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• Rise of AI in EDA: Deep learning has shown remarkable progress in Electronic
Design Automation in recent years, significantly influencing tasks such as synthesis,
placement, routing, and testing.

• Importance of Circuit Representation Learning: As neural networks become deeply
integrated in EDA workflows, effective representation learning is critical for
downstream predictions like timing, power, and testability.

• Challenges in Sequential Circuits: Modeling sequential circuits is more difficult
than combinational ones due to their statefulness and feedback paths. Existing
GNN-based approaches often suffer from long-range dependency issues in large
circuits.

• Multi-Modal Fusion:

• Large Language Models (LLMs) analyzing RTL may overlook gate-level details.
• GNNs on netlists face difficulty scaling to large sequential designs.
• Fusing these two modalities leverages both functional abstraction (from RTL)

and structural accuracy (from gate-level netlists).
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• Key Idea: Introduce MOSS, a framework that combines GNNs and LLMs for
multi-modal representation of sequential circuits:

• LLM extracts higher-level functional embeddings (especially around DFFs).
• GNN captures structural and timing dependencies across standard-cell netlists.

• Main Contributions:

• DFF Anchors: DFFs are treated as anchors to reduce long-range dependencies
in large designs.

• Adaptive Aggregator: Custom aggregator for diverse standard cells.
• Two-Phase Propagation: Forward and backward phases model temporal

feedback in sequential circuits.
• Local-Global Alignment: Node-level tasks (toggle rates, timing) plus global

functionality alignment with RTL.

• Performance Gains: The proposed approach significantly improves accuracy in both
functionality and performance predictions (e.g., arrival time, toggle rate), especially
for large circuits.
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• Challenge 1: Prediction accuracy
degrades on large sequential circuits
due to long-range dependencies in
GNN-based methods.

• Challenge 2: Infinite or extremely large
truth tables in sequential circuits make
it hard to form efficient functional
supervision.

• Motivation:

• DFFs can partition a sequential
design naturally.

• RTL offers higher-level semantics;
combining it with gate-level netlist
data can alleviate learning
complexity.
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Challenges and Motivation (Ref. to Fig.1 in Paper)
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• Multi-Modal Fusion of LLM and GNN:
• LLM provides semantically rich embeddings for critical nodes (e.g., DFFs).
• GNN models structural dependencies in the standard-cell netlist.

• Local-Global Alignment:
• Node-level tasks (e.g., toggle rate, arrival time).
• Global netlist-RTL alignment ensures functional consistency.

• Multi-Task Learning: Joint optimization over multiple objectives (timing, power,
functional equivalence).
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• LLM Fine-Tuning:

• Trained on over 31k RTL designs for better
understanding of register behavior and circuit
semantics.

• Node Feature Integration:

• DFFs: Combine corresponding register description
(from RTL) with standard cell descriptions to
obtain high-level functional features.

• Other Cells: Get embeddings from LLM based on
cell type, then concatenate with structural features.

• Advantages:

• Reduce Long-Range Dependencies: Strengthen
modeling around DFF anchor points.

• Improve Functional Supervision: Leverage RTL’s
global semantic embedding to guide GNN training.
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Semantic Enhancement via LLM
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Adaptive Aggregator:
• Standard cells exhibit diverse

functions. A clustering-based
approach (DBSCAN + hierarchical)
groups similar cells.

• Each cluster uses a dedicated
attention-based aggregator to
capture unique interactions more
effectively.
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Two-Phase Asynchronous Propagation:
• Forward Phase: Signal flows from PIs through combinational logic to DFF inputs.

• Backward Phase (Turnaround): Outputs from DFFs feed back into the circuit,
capturing sequential feedback loops.

• Multiple iterative rounds refine the stateful behavior within sequential circuits.
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Adaptive Aggregator and Two-Phase Propagation
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• Local Alignment:

• Tasks such as toggle rate (Etoggle) and arrival time (EAT) are supervised to
learn node-level behaviors.

• An RTL-to-DFF matching loss aligns register descriptions with actual netlist
DFF nodes.

• Global Alignment:

• RTL-Netlist Contrastive Loss (RNC) and Matching Loss (RNM) ensure overall
functional consistency and structural coherence.

• These global losses are computed via pooled embeddings of the entire netlist vs.
global RTL embeddings.

• Multi-Task Objective:
Ltotal =

∑
i

λi Ltaski

Balancing multiple losses guarantees both fine-grained accuracy and holistic
alignment.
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Local-Global Alignment Strategy
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• Datasets:

• 31,701 RTL designs, synthesized with Synopsys Design Compiler.
• Circuit sizes range from 100 to 5000 standard cells, ensuring diversity in scale

and functionality.

• Evaluation Metrics:

• ATP (Arrival Time Prediction), TRP (Toggle Rate Prediction), PP (Power
Prediction)

• FEP (Functional Equivalence Prediction): Checking RTL vs. netlist functional
consistency.

• Compared Methods:

• DeepSeq2 (state-of-the-art GNN),
• Ablation versions of MOSS without certain components.

• Implementation Details:

• PrimePower, VCS for ground truth of timing, toggle rates, power.
14

Experimental Setup and Metrics
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Quantitative Results (Ref. to Table I, Table II)
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Quantitative Results (Ref. to Table I, Table II)
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• Arrival Time (ATP): MOSS achieves an average of 95.2% accuracy, over 16% higher
than DeepSeq2. Maintains >94% even on large (>2000-cell) designs.

• Toggle Rate (TRP): MOSS attains 87.5%, outperforming DeepSeq2 by about 11%.
Particularly strong in complex sequential circuits like signed MAC and pipeline
designs.

• Power Prediction (PP): Up to 96.3% accuracy, leveraging global functional features
from LLM to better capture dynamic power factors.

• Functional Equivalence (FEP): MOSS shows around 93.7% on public
GitHub/HuggingFace test sets, significantly outperforming ablation models.
Highlights the critical role of global alignment.

• Ablation Studies: Removing feature enhancements, adaptive aggregators, or
local-global alignment all degrades performance, confirming each module’s
importance.
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• Pre-Training Phase:

• Overall and sub-task losses
steadily decrease, indicating stable
convergence.

• Multi-Modal Alignment Phase:

• RNC/RNM losses drop to very
low values within several epochs,
suggesting successful RTL-netlist
alignment.

• GNN and LLM effectively learn
matching representations, ensuring
robust multi-modal embeddings.
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Convergence Curves
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• Key Contributions:

• Joint LLM-GNN multi-modal framework for large-scale sequential circuits.
• Adaptive aggregator + two-phase asynchronous propagation to capture

long-range temporal dependencies.
• Local-global alignment for enhanced functionality and performance prediction.

• Experimental Highlights:

• Superior results in arrival time, toggle rate, power, and functional consistency
predictions.

• Remains highly accurate (>94%) even for circuits over 2000 cells.

• Future Directions:

• More efficient fine-tuning strategies for LLM on larger RTL repositories.
• Extending MOSS to layout, physical design, or model checking tasks to further

drive AI4EDA research.
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Conclusion and Future Work
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