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ABSTRACT
Clock tree synthesis (CTS) constructs an efficient clock tree, meet-

ing design constraints and minimizing resource usage. It serves as

a bridge between placement and routing, facilitating concurrent

optimization of multiple design objectives. To construct a clock

tree with lower latency and load capacitance while maintaining

a specified skew constraint, we introduce skew-latency-load tree

(SLLT) which combines the merits of bound skew tree and Steiner

shallow-light tree, along with an analysis and demonstration of

the boundaries of these two tree types. We propose a method for

constructing SLLT, which significantly reduces both the maximum

latency and load capacitance compared to previous methods while

ensuring skew control. Combining this routing topology gener-

ation method, we introduce a hierarchical CTS framework, and

it is constructed by integrating partition schemes and buffering

optimization techniques. We validate our solution at 28nm pro-

cess technology, demonstrating superior performance compared

to the solutions of OpenROAD and advanced commercial tool. Our

approach outperforms in all metrics (max latency, skew, buffer

number, clock capacitance), achieving a significant reduction in

latency of 29.45% compared to OpenROAD and 6.75% compared to

the commercial tool.

KEYWORDS
chip design automation, clock tree synthesis, skew-latency-load

tree, buffer optimization

1 INTRODUCTION
Clock tree synthesis is a vital component of physical design as

power consumption primarily stems from the interconnects and

buffers involved in the construction process. The power consump-

tion resulting from the CTS phase is commonly estimated to ac-

count for one-third of the total power consumption of an integrated

circuit (IC) [17]. In certain designs, it can even constitute half of

the total power consumption. Therefore, in the design of high-

performance and low-power IC products, the requirements for the

clock tree are becoming increasingly stringent. Due to the adverse

effects of on-chip variation (OCV), conventional CTS method that
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focuses solely on skew optimization is inadequate for meeting the

demands of advanced technology [10].

In the advanced process, wire delay has become increasingly

important [21], especially for CTS. Meeting design requirements

often entails special demands on interconnect wire, posing signif-

icant challenges to routability. In contrast, the proximity of the

clock tree’s routing topology to the outcome of the routing stage

improves its reliability and robustness. All these examples indicate

that CTS imposes deeper requirements on interconnect structures

beyond skew. To deal with such changes, besides addressing skew,

it is crucial for CTS to also consider and analyze other interconnect

characteristics present on the tree. Earlier works for CTS can be cat-

egorized into non-tree approaches and tree-based approaches [16].

Designmethods likemesh topologies [7] and “Fishbone” topologies

[8] mitigate clock skew and bolster the resilience of clock networks.

Nevertheless, these methods exhibit limited structural variability,

leading to reduced design flexibility. The symmetric topology of

the H-tree allows for easy compliance with skew constraints, al-

beit with a notable increase in required design resources. The

optimal generalized H-tree (GH-tree) [16] extends and optimizes

the H-tree through the introduction of a branching factor. The

deferred-merge embedding (DME) method performs bottom-up

calculations of merging regions that satisfy the requirements, con-

tinuously complementing the upstream topological structure, and

finally, performs top-down positional embedding. It can achieve

various variants, including zero skew tree (ZST) [11], bounded

skew tree (BST) [14], and useful skew tree (UST) [20]. All of the

aforementioned skew-tree methods are capable of achieving clock

skew control. Unfortunately, these traditional methods incur sig-

nificant costs due to increased path length and total wirelength.

In addition, the rectilinear Steinerminimum tree (RSMT)method,

exemplified by FLUTE [13], and the rectilinear Steiner SLT method,

such as Steiner shallow-light tree (SALT) [15], aim to minimize the

total wirelength and path length, respectively. A smaller total wire-

length can directly help CTS reduce power consumption, while

a shorter path length can reduce latency from the clock source

to the sink and create greater freedom for timing optimization.

Regrettably, these methods have been overlooked by CTS because

they are unable to meet the most important skew objectives.

