

Curvilinear Optical Proximity Correction via Cardinal Spline

Su Zheng 1 , Xiaoxiao Liang 2 , Ziyang Y $\overline{\mathsf{u}^1}$, Yuzhe Ma 2 , Bei Yu 1 , Martin Wong 3

 1 Chinese University of Hong Kong, 2 Hong Kong University of Science and Technology (GZ), 3 Hong Kong Baptist University

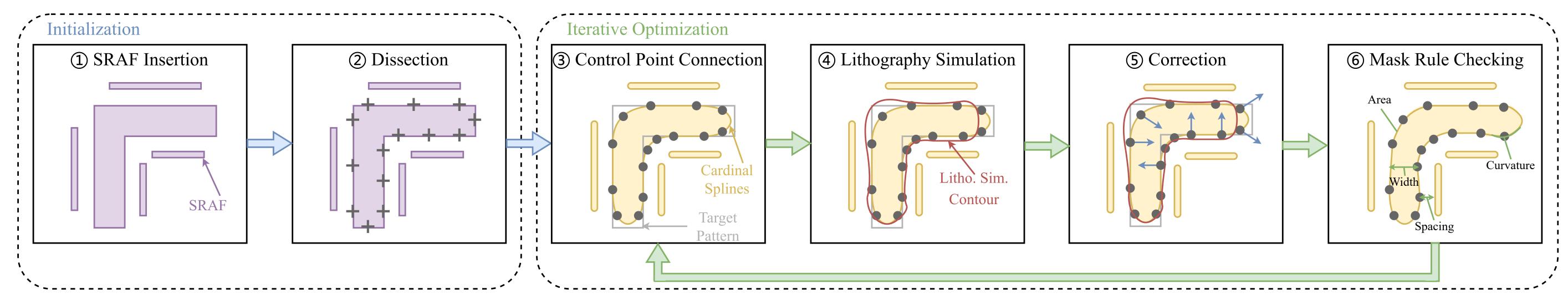


Figure 1. Overview of our CardOPC framework.

Motivation

- Curvilinear OPC enables flexible shapes + mask rule check Traditional OPC Mask Patterns Traditional OPC Segment Bounds Curvilinear OPC Control Points ILT Mask Image Pixels

Figure 2. Illustration of the mask pattern representation in (a) traditional OPC; (b) curvilinear OPC; (c) ILT. Curvilinear OPC combines the reduced number of variables from traditional OPC and the flexibility of curvilinear shapes from ILT.

Initialization Phase

2 Initialization Phase: OPC Only

- SRAFs are placed at a certain distance from the main pattern
- Dissect the layout polygons into segments
- Generate the control points for cardinal splines

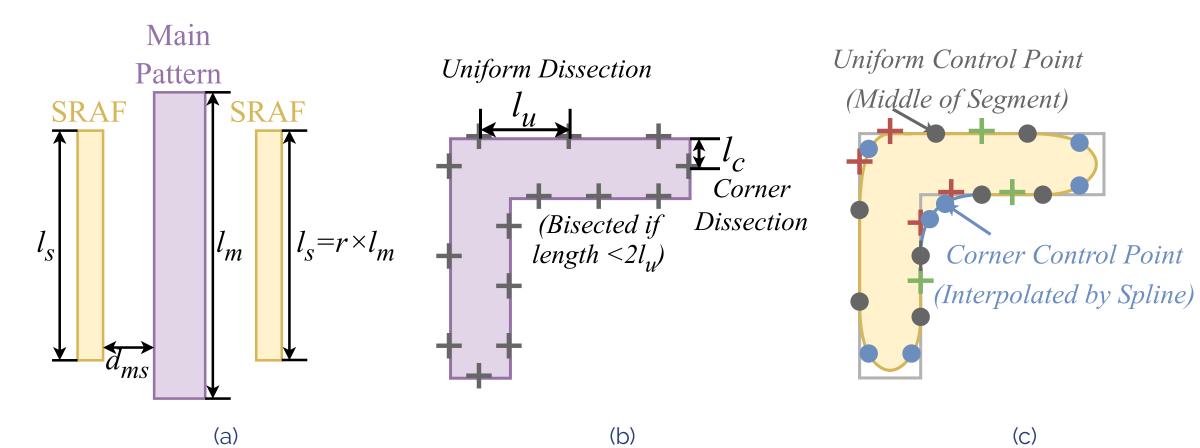


Figure 3. Illustration of the initialization phase of our curvilinear OPC flow.

