DSPlacer: DSP Placement for FPGA-based CNN Accelerator
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Abstract—Deploying convolutional neural networks (CNNs) on hard-
ware platforms like Field Programmable Gate Arrays (FPGAs) has gar-
nered significant attention due to their inherent flexibility and parallelism.
Achieving optimal timing closure remains a critical challenge, as placement
directly impacts clock frequency and throughput. Existing approaches
often face scalability issues with large designs or fail to formalize
placement rules into automated algorithms. In this paper, we propose
DSPlacer, a novel DSP placement framework designed for diverse CNN
accelerator architectures in the context of FPGA design. The proposed
approach iteratively optimizes the placement of datapath DSPs to enhance
timing performance. To achieve this, DSPlacer integrates several advanced
techniques, including graph convolutional network-based datapath DSP
identification, DSP graph construction, min-cost-flow DSP assignment, and
integer linear programming (ILP)-based cascade constraint legalization.
These techniques collectively address two key requirements for datapath
DSP placement: (1) cascading datapath DSPs to achieve a compact layout,
and (2) preserving direct datapath information between the processing
system and programmable logic. The framework has been evaluated
on multiple academic benchmarks and compared against AMD Xilinx
Vivado 2020.2 and AMF-Placer 2.0. Experimental results demonstrate
that DSPlacer improves Worst Negative Slack (WNS) by 32% and 65%,
respectively, highlighting its efficacy and superiority.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have succeeded in various
computer vision applications. Field Programmable Gate Array (FPGA)
is a promising hardware platform to deploy the CNN model due to
its reconfigurability [1]-[3]. Besides, in modern FPGA, processing
systems (PSs) such as CPU and programmable logics (PLs) are
integrated into a device to further facilitate CNN deployment. In order
to deploy the CNN model on FPGA, logic synthesis, placement, and
routing need to be performed by taking a design described by a
hardware description language (HDL) as an input. Logic synthesis
converts an HDL of design into an optimized gate-level netlist. After
logic synthesis, the netlist consists of heterogeneous components, such
as lookup tables (LUTs), flip-flops (FFs), digital signal processors
(DSPs), random access memories (RAMs), and I/O pads. Placement
maps all heterogeneous components onto the FPGA and optimizes
some metrics, such as wirelength. Finally, routing determines the
precise wiring layout needed to connect the placed components.

Placement plays an important role since the location mapping of
components highly affects the final timing performance. In FPGA
design, the fixed positions of logic resources, as shown in Fig. 1(a),
constrain the mapping process, making it a highly complex combina-
torial optimization problem. Solving this problem is exactly NP-hard
due to the exponential number of possible mappings required to meet
timing and other design constraints.

Typical FPGA placement algorithms can be categorized into simu-
lated annealing and analytical methods. The simulated annealing-based
FPGA placement algorithms might lead to long placement runtime
when the input netlist is large [4]. In contrast, analytical-based methods
can achieve high scalability and quality [S]-[11]. However, these
analytical placement methods often result in suboptimal placements,
leading to detours routing, especially when applied to CNN accelera-
tors with wider bit widths.
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Fig. 1 (a) Xilinx UltraScale+ FPGA layout; (b) CNN architecture.

An intuitive method is using the datapath information in the place-
ment stage to alleviate detours [12]-[18]. Difterent from ASIC, FPGA
has a column-wise heterogeneous resource distribution, which brings
a challenge to datapath-driven placement. Previously, Koch et al cast
the placement of all components on regular datapath as a 0-1 integer
linear program (ILP) problem [19], [20]. However, this method has an
unacceptable running time when placing all heterogeneous datapath
components of the CNN accelerator on the modern FPGA. To reduce
running time, Kong er al propose to place processing engine (PE)
arrays instead of all datapath components by the ILP formulation.
Despite this effort, the empirically hierarchical design partitioning
causes timing degradation, compared with the FPGA commercial
tool [21]. Moreover, while these approaches incorporate regularity
into the placement process, they fail to account for datapath-specific
information, which is crucial for optimizing CNN accelerators.

