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Abstract—Deep learning has significantly advanced Electronic Design
Automation (EDA), with circuit representation learning emerging as a key
area for modeling the relationship between a circuit’s structure and func-
tionality. Existing methods primarily use either Large Language Models
(LLMs) for Register Transfer Level (RTL) code analysis or Graph Neural
Networks (GNNs) for netlist modeling. While LLMs excel at high-level
functional understanding, they struggle with detailed netlist behavior.
GNNs, however, face challenges when scaling to larger sequential circuits
due to long-range information dependencies and insufficient functional
supervision, leading to decreased accuracy and limited generalization. To
address these challenges, we propose MOSS, a multimodal framework
that integrates GNNs with LLMs for sequential circuit modeling. By
enhancing D-type Flip-Flop (DFF) node features with embeddings from
fine-tuned LLMs on RTL code, we focus the GNN on critical anchor
points, reducing reliance on long-range dependencies. The LLM also
provides global circuit embeddings, offering efficient supervision for
functionality-related tasks. Additionally, MOSS introduces an adaptive
aggregation method and a two-phase propagation mechanism in the
GNN to better model signal propagation and sequential feedback within
the circuit. Experimental results demonstrate that MOSS significantly
improves the accuracy of functionality and performance predictions for
sequential circuits compared to existing methods, particularly in larger
circuits where previous models struggle. Specifically, MOSS achieves a
95.2% accuracy in arrival time prediction.

I. INTRODUCTION

The application of deep learning (DL) techniques in EDA has gar-
nered significant attention [1], [2], leading to notable advancements
in areas such as routing [3], [4], synthesis [5], [6], and testing [7],
[8]. Among these DL-driven EDA innovations, circuit representation
learning [9], [10] has emerged as a promising research paradigm that
propels predictions in subsequent EDA tasks. To further advance the
development of circuit representation learning, modeling sequential
circuits is particularly crucial, as they constitute the most commonly
used circuit modules in practical electronic designs.

Existing works on circuit representation learning can mainly be
divided into two categories, each modeling different modalities of
circuit descriptions. The first category focuses on the register transfer
level (RTL) code–a formal language that abstractly describes circuit
behavior–utilizing large language models (LLMs) to provide a high-
level understanding of functionality [11]. However, this approach
faces challenges when it comes to analyzing the specific behavior
and connectivity of individual cells in the netlist [12]. The second
category employs graph neural networks (GNNs) for end-to-end
learning, modeling the relationship between circuit functionality and
structure [13]. Compared to the first approach, GNNs are closer
to circuit structures, allowing for a more accurate representation of
circuit details. Correspondingly, GNN-based models have achieved
approximately 80% prediction accuracy for the toggle rates of se-
quential circuits within 1,000 gates. Such fine-grained tasks appear
to be challenging for language models. Therefore, it seems to be
a promising approach to use GNNs to model circuit structures for
circuit representation.
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Fig. 1 Challenges and motivations for representation learning on
sequential circuits. (a) Challenge 1: Performance degradation of
existing methods in complex circuit prediction tasks. Both metrics are
computed by summing the error ratio to the true value for each node
and then averaging over all nodes. (b) Challenge 2: Sequential circuits
can have almost infinite truth tables. (c) Motivation 1: DFFs divide
sequential circuits. (d) Motivation 2: Different modalities provide
different levels of abstraction in structure and functionality.

Unfortunately, when using GNNs to model larger sequential cir-
cuits for predicting their functionality and performance, we encounter
significant challenges. The first challenge is the difficulty in handling
long-range information dependencies, which leads to decreased ac-
curacy on larger circuits. We implemented a GNN model, adopting
asynchronous updates and other techniques from [14], and conducted
tests on circuits of varying sizes to predict toggle rates and arrival
times. The results, shown in Fig. 1(a), indicate that existing methods
exhibit a substantial increase in error rates when applied to larger
sequential circuits. For example, in a circuit with 2,000 gates, the
prediction error rate exceeds 40%. One primary reason for this decline
is that modeling larger circuits requires learning information from
more distant nodes compared to smaller circuits. Despite employing
asynchronous update strategies to propagate long-range information
layer by layer, these advanced GNN designs remain susceptible to
the loss of distant information, leading to decreased accuracy.

