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Introduction Timing Feature Disentanglement and Alignment
We propose a transfer learning framework that leverages extensive data at the preceding node and limited Uy ~~—_ ur C
data at the target node to enhance the performance at the target node. — {I . I} :) %
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Time Prediction Figure 4. Timing path feature alignment.

:F__I‘ :::ﬂb- Tam netlis We further adopt two loss functions as the objectives to disentangle the different features:
- E— o Path ID Node-based contrastive loss: Pull together the features from the same node and push apart the features
(b) from different nodes.
Figure 1. (a) Trained on limited 7nm netlist data; (b) Trained on both limited 7nm netlist data and 130nm netlist data. Design-based discrepancy loss: Close the gap between design-based features from different technology
nodes.
Challenges:
| | | | . Bayesian-based Timing Prediction
= Netlist data consists of two kinds of knowledge: node-dependent (standard cell information) and y 9
design-dependent (functionalities). These two kinds of knowledge are highly intertwined in the netlist
graph, making it difficult to leverage the common and transferable parts across different nodes. u® @ Concatenation
= The arrival time values of different timing paths can vary dramatically, even by one or two orders of © Monte Carlo Sampling
magnitude, which poses significant challenges for the ML-based regression model.
= The limited target node data makes the timing predictor susceptible to overfitting the training designs, R R R
which hinders the broad application of the learned model e MatMlﬂ—’{yl T 'yK}—’y
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Framework Overview Figure 5. Timing path feature alignment.

Our framework consists of three parts:
= Modeling the final fully-connected layer as a distribution.

= Optimizing the evidence lower bound (ELBO).
= For the target technology node, using the node-based feature from the target node and the

= Timing Path Feature Extractor
= Timing Feature Disentanglement and Alignment

" Bayesian-based Timing Prediction design-based feature from both nodes as the prior.
Feature Bayesian-based .
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i =N u | S Dataset Statistics:
D- SN —>| MLP |—> \ | Table 1. Statistics of the dataset (edp stands for endpoint, e,, and e, denote net edge and cell edge, respectively)
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Figure 2. Overview of the method. Timing path feature alignment is only computed during the training stage. chacha nm 35687 1986 25117 23083
test  hwacha nm 1357798 61313 985057 922085
or1200 Tnm 1165114 172401 844443 658961
: .. sha3 Tnm 794720 60323 552021 485596
Multimodal Timing Path Feature Extractor e AN Tam&l30mm 511153 25772 380623 264731
5 test Tnm 679558 59705 487941 423802
= \We first collect two types of input: the netlist graph ‘H and the layout image set X. Main results:
= We construct H as a heterogeneous graph with two types of edges: the net edge connecting a net’s | |
drive pin and one of its sink pins, and the cell edge connecting one of a cell’s input pins and its output Table 2. The evaluation results on 7nm netlist data.
PIn. Baseline | DAC23 [3]-AdvOnly | DAC23 [3]-SimpleMerge  DAC23 [3]-ParamShare [5] | DAC23 [3]-PT-FT [1] Ours
= Then, we use a GNN to propagate on H from the primary inputs to the endpoints to obtain the R%score runtime |R?score  runtime | R?score runtime R?score runtime | R?score runtime
feature for each timing path g/. arm9 0.603 2.546 -2.069 2.546 0.567 2.546 0.837 2.546 0.864 2.621
. M il ‘ H timi th with th o ti the | £ . chacha | 0.624 1.188 -1.983 1.188 0.568 1.188 0.726 1.188 0.890 1.234
Canwhnlie, we mask each iming path wi € piniocations On the 1ayout IMmage and use d hwacha | 0.170 5229 | -2.203 5.229 0.499 5.229 0.818 5229  0.828 5.400
convolution neural network (CNN) to extract the features of the timing path there. or1200 | 0156  14.257 | -6.037 14.257 0.240 14.257 0209 14257 @ 0.682 14.793
sha3d 0.425 1.690 -4.741 1.690 0.195 14.257 0.284 1.690 0.785 1.725
The final feature can be denoted as: average | 0.396 4982 -3.407 4982 0.414 4982 0.575 4982 0.810 5.154
u = F(G) = [GNN(H),CNN(X)] € R™. (1)
References
Endpoint- Endpoint-
Netlist wise Netlist wise Layout Layout
Embeddings Embeddings [1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language

[ understanding. In Proc. NAACL, 2019.
[2] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proc. ICLR, 2014.

-> c o -> ¢ o <€ oo <€ (3] Ziyi Wang, Siting Liu, Yuan Pu, Song Chen, Tsung-Yi Ho, and Bei Yu. Restructure-tolerant timing prediction via multimodal fusion. In Proc. DAC,
. . 2023.
) (4] Zehao Xiao, Xiantong Zhen, Ling Shao, and Cees GM Snoek. Learning to generalize across domains on single test samples. In Proc. ICLR, 2022.
== Mess.age 5] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection by deep multi-task learning. In Proc. ECCV, 2014.
Passing Feature

Concat

ACM/IEEE Design Automation Conference (DAC) 2024, San Francisco