It is noteworthy that the Steiner-tree method can easily replace

the skew-tree method when the skew constraint is relaxed. This

scenario also exhibits the highest resemblance between the CTS

and routing stages on the bottom nets of clock tree. However, this

phenomenon precisely indicates that there is a missing bridge be-

tween the existing skew-tree method and the Steiner-tree method.

With the help of this bridge, CTS can explore optimal solutions

that were previously difficult to find by utilizing the structure of

the Steiner-tree method. By achieving short path lengths and total

wirelengths under acceptable skew conditions, CTS can achieve

https://doi.org/10.1145/3649329.3658243
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improved global performance. In this paper, we investigate the rela-

tionship between conventional skew-tree approaches and Steiner-

tree approaches, and propose the skew-latency-load tree (SLLT)

concept. Then we present a construction method of SLLT, named

Concurrent BST and SALT (CBS), which can control skew and

effectively reduce latency and load capacitance. We propose a hi-

erarchical design framework for CTS, which iteratively performs

partitioning of instances, routing topology generation, and buffer

optimization at each level. The specific contributions can be sum-

marized as follows:

• We define skewness to evaluate the difference of a Steiner

tree from the root to all leafs. With skewness, shallow-

ness, and lightness, SLLT enables comprehensive analysis of

Steiner trees. We also provide a theoretical proof of the bi-

nary impossibility properties of shallowness and skewness.

• Our SLLT constructing method integrates the benefits of

SALT [12] and BST-DME [14], effectively reducing both

maximum latency and load capacitance compared to the

skew-tree method.

• With SLLT and CBS,We propose a hierarchical design frame-

work for CTS. Honoring this framework, we can apply

heuristic methods for optimizing solutions and accommo-

date diverse design requirements using various routing

topology generation approaches.

• Our approach surpassed both OpenROAD and a commer-

cial tool in all performance indicators, reducing latency by

29.45% and clock capacitance by 20.58% compared to Open-

ROAD, and achieving a 6.75% reduction in latency and a

16.36% reduction in clock capacitance compared to the com-

mercial tool.

• By embracing the concept of SLLT, we can achieve a higher-

level description of the clock tree distribution and conduct

a more in-depth analysis of its quality. Significantly, SLLT

can cater to all network structures and introduce a novel

interconnect quality evaluation system, offering effective

and comprehensive assessments for various backend design

processes.

2 SKEW-LATENCY-LOAD TREE
CONSTRUCTION

In the CTS phase, the primary design objective is to synchro-

nize the clock signal by controlling skew. Given a clock tree rep-

resented by 𝑇 , we define the delay from clock source to sink

𝑠𝑖 ∈ 𝒮 as 𝑑𝑒𝑙𝑎𝑦 (𝑠𝑖 ), where 𝒮 is the set of sinks, then 𝑠𝑘𝑒𝑤 =

max

𝑠𝑖 ∈𝒮
{𝑑𝑒𝑙𝑎𝑦 (𝑠𝑖 )} − min

𝑠𝑖 ∈𝒮
{𝑑𝑒𝑙𝑎𝑦 (𝑠𝑖 )}. Moreover, CTS aims to design

chip with prioritize high performance and low power consumption.

Therefore, effective control of maximum latency and load capac-

itance is also imperative. The maximum latency of a clock tree

can be denoted by: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦max = max

𝑠𝑖 ∈𝒮
{𝑑𝑒𝑙𝑎𝑦 (𝑠𝑖 )}. Let𝑊𝐿(𝑇 ) de-

note the total wirelength of clock tree 𝑇 , and the load capacitance

can be simplify calculated: 𝑙𝑜𝑎𝑑 =
∑
𝑠𝑖 ∈𝒮 𝐶𝑎𝑝𝑝𝑖𝑛 (𝑠𝑖 ) + 𝑐 ·𝑊𝐿(𝑇 ),

where 𝑐 represents the capacitance per unit length of the wire, and

𝐶𝑎𝑝𝑝𝑖𝑛 (𝑠𝑖 ) denotes the capacitance on the pin of 𝑠𝑖 . To gain an

intuitive understanding on skew, latency and load, we try to make

a map between skew, latency and load with the physical length of

clock tree. Firstly, since the path length from the source to sinks

significantly influences delay calculation, the maximum latency

is positively correlated with the longest path of the clock tree 𝑇 .