The second challenge is the difficulty in forming effective training
supervision for the functionality of sequential circuits, resulting in
weak capability in functionality-related tasks. Sequential circuits
exhibit complex functional behaviors due to their stateful nature,
making it challenging to capture functionality effectively with GNNs.
The latest work, DeepSeq2 [14], artificially compresses the truth
tables of individual nodes to form training supervision. However, this
method has several drawbacks: Inefficiency for Large-Scale Circuits:
As shown in Fig. 1(b), sequential circuits can have almost infinite
truth tables because of the myriad possible states and input sequences
over time. This makes the approach of compressing truth tables
inefficient. Inadequate Description of Overall Circuit Functionality:



Manually extracting features from truth tables on each cell for training
may aid in comparing individual nodes, but it is challenging to form a
complete functional description of large-scale sequential circuits. This
approach limits the ability to predict the complete circuit behavior
and restricts the model’s generalization capability. Consequently,
this constraint limits performance on downstream tasks that require
understanding the circuit’s global functionality.

Interestingly, the structural characteristics of sequential circuits
can be exploited to reduce the long-range dependencies encountered
when modeling larger circuits. As shown in Fig. 1(c), sequential
circuits inherently contain certain “anchor points”, specifically D-
type Flip-Flops (DFFs). These anchor points aggregate upstream input
information and propagate it downstream, thereby driving the circuit’s
functional state. Furthermore, the interconnections between DFFs
determine performance metrics such as arrival times. Therefore, by
progressively and accurately modeling each DFF and its immediate
connectivity network, we can localize the critical information within
shorter-range dependencies. This approach reduces the reliance on
long-range information propagation. However, existing methodolo-
gies have not yet taken advantage of this aspect for targeted modeling.

On the other hand, compared to the vast number of cell-level
nodes present in the netlist, the RTL code offers a more macroscopic
description of circuit connections and the functionality they form.
As illustrated in Fig. 1(d), complex connectivity structures in a
netlist can be succinctly represented by a single line of RTL code,
providing a clear overview of the circuit’s functionality. Therefore, if
we can simultaneously learn from both RTL code and circuit netlist
structures, integrating local and global information collaboratively,
it will significantly enhance the efficiency of circuit representation
learning. Moreover, by utilizing the formal language of RTL code-
which provides an effective abstraction of functionalityand an LLM
fine-tuned on circuit data to interpret the RTL, we can generate more
accurate functional descriptions.

In this paper, we propose MOSS, a multimodal framework that
integrates GNN with LLMs. We fine-tune an LLM on RTL code
to generate embeddings that capture global circuit functionality.
These embeddings enhance the features of DFF cells in the netlist,
enabling the GNN to focus on critical anchor points and reduce
reliance on long-range dependencies. The LLM also provides a
global functionality embedding, offering efficient supervision for
functionality-related tasks. Additionally, we introduce an adaptive
aggregation method and a two-stage propagation mechanism to better
model signal propagation and sequential feedback within the circuit.
By combining structural insights from GNNs with functional under-
standing from LLMs, MOSS improves the accuracy of functionality
and performance predictions for sequential circuits, particularly in
larger circuits where existing methods struggle.

The contributions of this paper are summarized as follows:

• We propose MOSS, a multimodal framework that combines
LLMs with GNNs for sequential circuit modeling, enhancing
the collaboration between local node embeddings and global
representations for circuit functionality and structure.

• We introduce an adaptive aggregation method and a two-phase
propagation mechanism in the GNN to better model signal
propagation and sequential feedback within circuits.