In the CNN accelerator, the datapath primarily consists of regular
processing units (PU) responsible for computations, as shown in
Fig. 1(b). Each PU is composed of multiple PE arrays, which are
primarily implemented using DSPs [22], [23]. Therefore, leveraging
the DSP interconnection topology as a datapath provides a natural av-
enue for integrating it into FPGA placement. In [24], graph clustering
forms graph cliques, minimizing the width and height of the smallest
rectangle and bounding all DSPs. However, this approach struggles
to scale for large designs, such as CNN accelerators. Similarly,
in [25], empirical rules are proposed for DSP placement, such as
assigning PEs to DSP columns within a region. However, these rules
are not formalized into an automated algorithm. As computational
demands increase and design scales expand, traditional computational
architectures are insufficient. To overcome these challenges, advanced
architecture, such as systolic array, have gained attention, especially
in the CNN accelerator domain. The state-of-the-art systolic array
placement method, R-SAD [26], introduces a dedicated analytical
algorithm to exploit systolic array regularity fully, achieving signif-
icant wirelength reduction. However, its specialized nature limits its
applicability to CNN accelerators with more diverse architectures.

In this paper, we present a datapath-driven DSP placement frame-
work designed to support various FPGA-based CNN accelerator ar-
chitectures. To enhance timing performance, the framework focuses
on datapath DSP extraction and datapath-driven DSP placement. The



key contributions are summarized as follows:

o We introduce DSPlacer, a framework that iteratively enhances
datapath DSP placement by cooperating with state-of-the-art
placers.

o We propose a novel placement methodology incorporating graph
convolution networks (GCNs) for datapath DSP identification,
datapath graph construction, min-cost-flow DSP assignment, and
ILP-based cascade constraint legalization. This approach cascades
datapath DSPs to achieve a compact layout while preserving
direct datapath connections between the processing system and
programmable logic.

o We evaluate DSPlacer on multiple academic benchmarks, com-
paring it with AMD Xilinx Vivado 2020.2 and AMF-Placer 2.0.
Experimental results show that DSPlacer improves Worst Nega-
tive Slack (WNS) by 32% and 65%, respectively, demonstrating
its effectiveness and superiority.

II. PRELIMINARIES
A. FPGA Architecture

This paper focuses on the prominent Xilinx UltraScale+ architecture
[27] for heterogeneous FPGAs, having a column-wise heterogeneous
resource distribution. As shown in Fig. 1(a), the configurable logic
blocks (CLBs), digital signal processors (DSPs), and block random-
access-memories (RAMs) and IO components are variably arranged
across the FPGA fabric. Besides, PS, such as the CPU, is fixed and
placed at the bottom left of the device.

B. Problem Formulation

Our DSPlacer takes a pre-implementation netlist and DSP speci-
fications of a target FPGA as inputs. A pre-implementation netlist
defines the connections among various logic components, while the
DSP specifications indicate the available DSP locations on the FPGA.
Using our datapath DSP placement results as constraints, off-the-shelf
FPGA PnR tools are used to perform other component placement and
routing. We aim to maximize timing performance while ensuring all
component placements meet design rules. Our problem formulation is
formally defined as follows:

Problem 1 (DSP placement for FPGA-based CNN accelerator).
Given a pre-implementation netlist of the CNN accelerator and DSP
specifications, place all datapath DSPs in legal locations to maximize
timing performance after placing all other components and routing all
nets.

C. Overview

To address Problem 1, we propose DSPlacer, a DSP placement
framework tailored for FPGA-based CNN accelerators. Our DSPlacer
overall flow is shown in Fig. 2 and comprises two main stages:
datapath DSP extraction and datapath DSP placement, with our key
contributions highlighted in purple and green.

