
Rank-based Multi-objective Approximate Logic
Synthesis via Monte Carlo Tree Search

Yuyang Ye1, Xiangfei Hu2, Yuchen Liu2, Peng Xu1, Yu Gong3, Tinghuan Chen4,
Hao Yan2, Bei Yu1, Longxing Shi2

1CUHK 2Southeast University 3Nanjing University of Aeronautics and
Astronautics 4CUHK-Shenzhen



1 Introduction

2 Algorithms

3 Experimental Results

4 Summary

Outline

2



Introduction



Approximate logic synthesis can bring timing and area improvements under error
constraints through two state-of-the-art local approximate changes (LACs),
including wire-by-constant and wire-by-wire replacements.

FO

FO

U1

U2

U5

U6 U8

U9 U10

W1

W2 W3

W4

W7

W6

W5

W8

W16

W15

W18

W21
W22

W12

W13

W11

W10

W19

W20

Path 1

Path 2

W9

W14

W17

Approximate Path 1

Approximate Path 2

U1 FO
1’b0

FO

U2

U9

U6

U10

U8

W1

W3

W6

W9

W19
W13 W15

W22

W18

Constant 0

Accurate Circuit
W8

U3

U4 U7
W16

U4

U7

W13

Approximate Logic Synthesis

4



Error distance. The difference between the approximate and accurate circuit
output values under one input vector.
Error rate. The percentage of input vectors that the approximate circuit output
differs from the exact circuit.

NMED =

2I∑
i=1

Pi ×
∣∣Vapp

i − Vacc
i

∣∣
2O − 1

. (1)

ER =

2I∑
i=1

[
Pi × (Oapp

i ̸= Oacc
i )

]
. (2)

Error Constraints

5



• Timing-driven Methods perform LACs to simplify gates on critical paths.

• Area-driven Methods iteratively select LACs with great area reduction potential.
These reductions can be converted into drive strength enhancement of gates.

Existing Methods

6



Algorithms



Our framework uses MCTS to deeply explore the optimization potential of delay
and area. Each node in the search tree represents a circuit set, containing multiple
approximate circuits. The MCTS receives initial circuits and iteratively performs
four steps: Split, Selection, Sampling and Backpropagation.

Rank-Transformer

(LAC candidates Ranking on path)

Step 1: Circuit-domain Split

Non-dominated Circuit Ranking

(delay , area)

Good kid 

(N/2 circuits)

Bad kid 

(N/2 circuits)…

Leaf Circuit Sets

Step 2: Select

For each Leaf Circuit Set

HyperVolume

Select best leaf circuit set

Step 3: Path-domain Sampling

Each circuit in selected circuit set

All LAC candidates on path

Apply top-rank LACs

Generate new circuits

R

G B

B1G1

G B

G2 B2

B1G1 G2 B2

Area

D
el

a
y

Pareto Frontier

（100, 100）
1

5

6

2

7

9

8

4

3
0’b0

LAC1-1

4LAC1-2

LAC1-3

LAC1-4

10

LAC2-2

9

LAC2-4

LAC2-3

5
replace

replace

LAC2-1

Path 2

Evaluator

Timing Evaluation

（STA）

optimized paths

Critical Path Delay

Logic Evaluation

（VECBEE）

whole circuits

Logic error

&

Initial Sampling

App. circuit 1 App. circuit 2 App. circuit N

LAC 1 LAC 2 LAC N

…

…

Accurate circuit

Path 1

Path 2

Path 1

Path 2

Initial Root Circuit Set

(contain N approximate circuits)
R

(N/2 j circuits)

Monte Carlo Tree Searching

Step 4: Backpropagation (Return new circuits to Root Circuit Set )

Insert n circuits
N = N (+ n)

Overall Flow

8



The split step is designed to achieve the partitioning of the current root circuit set
St :

{
ct

1, ct
2, . . . , ct

n
}

and reconstruct a performance-driven search tree.