• MOSS significantly improves the accuracy of functionality and
performance predictions for sequential circuits, outperforming
existing methods on larger circuits. For example, it achieves a
95.2% accuracy in arrival time prediction.

II. BACKGROUND AND RELATED WORK

A. Graph Neural Networks for EDA Tasks

Graph neural networks (GNNs) are a class of deep learning
models specifically designed to process graph-structured data [15]. By
operating directly on graphs, they capture complex dependencies and
interactions between nodes. GNNs iteratively aggregate information
from neighboring nodes to update node representations [16], enabling
them to capture both local and global structural features [17]. In
the field of EDA, GNNs are widely used for tasks such as circuit
representation learning, performance prediction, and fault detection
due to their high adaptability to circuit structures [18], [19].

For instance, FGNN2 [20] and DeepGate2 [21] focused on com-
binational circuits, which lack the timing dependencies inherent
in sequential circuits. The DeepSeq series [14], [22] sought to
incorporate temporal information into GNNs by training on logic and
flip probabilities to model timing behavior. DeepSeq2 advanced this
approach by introducing disentangled structure, function, and timing
representations. However, as in Fig. 1, DeepSeq series struggles
with long-range information dependencies. This shortcoming leads
to a substantial decline in accuracy when applied to larger-scale
circuits. Additionally, the DeepSeq series performs learning on And-
Inverter Graphs (AIGs), which, compared to real netlists composed
of standard cells, have nodes with simpler and uniform functions.
In EDA scenarios, crucial labels such as timing are annotated at the
standard cell level rather than the AIG level. Thus, AIG-based models
cannot capture these metrics directly, limiting industrial applicability.
In contrast, our work models netlists composed of standard cells.

B. Large Language Models and Fine-Tuning for EDA Tasks

Large language models (LLMs) have shown promise in various
EDA tasks, such as design flow automation, error detection, and
hardware generation [23]. Pre-trained on vast amounts of textual data,
LLMs excel at understanding RTL code and descriptions [24]. Fine-
tuning techniques like low-rank adaptation (LoRA) enable efficient
adaptation of LLMs to EDA-specific tasks [25]. However, while
LLMs can capture the functional semantics from RTL code, their
ability to model the complex structural dependencies inherent in
circuits is limited, as they were initially designed for processing
textual data [26]. Therefore, LLMs alone are insufficient for circuit
design tasks that require both functional understanding and detailed
structural representation.

C. Multimodal Alignment and Contrastive Learning

Multimodal alignment and contrastive learning have been success-
fully employed to integrate diverse data types [27], such as text and
images [28], by aligning their representations in a shared embedding
space [29]. Prominent models like CLIP [30] demonstrate the poten-
tial of contrastive learning for cross-modal tasks, including retrieval
and classification. These approaches leverage different modalities’
strengths to enhance the performance of representation learning [31].

III. PROBLEM FORMULATION

Sequential circuits, modeled as directed graphs G = (V,E), where
V represents circuit components (e.g., logic gates, DFFs) and E
represents component connections, pose unique challenges due to the
temporal dependencies introduced by state elements. The key problem
is to learn node embeddings H ∈ R|V |×d that encode both structural
and temporal features. These embeddings should support downstream
tasks such as toggle rate prediction, arrival time prediction, and circuit
classification:

H = f(G,X,T) = f(V,E,X,T), (1)
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Fig. 2 Overview of the MOSS framework.

where X ∈ R|V |×dx represents structural features, and T ∈ R|V |×dt

represents temporal features.
The main challenge of circuit representation learning is capturing

long-range dependencies and temporal dynamics in sequential cir-
cuits, while most current GNNs struggle with over-smoothing and fail
to retain critical temporal information. Integrating multimodal data,
such as netlists and RTL descriptions, is crucial for comprehensively
understanding functional and structural aspects.

