
Efficient ILT via Multigrid-Schwartz Method
Shuyuan Sun

1,2
, Fan Yang

1,2∗
, Bei Yu

4
, Li Shang

1,3
, Dian Zhou

5
, Xuan Zeng

1,2

1
State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China

2
School of Microelectronics, Fudan University, Shanghai, China

3
China and Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China

4
Chinese University of Hong Kong, Hong Kong, China

5
University of Texas at Dallas, Texas, USA

Abstract

Inverse Lithography Technology (ILT) is an important Resolution

Enhancement Technology (RET) in chip manufacturing. Due to the

high computational demands of ILT, large-scale layouts are typically

partitioned into smaller tiles for independent processing. In this

paper, we propose a multigrid-Schwarz method to overcome chal-

lenges in tile assembly. Experimental results show that our approach

achieves comparable performance to the full-chip ILT, offering in-

creased parallelizability and speedup in parallel mode. Unlike the

traditional divide-and-conquer algorithm, it effectively alleviates

discontinuities of tile stitching, preventing manufacturing failures.

1 Introduction

As feature sizes continue to shrink while the wavelength of light

sources remains unchanged, achieving advanced processes becomes

increasingly challenging, demanding more powerful Resolution En-

hancement Techniques (RETs). In this context, Inverse Lithography

Technology (ILT) is gaining more attention as one of the most crucial

RETs. Given the intensive computational demands of full-chip ILT, a

prevalent approach involves partitioning the large-scale layout into

smaller tiles. These tiles are individually optimized and subsequently

assembled to obtain a correction solution for the entire layout.

Considerable efforts have been devoted to enhancing the quality

and efficiency ofmask optimization on individual tiles [1–4], whereas

research on full-chip mask optimization remains relatively limited.

Due to the non-uniqueness of ILT results, where different mask

graphics can yield the same lithographic output, there is no assurance

that graphics on both sides of the boundary will converge to the

same position. This discrepancy may lead to significant mismatches

and suboptimal solutions at the boundaries. Furthermore, as ILT

simultaneously optimizes both sub-resolution assist features (SRAF)

and main features, the mismatch issue is further exacerbated, as

depicted in fig. 1. Hence, tile assembly poses the most significant

challenge for full-chip mask optimization.

Various methods have been proposed to tackle boundary mis-

matching. In [5], the error norm is calculated within the overlapping

region of tiles and the final results are selected based on the error.

In [6], a ‘stitch-and-heal’ methodology is proposed to re-optimize

the region near the stitching boundary. However, it also introduces

*Corresponding author: yangfan@fudan.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00

https://doi.org/10.1145/3649329.3657309

(a) Mask (b) Litho differ from target

Figure 1: Severe mismatch on the boundary.

new partition boundaries, potentially leading to new mismatching

errors at boundaries. Additionally, they both requires additional

rounds of ILT, substantially extending the runtime. In [7] and [8],

a pattern library is constructed to improve runtime efficiency and

graphics consistency. However, when dealing with metal layers con-

taining many complex shapes, extracting template patterns becomes

notably challenging. In [9], a dedicated ILT computing device is

constructed, utilizing thousands of GPU/CPU pairs to emulate a

single giant GPU/CPU pair. In [10], a pipelined approach for ILT is

proposed, enabling the achievement of full-chip ILT using limited re-

sources. However, such a configuration has a high computation cost.

The communication between GPUs poses significant engineering

challenges, introducing a multitude of complexities.

The goal of this work is to tackle the aforementioned challenge

in large-scale ILT, to achieve correction results with seamless conti-

nuity in a cost-effective manner while retaining a certain degree of

parallelism. To this end, the proposed ILT framework comprises a

multigrid method for performing ILT at multiple scales, a modified

additive Schwarz method for addressing boundary mismatches, and

a multi-color multiplicative Schwarz method for refining the final

results. Specifically:

Parallelism and runtime efficiency. Inspired by the multigrid

method [11], computing an approximate solution on a coarse grid

facilitates communication between tiles without compromising par-

allelism. In our proposed method, coarse-grid ILT is independently

and parallelly executed. The coarse grid covers a larger area and

results in fewer partitioned tiles from the layout, enabling a faster

generation of an initial solution and reducing tile stitching. There-

fore, the multigrid method not only accelerates the process, but also

mitigates mismatches at tile boundaries. Following the coarse-grid

ILT, a fine-grid ILT is utilized to achieve more precise correction

solutions. We employ a modified Additive Schwartz method [12] to

break down the entire fine-grid ILT process into several stages. At

the end of each stage, communication takes place between adjacent

tiles to avoid mismatches at the boundaries. At last, we employ a

multi-color multiplicative Schwartz method to refine the results.