Secondly, skew can be represented as the maximum deviation in

path lengths of clock tree 𝑇 . Thirdly, the load capacitance is di-

rectly affected by the total wirelength of the clock tree 𝑇 . These

relationships are given as below:

𝑠𝑘𝑒𝑤 ∝ max

𝑠𝑖 ∈𝒮
{𝑃𝐿(𝑠𝑖 )} − min

𝑠𝑖 ∈𝒮
{𝑃𝐿(𝑠𝑖 )}, (1)

𝑙𝑎𝑡𝑒𝑛𝑐𝑦max ∝ max

𝑠𝑖 ∈𝒮
{𝑃𝐿(𝑠𝑖 )}, (2)

𝑙𝑜𝑎𝑑 ∝𝑊𝐿(𝑇 ), (3)

where 𝑃𝐿(𝑠𝑖 ) denotes the path length from the source to 𝑠𝑖 of 𝑇 .

2.1 Skew-Latency-Load Tree (SLLT)
Currently, there are some works dedicated to optimizing the afore-

mentioned objectives. In Ref. [12], the authors proposed a shallow-

light tree (SLT) construction algorithm to simultaneously approxi-

mates: 1) shortest distances from a root to the other vertices, and 2)

the minimum tree weight. In SLT, 𝛼 represents shallowness with

𝛼 = max

𝑠𝑖 ∈𝒮
{ 𝑃𝐿 (𝑠𝑖 )
𝑀𝐷 (𝑠𝑖 ) }, where𝑀𝐷 (𝑠𝑖 ) denotes the Manhattan distance

from the source. 𝛽 represents lightness with 𝛽 =
𝑊𝐿 (𝑇 )

𝑊𝐿 (𝑀𝑆𝑇 (𝐺 ) ) ,
where𝑀𝑆𝑇 (𝐺) represents the minimum spanning tree of 𝐺 . Con-

sidering the layout characteristics of physical design, we generally

assume the clock tree𝑇 to be a rectilinear Steiner tree in this paper.

As in [12], 𝛽 is also approximated as 𝛽 ≈ 𝑊𝐿 (𝑇 )
𝑊𝐿 (𝑇𝐹𝐿𝑈𝑇𝐸 ) in this paper,

where𝑊𝐿(𝑇𝐹𝐿𝑈𝑇𝐸 ) is the wirelength of Steiner tree generated

by FLUTE [13]. According to these measurements, shallowness
reflects the latency of the clock tree (referring to the delay from

the source to the pin). Likewise, lightness reflects the load capac-
itance of the clock tree. In an (𝛼 , 𝛽)-SLT, where 𝛼 ≥ 𝛼 ≥ 1 and

𝛽 ≥ 𝛽 ≥ 1. The SLT has the property of concurrently optimizing

latency and load capacitance, 𝛼 and 𝛽 in an (𝛼 , 𝛽)-SLT reflect the

value of maximum latency and load capacitance of this tree.

However, the primary objective of traditional CTS algorithms

is to effectively control skew. This paper aims to enhance the

capabilities of SLT to enable it to be able to effectively control

skew. Similar to shallowness and lightness, we define a metric of

skew:

Definition 2.1 (skewness). According to Equation (1), we define

the skewness of a Steiner tree: 𝛾 =

max

𝑠𝑖 ∈𝒮
{𝑃𝐿 (𝑠𝑖 ) }

𝑃𝐿
.

In the above definition, 𝑃𝐿 represent the average path length.

