aerial image I . For example, the Hopkins
diffraction model [33] can be employed to efficiently approximate
the projection behavior. In this model, the aerial image I is obtained
by applying a set of optical kernels H to the mask M with:

I(x, y) =

Nh∑
k=1

wk |M(x, y)⊗ hk(x, y)|2 . (1)

Nh is the number of optical kernels, hk is the k-th optical kernel in
H , and wk is the corresponding weight. I can be binarized using
the intensity threshold Ith that indicates the exposure level. After the
binarization, the contour C of the lithography simulation result can
be extracted and utilized to guide the OPC process.

B. Optical Proximity Correction

When light passes through a photomask and projects onto a wafer,
various optical phenomena such as diffraction and interference can
cause deviations from the intended pattern. These deviations, known
as optical proximity effects, can lead to issues such as line width
variations and pattern displacement. These effects become more
significant as feature sizes shrink, making it challenging to achieve
the desired pattern fidelity. OPC addresses this issue by modifying the
mask patterns to compensate for distortions brought by lithography.
Model-based OPC [17] typically involves the following steps:

1) Dissection (or fragmentation): The edges of the input polygons
are dissected into smaller segments, usually with more segments
around corners to allow for finer control.

2) SRAF insertion: SRAFs are inserted based on rules regarding the
width and distance of the assist features from the main features,
in order to improve the printability and process window.

3) Iterative optimization: The algorithm iteratively retrieves lithog-
raphy simulation results and adjusts the segments to minimize
edge placement error (EPE) violations.

EPE is a metric that evaluates the difference between the lithog-
raphy simulation contour and the target pattern. To calculate EPE,
a series of points are sampled along the edges of the target design,
and the distance between each point’s position in the target pattern
and its position in the lithography simulation contour is measured.
If the EPE of a point exceeds a specified threshold, it is counted
as an EPE violation. L2 is another way to estimate the error of the

printed patterns. It is the sum of the squared errors between the lithog-
raphy simulation result and the target pattern. Furthermore, under
varying lithography conditions, the printed patterns can be different.
Therefore, process variation band (PVB) is also widely adopted as a
metric of OPC, which evaluates the maximum discrepancy between
the printed patterns under varying process conditions.

C. Mask Rule Checking

Mask Rule Checking (MRC) is a common practice in the semi-
conductor industry to ensure the manufacturability of photomask
data before mask writing. Traditional MRC checks the rectilinear
mask patterns for compliance with mask rules, such as minimum
feature sizes, minimum distances, corner-to-corner distance, etc. As
the industry moves towards curvilinear mask shapes to improve
printed patterns, the traditional MRC approach needs to be adapted.

Reference [34] introduces the following curvilinear mask rules:
1) Spacing and width constraints: These rules ensure minimum

distances between patterns and minimum widths of the shapes.
2) Area constraint: It accounts for the resolution limits, as the

patterns may fail to print reliably if they are too tiny.
3) Curvature constraint: This rule limits the range of the curvilinear

patterns’ curvatures to ensure reliability.
Combining these constraints provides a comprehensive set of rules
to ensure the manufacturability of curvilinear mask patterns.

III. CARDOPC METHODOLOGY

A. Overview

Fig. 2 outlines the proposed curvilinear OPC flow. These segments
are then transformed into the control points. During optimization,
these control points are connected using cardinal splines to gen-
erate mask patterns, which are subsequently fed into lithography
simulation. Based on the lithography simulation contours, edge dis-
placements are estimated, and distortions are corrected by adjusting
the control points. Finally, mask rule checking and MRC violation
resolving are performed to ensure the manufacturability of the mask.

