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Figure 1. Overview of the MOSS framework

Introduction

Deep learning has significantly advanced Electronic Design

Automation (EDA), with circuit representation learning emerging

as a key area

Existing methods use either LLMs for RTL analysis or GNNs for

netlist modeling

Challenges: GNNs face difficulties with sequential circuits:
Long-range information dependencies

Insufficient functional supervision

Limited generalization capability
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assign tmp_product = a_reg * b_reg

always @ (posedge clk) begin

    ...

    buffo <= tmp_product;

    ...

end
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Figure 2. Challenges and motivations for sequential circuit representation

learning

Our Solution: MOSS

Integrates GNNs with LLMs for sequential circuit modeling

Enhances DFF node features with LLM embeddings from RTL

Introduces adaptive aggregation and two-phase propagation

Achieves 95.2% accuracy in arrival time prediction

Problem Formulation

Sequential circuits modeled as directed graphs G = (V, E):

V: circuit components (logic gates, DFFs)

E: component connections

Goal: Learn node embeddings H ∈ R|V|×d that encode both struc-

tural and temporal features:

H = f(G,X,T) = f(V, E,X,T) (1)

where X represents structural features and T represents temporal

features.

Key Tasks:

Toggle rate/Power prediction

Arrival time prediction

Functional equivalence checking

MOSS Framework Overview

Key Components:

1. LLM-Enhanced Node Features: Fine-tuned LLM generates

contextual embeddings for DFF nodes

2. Graph Construction: Netlist represented as directed graph with

adaptive aggregators

3. Local & Global Alignment: Multi-task learning with specialized

loss functions

Technical Innovations

1. LLM Fine-Tuning and Feature Enhancement

Fine-tuned Yi-Coder-9B-Chat on 31,701 RTL descriptions

Extract contextual embeddings for registers and logic cells

Mean pooling to aggregate token embeddings
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DFF name: post_reg[0];
Description:
      post_reg[0] in the RTL code,
      all RTL code is: **RTL content**

module AND2X1 (Y, A, B);
  output Y;
  input A;
     and (Y, A, B);
endmodule

LLMfetch register name

module DFFHQX1 (Q, D, CK);
  output Q;
  input D, CK;
  reg NOTIFIER;
  supply1 xSN,xRN;
   ......
endmodule
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Figure 3. LLM feature extraction process

2. Adaptive Aggregator Design

DBSCAN clustering based on LLM embeddings

Different attention-based aggregators for each cell category

Automatically adapts to various cell types
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Figure 4. Adaptive aggregator with clustering

3. Two-Phase Propagation Mechanism

Phase 1: Forward propagation from PIs to DFFs

Phase 2: Turnaround propagation for feedback loops

Asynchronous updates to model signal propagation

Experimental Results

Dataset: 31,701 RTL designs synthesized with Synopsys DC

Circuit sizes: 100 to 5,000 cells

Table 1. Performance comparison on various metrics (%)

Circuit
DeepSeq2 MOSS w/o FAA MOSS w/o AA MOSS w/o A MOSS

ATP TRP PP ATP TRP PP ATP TRP PP ATP TRP PP ATP TRP PP

max_selector 81.4 78.7 94.6 47.0 75.8 88.6 82.3 85.2 94.5 95.4 89.4 99.9 95.6 90.5 99.9

pipeline_reg 77.6 83.6 91.4 52.2 63.6 63.4 80.5 88.3 90.2 94.2 92.1 94.1 94.5 92.4 94.6

mult_16x32 57.6 66.6 80.1 19.3 40.1 54.1 75.2 72.3 85.4 93.9 84.8 91.5 94.3 87.9 93.5

Average 79.1 76.4 88.4 45.6 57.1 75.1 80.3 81.0 90.7 94.9 87.0 95.1 95.2 87.5 96.3

Key Findings:

MOSS achieves 95.2% accuracy in arrival time prediction and

leads with 96.3% accuracy for power prediction.

Significant improvement on larger circuits (e.g., mult_16x32:

94.3% vs 57.6%)

Superior performance in functional equivalence checking (93.7%

average)
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Figure 5. Training loss curves showing effective convergence

Ablation Study Results:

LLM features crucial: MOSS w/o FAA drops to 45.6% ATP

Alignment important for FEP: 93.7% → 26.6% without alignment

Adaptive aggregator improves all metrics

Conclusion

First multimodal framework combining GNNs and LLMs for

sequential circuits

Novel techniques: LLM-enhanced DFF features, adaptive

aggregation, two-phase propagation

Superior performance: Experimental results show that MOSS

significantly boosts accuracy for tasks like toggle rate and arrival

time prediction——95.2% arrival time prediction accuracy

Addresses key challenges: Long-range dependencies and

functional supervision

Future impact: Opens new directions for AI-driven EDA research

and multimodal EDA prediction
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