Similar to shallowness and lightness, it can be easily seen that

𝛾 ≥ 1, and if 𝛾 = 1, i.e., max

𝑠𝑖 ∈𝒮
{𝑃𝐿(𝑠𝑖 )} ≡ 𝑃𝐿 ≡ min

𝑠𝑖 ∈𝒮
{𝑃𝐿(𝑠𝑖 )}, then

we obtain a zero skew tree on the wirelength delay model. In

general, the convergence objective of a modern CTS method or

tool is to construct a clock tree with bounded skew or useful skew.

Both of bounded skew and useful skew can be limited by an upper

bound 𝛾 with 𝛾 ≥ 𝛾 . For a rectilinear Steiner tree, to evaluate

its capacity of optimizing skew, maximum latency and load, we

propose a Skew-Lantency-Load tree (SLLT) as follows:

Definition 2.2 ((𝜶 , 𝜷 , 𝜸 )-SLLT). A rectilinear Steiner tree with

shallowness 𝛼 ≤ 𝛼 , lightness 𝛽 ≤ 𝛽 , and skewness𝛾 ≤ 𝛾 is denoted

as (𝜶 , 𝜷 , 𝜸 )-SLLT.

To compare the variations of shallowness, lightness and skew-

ness among various SLLTs, we implemented several existing algo-

rithms. As given in Fig. 1, the SLLTs generated by some famous

traditional CTS algorithms (H-tree, GH-tree, ZST-DME, BST-DME)

are shown from Fig. 1(b) to Fig. 1(e). Fig. 1(f) and Fig. 1(g) are built

by FLUTE and rectilinear-SALT (R-SALT) [12] corresponding to

the RSMT and rectilinear Steiner SLT algorithms, respectively. In

addition, the shallowness 𝛼 , lightness 𝛽 and skewness 𝛾 of these

2
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(a) Net Layout (b)H-tree [9] (c) GH-tree [16] (d) ZST-DME [11]

(e) BST-DME [14] (f) FLUTE [13] (g) R-SALT [12] (h) Our CBS

Figure 1: Different SLLTs on net.

algorithms are calculated and listed in Table 1. Column “Skew Con-

trol” lists the controllability of all algorithms, and column “Mean”

is the average value of the three metrics.

Table 1: Different routing topologies on net. 𝛼 , 𝛽 , and 𝛾 represent shal-

lowness, lightness, and skewness respectively.

Algorithm Max Min Total Mean
𝜶 𝜷 𝜸 Mean Skew

PL PL WL PL Control
H-tree 10 9 55.5 9.75 2.00 1.32 1.03 1.45 ✓
GH-tree 10 7 47.5 8.50 1.60 1.13 1.18 1.30 ✓
ZST 10.5 10.5 55.5 10.50 2.33 1.32 1.00 1.55 ✓
BST 10 8 50 9.25 2.25 1.19 1.08 1.51 ✓

FLUTE 9 5 42 7.44 1.40 1.00 1.21 1.20 ×
R-SALT 9 5 43 7.06 1.00 1.02 1.27 1.10 ×
CBS 9 7 45 8.13 1.40 1.07 1.11 1.19 ✓

As we all know, ZST-DME can achieve zero skew. From Table 1,

we can see that H-tree and ZST-DME achieve smaller skewness,

but have a larger shallowness and lightness. GH-tree is a variant of

H-tree by expanding the number of branches. And the BST-DME is

a variant of ZST-DME by relaxing skew bound from zero to a small

positive number. Compared with H-tree and ZST-DME, GH-tree

and BST-DME achieve better trade-off among shallowness, light-

ness and skewness. Since R-SALT can obtain the minimum path

length of the source to each pin, R-SALT achieves an SLLT with

shallowness 𝛼 = 1. And, FLUTE aims to implement a best RSMT

with minimum wirelength, it achieves an SLLT with lightness

𝛽 = 1. Regrettably, R-SALT and FLUTE cannot effectively control

skewness. In conclusion, traditional CTS algorithms effectively

handle skewness, while R-SALT and FLUTE achieve superior shal-

lowness and lightness. However, the primary objective of CTS is to

achieve smaller latency and load capacitance within an acceptable

skew range. In other words, it aims to minimize shallowness and

lightness while ensuring controllable skewness. In this paper, we

try to construct a class of SLLTs that meet this requirement.