We take a pre-implementation netlist of the CNN accelerator and
DSP specifications as inputs. Firstly, we initialize the placement
of all components using the off-the-shelf FPGA placement tool to
generate an initial placement solution. Meanwhile, in the datapath
DSP extraction stage, a pre-implementation netlist is represented
as a graph, and a GCN are used to distinguish datapath DSPs
from all DSP components by embedding features for each node.
Then, a graph construction procedure is developed to transfer a pre-
implementation netlist to a datapath DSP graph, which only involves
DSP components with their potential datapath. In the datapath-driven
DSP placement stage, datapath DSPs and other components are placed
alternatively and iteratively. In particular, the placement of datapath
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Fig. 3 (a) Netlist; (b) Graph representation; (c) GCN configurations.

DSPs is first formulated as a 0-1 quadratic programming problem. To
reduce computational complexity, this formulation is further refined
into an MCF problem, where the unimodular property of the MCF
model guarantees integer solutions. Following this, to strictly enforce
cascade constraints, DSPs are legalized both inter-column and intra-
column using ILP. Once the DSP placement is finalized, DSPlacer
outputs the DSP placement results. Using our output DSP placement
results as constraints, the off-the-shelf FPGA PnR tool iteratively
places other components and performs routing to generate the final
layout. According to this flow as shown in Fig. 2, our DSPlacer can
account for datapath-specific information, resulting in improved timing
performance for FPGA-based CNN accelerators.

III. DATAPATH DSP EXTRACTION

This section details our datapath DSP extraction process, which
consists of two main steps: (1) graph representation and datapath
DSP identification and (2) datapath DSP graph construction. Given
a pre-implementation netlist, a well-trained GCN model is adopted to
identify datapath DSP, and a DSP graph guides the assignment step.

A. Graph representation and datapath DSP identification

A pre-implementation netlist can be represented as a graph G =
(V,¢&), as shown in Figs. 3(a) and 3(b). Let the node set V =
{v1,v2,...,v,} represents n components in the netlist, and the edge
set & = {e1,e2,...,en} represent m connections. Typically, there
are heterogeneous components in a pre-implementation netlist.

To identify the datapath DSP in a netlist, we formulate this task as a
node classification problem handled by the GCN framework. Starting
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Fig. 4 1. Closeness centrality of A is the reciprocal of the sum of 1,
2, 3, and 3. 2. Betweenness centrality of C is calculated as 1 + 1 +
14+ 0.5+ 0.5+ 0.5 = 4.5. 3. Eccentricity of B equals the distance
from B to F.

from the pre-implementation netlist, we conduct network analysis to
extract node features, including centrality metrics and connectivity
properties. The dataset is then split into training and test sets, and the
trained model is employed to identify datapath DSP nodes in unseen
netlists. Specifically, the model consists of two graph convolutional
layers, each with 32 hidden units, followed by three fully connected
layers with softmax activation. Dropout regularization is applied to
mitigate overfitting. The detailed configuration of the GNN model and
training setup is presented in Fig. 3(c). To address the class imbalance
in the dataset, a weighted loss function is utilized, assigning higher
penalties to minority class misclassifications based on class ratios.

Node features play a critical role in classification accuracy. In PADE
[28], datapath regularity is exploited by extracting graph automorphism
features to classify datapaths. However, while this method identifies
local regularities, it struggles to capture global graph properties,
which are critical for understanding datapath connectivity and overall
functionality. To address this limitation, our approach assigns each
node a feature vector « that captures both local and global graph
properties. Specifically, the feature vector includes: (a) closeness cen-
trality, (b) feedback loops, (c) eccentricity, (d) indegree, (e) outdegree,
(f) betweenness centrality, and (g) the average shortest path distances
to other DSP nodes. While most features apply to all nodes, the average
shortest path distance is unique to DSP nodes, representing the mean
distance to other DSPs. Indegree and outdegree quantify the number
of incoming and outgoing neighbors, while feedback loops commonly
represent control path feedback. By incorporating global and local
metrics, our approach offers a broader evaluation of graph properties.
Definitions and Fig. 4 for betweenness centrality, eccentricity, and
closeness centrality are provided.

Definition 1 (Betweenness Centrality). The betweenness centrality of
a node is the sum of the fraction of all pairs of shortest paths that
pass through this node.

It can be calculated as follows.