IV. MOSS FRAMEWORK

Fig. 2 describes MOSS’s framework. We integrate LLM and GNN
to capture both functional semantics from RTL code and structural
dependencies from netlists. Our key approaches are listed below:

• LLM-enhanced node features (Fig. 2 A ): The LLM is fine-
tuned on RTL data to generate contextual embeddings, enriching
the GNN’s node features, particularly for register nodes (DFFs).
Details are described in Section IV-A.

• Graph construction and modeling (Fig. 2 B ): The netlist is
represented as a directed graph. MOSS uses multiple aggregators
and Pseudo Primary Input (PPI)/DFF nodes to model temporal
dependencies in sequential circuits. Details are described in
Section IV-B.

• Local and global alignment (Fig. 2 C ): MOSS aligns GNN
embeddings with LLM-generated RTL embeddings. Locally,
tasks like toggle rate and arrival time prediction are optimized
using Etoggle Loss (enhanced toggle loss), EAT Loss (enhanced
arrival time loss) and RrNdM (RTL-register to Netlist-DFF
matching loss). Globally, RNC Loss (RTL-Netlist contrastive
loss) and RNM Loss (RTL-Netlist matching loss) align the netlist
and RTL embeddings. Details are described in Section IV-C.

A. LLM Fine-Tuning and Node Feature Enhancement

To address the challenges of modeling sequential circuits, we
enhance the GNN’s node features by leveraging a fine-tuned LLM
to generate contextual embeddings for DFF nodes and embeddings
for each logic cell. Additionally, to provide more effective training
supervision for circuit functionality tasks, we use the LLM to generate
embeddings for the complete RTL code. To this end, we specifically
fine-tuned an LLM to enhance its understanding of RTL code.

LLM Fine-Tuning. We fine-tuned Yi-Coder-9B-Chat [32], an open-
source code generation model, on 31,701 RTL descriptions to extract
contextual embeddings for registers and logic cells.
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Fig. 3 LLM feature extraction process for GNN nodes.

Data Extraction and RTL Descriptions. To enhance the features
of circuit nodes, we identify each node in the circuit and extract
its description as shown in Fig. 3 A . We first use Design Compiler
(DC) [33] to synthesize the netlist, resulting in a directed graph struc-
ture. We then identify each elements of DFFs and logic cells. Further,
for each node in the netlist, we extract its cell description, which
typically includes structural and functional information. Specifically
for DFFs, we locate the corresponding registers in the RTL code
and generate Register Description Prompts. These prompts enable the
LLM to describe the context and functionality of each DFF, capturing
both local and global functional relationships.

LLM-GNN Feature Integration and Alignment. Using the ex-
tracted node information and descriptions, we generate embeddings
with the LLM as illustrated in Fig. 3 B . We use mean pooling
to aggregate token embeddings from the LLM, providing a compre-
hensive representation of the input sequence. LLM-generated node
embeddings are concatenated with each node’s structural features in
the GNN. For DFFs, the produced embeddings combine the RTL
description and the DFF cell description, capturing both structural and
functional information. For logic cells, the embeddings corresponds
to each cell’s cell description.

B. Graph Construction and Temporal Dependency Modeling

In our GNN design, we first utilize the multimodal characteristics
of MOSS to generate node embeddings. Next, we design an adaptive
aggregator to better accommodate standard cell-level netlists. Finally,
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we employ a two-phase asynchronous temporal propagation mecha-
nism to more accurately model signal propagation in circuits.

Graph Construction. In constructing the graph, we diverge from
prior works that rely on manually embedding labels derived from
the circuit graph’s structural information. Instead, we leverage the
multimodal capabilities of MOSS by utilizing the LLM to process
descriptions of the RTL code and cell nodes. This approach generates
embeddings for the graph nodes, as illustrated in Fig. 4(a).

First, for each cell node, we utilize the LLM to generate embed-
dings based on the cell’s functional and structural descriptions in the
standard cell library. Specifically, for the “anchor points” in sequential
circuit structures, the DFFs, we further enhance their embeddings.
We overlay the LLM embeddings of the contextual structure and
functional descriptions of the corresponding register nodes from the
RTL code onto the DFF nodes. This enhancement helps the GNN to
capture a wider range of information more accurately at DFF nodes.