Through a limited number of tile-to-tile communications, we can

maintain a certain degree of parallelism in a cost-effective manner.

https://doi.org/10.1145/3649329.3657309


Continuity of boundaries. Bad continuity of tile boundaries can

lead to manufacturing difficulties. First, we introduce a metric to

quantitatively evaluate the continuity of stitching boundary. Then,

we propose to combine the Schwartz method [12] with a weighted

smoothing algorithm [13] from the field of image stitching to im-

prove the continuity of boundaries. Experimental results show that

our methods greatly improve the mask continuity on our designed

metric by more than 3.15×, and is comparable to the results obtained

by the expensive full-chip ILT.

The rest of the paper is organized as follows. In Section 2, we

present the background of lithography simulation and give the prob-

lem formulation. In Section 3, we propose the multigrid-Schwartz

ILT method for boundary correction. In Section 4, experimental

results are presented. In Section 5, we conclude the paper.

2 Background

2.1 Lithography Model

The transformation from mask image𝑴 ∈ R𝐻×𝑊 to wafer image

𝒁 consists two models: the lithography model and the photoresist

model. The lithography model transforms the mask image 𝑴 to

the aerial image 𝑰 , which can be approximated by the Hopkin’s

model [14] as shown in Equation (1).

𝑰 (𝑥,𝑦) ≈
𝑁𝑖∑︁
𝑖=1

𝑤𝑖 ∥𝒉𝑖 (𝑥,𝑦) ⊗ 𝑴 (𝑥,𝑦)∥2, (1)

where 𝒉𝑖 ∈ R𝑃×𝑃 represents the 𝑖𝑡ℎ optical kernel, and 𝑤𝑖 is the

corresponding weight. 𝑁𝑖 is the total number of kernels used for

simulation. ⊗ denotes the convolution operation. It is proved that

convolution in the spatial domain is equivalent to multiplication in

the frequency domain. Therefore, computational efficiency can be

further improved by using the fast Fourier transformation (FFT), as

shown in Equation (2).

𝒉𝑖 (𝑥,𝑦) ⊗ 𝑴 (𝑥,𝑦) =F −1𝑁 (𝑯𝑖 ⊙ [F𝑁 (𝑴)]𝑃 ) , (2)

where F and F −1 represent FFT and inverse FFT, respectively. 𝑯𝑖 is

the representation of 𝒉𝑖 in the frequency domain and is also referred

to as the transmission cross-coefficient (TCC) kernel. [·]𝑃 represents

the extraction of the low-frequency portion of size 𝑃 × 𝑃 from a FFT

spectrum of size 𝑁 × 𝑁 .

Our litho-simulation tool, obtained from the ICCAD 2013 compe-

tition [15], is designed for layouts of size 𝑁 × 𝑁 , where 𝑁 = 2048.

The FFT spectrum corresponding to the provided TCC kernel 𝑯𝒊 is

sampled with a minimum interval of 1/𝑁 . While convolution does

not impose restrictions on the size of the input image, we cannot di-

rectly apply 𝑯𝒊 to larger layouts. Based on the convolution theorem,

we derived Equation (3) from Equation (2) to calculate the aerial

image for a larger layout. To obtain the frequency corresponding to

𝑯𝑖 , the size of the convolved image should be multiples of 𝑁 , i.e.,

𝑴 ∈ R𝑠𝑁×𝑠𝑁 , where 𝑠 is an integer factor.

𝒉𝑖 (𝑥,𝑦) ⊗ 𝑴 (𝑥,𝑦) = F −1𝑠𝑁

(
𝑯𝑖

(
𝑗

𝑠
,
𝑘

𝑠

)
⊙ [F𝑠𝑁 (𝑴)]𝑠𝑃

)
. (3)

The photoresist model transforms the aerial image 𝑰 into thewafer
image 𝒁 . For simplicity, we use a compact photoresist model with

aconstant threshold, consistent with [15]. We use 𝑓 (·) to represent

all these computations from mask image 𝑴 to wafer image 𝒁 , as
shown in

𝑓 (𝑴) = 𝒁 . (4)

Figure 2: The green and blue lines outline the boundaries

of two adjacent tiles, while the red lines outline the shared

boundaries between the core sections. The filled region repre-

sents the core sections of tiles.

And the inverse lithography problem can be regarded as to find

the optimal mask 𝑴∗. After photolithography processing 𝑓 (·), the
obtained image should be aligned with the target image 𝒁𝑡 as much

as possible. The mask optimization problem is stated in Equation (5).

𝑴∗ = 𝑓 −1 (𝒁𝑡 ) , (5)

where 𝒁𝑡 represents the target image and𝑴∗ represents the optimal

mask image we want to get.