Ce(v)=

u;,uj €V

olus,u) o "

o(us, uy)

where o (u;, u;) is the number of shortest paths between nodes u; and
w;. o (us,uj)|lv is the number of those paths passing through the node
v, with v # u; and v # u;.

Definition 2 (Closeness Centrality). The closeness centrality of a node
is the reciprocal of the sum of the shortest path distances from this
node to all other nodes in the network.

It can be calculated as follows.
1

Cel) = = Tou)’

@

where d(v,u) is the shortest path distance from node v to node wu,
with v # u.

Definition 3 (Eccentricity). The eccentricity of a node is the maximum
shortest path distance from this node to any other node in the network.

It can be calculated as follows.
ecc(v) = max d(v,u), 3)

where d(v, u) is the shortest path distance from the node v to the node
u, with v # u.

Betweenness centrality measures how frequently a node acts as an
intermediary along the shortest path between any two other nodes in
the network, highlighting its role in information flow. As observed in
[29], control logic DSPs, which direct signals to manage datapath
blocks, typically have higher betweenness centrality than datapath
DSPs. Closeness centrality, inversely proportional to the average
distance to all other nodes, is generally higher for control path DSPs
due to the extensive signals they receive. In contrast, eccentricity tends
to have values for datapath DSPs that are more distributed towards
either the higher or lower extremes of the overall range, reflecting the
distributed placement for localized computations.

B. Datapath DSP graph construction

To construct the DSP graph, we perform a search algorithm directly
on the netlist to capture the datapath of DSPs and compute their
average shortest path distances. Common search algorithms such
as Depth-First Search (DFS) and Breadth-First Search (BFS) face
limitations in this context: DFS may fail to find the shortest paths,
while BFS has high space complexity, making it impractical for
large-scale netlists. To address these issues, we adopt an Iterative
Deepening Depth-First Search (IDDFS) method, which combines the
space efficiency of DFS with the ability to identify shortest paths.
This algorithm ensures efficient traversal and supports the accurate
construction of the DSP graph.

The construction procedure begins with a netlist traversal to extract
all DSP nodes. IDDFS is then applied to each DSP node to compute
the shortest paths to other DSPs, recording the paths, the cell type,
and the number of cells along each path. This information is then
used to construct a DSP graph, retaining only DSP nodes and their
connectivity. The resulting graph effectively captures the topology
and shortest path distances among DSPs, embedding critical dataflow
information for downstream tasks.

However, after constructing an initial DSP graph, a refinement step
is necessary. Initial DSP graphs include both datapath DSPs and others,
such as control path DSPs. Incorporating control path DSPs into the
DSP graph placement can result in a less compact datapath layout,
potentially degrading the improvements in timing performance. Our
observations reveal that control path DSPs are typically associated
with more storage elements, such as flip-flops and RAMs, which
facilitate signal holding and allow for greater placement flexibility and
less compactness. In contrast, datapath DSPs, characterized by fewer
storage elements, require tighter placement to maintain performance.
Based on this insight, DSPlacer retains only the datapath DSPs
identified by the GCN and removes the others from the DSP graph.
This ensures that datapath DSP placement is prioritized for a more
compact and efficient layout. After the datapath DSPs are placed, the
placement of control path DSPs is handled by standard PnR tools,
ensuring a balanced and effective placement strategy.

IV. DATAPATH-DRIVEN DSP PLACEMENT

In this section, we introduce a datapath-driven DSP placement strat-
egy. Our approach primarily encompasses (1) datapath DSP placement
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and (2) datapath DSP legalization. Utilizing the datapath DSP graph,
an optimization technique is employed to allocate DSP locations. Then,
a subsequent legalization process is applied to ensure strict compliance
with the cascade constraints.