B. Initialization

Fig. 3 summarizes the initialization phase of CardOPC. Fig. 3(a)
shows an example of simple rule-based SRAF insertion. It creates
an SRAF with a length of ls = r × lm, where lm is the length of
the main pattern edge and r is a constant that controls the ratio
between the SRAF and main pattern. The SRAF is placed at a
distance of dms from the main pattern. Note that SRAF insertion can
also be completed by calling external tools (e.g. Calibre) or fitting ILT
results (see Section III-G). Fig. 3(b) demonstrates our basic dissection
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Fig. 3 Illustration of the initialization phase of our curvilinear OPC flow. (a) An
example of simple rule-based SRAF insertion. The SRAF is placed at a certain
distance from the main pattern, with a shorter length than the main pattern. (b)
Basic dissection method of our OPC flow. It creates shorter segments around
corners, and longer segments for the remaining parts of the edges. (c) Generation of
control points. Most control points are chosen as the middle points of the segments.
However, around corners, it interpolates the segment boundary points with cardinal
splines to generate the control points.
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Fig. 4 Comparison between cardinal splines and Bézier
splines in curvilinear OPC. Using cardinal splines, the
curve can pass through all the control points pi−1, pi,
pi+1, and pi+2. However, when using Bézier splines,
two extra control points p′

i and p′
i+1 should be gen-

erated to ensure that the curve can pass through pi

and pi+1. This introduces non-negligible computational
overhead.

method. Specifically, it creates shorter segments with a length of lc
around corners, where finer control is needed, and longer segments
with a length of lu for the remaining parts of the edges. Fig. 3(c)
illustrates the generation of control points. Most control points are
chosen as the middle points of the segments obtained from the
dissection step. However, around corners, it interpolates neighboring
segment boundary points using cardinal splines to generate the control
points for the corner regions. Additionally, we also convert the SRAFs
to cardinal splines to achieve a uniform pattern representation.

C. Cardinal Splines for Control Point Connection

Cardinal spline is a type of spline that is used in mathematics and
computer graphics to create smooth and flexible shapes. This type of
interpolating spline can pass through a given set of control points.
This feature makes cardinal splines particularly useful for creating
smooth curves that follow a specified path.

In this paper, we adopt cardinal splines for the following reasons:
1) The curve passes through each control point, ensuring that the

shape of the curve is influenced directly by these points.
2) Cardinal splines include a tension parameter s that controls

the tightness of the curve. This allows users to finetune the
curvilinear shapes without moving the control points.

3) The tangents, normals, and curvatures of cardinal splines can
be analytically computed, ensuring efficient edge displacement
checking and mask rule verification in curvilinear OPC.

To connect two points pi = (xi, yi) and pi+1 = (xi+1, yi+1) with
cardinal spline, we need their predecessor pi−1 and successor pi+2.
Any point between pi and pi+1 can be given by:

p(t) =
[
1 t t2 t3

] 
0 1 0 0
−s 0 s 0
2s s− 3 3− 2s −s
−s 2− s s− 2 s



pi−1

pi

pi+1

pi+2

 ,

t ∈ [0, 1], p(0) = pi, p(1) = pi+1.
(2)

In practice, we connect each pair of control points (pi,pi+1) by
sampling multiple points in t ∈ [0, 1] evenly. For simplicity, we can
represent equation (2) using p(t) =

[
1 t t2 t3

]
Scard Pi−1:i+3. The

computation can be accelerated by GPU using PyTorch.
Fig. 4 compares cardinal splines and Bézier splines in curvilinear

OPC. With cardinal splines, the curve can seamlessly traverse all the

control points, namely pi−1, pi, pi+1, and pi+2. Conversely, Bézier
splines, necessitate the generation of two additional control points,
p′
i and p′

i+1, to guarantee the passage through pi and pi+1 [34].
This requirement incurs a non-trivial computational overhead.

D. Lithography Simulation

Our experiments involve two lithography simulation tools. One of
them is from the ICCAD-13 contest [35], which is implemented using
equation (1) with GPU acceleration [36]. The other one is Calibre,
with the same settings as the previous works [8], [9].