2.2 Tile partitioning and Domain Decomposition

Direct solve Equation (5) is excessively complex. The traditional

divide-and-conquer method involves partitioning the layout 𝑴 into

𝐽 overlapping tiles𝑴 𝑗 , as shown in Fig. 2. This tile partition method

is similar to the domain decomposition (DD) methods that employed

by restricted additive Schwartz (RAS) preconditioners [12, 16]. Both

of them solve the problem in the overlapping subdomains separately,

and gather the solutions from non-overlapping subdomains to obtain

the final results. In ILT, we refer the non-overlapping subdomains

𝑴̃ 𝑗 as ‘core’ sections, the overlapping subdomains 𝑴 𝑗 as ‘tiles’, and

the remaining part 𝑴 𝑗 − 𝑴̃ 𝑗 as ‘margin’ sections.

After introducing tile partition, we adapt the RAS method to

restate Equation (5) as Equation (6).

𝑴∗ =

𝐽∑︁
𝑗=1

𝑹̃⊤𝑗 𝑓
−1 (𝒁𝑡𝑹 𝑗

)
, (6)

where 𝑹 𝑗 is the restriction operator, acting on each overlapping

subdomain 𝑴 𝑗 , and 𝑹̃⊤
𝑗
is the interpolation operator, used to put

each non-overlapping subdomain back to its corresponding position

in the layout. It is proved in [17] that RAS methods converge faster

than additive Schwartz (AS) methods.

2.3 Evaluation Metrics and Problem Formation

Despite its advantages, tile partitioning introduces two notable

challenges. Firstly, it potentially lead to sub-optimal optimization

results. The mask image obtained through single-tile ILT may differ

from the one cropped from the assembled mask. This discrepancy

arises because the margin section of one tile is influenced by its

adjacent tiles. We conducted experiments using two ILT solvers

[3, 4], tile assembly resulted in up to a 8247 and 4600 increase in

𝐿2 error, respectively. While the increased L2 error may not appear

substantial, in cases such as the example depicted in Fig. 1, it can

lead to critical errors, resulting in circuit function failures.



Figure 3: Using the traditional approach, stitchig errors man-

ifest during the partitioning. A zoomed-in view highlights

one stitching error, the area covered in orange represents the

𝑠𝑡𝑖𝑡𝑐ℎ_𝑙𝑜𝑠𝑠, which we use to evaluate the continuity of stitched

graphics.

Secondly, since the ILT results in adjacent tiles are independently

obtained, there will be discontinuities near the shared boundaries of

core sections, such discontinuities can violate the manufacturability

rule check (MRC), as shown in Fig. 3.

Definition 1 (𝑆𝑡𝑖𝑡𝑐ℎ 𝐿𝑜𝑠𝑠). To assess the continuity of graphics
near the boundaries, we employs multiple iterations of Gaussian low-
pass filtering to smooth the shape contours. Then, we extract coordinates
where graphics intersect with the stitching line. For each intersection,
we extract a 40×40 window centered around it and compute the pixel
differences within this window before and after smoothing. We take the
sum of pixel differences as the 𝑆𝑡𝑖𝑡𝑐ℎ 𝐿𝑜𝑠𝑠 to evaluate the continuity
of the stitched graphics. As illustrated in Fig. 3, a zoomed-in view
highlights one stitching error. The area covered in orange represents
the 𝑆𝑡𝑖𝑡𝑐ℎ 𝐿𝑜𝑠𝑠 .

Definition 2 (𝐿2 𝑙𝑜𝑠𝑠). 𝐿2 loss is calculated by ∥𝒁 − 𝒁𝑡 ∥22, where
𝒁 represents the wafer image generated under the nominal dose and
nominal focus.

Definition 3 (𝑃𝑉𝐵𝑎𝑛𝑑). Process variation band (𝑃𝑉𝐵𝑎𝑛𝑑) is
calculated by ∥𝒁𝑖𝑛 − 𝒁𝑜𝑢𝑡 ∥22. 𝒁𝑖𝑛 is the wafer image generated under
the defocus and −2% dose condition, and 𝒁𝑜𝑢𝑡 is the wafer image
generated under the nominal focus and +2% dose condition.

Problem 1 (Mask Optimization). Given the target layout 𝒁𝑡 ,
our goal is to achieve a fully optimized mask 𝑴 within an accept-
able runtime, aiming to enhance the parallelism of ILT and ensure
consistency of layout shapes at stitching lines.

3 Algorithms

3.1 Overall Framework

The overall framework of multigrid-Schwartz ILT is illustrated in

this section, as shown in Section 3.1.We perform coarse-grid ILT, fine-

grid ILT and refine ILT in sequence, and the correction area of a single

ILT changes from large to small. The coarse-grid ILT is employed to

obtain approximate solutions that consider more global informations

and expedite the ILT process. The fine-grid ILT is utilized to achieve

a higher quality correction solution and fix boundary mismatch

issues. The refine ILT is adopted to further improve the ILT solution

via enabling more frequent information exchange between tiles.