A. Datapath DSP placement

In an FPGA device, we assume that there are M DSP locations
and each with coordinate (pg,;,py,;), where j € {1,2,--- , M}
represents the index of each DSP location. Unlike ASIC placement,
DSP placement is an assignment problem. In this context, all DSP
components in the design netlist must be mapped to specific DSP
locations within the device to optimize timing performance. We
introduce binary variables x; ; € {0,1} to represent the mapping of
each DSP component to a location. Specifically, if x; ; = 1, the i-th
DSP component is mapped to the j-th DSP location in the device,
where ¢ € {1,2,--- ,N}, and j € {1,2,--- ,M}. N is the number
of datapath DSP components in the netlist identified in Section III and
M is the number of available DSP locations in the device. N < M
ensures that all DSP components can be placed within the device.
Therefore, we intuitively identify two constraints, as follows.

M N
Zl’i,j =1, Z-sz <1, @
=1 i—1

where the first constraint ensures that each DSP component must
be mapped to a DSP location, and the second states that each DSP
location can be occupied by at most one DSP component.

In addition to constraint (4), DSP macros must also be considered.
DSP components within the same macro must be assigned to adjacent
positions within the same column. Assume that the DSP location list is
sorted in ascending order of coordinates, such that adjacent locations
within the same column have consecutive indices. This enables us to
express the cascade constraint as follows.

Vee C, &)

Lep,j = Tes,j+1s

where C' denotes the set of cascaded DSP component pairs within
DSP macros, with ¢, and ¢, as the predecessor and successor indices
of each pair, respectively. The constraint (5) ensures that each pair of
cascaded DSP components and their corresponding locations are either
simultaneously placed or not placed.

In addition to the constraints above, we incorporate datapath in-
formation as observed in Fig. 5(a). In modern FPGA devices (e.g.,
Xilinx ZCU104), the PS is fixed at the bottom-left corner. Data buses
transferring from PS to PL are located above the PS, while those from
PL to PS are on the right. This layout forms an ideal datapath from the
top to the right of the PS. To facilitate smooth routing, we encourage
the angle of the predecessor DSP location to be larger than that of the
successor for each DSP graph edge. Using the cos function, the soft
datapath constraint is formulated as follows.

cosbep,, < cosbep,, (6)

— M o 2 2 i
where cosfep, = D ;7 Tep,.iPe.j/\/P7; + Py ; is the cosine

angle between the predecessor and horizontal line, and cosf.,, =
E;Vil Tep,,jPe,i/\/Pa; + P2 ; is the cosine angle between the suc-
cessor and horizontal line. However, different from constraints (4) and
(5), we take the datapath constraint as a penalty term in the objective
to encourage datapath DSP placement to satisfy our desired datapath.

Under the constraints defined in (4) (5) and penalty term in (6),
our objective in datapath DSP placement is to minimize the distance
between any two connected datapath DSP components and between
a datapath DSP component and any fixed-location component. Thus,
our mathematical formulation is defined as follows.

min » "(x., — xe,) (PsPs +PyPy ) (Te, — Te,)

Fing ecé
+ A Z (cosbep, —cosbep,)
ep€ép (7)
M-1
2
A0 Y (@ep — Tew1)s
ceC j=1

st.  (4),x;,; € {0,1}.

where £ denotes the edge set in the netlist graph and €p denotes
the edge set in the datapath DSP graph. x., and x., represent
the assignment variables for any two connected components via an
edge in the netlist graph. Note that x., or x., is constant if the
corresponding component is not a datapath DSP. These variables
will be determined by the off-the-shelf FPGA placement tool. p,
(py) denotes the x (y) coordinate value vector for DSP locations.
Ocp, (Ocp,) represents the angle between the horizontal line and
the predecessor (successor) of the datapath DSP for the edge e in
the datapath DSP graph. z; ; represents the scalars in @., and ;.
A is a hyperparameter that controls the trade-off between distance
and datapath effort. > . ZjM:Il(mcp,j — ¢, j+1)° indicates that
constraint (5) has been relaxed to penalty, where 7 is the penalty factor.
We rewrite Formulation (7) as follows.
N M N M N M
min D >N s Tpa FAY Y CiTig,
T 21 j=1 p=1g=1 i=1j=1 ®)

st 4,z €{0,1}.

where a; j p,q and c; are quadratic and linear coefficients, respectively.