Finally, since different edges of cells have varying propertiesfor ex-
ample, in certain logic gates, different inputs have different influences
on the outputwe perform positional encoding on the edges.

Adaptive-Aggregator Design. Because we operate at the standard
cell level rather than at the AIG level used in existing designs,
our netlists contain cells with diverse functions and structures, and
different cell libraries may include varying cell types. Therefore, we
propose a clustering-based adaptive aggregator for standard cell-level
netlists to adapt to different kinds of cells automatically.

As shown in Fig. 5, MOSS first uses Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) and hierarchical
clustering to dynamically group nodes based on their LLM-derived
embeddings. DBSCAN clusters nodes based on functional similarity,
detecting clusters of varying density without specifying the number
of clusters in advance. Hierarchical clustering further refines these
clusters by considering both functional similarities and structural
dependencies such as fan-in and fan-out.

Then, each group is processed by a dedicated aggregator that
learns to aggregate information based on the characteristics of the
nodes. Notably, we employ graph attention mechanisms for aggre-

gation, ultimately forming different attention-based aggregators for
each category. This adaptive aggregator approach enables MOSS
to flexibly adapt to different node types and interactions, capturing
unique behaviors essential for modeling complex circuits.

Two-Phase Asynchronous Temporal Propagation Mechanism. To
accurately model temporal dependencies in sequential circuits, MOSS
adopts a two-phase asynchronous temporal propagation mechanism as
in [14]. The propagation mechanism, illustrated in Fig. 4(b), includes
forward and backward phases to handle the feedback behavior of
DFFs. It is worth noting that both phases use asynchronous updates
to more closely resemble signal propagation in circuits.

In the first phase, Forward Propagation, signals are propagated from
primary inputs (PIs) to the inputs of DFFs through combinational
logic gates. This phase captures the forward signal flow in the circuit,
simulating how input signals affect downstream components.

In the second phase, referred to as Turnaround Propagation, the
outputs from the DFFs are fed back into the circuit, simulating the
characteristic feedback loops of sequential elements. This feedback
is crucial for modeling the timing dependencies and state transitions
intrinsic to sequential circuits, allowing the GNN to capture how past
states influence future behavior. To capture both short-range and long-
range dependencies, the two-phase propagation process is repeated
multiple times (e.g., 10 iterations).

Afterward, as shown in Fig. 4(c), the final node representations
are aggregated using mean-pooling, generating comprehensive em-
beddings that effectively summarize the temporal and structural
information in the circuit.

C. Local and Global Alignment Strategy

Our local and global alignment strategy ensures that the GNN-
generated netlist embeddings remain consistent with the LLM-derived
RTL embeddings, capturing both local and global circuit characteris-
tics. This section details the loss functions used to achieve alignment,
focusing on key tasks such as toggle rate prediction, arrival time
prediction, and register-DFF matching.

Local alignment aims to align nodes through task-specific losses,
optimizing the GNN’s ability to represent local circuit behavior.
The local alignment contains several prediction tasks, and their loss
functions are Etoggle loss, EAT loss, and RrNdM loss. Etoggle
Loss minimizes the difference between predicted and actual toggle
rates, capturing logic gates’ dynamic behavior. EAT Loss focuses on
predicting signal arrival times, ensuring the GNN accurately models
timing dependencies. RrNdM Loss ensures proper alignment between
RTL registers and netlist DFFs, minimizing mismatches in register-
to-DFF mapping. We implement these loss functions as smooth L1
loss functions.