1) ② Initialization Phase: Initialized by ILT

Algorithm 1 Fitting Method for ILT-Optimized Masks

Input: ILT-optimized mask image M, cardinal spline function $F(\cdot)$, ratio $r_Q \& r_R$, learning rate α .

- 1: $oldsymbol{Q}=\emptyset$, $oldsymbol{R}=\emptyset$;
- 2: **for** each shape \boldsymbol{S}_i in the mask image \boldsymbol{M} **do**
- Extract the boundary points of S_i , denoted by P_i ;
- Sample $r_Q|P_i|$ points from P_i evenly, add them to Q; Sample $r_R|P_i|$ points from P_i evenly, add them to R;
- 6: **for** $k \in \{1, 2,, K\}$ **do** //K iterations in total;
- Interpolate $oldsymbol{Q}$ with $oldsymbol{F}(\cdot)$ to have $|oldsymbol{R}|$ points;
- Compute the loss $L(\boldsymbol{Q}, \boldsymbol{R}) = \|\boldsymbol{F}(\boldsymbol{Q}) \boldsymbol{R}\|^2$;
- 9: Optimize $m{Q}$ with $m{Q} \leftarrow m{Q} lpha \frac{\partial L(m{Q}, m{R})}{\partial m{Q}}$;
- 10: return $oldsymbol{Q}$;

3 Cardinal Spline v.s. Bézier spline



Figure 4. Comparison between cardinal splines and Bézier splines in curvilinear OPC. Using cardinal splines, the curve can pass through all the control points p_{i-1} , p_i , p_{i+1} , and p_{i+2} . However, when using Bézier splines, two extra control points p_i' and p_{i+1}' should be generated to ensure that the curve can pass through p_i and p_{i+1} . This introduces non-negligible computational overhead.

Optimization Phase

4 Lithography Simulation

Hopkins model—the aerial image $m{I}$ is obtained by applying a set of optical kernels $m{H}$ to the mask $m{M}$ with:

$$oldsymbol{I}(x,y) = \sum_{k=1}^{N_h} w_k \left| oldsymbol{M}(x,y) \otimes oldsymbol{h}_k(x,y)
ight|^2.$$

5 Correction

• Mathematical formulation:

$$\boldsymbol{f}_{EPE}(\boldsymbol{M}_{\tau+1}) \approx \boldsymbol{f}_{EPE}(\boldsymbol{M}_{\tau}) + \boldsymbol{f}'_{EPE}(\boldsymbol{M}_{\tau}) \times \boldsymbol{\Delta} \text{Positions}_{\tau}.$$
 (2)

• Move control points to minimize EPE:

$$\Delta \text{Positions}_{\tau} = -\boldsymbol{f}'_{EPE}(\boldsymbol{M}_{\tau})^{-1} \times \boldsymbol{f}_{EPE}(\boldsymbol{M}_{\tau}).$$
 (3)

• Smooth the moving distances:

$$\overline{\Delta d_i} = \sum_{k=-W}^{W} w_k \Delta d_k. \tag{4}$$

6 MRC Violation Resolving

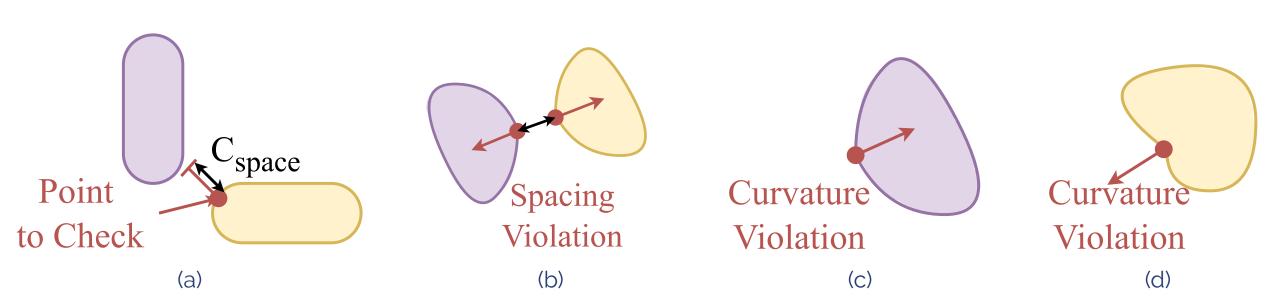


Figure 5. Illustration of mask rule checking and MRC violation resolving. (a) shows how to create a line segment to test the spacing rule violation. (b) moves the control points to resolve spacing rule violations. (c) and (d) resolve curvature rule violations by moving the control points in and out, respectively.

