MOSS: Multi-Modal Representation Learning on Sequential Circuits

Mingjun Wang^{1,2,3,4}, Bin Sun^{1,3}, Jianan Mu^{1,3}, Feng Gu^{1,2,3,4}, Boyu Han⁵, Tianmeng Yang⁶, Xinyu Zhang^{1,3}, Silin Liu^{1,3}, Yihan Wen⁷, Hui Wang⁴, Jun Gao⁴, Zhiteng Chao^{1,3,4}, Husheng Han^{1,3}, Zizhen Liu^{1,3}, Shengwen Liang^{1,3}, Jing Ye^{1,3,4}, Bei Yu², Xiaowei Li^{1,3}, Huawei Li^{1,3}

¹Institute of Computing Technology, CAS ²The Chinese University of Hong Kong ³University of CAS ⁴CASTEST Co., Ltd. ⁵Stanford University ⁶Peking University ⁷Beijing University of Technology Corresponding authors: mujianan@ict.ac.cn, lihuawei@ict.ac.cn

Figure 1. Overview of the MOSS framework

Introduction

- Deep learning has significantly advanced Electronic Design Automation (EDA), with circuit representation learning emerging as a key area
- Existing methods use either LLMs for RTL analysis or GNNs for netlist modeling
- Challenges: GNNs face difficulties with sequential circuits:
 - Long-range information dependenciesInsufficient functional supervision
 - Limited generalization capability

Figure 2. Challenges and motivations for sequential circuit representation learning

Our Solution: MOSS

- Integrates GNNs with LLMs for sequential circuit modeling
- Enhances DFF node features with LLM embeddings from RTL
- Introduces adaptive aggregation and two-phase propagation
- Achieves 95.2% accuracy in arrival time prediction

Problem Formulation

Sequential circuits modeled as directed graphs G = (V, E):

- V: circuit components (logic gates, DFFs)
- E: component connections

Goal: Learn node embeddings $\mathbf{H} \in \mathbb{R}^{|V| \times d}$ that encode both structural and temporal features:

$$\mathbf{H} = f(G, \mathbf{X}, \mathbf{T}) = f(V, E, \mathbf{X}, \mathbf{T}) \tag{}$$

where ${\bf X}$ represents structural features and ${\bf T}$ represents temporal features.

Key Tasks:

- Toggle rate/Power prediction
- Arrival time prediction
- Functional equivalence checking

MOSS Framework Overview

Key Components:

- 1. **LLM-Enhanced Node Features:** Fine-tuned LLM generates contextual embeddings for DFF nodes
- 2. **Graph Construction:** Netlist represented as directed graph with adaptive aggregators
- 3. Local & Global Alignment: Multi-task learning with specialized loss functions

Technical Innovations

1. LLM Fine-Tuning and Feature Enhancement

- Fine-tuned Yi-Coder-9B-Chat on 31,701 RTL descriptions
- Extract contextual embeddings for registers and logic cells
- Mean pooling to aggregate token embeddings

Figure 3. LLM feature extraction process

2. Adaptive Aggregator Design

- DBSCAN clustering based on LLM embeddings
- Different attention-based aggregators for each cell category
- Automatically adapts to various cell types

Figure 4. Adaptive aggregator with clustering

3. Two-Phase Propagation Mechanism

- Phase 1: Forward propagation from Pls to DFFs
- Phase 2: Turnaround propagation for feedback loops
- Asynchronous updates to model signal propagation

Experimental Results

Dataset: 31,701 RTL designs synthesized with Synopsys DC Circuit sizes: 100 to 5,000 cells

Table 1. Performance comparison on various metrics (%)

	Circuit	DeepSeq2			MOSS w/o FAA			MOSS w/o AA			MOSS w/o A			MOSS		
		ATP	TRP	PP	ATP	TRP	PP	ATP	TRP	PP	ATP	TRP	PP	ATP	TRP	PP
	max_selector	81.4	78.7	94.6	47.0	75.8	88.6	82.3	85.2	94.5	95.4	89.4	99.9	95.6	90.5	99.9
	pipeline_reg	77.6	83.6	91.4	52.2	63.6	63.4	80.5	88.3	90.2	94.2	92.1	94.1	94.5	92.4	94.6
ľ	mult_16x32	57.6	66.6	80.1	19.3	40.1	54.1	75.2	72.3	85.4	93.9	84.8	91.5	94.3	87.9	93.
	Average	79.1	76.4	88.4	45.6	57.1	75.1	80.3	81.0	90.7	94.9	87.0	95.1	95.2	87.5	96.3

Key Findings:

- MOSS achieves 95.2% accuracy in arrival time prediction and leads with 96.3% accuracy for power prediction.
- Significant improvement on larger circuits (e.g., mult_16x32: 94.3% vs 57.6%)
- Superior performance in functional equivalence checking (93.7% average)

Figure 5. Training loss curves showing effective convergence

Ablation Study Results:

- LLM features crucial: MOSS w/o FAA drops to 45.6% ATP
- Alignment important for FEP: 93.7% \rightarrow 26.6% without alignment
- Adaptive aggregator improves all metrics

Conclusion

- First multimodal framework combining GNNs and LLMs for sequential circuits
- Novel techniques: LLM-enhanced DFF features, adaptive aggregation, two-phase propagation
- Superior performance: Experimental results show that MOSS significantly boosts accuracy for tasks like toggle rate and arrival time prediction—95.2% arrival time prediction accuracy
- Addresses key challenges: Long-range dependencies and functional supervision
- Future impact: Opens new directions for AI-driven EDA research and multimodal EDA prediction

Acknowledgements

This work is supported by the Chinese Academy of Sciences (XDB0660102) and NSFC (62090024).