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Introduction



Approximate logic synthesis can bring timing and area improvements under error
constraints through two state-of-the-art local approximate changes (LACs),
including wire-by-constant and wire-by-wire replacements.
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Error distance. The difference between the approximate and accurate circuit
output values under one input vector.
Error rate. The percentage of input vectors that the approximate circuit output
differs from the exact circuit.
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• Timing-driven Methods perform LACs to simplify gates on critical paths.

• Area-driven Methods iteratively select LACs with great area reduction potential.
These reductions can be converted into drive strength enhancement of gates.

Existing Methods
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Algorithms



Our framework uses MCTS to deeply explore the optimization potential of delay
and area. Each node in the search tree represents a circuit set, containing multiple
approximate circuits. The MCTS receives initial circuits and iteratively performs
four steps: Split, Selection, Sampling and Backpropagation.
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The split step is designed to achieve the partitioning of the current root circuit set
St :

{
ct

1, ct
2, . . . , ct

n
}

and reconstruct a performance-driven search tree.
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Selection filters the best circuit set based on the upper confidence bound for trees
(UCT) from the leaf circuit sets of the search tree generated after splitting. Since
ALS requires sufficient optimization of the objectives with minimal error, UCT is
computed based on the HyperVolume hv and the average error of k Pareto front
circuits within the circuit set.

hv =

k∑
i=1

[
(1 − Ratio(i)d )× (Ratio(i−1)

a − Ratio(i)a )
]
. (3)

UCT =
whv × hv − we ×

∑k
i=1Error(i)

k
, (4)

Selection
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The sampling is performed on all circuits inside the selected leaf circuit set. In our
MCTS framework, we maintain and apply a set of timing-area-reducing LAC
LM :

{
l1M, l2M, . . . , lnM

}
for each circuit to generate new approximate circuits.
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Experimental Results



• For each generated approximate circuit, we
use Synopsys PrimeTime to report timing
results. Meanwhile, the circuit area is
obtained using ABC. In terms of logic
simulation, we randomly generate 100,000
input vectors for VECBEE.

• CPU Device: a 72-core 2.6GHz Linux
machine with 1024 GB memory.

• GPU Device: 4 NVIDIA Tesla V100 GPUs.

• Benchmarks: ISCAS’85 and EPFL circuits.

Table: Statistics of the benchmarks used in our
experiment. The units of delay and area are
respectively ps and µm2.

Random / Control Arithmetic
Circuit #Gate Delay Area Circuit #Gate Delay Area
c880 322 185.34 177.67 c6288 1641 847.79 687.08
c1908 366 235.14 223.34 adder 1639 1394.7 495.78
c2670 922 218.40 288.71 barshift 2933 262.52 1806.6
c3540 667 293.09 459.42 max 2940 2799.8 954.03
c5315 2595 122.25 1129.6 mult 26429 4117.5 31635.6
c7552 1576 282.13 939.33 sine 11560 3234.4 7173.9
cavlc 573 186.35 450.31 sqrt 13542 67929.3 6262.1
priority 2336 1126.8 1423.3 square 14696 8211.1 7752.8

Expermental settings
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Table: Comparison of multi-objective optimization performance between our framework
and other works under the 3% ER constraints.

Circuit
VECBEE-S1 HEDALS2 TCAD24 DCGWO Ours

delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio
c880 92.16% 86.75% 93.02% 89.22% 83.21% 84.98% 85.21% 82.76% 77.09% 67.54%
c1908 84.21% 63.37% 46.12% 59.36% 48.15% 62.34% 43.97% 57.02% 49.89% 45.72%
c2670 79.14% 69.78% 79.64% 94.17% 75.39% 61.28% 76.92% 60.33% 74.11% 56.96%
c3540 97.93% 94.72% 89.97% 92.46% 84.32% 90.55% 90.61% 87.14% 75.06% 85.18%
c5315 93.57% 96.68% 94.24% 97.81% 88.55% 90.29% 89.72% 91.12% 87.06% 89.87%
c7552 91.79% 95.66% 78.53% 99.72% 77.58% 95.34% 79.88% 94.29% 71.43% 91.06%
cavlc 93.20% 83.78% 96.83% 92.85% 94.28% 85.38% 92.07% 89.62% 94.35% 81.18%
priority 53.17% 97.16% 47.96% 98.77% 37.28% 98.54% 39.12% 97.22% 32.25% 96.57%
Average 85.65% 85.99% 77.41% 90.55% 73.60% 83.59% 74.69% 82.44% 70.16% 76.76%