E. Correction

As introduced by [37], the primary goal of OPC is to minimize
the edge placement error (EPE) by modifying mask edges. Given
E EPE checking points, we can represent the EPEs with a function
fEPE(M), which contains the distances between checking points’
positions in the target pattern and their positions in the lithography
simulation contour. It can be decomposed using Taylor expansion:

fEPE(Mτ+1) = fEPE(Mτ )+f ′
EPE(Mτ )×∆Mτ+ϵ(Mτ ), (3)

where τ is the current iteration, Mτ is the current mask, ∆Mτ is
the modification of the mask at the current iteration, and ϵ(Mτ ) rep-
resents the high order terms. To guarantee a manageable complexity,
the high-order terms can be ignored, and equation (3) becomes:

fEPE(Mτ+1) ≈ fEPE(Mτ ) + f ′
EPE(Mτ )×∆Positionsτ . (4)

∆Mτ in equation (3) becomes ∆Positionsτ in equation (4), which
represents the moving distance of the segments or control points. The
matrix f ′

EPE(Mτ ) reflects how movements affects the EPE. Given
D segments or control points, f ′

EPE(Mτ ) can be defined as:

f ′
EPE(Mτ ) =


∂e1
∂d1

∂e1
∂d2

... ∂e1
∂dD

∂e2
∂d1

∂e2
∂d2

... ∂e2
∂dD

... ... ... ...
∂eE
∂d1

∂eE
∂d2

... ∂eE
∂dD

 , (5)

where ∂ei
∂dj

is the partial derivative of the i-th EPE with respect to the
moving distance of the j-th segment or control point. Since our target
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Fig. 5 Illustration of mask rule checking and MRC violation re-
solving. (a) shows how to create a line segment to test the spacing
rule violation. (b) moves the control points to resolve spacing rule
violations. (c) and (d) resolve curvature rule violations by moving
the control points in and out, respectively.

is to make fEPE(Mτ+1) = 0, the moving distance of segments or
control points at each iteration can be given by:

∆Positionsτ = −f ′
EPE(Mτ )

−1 × fEPE(Mτ ). (6)

In a basic OPC solver, we can check EPE for each segment or
control point, which means that E = D. Moreover, we can assume
that ∂ei

∂di
is a constant and ∂ei

∂dj
= 0 if i ̸= j. Under these set-

tings, f ′
EPE(Mτ )

−1 becomes a diagonal matrix f ′
EPE(Mτ )

−1 =
γI , where γ is the moving distance of each segment or con-
trol point. To improve the moving smoothness and mimic multi-
segment solvers, we can take a weighted average on the moving
distances/directions of neighboring points. For instance, given moving
distance ∆di from equation (6) and 2W + 1 neighboring points
{di−W , di−W+1, ..., di+W } from the same shape, the final moving
distance ∆di is:

∆di =

W∑
k=−W

wk∆dk. (7)

In curvilinear OPC, to guarantee the support of any-angle edges,
we need to calculate both the moving distance ∆di and the moving
direction ni for each control point. We use the normal vectors n(t)
of the cardinal splines as the moving directions, which can be derived
from the derivatives, g(t) = p′(t), with the following equations:

g(t) =
[
0 1 2t 3t2

]
Scard Pi−1:i+3. (8a)

g(t) = (gx(t), gy(t)) =
g(t)

∥g(t)∥ , (8b)

n(t) = (nx(t), ny(t)) = (−gy(t), gx(t)). (8c)

The moving direction ni can be given by the normal vector at the
corresponding t, and the moving step is ∆dini. In practice, we can
take the weighted average among ∆dini rather than ∆di to allow
the control points to move in more directions, providing a higher
degree of freedom. Note that GPU acceleration is also applicable
for computing moving directions. Additionally, our curvilinear OPC
framework is compatible with other gradient-based OPC algorithms
like the MEEF-based OPC [38] and differentiable OPC [12] methods.