An ILP solver can solve Formulation (8) by replacing each quadratic
term with a binary variable and adding artificial constraints. However,
as the design scale increases, the variables grow significantly, leading
to prohibitive runtimes. Inspired by [30], we adopt the following
heuristic to linearize term x; ; - xp,q and solve iteratively.

’ ’
Qi,5,p,q%i,jTp,q = §ai,j,p,q(xi,j$p,q + xi,jxp,q): ©)

where x;J and :c;,,q are the values of z;; and z,, from the
previous iteration. Using the linearization technique in Equation (9),
the objective function in Formulation (8) is a weighted sum of all
the x;,;, which can be solved through a min-cost network flow model
[30]. The weighted sum of x; ; variables can be viewed as several
assignments from DSP components to DSP locations, with constraint
(4) integrated into the flow model by specifying edge capacities.

B. Datapath DSP legalization.

In Section IV-A, the cascade constraint (5) is introduced and relaxed
into a penalty term within the MCF formulation as a soft constrain.
However, while constraint (5) can be satisfied by finding the optimal
solution to formulation (7), the linearization method does not guarantee
optimality, and violations of the constraint may therefore occur. To
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Fig. 6 Incremental Datapath DSP Placement.

address these violations, we introduce a legalization process as a
post-processing stage to refine the results obtained from the MCF
model. The goal is to enforce cascade constraints while minimizing
wire length overhead and preserving the datapath, as guided by the
penalty term in (6). To do that, DSP components are adjusted to
remain close to their original positions. As shown in Fig. 5(b),
the legalization process involves two sequential steps: inter-column
legalization to adjust placements across columns, followed by intra-
column legalization to refine placements within each column.

For inter-column legalization, we minimize the horizontal
displacement by solving the following ILP problem.

N Necoi

r{}lJnZ Z Dcol(i,j)ti,j, (10)

i=1 j=1

Neot N

S.t. Z ti; = 1, Zti’j < Mj, (10a)
i=1 i=1
tepj = teoj, Vce€C, (10b)

ti,; € {0,1},

where t; ; is a binary variable indicating the column to which the DSP
component is assigned. N, denotes the number of columns on the
device. Do (%, j) denotes the horizontal distance between the newly
assigned column and the original column if the i-th DSP component
is assigned to the j-th column. t., ; (t,,;) denotes the variable for
the predecessor (successor) of the cascaded DSP component pairs,
and M; denotes the number of DSP locations in the j-th column.
Constraints (10a) (10b) ensure the solution satisfies constraints (4) (5)
at the column level. Since the number of DSP columns is much smaller
than the number of DSP locations, the ILP solver remains efficient.
For intra-column legalization, we process each column in parallel
and minimize the vertical displacement. For the j-th column, assume
that the indices of the DSP components in the column are consistent
with the order after sorting by vertical locations. DSP components
within a macro are sorted by the average vertical location of the
corresponding macro, while other DSP components are sorted by their
individual vertical locations. We then solve the formulation below:

Nj
rriin Z |ri — Reot(3)], (11)
vog=1

st m € {1,2,..., M;},
Titl — T3 = 1,V(i,i+ 1) € Cj,
rig1 —r > LY( i+ 1) ¢ Cj,

(11a)
(11b)

where r; is an integer variable that indicates the row index of the
location to which the i-th DSP component in the column will be

TABLE I Benchmarks detail.

Design #LUT #LUTRAM  #FF  #BRAM | #DSP DSP% | freq.(MHz)
iSmartDNN | 53503 2919 55767 122 197 11% 130.0
SkyNet 43146 2748 51410 192 346 20% 150.0
SkrSkr-1 35743 3611 53887 196 642 37% 195.0
SkrSkr-2 70558 3815 64007 196 1180 68% 175.0
SkrSkr-3 70382 3791 67257 196 1431 83% 175.0

SVM[28] GCN .

iSmartDNN 80% 881% g — Training |5g 2
SkyNet 85% 90% %1 —— Testing g
SkrSkr-1 96% %% =, ‘ ‘ Jop =
SkrSkr-2 69% 95.5% 0 100 200 300
SkrSkr-3 78.7% 96.6% Epoch
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Fig. 7 (a) Datapath DSP identification comparison; (b) Training and
Testing.

assigned. N; denotes the number of DSP components in the j-th
column, R.q;(?) denotes the original row index of the i-th DSP
component in the j-th column and C; represents cascaded DSP
component pairs within the j-th column. Constraint (11a) ensures
that the successor is placed immediately after the predecessor in
the cascaded pairs, and constraint (11b) allows space between non-
cascaded DSP components while preventing overlap.