Area

D
el

a
y

Exampledominate

0

1

2… …

p-1

p

Pareto Level
Area

D
el

a
y

A

B

C

D
E

app. circuit

Area

D
el

a
y

Good

Bad

split

Step 1 ：Pareto Level Ranking Step 2 ：Crowding Distance Ranking

Circuit-domain Rank-based Splitting

9



Selection filters the best circuit set based on the upper confidence bound for trees
(UCT) from the leaf circuit sets of the search tree generated after splitting. Since
ALS requires sufficient optimization of the objectives with minimal error, UCT is
computed based on the HyperVolume hv and the average error of k Pareto front
circuits within the circuit set.

hv =

k∑
i=1

[
(1 − Ratio(i)d )× (Ratio(i−1)

a − Ratio(i)a )
]
. (3)

UCT =
whv × hv − we ×

∑k
i=1Error(i)

k
, (4)

Selection

10



The sampling is performed on all circuits inside the selected leaf circuit set. In our
MCTS framework, we maintain and apply a set of timing-area-reducing LAC
LM :

{
l1M, l2M, . . . , lnM

}
for each circuit to generate new approximate circuits.

gates on path target gate switch gate

Transformer

1

3 4

5

7 8

①Whole path

replace

TransformerTransformer

1

7 8

② Remaining path

3 4

5

③ Cut path

Cross Path fusion

Before Learning

…
…

0

1

i

m-1

m

Ranks on Path

After Learning

Margin

MSE Loss (pull force)

Current rank label

Ranking Loss (push force)

Matched LAC1-1 Unmatched LAC1-2

Margin

pushed

pushed
pushed

pushed

pulled

Path-domain Rank-based Sampling

11



Experimental Results



• For each generated approximate circuit, we
use Synopsys PrimeTime to report timing
results. Meanwhile, the circuit area is
obtained using ABC. In terms of logic
simulation, we randomly generate 100,000
input vectors for VECBEE.

• CPU Device: a 72-core 2.6GHz Linux
machine with 1024 GB memory.

• GPU Device: 4 NVIDIA Tesla V100 GPUs.

• Benchmarks: ISCAS’85 and EPFL circuits.

Table: Statistics of the benchmarks used in our
experiment. The units of delay and area are
respectively ps and µm2.

Random / Control Arithmetic
Circuit #Gate Delay Area Circuit #Gate Delay Area
c880 322 185.34 177.67 c6288 1641 847.79 687.08
c1908 366 235.14 223.34 adder 1639 1394.7 495.78
c2670 922 218.40 288.71 barshift 2933 262.52 1806.6
c3540 667 293.09 459.42 max 2940 2799.8 954.03
c5315 2595 122.25 1129.6 mult 26429 4117.5 31635.6
c7552 1576 282.13 939.33 sine 11560 3234.4 7173.9
cavlc 573 186.35 450.31 sqrt 13542 67929.3 6262.1
priority 2336 1126.8 1423.3 square 14696 8211.1 7752.8

Expermental settings

13



Table: Comparison of multi-objective optimization performance between our framework
and other works under the 3% ER constraints.

Circuit
VECBEE-S1 HEDALS2 TCAD24 DCGWO Ours

delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio
c880 92.16% 86.75% 93.02% 89.22% 83.21% 84.98% 85.21% 82.76% 77.09% 67.54%
c1908 84.21% 63.37% 46.12% 59.36% 48.15% 62.34% 43.97% 57.02% 49.89% 45.72%
c2670 79.14% 69.78% 79.64% 94.17% 75.39% 61.28% 76.92% 60.33% 74.11% 56.96%
c3540 97.93% 94.72% 89.97% 92.46% 84.32% 90.55% 90.61% 87.14% 75.06% 85.18%
c5315 93.57% 96.68% 94.24% 97.81% 88.55% 90.29% 89.72% 91.12% 87.06% 89.87%
c7552 91.79% 95.66% 78.53% 99.72% 77.58% 95.34% 79.88% 94.29% 71.43% 91.06%
cavlc 93.20% 83.78% 96.83% 92.85% 94.28% 85.38% 92.07% 89.62% 94.35% 81.18%
priority 53.17% 97.16% 47.96% 98.77% 37.28% 98.54% 39.12% 97.22% 32.25% 96.57%
Average 85.65% 85.99% 77.41% 90.55% 73.60% 83.59% 74.69% 82.44% 70.16% 76.76%

1Sanbao Su et al. (2022). “VECBEE: A versatile efficiency–accuracy configurable batch error
estimation method for greedy approximate logic synthesis”. In: 41.11, pp. 5085–5099.