To preserving acceptable parallelism, we implement a multi-color

Schwartz method for the ‘refine ILT’. We detail the coarse-grid,

fine-grid and refine ILT in Section 3.2, Section 3.3 and Section 3.4,

resspectively.

fine-grid ILT

Coarse-grid ILT

refine ILT

Figure 4: The overall framework.Coarse-grid ILT operates

over larger areas to obtain an approximate solution for the

entire chip. In contrast, fine-grid ILT operates without scaling

and aims to achieve higher-quality solutions while address-

ing mismatches near the boundaries. Fine-grid ILT facilitates

more frequent communication between tiles, yet it can be

executed in parallel on tiles with the same color to preserve a

certain level of parallelism.

3.2 Multigrid ILT

In our proposed framework, our first step is to determine the

maximum grid size whose ILT output contributes positively to the

final result. After this, we systematically shrink the correction grid

to gradually approach the optimal outcome for the entire layout. In

Section 3.1 we show a partition strategy for a two-grid ILT. Note that

the coarse grid may not necessarily contain an integer number of

finer grids, but its size must be an integer multiple of 𝑁 , where 𝑁 is

the input size of the original lithosimulator (lines 6 in Algorithm 1).

The scaling factor for coarse-grid ILT is greater than 1, and for fine-

grid ILT, is equal to 1.

For each grid size, we perform tile partitioning using the method

illustrated in Fig. 2. Subsequently, we downsample the obtained tiles

to fit within a single GPU, and apply the existing single-tile ILT

algorithm 𝜑 (·) for mask optimization (lines 9–10 in Algorithm 1).

Finally, after completing ILT on all tiles of one grid, the correction

results are assembled. Note that stitching errors are not addressed

during coarse-grid ILT. Instead, they are corrected in the fine-grid

ILT, which results in a different assembly equation (line 12 in Algo-

rithm 1). By employing Equation (3), it is capable to compute the

Algorithm 1 Multigrid ILT

1: Input : Target image 𝒁𝑡 ∈ R𝐻×𝑊 ; the biggest scale factor 𝑠𝑚𝑎𝑥 ;

single-tile ILT solver 𝜑 (·); the overlapping length between tiles

2𝑙 ; the tile partition strategy 𝑃𝑎𝑟𝑡 (·).
2: Output : optimized mask 𝑴 .

3: 𝑠 ← 𝑠𝑚𝑎𝑥 ;

4: 𝑴 ← 𝒁𝑡 ;
5: repeat

6:

{(
𝒁 𝑗 ,𝑴 𝑗

)}
← 𝑃𝑎𝑟𝑡 (𝒁𝑡 ,𝑴, tile_size=𝑠𝑁 ,margin=𝑙);

7: for 𝑗 = 1...𝐽 do

8: 𝒁 𝑗,𝑠 = Downsample

(
𝒁 𝑗 , factor = 𝑠

)
;

9: 𝑴 𝑗,𝑠 = Downsample

(
𝑴 𝑗 , factor = 𝑠

)
;

10: 𝑴 𝑗,𝑠 = 𝜑
(
𝒁 𝑗,𝑠 ,𝑴 𝑗,𝑠

)
;

11: end for

12: Assemble tiles using Equation (6) or Equation (14);

13: s = s / 2;

14: until 𝑠 < 1.

optical image for layouts of diverse sizes. Nevertheless, the capacity



1.0

0.5

D

Figure 5: The weighted smoothing algorithm.

to simulate the layout area in a single iteration is limited by the

available GPU memory size. Therefore, downsampling is employed

to reduce the mask size, facilitating a more expansive field of view

in an economical manner. In Equation (7), the relationship between

spacial and frequency domain is stated:

F𝑠𝑁 (𝑴 (𝑠𝑥, 𝑠𝑦)) =
1

𝑠2
F𝑠𝑁 (𝑴)

(
𝑗

𝑠
,
𝑘

𝑠

)
. (7)

Exchanging the left and right sides of Equation (7) and applying a

coordinate transformation yield the first line of Equation (8).

F𝑠𝑁 (𝑴) ≈ 𝑠2F𝑠𝑁 (𝑴 (𝑠𝑥, 𝑠𝑦)) (𝑠 𝑗, 𝑠𝑘)
≈ F𝑁 (𝑴 (𝑠𝑥, 𝑠𝑦)) .

(8)

The minimum interval of the FFT spectrum F𝑠𝑁 is 1/𝑠𝑁 , and the

minimum interval ofF𝑁 is 1/𝑁 . Every 𝑠 points inF𝑠𝑁 corresponding

one point in F𝑁 , yielding the second line of Equation (8).

Using the frequency transformation stated in Equation (8), we

obtain Equation (9) based on Equation (3).