Global alignment ensures consistency between the overall structure
and functionality of netlist and RTL embeddings through graph



# rtl_encoder - Text Transformer
# netlist_encoder - GNN
# R[n, l] - minibatch of aligned RTL codes
# N[n, c, m] - minibatch of aligned netlists
# W_n[d_n, d_r] - projection of embedding
# MLP[2*d_r, 1] - MLP for binary classification
# t - temperature parameter
# extract embedding of each modality
R_f = rtl_encoder(R) #[n, d_r]
N_f = netlist_encoder(N) #[n, d_n]
# joint multimodal embedding [n, d_r]
R_e = l2_normalize(R_f, axis=1)
N_e = l2_normalize(np.dot(N_f, W_n), axis=1)
# RTL-Netlist Contrastive (RNC) Loss
RNCLogits = np.dot(R_e, N_e.T) * np.exp(t)
RNCLabels = np.arange(n)
loss_r = cross_entropy_loss(logits, labels, axis=0)
loss_n = cross_entropy_loss(logits, labels, axis=1)
RNCLoss = (loss_r + loss_n) / 2
# RTL-Netlist Matching (RNM) Loss
RNMLogits = [MLP(np.concatenate(R_e[i], N_e[j]))

for i in range(n) for j in range(n)]
RNMLabels = np.eye(n)
RNMLoss = SmoothL1Loss(RNMLogits, RNMLabels)

Fig. 6 Numpy-like pseudocode for loss function of global alignment.

pooling and alignment losses. While RNC loss aligns the global
structure, RNM loss enforces functional consistency between netlist
and RTL. RNC and RNM calculation method is shown in the
pseudocode in Fig. 6.

MOSS employs a multi-task learning strategy to generalize across
multiple circuit-related tasks. By optimizing a weighted combina-
tion of task-specific loss functions, MOSS captures local node-
level behaviors and global circuit-wide patterns. The overall loss is
formulated as:

Ltotal =

n∑
i=1

λiLtaski, (2)

where λi dynamically adjusts to balance the contribution of each
task, ensuring that no single task dominates the learning process.
This approach enhances the model’s ability to generalize effectively
across diverse sequential circuit tasks.

MOSS employs a dual alignment strategy that integrates local
task-specific losses (Etoggle, EAT, and RrNdM) with global consis-
tency losses (RNC and RNM). This approach captures both fine-
grained circuit dynamics and global structural behavior, enhancing
the model’s accuracy and generalizability, particularly for complex
sequential circuits.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

Datasets. We collected 31,701 RTL designs and synthesized them
using Synopsys Design Compiler (DC), applying multiple rounds of
optimization. For each RTL, we generated several distinct circuits,
with sizes ranging from 100 to 5000 cells, all based on real-
world designs. From this collection, we further selected a subset of
RTLs with diverse functionalities and significant variations as our
experimental dataset.

Model Variants. We evaluate several MOSS variants to understand
the impact of critical components: “MOSS” is the full model;
“MOSS w/o A” is the full model withoutht local-global alignment
strategy; “MOSS w/o AA” includes LLM features but omits adaptive-
aggregator and alignment; “MOSS w/o FAA” is the model without all
the LLM feature enhancement, the adaptive-aggregator design, and

the alignment strategy. Besides, we implement DeepSeq2 [14], the
state-of-the-art GNN-based model, for the comparison.

Evaluation Metrics. We assess all models using four metrics: the
accuracy of arrival time prediction (ATP) for each DFF, the accuracy
of toggle rate prediction (TRP) for each cell, the accuracy of
power prediction (PP) for the circuit, and the accuracy of functional
equivalence prediction (FEP). Note here the prediction accuracy is
measured by

accuracy = 1− mean relative error. (3)

FEP measures the rate of correctly identifying functionally equivalent
RTL-netlist pairs. Higher values indicate better performance. Ground
truth data is collected using commercial EDA tools. Arrival Time
(AT) is obtained via timing analysis on DFF nodes using PrimePower
[34] and Synopsys DC [33]. Toggle Rate is derived from VCS [35]
simulations over 60,000 cycles with random inputs, and power is
reported by PrimePower based on their toggle rates. These ground
truths ensure accurate benchmarking of MOSS’s predictions.