In the datapath DSP placement stage, as shown in Fig. 6, our
placement is performed incrementally, alternating between placing
datapath DSPs and other components in each iteration. During each
iteration, we first fix the positions of the other components and place
all the datapath DSPs, then fix the positions of the datapath DSPs and
place the remaining components. This method incorporates datapath
information while alleviating detours caused by the datapath-driven
approach.

V. EXPERIMENTAL RESULTS
A. Target Device, Benchmark and Environment

In the DSPlacer framework, the datapath DSP extraction and DSP
assignment tasks are relatively independent. To facilitate implementa-
tion, the datapath DSP extraction was developed in Python, utilizing
the NetworkX [31] library for graph construction and the PyTorch
[32] Geometric library for the graph learning model. For the DSP
assignment, we implemented the MCF in C++ and used the Lemon
solver [33] for assignment tasks. The cascade legalization after MCF
was solved using Gurobi [34]. For placement, routing, and timing
analysis of other components, we employed AMF-Placer 2.0 [11], [35]
and Xilinx Vivado 2020.2. Since Vivado lacks a built-in wirelength
calculation function, RapidWright [36] was used to compute the
wirelength. All experiments were conducted on a Linux machine with
10 cores, targeting the Xilinx Zynq UltraScale+ MPSoC ZCU104
FPGA. It is worth mentioning that AMF-Placer 2.0, as an academic
open-source placer, originally only supported the Xilinx VCU108
platform. Significant effort was dedicated to adapting it for ZCU104.
The benchmarks include several designs from the DAC System Design
Contest: iSmartDNN [37], SkyNet [38], and SkrSkr [39].

B. GCN model training and performance

Our classification methodology leverages global graph properties
to capture structural importance and node connectivity within DSPs,
forming a robust basis for classification. In contrast, PADE [28] only
employs automorphism-based features to extract datapath regularity.
To evaluate the model, we adopt a leave-one-out strategy across five
benchmarks: four benchmarks are used for training, and the resulting



TABLE II Experiment Result.

Vivado AMF DSPlacer
Benchmark WNS (ns) TNS (ns) HPWL (um) Runtime (s) | WNS (ns) TNS (ns) HPWL (um) Runtime (s) WNS TNS HPWL (um) Runtime (s)
iSmartDNN -0.131 -0.391 2965232 771 -0.830 -649.995 5152227 1552 0.151 0 3107487 865
SkyNet -0.164 -7.765 3482155 868 -0.154 -3.557 3633692 970 0.189 0 3878462 940
SkrSkr-1 -0.587 -97.799 2488788 775 -0.883 -4043.358 3384970 691 -0.164  -109.042 4473110 701
SkrSkr-2 -0.597 -826.739 3700116 1091 -1.865 -16672.268 8809141 4486 0.009 0 4489697 2462
SkrSkr-3 -0.216 -21.417 4034489 1232 -0.786 -804.950 6104589 3329 0.007 0 4912782 1755
Normalize ‘ 1.325% 1.042x 0.550x 0.485x ‘ 1.658x 1.103x 1.446 x 2.145x% ‘ 1.000x 1.000x 1.000x 1.000x

model is tested on the remaining benchmark. This process is repeated
for all benchmarks to ensure comprehensive evaluation. Our GCN-
based approach achieves an average accuracy of 96%, significantly
outperforming PADE’s SVM-based model, which achieves around
81% accuracy on average, as shown in Fig. 7(a). Additionally, an
accuracy curve is presented in Fig. 7(b). These results underscore
the advantages of global centrality features over local automorphism-
based methods, showcasing superior classification performance and
adaptability for node classification in netlists.