𝑰𝑖 (𝑠𝑥, 𝑠𝑦) ≈ F −1𝑁

(
𝑯𝑖

(
𝑗

𝑠
,
𝑘

𝑠

)
⊙ [F𝑁 (𝑴𝑠 )]𝑠𝑃

)
, (9)

where 𝑴𝑠 represents the reduced mask. The update of mask image

in coarse-grid ILT is guided by lithography results calculated using

Equation (9) and Equation (2).

Note that downsampling inevitably results in information loss.

Consequently, the solution obtained by coarse-grid ILT is more

comprehensive in scope but less precise in accuracy. Therefore, we

introduce fine-grid ILT in Section 3.3 to address stitching errors and

achieve superior quality results.

3.3 Modified Schwartz Method

In Section 2.3, it was demonstrated that the traditional divide-and-

conquer method yields suboptimal final optimization results due to

the absence of communication between tiles. Inspired by the RAS

method, we divide the ILT process into several stages. In each stage,

ILT is performed independently on tile 𝑴 𝑗 to solve Equation (10).

𝑓
(
𝒖𝒋
)
= 𝒁𝑡𝑹 𝑗 , in 𝑴 𝑗 , (10)

where 𝑓 represents the lithography process, and 𝒖 𝑗 represents the
solution being sought on tile𝑴 𝑗 . After each stage finished, we stitch

all tiles using Equation (6) to update the entire layout. The next

stage of ILT uses tiles cropped from the assembled layout, so that

the margin section of tiles can be updated by adjacent tiles.

The RAS method places constraints on the boundary values of

overlapping subdomains, ensuring their equivalence to the values

in adjacent subdomains. It promotes uniform values at the joint

positions of non-overlapping subdomains. Inspired by RAS method,

we modified its boundary condition and make it suitable for ILT.

(a) without smoothing

(b) with smoothing

Figure 6: Weighted smoothing improves the continuity of

graphics.

From Equation (1), it is evident that lithography results obtained

from individual tiles near their boundaries will inevitably deviate

from the results obtained through simulations for the entire chip.

Hence, the boundary conditions are set in proximity to the core

sections, as the ILT results in these regions are derived from accurate

lithography simulations. Equation (11) is the boundary condition we

modified from the RAS method.

𝒖 𝑗 = 𝑴𝑙 , on 𝜕𝑴 ′𝑗 ∩𝑴𝑙 , 𝑙 ∈ 𝑁 𝑗 , (11)

where 𝑁 𝑗 is the index set of adjacent tiles to tile 𝑴 𝑗 , and 𝜕𝑴 ′
𝑗
is the

overlapping boundaries that near the core section. In Fig. 2, we use

dashed lines to represent 𝜕𝑴 ′
𝑗
.

However, given that the correlation between pixels is not so strong

in ILT, using boundary conditions directly can still lead to boudaries

discontinuities. Therefore, we incorporate the weighted smoothing

algorithm [13] to ensure a seamless stitching between tiles. The idea

behind the algorithm is to set up a buffer area that gradually transit

the patterns to the location where the boundary conditions are set.

In Equation (12) and Fig. 5, we show the weighted stitching strategy

of two adjacent tiles.

𝑀𝑗,𝑙 = 𝑤 𝑗𝑴
′
𝑗 +𝑤𝑙𝑴

′
𝑙
, 𝑙 ∈ 𝑁 𝑗 , (12)

where𝑀𝑗,𝑙 represents the merge result of tile 𝑴 𝑗 and tile 𝑴𝑙 .

𝑤 𝑗 (𝑑 𝑗 ) =

1, 𝑑 𝑗 > 𝐷

1 −
𝑑 𝑗

𝐷
,𝑑 𝑗 ⩽ 𝐷,

(13)

where 𝐷 is the overlapping length between𝑴 ′
𝑗
and𝑴 ′

𝑙
, and 𝑑 𝑗 is the

distance from 𝜕𝑴 ′
𝑗
. The weighted smoothing can effectively remove

the stitching seams and improves the continuities, as shown in Fig. 6.

In Fig. 6, the left column consists of mask images before binarization,

while the images in the right column are masks after binarization.

We modified Equation (6) to incorporate the weighted smooth-

ing algorithm into the tile assembly process, as illustrated in Equa-

tion (14).

𝑴∗ =

𝐽∑︁
𝑗=1

𝑹′⊤𝑗 𝑓
−1 (𝒁 𝒕𝑹𝒋

)
, (14)

where 𝑹′⊤
𝑗 is the weighted interpolation operator.

3.4 Multi-color Schwartz Method

In this section, we introduce themulti-colormultiplicative Schwarz

method [18] for the ‘refine ILT’, aiming to achieve a better optimiza-

tion result. The learning rate of the ‘refine ILT’ is relatively small,



implying that it will only make small adjustments. For scenarios

where shapes near the boundaries exhibit strong mutual dependen-

cies but are split across two tiles, relying solely on the fine-grid

ILT is insufficient. Therefore, ‘refine ILT’ enable a more frequent

communication between tiles. Note that ‘refine ILT’ is executed only

a few times, so will not consume too much time.