2.2 Bound Analysis
In Ref. [12], the SALT algorithm can achieve the Steiner (1 + 𝜖 ,

2 + ⌈log 2

𝜖 ⌉)-SLT. However, SALT cannot effectively control skew-

ness. To verify the claim more theoretically, we try to give a proof

by contradiction about that skewness and shallowness cannot be

simultaneously less than a small positive number. Before that, we

assume that skewness and shallowness have the same dimension,

which is defined by the condition 𝛾 ≤ 1+𝜖 , where (𝜖 is a small posi-

tive number). We propose a theorem that establishes the boundary

where skewness and shallowness are mutually exclusive.

BST BST-SALT SLLT

Remove

Redundant

SALT

Algorithm

Binary Tree

Conversion

Input
Topology

Extraction
Step 1

Step 2

Step 3

Step 4

Step 5

Figure 2: SLLT Construction Flow.

Theorem 2.3. Given a set of pins and a small positive number 𝜖 ,
when the pin distribution has

max

𝑠𝑖 ∈𝒮
{𝑀𝐷 (𝑠𝑖 )}

𝑀𝐷
> (1 + 𝜖)2, (4)

for an SLLT, it is not possible to simultaneously satisfy 𝛼 ≤ 1+ 𝜖 and
𝛾 ≤ 1 + 𝜖 .

Proof: Assume that there exists an SLLT with 𝛼 ≤ 1 + 𝜖 and 𝛾 ≤
1+𝜖 . Additionally, if shallowness is satisfied, thenmax

𝑠𝑖 ∈𝒮
{ 𝑃𝐿 (𝑠𝑖 )
𝑀𝐷 (𝑠𝑖 ) } ≤

1 + 𝜖 . Therefore, ∀𝑠𝑖 ∈ 𝒮, 𝑃𝐿(𝑠𝑖 ) ≤ (1 + 𝜖) · 𝑀𝐷 (𝑠𝑖 ). Further, we
can deduce: ∑︁

𝑠𝑖 ∈𝒮
𝑃𝐿(𝑠𝑖 ) ≤ (1 + 𝜖) ·

∑︁
𝑠𝑖 ∈𝒮

𝑀𝐷 (𝑠𝑖 ),∑
𝑠𝑖 ∈𝒮 𝑃𝐿(𝑠𝑖 )

|𝒮 | ≤ (1 + 𝜖) ·
∑
𝑠𝑖 ∈𝒮 𝑀𝐷 (𝑠𝑖 )

|𝒮 | ,

𝑃𝐿 ≤ (1 + 𝜖) ·𝑀𝐷. (5)

Obviouslymax

𝑠𝑖 ∈𝒮
{𝑃𝐿(𝑠𝑖 )} ≥ max

𝑠𝑖 ∈𝒮
{𝑀𝐷 (𝑠𝑖 )}, then based on Equation (4)

and Equation (5), we can deduce:

𝛾 =

max

𝑠𝑖 ∈𝒮
{𝑃𝐿(𝑠𝑖 )}

𝑃𝐿
≥

max

𝑠𝑖 ∈𝒮
{𝑀𝐷 (𝑠𝑖 )}

𝑃𝐿
≥

max

𝑠𝑖 ∈𝒮
{𝑀𝐷 (𝑠𝑖 )}

(1 + 𝜖) ·𝑀𝐷
> 1 + 𝜖.

We conclude that 𝛾 > 1 + 𝜖 , this result contradicts 𝛾 ≤ 1 + 𝜖 .

■
We consider the case that Equation (4) does not hold, which

can be derived as max

𝑠𝑖 ∈𝒮
{𝑀𝐷 (𝑠𝑖 )} ≈ 𝑀𝐷 , then max

𝑠𝑖 ∈𝒮
{𝑀𝐷 (𝑠𝑖 )} ≈

min

𝑠𝑖 ∈𝒮
{𝑀𝐷 (𝑠𝑖 )}. This indicates that all pins have similar Manhattan

distances to the root, meaning that all pins are distributed around

a Manhattan circle near the root. In reality, pin distributions of this

nature are uncommon. Condition Equation (4) describes the influ-

ence of the dispersion of the clock distribution on the simultaneous

convergence of shallowness and skewness.