F. Mask Rule Checking and MRC Violation Resolving

Mask Rule Checking. We focus on the following mask rules:
1) Spacing rule: The spacing between two shapes should be larger

than the spacing constraint Cspace.
2) Width rule: The width of each shape should not be smaller than

the width constraint Cwidth.
3) Area rule: The area of each shape should exceed the area

constraint Carea.
4) Curvature rule: The curvature at each point should be less than

the curvature constraint Ccurv .

Algorithm 1 Fitting Method for ILT-Optimized Masks

Input: ILT-optimized mask image M , cardinal spline function F (·),
ratio rQ and rR, learning rate α.

1: //Initialization;
2: Q = ∅; //Control point set;
3: R = ∅; //Reference point set;
4: for each shape Si in the mask image M do
5: Extract the boundary points of Si, denoted by Pi;
6: Sample rQ|Pi| points from Pi evenly, add them to Q;
7: Sample rR|Pi| points from Pi evenly, add them to R;
8: end for
9: //Optimization;

10: for k ∈ {1, 2, ......,K} do //K iterations in total;
11: Interpolate Q with F (·) to have |R| points;
12: Compute the loss L(Q,R) = ∥F (Q)−R∥2;
13: Optimize Q with Q← Q− α ∂L(Q,R)

∂Q
;

14: end for
15: return Q;

Among these rules, we provide basic solutions for space, width,
and area checking, which are common topics in existing works like
mask rule checking [39] and design rule checking [40]. We leave
the well-optimized checking of these rules for future works. As for
the curvature rule, we derive the analytical method for its checking,
which is efficient because it can be accelerated by GPU.

For spacing and width checking, we construct an R-tree [41] using
all shapes of the mask patterns. R-tree is a type of data structure
used for indexing multi-dimensional information such as geographical
coordinates, rectangles, or polygons. It stores spatial objects in a
hierarchical manner using bounding rectangles. Each node in the tree
represents a bounding rectangle that contains its child nodes. This
structure allows for efficient querying of spatial data, such as querying
the nearest shape and finding all objects that intersect a given area.

As demonstrated by Fig. 5(a), to check whether a point has a
spacing violation, we build a line segment with a length of Cspace

that starts from the checking point, with its direction specified by its
normal vector. If the line segment touches a shape, it has a spacing
violation. It can be done efficiently using R-tree’s querying algorithm.
We implement width checking in a similar way, but create the line
segment in the directions opposite to the point’s normal vector.

The area of each shape can be calculated by the shoelace formula,
which enables the checking of the area constraint. Both R-tree
construction and area computation are provided by Shapely.

The curvature at a point can be defined as:

κ(t) =

∣∣∣∣p′x(t) p′′x(t)
p′y(t) p′′y (t)

∣∣∣∣ /∥p′(t)∥3, (9)

where p′(t) = (p′x(t), p
′
y(t)), p′′(t) = (p′′x(t), p

′′
y (t)), p′(t) is

calculated by equation (8), and p′′(t) is given by:

p′′(t) =
[
0 0 2 6t

]
Scard Pi−1:i+3. (10)

If one point has κ(t) > Ccurv , it has a curvature violation. This
checking is used to ensure that the mask patterns are smooth enough
and friendly for mask manufacturing.

MRC Violation Resolving. When MRC violation occurs, we can
address it according to its type. As shown in Fig. 5(b), when a
spacing violation occurs between two points, we try to move the
corresponding control points in the directions opposite to their normal
vectors, enlarging the spacing between the points. In the trials, the



TABLE I Via-layer OPC result comparison on EPE (nm) and PVB (nm2)

Testcase #Vias
DAMO [29] Calibre RL-OPC [8] CAMO [9] CardOPC
EPE PVB EPE PVB EPE PVB EPE PVB EPE PVB