Platform Configuration. Experiments were performed on an 8-
GPU system with NVIDIA A100 GPUs. We implemented MOSS
in PyTorch and trained using the Adam optimizer, with a learning
rate of 6 × 10−4 and a batch size of 32. Each experiment ran for
45 epochs, with early stopping based on validation performance to
prevent overfitting.

B. Experimental Results and Analysis

In this section, we evaluate the performance of MOSS across
various tasks, comparing it with its variants and the baseline model
DeepSeq2. The experiments focus on critical tasks such as arrival time
prediction, toggle rate prediction, power prediction, and functional
equivalence checking. We list results in TABLE I and TABLE II,
and analyze the training loss curves shown in Fig. 7 and Fig. 8.

Arrival Time Prediction (ATP). For arrival time prediction
(ATP), MOSS achieves an average accuracy of 95.2%, signifi-
cantly outperforming DeepSeq2 (79.1%). In larger circuits, such as
mult 16x32 to 48, MOSS maintains high accuracy (94.3%), while
DeepSeq2 drops to 57.6%. This highlights MOSS’s ability to handle
long-range dependencies, a known challenge in larger circuits. The
alignment strategy has a limited impact on this task, as demonstrated
by the performance of MOSS w/o A (94.9%), which remains high
but is slightly lower than the full model.

Toggle Rate Prediction (TRP). For toggle rate prediction (TRP),
MOSS achieves 87.5% accuracy, outperforming DeepSeq2 (76.4%).
In circuits such as pipeline reg, MOSS reaches 92.4%, whereas
MOSS w/o FAA drops to 63.6%, underscoring the importance of
the adaptive aggregation and LLM enhancements, which are key for
capturing dynamic behaviors in sequential circuits.

Power Prediction (PP). For power prediction (PP), MOSS leads with
96.3% accuracy, compared to DeepSeq2’s 88.4%. The LLM-enhanced
node features allow MOSS to model power consumption patterns
more effectively, particularly in circuits like wb data mux, where
MOSS achieves 96.2%, significantly higher than MOSS w/o FAA
(82.6%). The smaller performance gap between MOSS and MOSS
w/o A (95.1%) indicates that alignment is less critical for power
estimation compared to feature enhancement.

Functional Equivalence Prediction (FEP). We selected several
datasets with 512 pairs of RTL and netlist in each set and calculated
the average correctness of their predictions. In functional equivalence
checking, MOSS excels with an average accuracy of 93.7%, far



TABLE I Performance Comparison of MOSS Framework Variants

Circuit #Cells DeepSeq2 [14] MOSS w/o FAA MOSS w/o AA MOSS w/o A MOSS
ATP TRP PP ATP TRP PP ATP TRP PP ATP TRP PP ATP TRP PP

max selector 278 81.4 78.7 94.6 47.0 75.8 88.6 82.3 85.2 94.5 95.4 89.4 99.9 95.6 90.5 99.9
pipeline reg 610 77.6 83.6 91.4 52.2 63.6 63.4 80.5 88.3 90.2 94.2 92.1 94.1 94.5 92.4 94.6
prbs generator 643 87.8 76.5 71.7 57.2 72.7 81.7 78.6 82.5 90.8 92.0 87.4 94.5 93.0 85.4 95.1
shift reg 24 731 86.9 80.9 90.4 58.2 63.9 75.4 82.4 85.6 92.5 96.2 90.2 97.6 95.8 89.0 97.5
error logger 812 79.5 83.2 94.3 58.5 59.0 81.3 81.2 80.2 95.3 94.5 85.4 99.5 95.0 86.3 99.7
signed mac 1306 66.4 77.3 95.6 26.9 56.1 73.6 76.5 78.4 88.6 93.8 83.8 92.3 94.5 85.3 94.1
wb data mux 1364 95.7 64.3 88.6 45.3 25.5 82.6 85.4 75.6 88.5 98.8 82.9 91.2 99.1 83.3 96.2
mult 16x32 to 48 4144 57.6 66.6 80.1 19.3 40.1 54.1 75.2 72.3 85.4 93.9 84.8 91.5 94.3 87.9 93.5
Average - 79.1 76.4 88.4 45.6 57.1 75.1 80.3 81.0 90.7 94.9 87.0 95.1 95.2 87.5 96.3