2Chang Meng et al. (2023). “HEDALS: Highly Efficient Delay-driven Approximate Logic
Synthesis”. In: 42.11, pp. 3491–3504.

Optimization Results under ER constraint

14



Table: Comparison of multi-objective optimization performance between our framework
and other works under 1.96% NMED constraints.

Circuit
VECBEE-S HEDALS TCAD243 DCGWO4 Ours

delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio
c6288 97.33% 90.81% 73.28% 89.90% 74.38% 91.25% 76.92% 89.01% 71.95% 87.72%
adder 82.62% 96.42% 78.14% 94.02% 66.88% 92.96% 74.23% 93.69% 59.23% 92.50%
barshift 90.01% 83.87% 87.46% 89.98% 83.12% 80.55% 82.78% 83.26% 82.16% 75.62%
max 92.55% 86.44% 81.96% 93.24% 75.99% 85.64% 76.81% 91.80% 74.86% 82.33%
mult 95.89% 91.79% 82.59% 89.66% 78.99% 88.66% 80.08% 87.63% 71.20% 86.98%
sine 94.10% 90.28% 91.11% 93.48% 86.14% 88.56% 82.10% 89.78% 87.60% 86.25%
sqrt 83.23% 91.07% 75.03% 92.10% 75.66% 90.54% 79.16% 86.29% 71.21% 89.32%
square 92.53% 80.81% 82.13% 76.27% 79.36% 77.54% 82.58% 72.23% 77.72% 71.86%
Average 91.03% 88.94% 81.46% 89.83% 77.56% 86.95% 79.33% 86.46% 74.49% 84.07%

3Yuyang Ye et al. (2024). “Timing-Driven Technology Mapping Approximation Based on
Reinforcement Learning”. In.

4Xiangfei Hu et al. (2024). Timing-driven Approximate Logic Synthesis Based on Double-chase
Grey Wolf Optimizer. arXiv: 2411.10990 [cs.AR]. URL:
https://arxiv.org/abs/2411.10990.

Optimization Results under ED constraint

15

https://arxiv.org/abs/2411.10990
https://arxiv.org/abs/2411.10990


60.62%
21.29%

18.09%

(a) Runtime breakdown of DCGWO

72.03%

TIMING

20.26%

ERROR

7.71%

OPT

(b) Runtime breakdown of ours

Table: Overall Runtime (min.) Comparison.

Circuit VECBEE-S HEDALS TCAD24 DCGWO Ours
c6288 58.60 34.18 22.95 28.05 20.32
adder 22.63 18.17 17.68 15.92 10.09
barshift 37.89 30.11 22.69 21.26 17.70
max 34.68 39.44 23.31 27.13 19.22
mult 293.01 187.82 57.83 64.12 40.38
sine 71.88 51.63 51.24 42.35 39.76
sqrt 551.95 268.8 105.87 132.67 98.95
square 57.22 37.13 23.74 20.95 24.78
Average 140.98 83.41 40.66 44.06 33.90

Runtime

16



Multi-objective optimization results across all works on 128-bit multiplier under
1.96% NMED constraint.

85 87.5 90 92.5

65

75

85

95

Area Ratio (%)

D
el
ay

R
at
io

(%
)

VECBEE-S
HEDALS
TCAD24
DCGWO
Ours

Pareto Results

17



Summary



• We present the first multi-objective Approximate Logic Synthesis (ALS) framework
implemented using Monte Carlo Tree Search (MCTS).

• We utilize non-dominated circuit ranking to guide MCTS in globally identifying
approximate circuits with high optimization potential.

• We leverage the Rank-Transformer to predict path-domain rankings of local
approximate changes (LACs) to select high-quality LACs within critical paths enable
effective optimization of both delay and area.

Summary

19




	Introduction
	Algorithms
	Experimental Results
	Summary