V1 2 7 5822 8 5837 6 5730 1 5797 2 5775
V2 2 8 5836 8 5834 7 5813 5 5734 4 5772
V3 3 14 8565 11 8587 13 8594 10 8470 5 8426
V4 3 14 8621 12 8771 14 8679 10 8576 7 8550
V5 4 18 10615 15 10775 16 10772 10 10503 5 10501
V6 4 20 10739 15 10763 19 10659 15 10507 8 10499
V7 5 28 12993 23 12615 23 12485 23 12097 7 12381
V8 5 26 13047 19 12784 24 12547 19 12437 16 12270
V9 6 30 15497 24 15454 26 15414 19 15186 15 15112
V10 6 35 15088 27 15064 33 14588 26 14556 16 14287
V11 6 39 15516 27 15782 31 15538 21 15333 9 15290
V12 6 36 15424 23 15686 24 15464 23 15204 18 15073
V13 6 32 16970 23 17035 39 17440 14 16712 6 16833

Average 4.5 23.6 11902.5 18.1 11922.1 21.2 11824.8 15.1 11624.0 9.1 11597.6
Ratio - 156.3% 102.4% 119.9% 102.6% 140.4% 101.7% 100.0% 100.0% 60.3% 99.8%

TABLE II Metal-layer OPC result comparison on EPE (nm) and
PVB (nm2)

Testcase #Points
Calibre RL-OPC [8] CAMO [9] CardOPC

EPE PVB EPE PVB EPE PVB EPE PVB

M1 64 49 28728 104 29390 44 27795 37 26387
M2 84 61 37386 117 39139 67 36467 49 34737
M3 88 81 39430 137 41623 59 39451 37 36491
M4 100 89 45741 252 46892 60 44961 44 40528
M5 106 66 47220 336 47041 69 46582 36 45283
M6 112 102 49887 355 51433 78 49438 23 47567
M7 116 89 52584 325 50770 83 49961 57 48794
M8 24 20 11014 32 10770 23 10928 1 10353
M9 72 50 22531 197 22360 42 22032 15 21139
M10 120 91 37546 263 36368 95 36849 11 37727

Average 88.6 69.8 37206.7 211.8 37578.6 62.0 36446.4 31.0 34900.6
Ratio - 112.6% 102.1% 341.6% 103.1% 100.0% 100.0% 50% 95.8%

moving distance is chosen from small to large. The violation can
usually be resolved in a few trials. For width violations, we use a
similar method but move the control points in the directions specified
by their normal vectors.

If an area rule violation occurs after moving the control points, we
can cancel the move to avoid the violation. If it occurs after fitting
ILT results, we remove the shape since it is usually a small and non-
printable pattern.

When a curvature violation occurs at a point, we try to move
the corresponding control point in and out according to the normal
vector. Fig. 5(c) and Fig. 5(d) visualize this strategy. The violation
can usually be resolved within a few attempts.

G. ILT-OPC Hybrid Approach

Continuous transmission mask (CTM) [12], [19], [42] is utilized to
generate SRAFs for model-based OPC. Since CTM relies on ILT, it
can serve as a hybrid method that combines ILT and OPC. However,
existing methods can only generate rectilinear SRAFs according to
the continuous mask intensity distribution from ILT, which can not
fully utilize the ILT’s ability. In this paper, we propose to fit ILT re-
sults with cardinal splines, which can mimic the complex curvilinear
shapes in ILT-optimized masks, and resolve MRC violations using
the strategies described in Section III-F. Our hybrid approach allows
for more robust and effective mask optimization, combining the best
aspects of both OPC and ILT.

As presented by Algorithm 1, our fitting method consists of the
following steps:

1) Initialization: For each shape Si in the mask image M , we find
the contour of Si using the border following algorithm [43] (line
5), which is already implemented in the OpenCV toolbox. After
that, we uniformly sample control points Q and reference points
R from each shape’s contour (lines 6-7). During optimization,
we move the control points using gradient descent to fit the
reference points.