1Sanbao Su et al. (2022). “VECBEE: A versatile efficiency–accuracy configurable batch error
estimation method for greedy approximate logic synthesis”. In: 41.11, pp. 5085–5099.

2Chang Meng et al. (2023). “HEDALS: Highly Efficient Delay-driven Approximate Logic
Synthesis”. In: 42.11, pp. 3491–3504.

Optimization Results under ER constraint
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Table: Comparison of multi-objective optimization performance between our framework
and other works under 1.96% NMED constraints.

Circuit
VECBEE-S HEDALS TCAD243 DCGWO4 Ours

delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio delay ratio area ratio
c6288 97.33% 90.81% 73.28% 89.90% 74.38% 91.25% 76.92% 89.01% 71.95% 87.72%
adder 82.62% 96.42% 78.14% 94.02% 66.88% 92.96% 74.23% 93.69% 59.23% 92.50%
barshift 90.01% 83.87% 87.46% 89.98% 83.12% 80.55% 82.78% 83.26% 82.16% 75.62%
max 92.55% 86.44% 81.96% 93.24% 75.99% 85.64% 76.81% 91.80% 74.86% 82.33%
mult 95.89% 91.79% 82.59% 89.66% 78.99% 88.66% 80.08% 87.63% 71.20% 86.98%
sine 94.10% 90.28% 91.11% 93.48% 86.14% 88.56% 82.10% 89.78% 87.60% 86.25%
sqrt 83.23% 91.07% 75.03% 92.10% 75.66% 90.54% 79.16% 86.29% 71.21% 89.32%
square 92.53% 80.81% 82.13% 76.27% 79.36% 77.54% 82.58% 72.23% 77.72% 71.86%
Average 91.03% 88.94% 81.46% 89.83% 77.56% 86.95% 79.33% 86.46% 74.49% 84.07%

3Yuyang Ye et al. (2024). “Timing-Driven Technology Mapping Approximation Based on
Reinforcement Learning”. In.

4Xiangfei Hu et al. (2024). Timing-driven Approximate Logic Synthesis Based on Double-chase
Grey Wolf Optimizer. arXiv: 2411.10990 [cs.AR]. URL:
https://arxiv.org/abs/2411.10990.

Optimization Results under ED constraint
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Table: Overall Runtime (min.) Comparison.

Circuit VECBEE-S HEDALS TCAD24 DCGWO Ours
c6288 58.60 34.18 22.95 28.05 20.32
adder 22.63 18.17 17.68 15.92 10.09
barshift 37.89 30.11 22.69 21.26 17.70
max 34.68 39.44 23.31 27.13 19.22
mult 293.01 187.82 57.83 64.12 40.38
sine 71.88 51.63 51.24 42.35 39.76
sqrt 551.95 268.8 105.87 132.67 98.95
square 57.22 37.13 23.74 20.95 24.78
Average 140.98 83.41 40.66 44.06 33.90

Runtime
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Multi-objective optimization results across all works on 128-bit multiplier under
1.96% NMED constraint.
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Summary



• We present the first multi-objective Approximate Logic Synthesis (ALS) framework
implemented using Monte Carlo Tree Search (MCTS).

• We utilize non-dominated circuit ranking to guide MCTS in globally identifying
approximate circuits with high optimization potential.

• We leverage the Rank-Transformer to predict path-domain rankings of local
approximate changes (LACs) to select high-quality LACs within critical paths enable
effective optimization of both delay and area.

Summary
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