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Rise of Al in EDA: Deep learning has shown remarkable progress in Electronic
Design Automation in recent years, significantly influencing tasks such as synthesis,
placement, routing, and testing.

Importance of Circuit Representation Learning: As neural networks become deeply
integrated in EDA workflows, effective representation learning is critical for
downstream predictions like timing, power, and testability.

Challenges in Sequential Circuits: Modeling sequential circuits is more difficult
than combinational ones due to their statefulness and feedback paths. Existing
GNN-based approaches often suffer from long-range dependency issues in large
circuits.

Multi-Modal Fusion:

Large Language Models (LLMs) analyzing RTL may overlook gate-level details.
GNNs on netlists face difficulty scaling to large sequential designs.

Fusing these two modalities leverages both functional abstraction (from RTL)
and structural accuracy (from gate-level netlists).



Key Idea: Introduce MOSS, a framework that combines GNNs and LLMs for
multi-modal representation of sequential circuits:

LLM extracts higher-level functional embeddings (especially around DFFs).
GNN captures structural and timing dependencies across standard-cell netlists.

Main Contributions:

DFF Anchors: DFFs are treated as anchors to reduce long-range dependencies
in large designs.

Adaptive Aggregator: Custom aggregator for diverse standard cells.
Two-Phase Propagation: Forward and backward phases model temporal
feedback in sequential circuits.

Local-Global Alignment: Node-level tasks (toggle rates, timing) plus global
functionality alignment with RTL.

Performance Gains: The proposed approach significantly improves accuracy in both
functionality and performance predictions (e.g., arrival time, toggle rate), especially
for large circuits.



Challenges and Motivation (Ref. to Fig.1 in Paper)

Challenge 1: Prediction accuracy
degrades on large sequential circuits
due to long-range dependencies in
GNN-based methods.

Challenge 2: Infinite or extremely large
truth tables in sequential circuits make
it hard to form efficient functional
supervision.

Motivation:

DFFs can partition a sequential
design naturally.

RTL offers higher-level semantics;
combining it with gate-level netlist
data can alleviate learning
complexity.
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Fig.1 (Illustration of challenges and
motivations in sequential circuits)
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MOSS Framework
Multi-Modal Fusion of LLM and GNN:

LLM provides semantically rich embeddings for critical nodes (e.g., DFFs).
GNN models structural dependencies in the standard-cell netlist.

Local-Global Alignment:

Node-level tasks (e.g., toggle rate, arrival time).
Global netlist-RTL alignment ensures functional consistency.

Multi-Task Learning: Joint optimization over multiple objectives (timing, power,
functional equivalence).
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Fig.2 (Schematic of the MOSS multi-modal framework)



Semantic Enhancement via LLM
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Adaptive Aggregator and Two-Phase Propagation

Adaptive Aggregator:

Standard cells exhibit diverse
functions. A clustering-based
approach (DBSCAN + hierarchical)
groups similar cells.

Each cluster uses a dedicated
attention-based aggregator to
capture unique interactions more
effectively.
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Fig.5 (Adaptive aggregator design)



Two-Phase Asynchronous Propagation:
Forward Phase: Signal flows from PIs through combinational logic to DFF inputs.

Backward Phase (Turnaround): Outputs from DFFs feed back into the circuit,
capturing sequential feedback loops.

Multiple iterative rounds refine the stateful behavior within sequential circuits.
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10 times

6 Fig.4 (Two-phase propagation scheme)
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Local-Global Alignment Strategy

Local Alignment:

Tasks such as toggle rate (Etoggle) and arrival time (EAT) are supervised to
learn node-level behaviors.

An RTL-to-DFF matching loss aligns register descriptions with actual netlist
DFF nodes.

Global Alignment:

RTL-Netlist Contrastive Loss (RNC) and Matching Loss (RNM) ensure overall
functional consistency and structural coherence.
These global losses are computed via pooled embeddings of the entire netlist vs.
global RTL embeddings.

Multi-Task Objective:

‘Ctotal = Z /\i ‘Ctask,'
i

Balancing multiple losses guarantees both fine-grained accuracy and holistic

alignment. @
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Datasets:

31,701 RTL designs, synthesized with Synopsys Design Compiler.
Circuit sizes range from 100 to 5000 standard cells, ensuring diversity in scale
and functionality.

Evaluation Metrics:

ATP (Arrival Time Prediction), TRP (Toggle Rate Prediction), PP (Power
Prediction)

FEP (Functional Equivalence Prediction): Checking RTL vs. netlist functional
consistency.

Compared Methods:

DeepSeq?2 (state-of-the-art GNN),
Ablation versions of MOSS without certain components.