The multi-color multiplicative Schwarz method employs a tile

coloring scheme that guarantees non-overlapping regions do not

share the same color, as depicted in Section 3.1. ILT can be performed

in parallel on tiles that share the same color, with fixing patterns

on tiles of other colors. In this way, we obtain a certain level of

parallelism.

4 Experimental Results

All experiments are performed on a Linux workstation with a

2.6GHz Intel Xeon CPU and Nvidia RTX A6000 GPU (51G). The

lithography simulation tool was obtained from the ICCAD 2013 com-

petition [15], which we reimplemented in Pytorch and modified to

simulate a larger area. For the via layer, we find that the method

of extracting template patterns is more suitable. Therefore, we con-

ducted experiments only on the M1 layer. We conduct experiments

on 20 layout clips of size 4096×4096. This is the maximum size of a

layout that our GPU can handle and optimize via ILT at once. Using

the partition strategy illustrated in Fig. 2, a 4096×4096 layout can
be divided into 9 tiles of size 2048×2048, with an overlap length of

2×512 between tiles.

First, we conduct experiments on a single GPU. The initial set of

experiments involved employing the traditional divide-and-conquer

approach, where ILT was performed independently on each tile

before assembling the final correction result. Two single-tile ILT

approaches, namely “Multi-level-ILT" [4] and “GLS-ILT" [3], are

utilized for testing, and their results are presented in the first two

columns of TABLE 1. The maximum number of iterations for both

methods is set to 100 on a single tile. From the experimental results,

we observe that the mask obtained by Multi-level ILT is superior

to GLS-ILT in quality, with a reduction of 17.2% in L2 loss and

2.4% in PVBand. However, it exhibits a noticeable degradation in

𝑆𝑡𝑖𝑡𝑐ℎ 𝐿𝑜𝑠𝑠 compared to GLS-ILT. By observing the correction results,

we find that it is mainly because Multi-level ILT produces more

sub-resolution assist features (SRAFs) compared to GLS-ILT. The

increased presence of SRAFs makes Multi-level ILT more susceptible

to mismatches near the boundaries, although it helps to achieve

better quality of masks.

We evaluate our proposed method on the same dataset. First, we

perform 60 iterations of coarse-grid ILT with a scale factor of 𝑠 = 2.

Subsequently, we execute 40 iterations of fine-grid ILT. Note that

we divide these 40 iterations of fine-grid ILT into two stages. After

each stage concludes, we assemble the tiles and apply Schwartz

boundary conditions to smooth the boundaries. Finally, we conduct

4 iterations of refine ILT to further improve the results. It is shown

that our method can effectively reduce the 𝑆𝑡𝑖𝑡𝑐ℎ 𝐿𝑜𝑠𝑠 by more than

3.15×, as shown in column “Ours” of TABLE 1.

Additionally, we run 100 iterations of Multi-level ILT on the entire

4096×4096 region without tile partitioning to emulate full-chip ILT.

It is referred to as “Full-chip ILT" in TABLE 1. The runtime of “Full-

chip ILT" is calculated under ideal conditions without considering

the communication overhead. In reality, no GPU can accommodate

an entire layout at once, and there will inevitably be time overhead

for CPU-GPU communication. It is shown that our method deliver

comparable optimization results to the full-chip ILT. Note that the

(1)

11

2 2

(2)
(a) (b)

(1)

(2)

Figure 7: Stitching errors persistently appear at the newly

created partition boundaries when applying the ’stitch-and-

heal’ method for reoptimizing the boundary region. The green

box designates the re-optimized region, and the red boxes

highlight areas having stitching errors. The red line represents

the original stitching line. (a) presents the outcome following

the re-optimization process, while (b) illustrates the result

before re-optimization.

final inspection of all methods utilizes lithography results calculated

using Equation (3), which is computed over the entire 4096×4096
region without tile partitioning.

Fig. 8(a) presents a segment generated by the traditional divide-

and-conquer method Fig. 8(b) is the corresponding one generated

by our proposed method. The red boxes in Fig. 8 indicate locations

where 𝑠𝑡𝑖𝑡𝑐ℎ 𝑒𝑟𝑟𝑜𝑟 exceed to 20. It is shown that our method can

greatly improve the continuity of shapes near boundaries. Fig. 7

shows that the ‘stich-and-heal’ method cannot fully fix stitching

mismatches, since it will introduce new partition edges.