2) Optimization: At each optimization step, we interpolate Q using
the cardinal spline function F (·) given by equation (2) (line 11).
With the interpolated results, we can compute the mean squared
error loss (line 12) between the interpolated points F (Q) and the
reference points R. Finally, we move Q using gradient descent
(line 13) to minimize the distance between F (Q) and R.

Note that the fitting algorithm can be implemented using PyTorch
so that this process can be accelerated by GPU. Optimizers like
Adam [44] can be adopted for the gradient descent in our method to
accelerate the convergence.

TABLE III Large-scale OPC result comparison on EPE violations
and PVB (µm2)

Testcase
#Tiles Calibre SimpleOPC [45] CardOPC

(30× 30µm2) EPE PVB EPE PVB EPE PVB

gcd 1 3657 35.6651 3454 37.3002 3507 34.2606
aes 144 2722 27.7226 2571 29.4301 2578 27.3485

dynamicnode 144 2088 26.1663 1941 27.1213 1923 25.5011

Average - 2409 26.9746 2260 28.3069 2255 26.4519
Ratio - 100.0% 100.0% 93.8% 104.9% 93.6% 98.1%

After fitting the ILT-optimized masks, we obtain the control points
Q of all mask patterns. The MRC violation resolving algorithms dis-
cussed in Section III-F are employed to address the MRC violations
in the curvilinear shapes.

IV. EXPERIMENTS

A. Comparison with Existing Works

Previous works focus on the OPC for metal-layer and via-layer
patterns [8], [9]. We adopt the same testcases as them. For the
experiments on via-layer patterns, we use 13 test layout clips [46],
each of which is 2 × 2µm2. SRAFs are inserted by Calibre before
the OPC algorithm launches. For metal-layer patterns, the dataset has
10 clips, each of which is 1.5 × 1.5µm2. The EPE measure points
are selected following conventional strategies. For via-layer patterns,
the center of each edge corresponds to a measuring point. For metal-
layer patterns, the EPE measure points are evenly placed on the edges
along the primary direction with 60nm spacing.

For the via layer, we dissect the polygons with lc = 20nm and
lu = 30nm. The moving distance is 2nm. For the metal layer, we
dissect the polygons with lc = 30nm and lu = 60nm. The moving
distance is 4nm. We use 32 optimization iterations for both layers,
and decay the moving distance by a factor of 0.5 at the 16-th step.
A tension parameter s = 0.6 is adopted for the cardinal splines.

In our experiments on the via layer, we compare our CardOPC
framework with existing OPC methods such as DAMO [29], RL-
OPC [8], and CAMO [9], as well as the commercial tool Calibre.
For the metal-layer experiments, we compare CardOPC with RL-
OPC, CAMO, and Calibre. As shown in TABLE I, our framework
outperforms existing methods on the via layer, achieving a 39.7%
improvement in EPE and a 0.2% enhancement in PVB. Similarly,
TABLE II demonstrates that our framework surpasses existing meth-
ods on the metal layer, with a 50.0% improvement in EPE and a 4.2%
enhancement in PVB. Compared to these state-of-the-art (SOTA)
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Fig. 6 Examples of our curvilinear OPC results: (a) via-layer OPC; (b) metal-layer OPC; (c) large-scale OPC; (d) ILT-OPC hybrid method.
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Fig. 7 Comparison between our ILT-OPC hybrid approach and SOTA methods. Our method demonstrates superior performance on the L2
metric and delivers competitive PVB results. Additionally, our approach achieves an average of 1.4 EPE violations, outperforming CircleOpt
(3.9) and DiffOPC (2.2).

methods, the proposed curvilinear OPC framework offers significant
advantages in EPE, along with improvements in PVB. Additionally,
Fig. 6(a) and Fig. 6(b) present examples of via-layer and metal-layer
OPC results, respectively, which can show that our method is able to
produce smooth curvilinear main patterns.