Implementation Details:

PrimePower, VCS for ground truth of timing, toggle rates, power.
14



Quantitative Results (Ref. to Table I, Table II)

TABLE I Performance Comparison of MOSS Framework Variants

Circuit | wColls | DeepSeq2 [14] MOSS wio FAA MOSS wio AA MOSS wlo A MOSS

| ATP TRP PP | ATP TRP PP | ATP TRP PP | ATP TRP PP | ATP TRP PP
max_selector 278 | 814 787 946 | 470 758 886 | 823 852 945 | 954 894 999 | 95.6 905 999
pipeline_reg 610 | 776 83.6 914 | 522 636 634 | 80.5 883 902 | 942 921 941 | 945 924 946
prbs_generator 643 | 878 765 717 | 572 727 817 | 786 825 908 | 920 874 945 | 93.0 854 951
shift_reg_24 731 | 869 809 904 | 582 639 754 | 824 856 925 | 962 90.2 976 | 958 89.0 97.5
error_logger 812 | 795 832 943 | 585 590 813 | 812 802 953 | 945 854 99.5 | 950 863 997
signed_mac 1306 | 664 773 956 | 269 561 736 | 765 784 886 | 93.8 838 923 | 945 853 94
wb_data_mux 1364 | 957 643 886 | 453 255 826 | 854 756 885 | 988 829 912 | 991 833 962
mult_16x32_to_48 | 4144 | 57.6  66.6 80.1 | 193 40.1 541 | 752 723 854 | 939 848 OL5 | 943 879 935

[ Average | [ 791 764 884 | 456 571 751 | 803 810 007 | 949 870 951 | 952 875 963 |

ATP: Arrival Time Prediction accuracy (%). TRP: Toggle Rate Prediction accuracy (%). PP: Power Prediction accuracy (%).
MOSS w/o FAA: MOSS without Feature Enhancement, Adaptive-Aggregator and Alignment.
MOSS w/o AA: MOSS without Aligment and Adaptive-Aggregator.  MOSS w/o A: MOSS without Alignment.




Quantitative Results (Ref. to Table I, Table II)

TABLE II RTL-netlist functional equivalence prediction accuracy

(FEP) on different circuit sources

S MOSS MOSS MOSS

Circuit wio FAA | wio AA | wio A | MOSS
github_0 48 19.4 241 91.4
github_1 53 20.3 33.6 95.0
github_2 10.0 237 32.0 94.3
huggingface_0 7.9 16.4 19.5 94.1
huggingface_1 8.7 18.3 229 93.6
huggingface_2 141 21.1 27.5 93.5

[ Average | 85 | 199 [ 266 | 937

Bold numbers indicate the best performance for each circuit

All circuits are from public repositories (GitHub and HuggingFace)



Arrival Time (ATP): MOSS achieves an average of 95.2% accuracy, over 16% higher
than DeepSeq2. Maintains >94% even on large (>2000-cell) designs.

Toggle Rate (TRP): MOSS attains 87.5%, outperforming DeepSeq2 by about 11%.
Particularly strong in complex sequential circuits like signed MAC and pipeline
designs.

Power Prediction (PP): Up to 96.3% accuracy, leveraging global functional features
from LLM to better capture dynamic power factors.

Functional Equivalence (FEP): MOSS shows around 93.7% on public
GitHub /HuggingFace test sets, significantly outperforming ablation models.
Highlights the critical role of global alignment.

Ablation Studies: Removing feature enhancements, adaptive aggregators, or
local-global alignment all degrades performance, confirming each module’s
importance.
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Convergence Curves

Pre-Training Phase:

Overall and sub-task losses
steadily decrease, indicating stable
convergence.

Multi-Modal Alignment Phase:

RNC/RNM losses drop to very
low values within several epochs,
suggesting successful RTL-netlist
alignment.

GNN and LLM effectively learn
matching representations, ensuring
robust multi-modal embeddings.

) 2 61072
5 006 K "
g y -2 [\
= 0.04 g 410
3 2 5.10-2
£ 002 § 2-10
0 & 0
0 10 20 30 40 0 10 20 30 40
Training Epochs Training Epochs
(a) Total Loss (b) Probability Loss
0.004 % 06
£ o003 2 04
£ 0.002 )
ER g 02
& £
0 0

0

10 20 30
Training Epochs
() Toggle Loss

10

10 20 30 40

Training Epochs
(d) Arrival Time Loss

Fig.7 Loss for tasks over training epochs

1.32

13

128

Total Loss

RNC Loss

Trainir
(b) RNC Loss

0 5 10 15 20 25 30 35 40 45

Training Epochs
(c) RNM Loss

Fig.8 multi-modal alignment loss



Conclusion and Future Work

Key Contributions:

Joint LLM-GNN multi-modal framework for large-scale sequential circuits.
Adaptive aggregator + two-phase asynchronous propagation to capture
long-range temporal dependencies.

Local-global alignment for enhanced functionality and performance prediction.

Experimental Highlights:

Superior results in arrival time, toggle rate, power, and functional consistency
predictions.
Remains highly accurate (>94%) even for circuits over 2000 cells.

Future Directions:

More efficient fine-tuning strategies for LLM on larger RTL repositories.
Extending MOSS to layout, physical design, or model checking tasks to further
drive AI4EDA research.
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