For parallelism testing, our method can obtain 2.76× speedup

using 4 GPUs. Note that our GPUs lack of direct connections between

GPUs. The data movements between GPUs are implemented by

moving data from one GPU to main memory and then to other

GPUs. This may degrade the speedups for multiple GPUs. We believe

the speedup can be more significant for multiple GPUs with direct

connections (e.g. NVLink).

5 Conclusion

In this paper, a multigrid-Schwarz method is proposed to fix the

stitch errors in tile assembly for ILT. The coarse grid covers a larger

area and results in fewer tiles, enabling a faster generation of an

initial solution for the entire chip and reducing tile stitching. We

employ a modified Additive Schwartz method to break down the

entire fine-grid ILT process into several stages. At the end of each

stage, communication takes place between adjacent tiles. At last, we

employ a multi-color multiplicative Schwartz method to refine the

results. Experimental results show that our approach achieves com-

parable performance to the full-chip ILT, with significant speedup.

Acknowledgement

This research is supported partly by National Key R&DProgram of

China 2020YFA0711900, 2020YFA0711903, partly by the National Nat-

ural Science Foundation of China (NSFC) Research Projects 92373207

and 62090025, and The Research Grants Council of Hong Kong SAR

(No. CUHK14208021).



Table 1: Comparison Results on 20 clips of size 4096×4096.

Benchmarks GLS-ILT[3] Multi-level-ILT[4] Full-chip ILT Ours

ID

Area 𝐿2 𝑃𝑉𝐵 𝑆𝑡𝑖𝑡𝑐ℎ 𝑙𝑜𝑠𝑠 TAT 𝐿2 𝑃𝑉𝐵 𝑆𝑡𝑖𝑡𝑐ℎ 𝑙𝑜𝑠𝑠 TAT 𝐿2 𝑃𝑉𝐵 𝑆𝑡𝑖𝑡𝑐ℎ 𝑙𝑜𝑠𝑠 TAT 𝐿2 𝑃𝑉𝐵 𝑆𝑡𝑖𝑡𝑐ℎ 𝑙𝑜𝑠𝑠 TAT

(𝑛𝑚2
) (𝑛𝑚2

) (𝑛𝑚2
) (𝑛𝑚2

) (s) (𝑛𝑚2
) (𝑛𝑚2

) (𝑛𝑚2
) (s) (𝑛𝑚2

) (𝑛𝑚2
) (𝑛𝑚2

) (s) (𝑛𝑚2
) (𝑛𝑚2

) (𝑛𝑚2
) (s)

case1 6262100 219268 402286 1204 65.03 237755 386326 2981 51.38 181913 390722 314 23.72 182645 385150 531 24.82

case2 5918645 184657 340870 447 59.93 142855 332182 1838 49.9 140922 329462 850 22.21 142490 327510 730 23.39

case3 6756478 246070 431612 201 66.97 221238 415799 1416 50.01 217571 417265 537 22.35 206092 416471 663 23.74

case4 6123117 195994 358750 1531 61.93 148811 350574 1734 49.98 147936 349684 625 23.84 148048 344276 565 23.37

case5 6895298 249377 425535 54 71.5 216506 420951 2503 50.03 209646 422329 523 22.78 207121 415247 766 23.61

case6 5889573 214195 390092 1375 62.93 167343 385179 1642 50.33 165749 387656 544 23 164324 382587 586 23.24

case7 6800017 231536 421374 273 67.09 208338 410444 1526 50.21 185919 410577 272 22.64 191293 407135 432 23.64

case8 6020502 210737 401681 177 64.28 173141 389268 1143 50.24 167485 393540 741 22.17 174227 386242 494 23.49

case9 7130023 223450 390594 1661 64.43 196909 385404 1261 50.3 188529 384135 445 22.74 189533 378575 325 23.31

case10 5910538 218678 415004 282 65.58 173957 403896 1679 50.01 165624 406165 439 22.38 170782 403409 521 23.55

case11 7238614 210456 362883 188 62.91 184013 355696 1613 50.13 177472 354928 549 22.16 179766 351473 388 23.42

case12 5833915 205383 400822 130 65.36 160615 390236 2258 49.88 157227 391330 598 22.57 155773 384810 757 23.33

case13 7009032 220800 399063 912 63.45 197219 389424 1550 50.09 184835 388272 619 22.44 189378 384253 434 23.45

case14 5950136 221100 424911 65 64.96 198236 422361 1408 49.92 163762 426933 400 22.24 172493 418160 288 23.58

case15 6953312 203975 364550 101 62.74 178465 348940 1796 50 168388 351909 716 22.2 172072 347410 535 23.75

case16 5866510 206103 393307 120 63.93 166358 379214 2100 49.95 170228 379136 832 22.14 160948 375454 839 23.54

case17 7135150 207945 350006 465 63.42 180358 338597 1996 50.09 174924 339134 696 22.19 172086 335275 726 23.44

case18 6148328 213558 399418 1221 61.97 171232 391718 2006 49.91 167363 392856 712 22.54 168484 388702 774 23.52

case19 7263044 211507 401262 662 62.8 181255 397308 1966 50.17 176519 397907 749 22.4 174415 391016 481 23.29

case20 5966107 198550 399368 131 62.81 158276 392823 2090 50.14 166786 398171 877 22.26 155494 386440 735 23.16