ATP: Arrival Time Prediction accuracy (%). TRP: Toggle Rate Prediction accuracy (%). PP: Power Prediction accuracy (%).
MOSS w/o FAA: MOSS without Feature Enhancement, Adaptive-Aggregator and Alignment.
MOSS w/o AA: MOSS without Aligment and Adaptive-Aggregator. MOSS w/o A: MOSS without Alignment.

TABLE II RTL-netlist functional equivalence prediction accuracy
(FEP) on different circuit sources

Circuit MOSS MOSS MOSS MOSSw/o FAA w/o AA w/o A
github 0 4.8 19.4 24.1 91.4
github 1 5.3 20.3 33.6 95.0
github 2 10.0 23.7 32.0 94.3
huggingface 0 7.9 16.4 19.5 94.1
huggingface 1 8.7 18.3 22.9 93.6
huggingface 2 14.1 21.1 27.5 93.5
Average 8.5 19.9 26.6 93.7

Bold numbers indicate the best performance for each circuit
All circuits are from public repositories (GitHub and HuggingFace)
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Fig. 7 Losses in the pre-training section.

exceeding MOSS w/o FAA (8.5%) , MOSS w/o AA (19.9%) and
MOSS w/o A (26.6%). This significant drop in variants highlights
the necessity of both feature enhancement and alignment to maintain
functional consistency between RTL and netlist representations. For
example, in the github 0 circuit sets, MOSS achieves 91.4%, while
MOSS w/o A only reaches 24.1%, confirming the critical role of
multimodal alignment. This experiment shows that by leveraging
multimodal learning, MOSS achieves superior circuit functionality
modeling, enabling functional equivalence checking.

Loss Analysis. As illustrated in Fig. 7, in the pre-training phase, all
loss components steadily decrease, with the total loss (see Fig. 7(a))
showing continuous improvement. Probability loss (see Fig. 7(b)),
toggle loss (see Fig. 7(c)) and arrival time loss (see Fig. 7(d)) decrease
steadily, indicating that MOSS learns to capture both timing and
dynamic behaviors effectively.

Fig. 8 shows the global loss in multimodal alignment. The total
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Fig. 8 Global Losses in the multimodal alignment section.

loss stabilizes around 1.26 after 45 epochs, indicating effective
convergence. The RNC loss (see Fig. 8(b)) and RNM loss (see
Fig. 8(c)) also converge smoothly, confirming the success of the
alignment strategy. The RNM loss reaches as low as 0.002, indicating
that the RTL-netlist matching is highly accurate.

The experimental results demonstrate that MOSS effectively ad-
dresses the challenges of circuit representation learning, particularly
in handling larger circuits with long-range dependencies. By inte-
grating LLM-enhanced features and GNN-based structural learning,
MOSS significantly improves the accuracy of arrival time, toggle rate,
and power predictions, while ensuring functional consistency through
multimodal alignment.

VI. CONCLUSION

We propose MOSS, a multimodal framework combining GNNs
and LLMs to enhance sequential circuit representation. MOSS ad-
dresses long-range information loss by leveraging LLMs for global
semantic understanding and GNNs for local structural features. It also
introduces adaptive aggregation and two-stage propagation to improve
signal modeling. Experimental results show that MOSS significantly
boosts accuracy for tasks like toggle rate and arrival time prediction,
achieving 95.2% accuracy in arrival time prediction for large circuits,
outperforming existing methods. We hope that MOSS can not just
offer an effective solution for circuit functionality and performance
prediction, but also stimulate more future research.
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