C. Placement setting

To evaluate the performance of DSPlacer across varying DSP
counts, we extended the SkrSkr benchmark suite by incorporating a
broader spectrum of DSP configurations, resulting in three distinct
benchmarks: SkrSkr-1, SkrSkr-2, and SkrSkr-3. Our experiments uti-
lize five benchmarks with DSP counts ranging from 197 to 1431,
as detailed in TABLE 1. To demonstrate the advantage of DSPlacer,
we first use Vivado for placement while progressively increasing the
clock frequency for each benchmark until a negative WNS is observed.
At the same frequency, DSPlacer is then employed for placement.
If DSPlacer avoids negative WNS under the same conditions, its
advantages are validated. Furthermore, the number of iterations of
DSPlacer’s internal MCF algorithm is set to 50. The hyperparameter
A, which governs the trade-off between minimizing distance and
preserving datapath integrity, is set to 100 based on the experiment.

D. Placement performance comparison

To evaluate the timing improvements achieved by DSPlacer, we
report post-route PPA metrics, including routed wirelength, setup
WNS, TNS, and total runtime, as summarized in TABLE II. While
AMF is tailored for the VCU108 platform, its performance, and adapt-
ability to other platforms, such as ZCU104, is limited. For WNS and
TNS, DSPlacer achieves improvements of 65% and 10%, respectively,
with reduced wirelength and runtime. Compared to Vivado, DSPlacer
improves setup WNS by an average of 32.5% and up to 60% in the
benchmark case SkrSkr-2, at the cost of an additional half runtime
and HPWL. These results demonstrate that DSPlacer delivers superior
WNS and TNS performance compared to Vivado and AMF-Placer
while offering greater universality and robustness than AMF-Placer.

E. Analysis, Profiling, and Visualization

The timing improvement achieved by DSPlacer derives from sat-
isfying two critical datapath placement requirements: (1) cascading
datapath DSPs to create a more compact layout and (2) preserving the
datapath information between PS and PL. These optimizations signif-
icantly reduce total WNS. However, the trade-off for the compactness
is a slightly increased routing time due to a medium congestion level.

Fig. 8 presents the runtime breakdown of DSPlacer on iSmartDNN
and SkyNet. The prototype placement solution and other component
placements dominate the total runtime (90.61% for iSmartDNN and
88.31% for SkyNet), whereas datapath DSP extraction and datapath-
driven DSP placement account for only about 2% of the total runtime.

919 9 %
0.91% 746% o, T

== Others.
Datapath DSP extraction.

== (Other component placement.

88.31%
(2) (b)
Fig. 8 Runtime profiling: (a) iSmartDNN and (b) SkyNet.

(b)

Fig. 9 Datapath visualizations of the SkrSkr-1 placement layout within
different design tools: (a) Vivado, (b) AMF, and (c) DSPlacer.

Fig. 9 visualizes the post-route layouts of SkrSkr using different
placement tools. Compared to Vivado, DSPlacer produces a more
compact and regular datapath layout. While AMF achieves a compact
layout similar to DSPlacer, it fails to maintain the datapath information
between PS and PL, resulting in a disordered datapath.

VI. CONCLUSION

In this paper, we propose DSPlacer, a DSP placement frame-
work for FPGA-based CNN accelerators, designed to enhance timing
performance. DSPlacer combines GCN techniques with optimization
methods to address the challenges of DSP placement. Specifically, the
framework extracts datapath DSPs and their shortest path information
to enable precise identification of critical DSP nodes. The placement
optimization process is formulated as a 0-1 integer programming
problem, further simplified into a min-cost-flow model to improve
computational efficiency. By integrating datapath-specific information
into the placement stage, DSPlacer complied with cascading con-
straints while ensuring timing closure. Experimental results show a
32% improvement in WNS compared to Vivado and a 65% improve-
ment over AMF. These results highlight the framework’s ability to
achieve substantial timing performance improvements.
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