Average 214666.95 393669.4 560 64.201 183144 384317 1825.3 50.1335 173939.9 385605.55 601.9 22.5485 173873.2 380479.75 578.5 23.532

Ratio 1.2346 1.0347 0.9680 2.7282 1.0533 1.0101 3.1552 2.1304 1.0004 1.0135 1.0404 0.9582 1.0000 1.0000 1.0000 1.0000

(1) (2)

(3) (4) (3) (4)

(1) (2)

(a) (b)

3

4

1 2 3

4

1 2

Figure 8: Stitching error comparisons of our proposed method and traditional divide-and-conquer method. (a) presents a

segment generated by the traditional divide-and-conquer method, with the smaller images on the left offering enlarged views of

regions exhibiting boundary mismatches. (b) is generated by our proposed method, the smaller images on the right correspond

to areas where boundary mismatches are present in (a).

References

[1] Haoyu Yang and etc. Gan-opc: Mask optimization with lithography-guided gen-

erative adversarial nets. In Proceedings of the 55th Annual Design Automation
Conference, pages 1–6, 2018.

[2] Bentian Jiang and etc. Neural-ilt 2.0: Migrating ilt to domain-specific and multitask-

enabled neural network. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(8):2671–2684, 2021.

[3] Ziyang Yu and etc. A gpu-enabled level-set method for mask optimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(2):594–
605, 2022.

[4] Shuyuan Sun and etc. Efficient ilt via multi-level lithography simulation. In 2023
60th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2023.

[5] Shao Ming Yu and Yi-Ming Li. A parallel intelligent opc technique for design

and fabrication of vlsi circuit. In 2005 NSTI Nanotechnology Conference and Trade
Show-NSTI Nanotech 2005, pages 724–727, 2005.

[6] Vivek Singh and etc. Making a trillion pixels dance. In Optical Microlithography
XXI, volume 6924, pages 264–275. SPIE, 2008.

[7] Jennefir Digaum and etc. Full chip inverse lithography technology mask synthesis

for advanced memory manufacturing. In DTCO and Computational Patterning II,
volume 12495, page 1249503. SPIE, 2023.

[8] Jun Zhu and etc. Scalable hierarchy extraction of repeating structures to enhance

full chip mask synthesis. In DTCO and Computational Patterning II, volume 12495,

pages 199–207. SPIE, 2023.

[9] Linyong Leo Pang and etc. Truemask ilt mwco: full-chip curvilinear ilt in a day and

full mask multi-beam and vsb writing in 12 hrs for 193i. InOptical Microlithography
XXXIII, volume 11327, pages 145–158. SPIE, 2020.

[10] Shuo Yin and etc. Fuilt: Full chip ilt system with boundary healing. 2024.

[11] Randolph E Bank and etc. The hierarchical basis multigrid method. 52:427–458,

1988.

[12] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive schwarz preconditioner

for general sparse linear systems. Siam journal on scientific computing, 21(2):792–
797, 1999.

[13] Zhijun Wang and etc. A comparative analysis of image fusion methods. IEEE
transactions on geoscience and remote sensing, 43(6):1391–1402, 2005.

[14] Harold Horace Hopkins. The concept of partial coherence in optics. Proceed-
ings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
208(1093):263–277, 1951.

[15] Shayak Banerjee and etc. Iccad-2013 cad contest in mask optimization and bench-

mark suite. In 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 271–274. IEEE, 2013.

[16] Martin J Gander and Serge Van Criekingen. New coarse corrections for optimized

restricted additive schwarz using petsc. In Domain Decomposition Methods in
Science and Engineering XXV 25, pages 483–490. Springer, 2020.

[17] Evridiki Efstathiou and Martin J Gander. Why restricted additive schwarz con-

verges faster than additive schwarz. BIT Numerical Mathematics, 43(5):945–959,
2003.

[18] Barry F Smith. Domain decomposition methods for partial differential equations.

In Parallel Numerical Algorithms, pages 225–243. Springer, 1997.


	Abstract
	1 Introduction
	2 Background
	2.1 Lithography Model
	2.2 Tile partitioning and Domain Decomposition
	2.3 Evaluation Metrics and Problem Formation

	3 Algorithms
	3.1 Overall Framework
	3.2 Multigrid ILT
	3.3 Modified Schwartz Method
	3.4 Multi-color Schwartz Method

	4 Experimental Results
	5 Conclusion
	References