Results

Table 1. Large-scale OPC result comparison on EPE violations and PVB (μm^2)

Testcase	#Tiles	Calibre		SimpleOPC		CardOPC	
	$(30 \times 30 \mu m^2)$	EPE	PVB	EPE	PVB	EPE	PVB
gcd	1	3657	35.6651	3454	37.3002	3507	34.2606
aes	144	2722	27.7226	2571	29.4301	2578	27.3485
dynamicnode	144	2088	26.1663	1941	27.1213	1923	25.5011
Average	_	2409	26.9746	2260	28.3069	2255	26.4519
Ratio	_	100.0%	100.0%	93.8%	104.9%	93.6%	98.1%

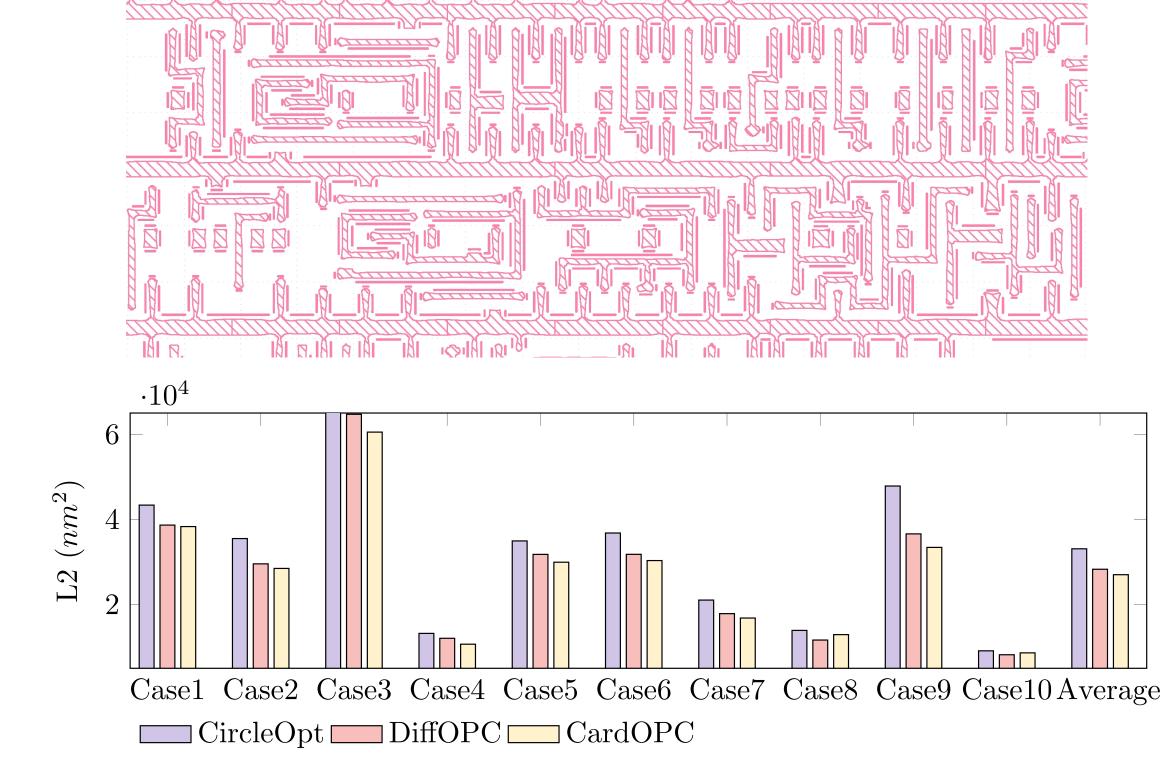



Figure 6. Comparison between our ILT-OPC hybrid approach and SOTA methods on ICCAD-13 benchmark. Additionally, our approach achieves 1.4 EPE violations on average, outperforming CircleOpt (3.9) and DiffOPC (2.2).