B. Large-Scale OPC Results

We conduct experiments to verify that our CardOPC can be
employed in large-scale OPC applications. Following [45], we use
the gcd, aes, and dynamicnode layouts generated by Open-
ROAD [47] with NanGate 45nm PDK [48]. Each layout is cropped
into 30×30µm2 tiles before we perform OPC for its metal layer. In
CardOPC, we dissect the polygons with lc = 40nm and lu = 40nm.
The moving distance is set to 8nm. We use 10 optimization iterations,
and decay the moving distance by a factor of 0.5 at the 8-th step. A
tension parameter s = 0.6 is adopted for the cardinal splines.

We compare our method with Calibre, which uses the same
configuration in [8], [9], and runs for 20 iterations. The PVB and EPE
metrics are computed by Calibre. As shown in TABLE III, CardOPC
surpasses Calibre, with a 6.4% improvement in EPE and a 1.9%
enhancement in PVB. Our method also outperforms the previous
work [45]. These results indicate that CardOPC is promising for
large-scale applications, offering advantages in EPE and PVB. As
an example, Fig. 6(c) shows a local region of gcd’s OPC result.

C. ILT-OPC Hybrid Approach Results

Following SOTA methods like [7], [12], [49], we use the lithogra-
phy source and testcases from ICCAD-13 contest [35] in this exper-
iment. We build our ILT flow based on the OpenILT framework [36]
and fit its results using our ILT-OPC hybrid approach described in
Section III-G. The proposed method is compared with CircleOpt [49]
and DiffOPC [12], each of which has mechanisms to avoid MRC
violations like CardOPC. As shown in Fig. 7, our approach excels in
the L2 metric and offers competitive PVB results. In term of EPE,
it achieves an average of 1.4 EPE violations, surpassing CircleOpt
(3.9) and DiffOPC (2.2). Additionally, our MRC resolving strategies
successfully reduce the average number of violations from 43.8 to

0. These results can validate the effectiveness of our framework.
Fig. 6(d) shows an example of our results, which is similar to the
corresponding ILT result but without MRC violations.

D. Ablation Study

In this experiment, we compare Bézier [31] and cardinal splines in
curvilinear OPC. The primary difference in runtime between Bézier
and cardinal splines lies in the control point connection process. For
the gcd large-scale testcase, the Bézier method takes 3.6 seconds
to connect the control points of 1,776 shapes at the first iteration,
while our cardinal method only needs 1.9 seconds. This results in
an 89% runtime overhead for the Bézier method compared to our
approach. The reason for this overhead is that the Bézier method
necessitates the creation of additional points when connecting two
adjacent control points, which involves extra operations such as vector
rotation. In terms of performance, the Bézier method obtains an EPE
of 3,532 and a PVB of 34.9088, while our cardinal method achieves
an EPE of 3,507 and a PVB of 34.2606. By combining runtime and
performance results, we demonstrate the superiority of our curvilinear
OPC framework based on cardinal splines.

V. CONCLUSION

In this paper, we develop a novel curvilinear OPC framework,
CardOPC. After representing the mask patterns with control points,
cardinal splines are employed to connect the control points. Guided
by lithography simulation, the efficient correction method enables
our CardOPC to achieve a 50.0% improvement in EPE and a 4.2%
enhancement in PVB when compared to the SOTA OPC method.
We further demonstrate the scalability of CardOPC by testing it
on large-scale layout tiles. Moreover, by fitting ILT results and
resolving MRC violations, our ILT-OPC hybrid method outperforms
other tested algorithms. Finally, the comparison between different
splines reveals that cardinal splines can offer a faster speed and better
performance than Bézier splines. CardOPC shows promise as a viable
ILT/OPC alternative and opens various avenues for future curvilinear
OPC research, including spline types, MRC methods, MRC violation
resolution strategies, and large-scale optimization.
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