2.3 Constructing SLLT by Concurrent BST and
SALT (CBS)

To overcome the limitation of SALT and other SLLT construct

algorithms, we present a concurrent BST and SALT construction

method to generate SLLT, named CBS algorithm. The process of

this method is shown in Fig. 2:

• Step 1: The BST is utilized to construct an initial SLLT

(iSLLT). In BST, the optional candidate merging topology

includes Greedy-Dist, Greedy-Merge, Bi-Partition, and Bi-
Cluster. 1

1
For the Greedy-Dist method, the two closest subtrees aremerged greedily at each step.

The Greedy-Merge method selects and merges the two subtrees with the minimum

merging cost at each step. The Bi-Partition method performs binary partitioning

3
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• Step 2: The tree topology of the BST is extracted, and in

which the redundant Steiner nodes will be eliminated, and

the topology result is set as the input of SALT.

• Step 3: The SALT algorithm is used to relax and optimize

above topology, then the path that is longer from the root

path will be adjusted in this phase, but it breaks the skew

legitimacy.

• Step 4: Then, we extract the tree topology of BST-SALT,

and traverse all nodes to ensure the following rules should

be satisfied: 1) the tree should be a binary tree, and 2) the

load pin nodes must be leaf nodes.

• Step 5:After that, the BST is conducted on the tree topology

of Step 4, and redundant nodes are further eliminated to

ensure that skewness is satisfied and the obtained result

closely approximate the result by SALT.

Table 2: Wirelength (um) comparison between R-SALT and CBS.

GreedyDist GreedyMerge BiPartition
Skew (ps) 80 10 5 80 10 5 80 10 5

R-SALT 314.4 314.3 315.1 312.6 313.0 315.6 312.2 312.4 312.7

CBS 306.0 307.1 316.1 305.2 306.3 314.3 305.3 305.6 312.7

Reduce 2.69% 2.29% -0.32% 2.39% 2.14% 0.40% 2.20% 2.16% 0.00%

As shown in Table 1, our results achieve better shallowness and

lightness when skew is controlled. Compared with traditional CTS

algorithm, our CBS achieves the best shallowness and lightness,

and compared with FLUTE and R-SALT, we effectively control

skewness. To further evaluate the effectiveness of this construc-

tion method, we compare our CBS procedure with R-SALT and

BST-DME by randomly generate a number of clock nets as shown

in Table 2 and Table 3. All nets are generated within a box with

boundary of 75um in both the 𝑥 and 𝑦 coordinates. And the num-

bers of load pins of all nets vary from 10 to 40.We set three different

skew constraints: 1) (relaxed) skew bound is 80ps; 2) (moderate)
skew bound is 10ps; 3) (stringent) skew bound is 5ps. For each
skew level, we generate 10,000 nets to ensure the sufficiency of the

analysis. Compared to R-SALT, as shown in Table 2, our CBS pro-

cedure achieves a smaller total wirelength under the skew bound

of 80ps and 10ps. Compared to BST-DME, as shown in Table 3, our

CBS procedure obtains significant reduction on total wirelength,

load capacitance and wire delay under the same skew bound.

Table 3: Comparison on wirelength, cap and delay between BST-DME

and CBS.

Wirelength (um) Cap (fF ) Wire Delay (ps)
Skew (ps) 80 10 5 80 10 5 80 10 5

BST-DME 363.3 367.6 373.2 77.4 78.1 79.1 15.3 11.5 10.2

CBS 305.6 306.1 314.0 67.5 67.6 68.9 11.2 9.2 7.4

Reduce 15.9% 16.7% 15.9% 12.8% 13.5% 12.8% 26.6% 20.5% 26.8%

3 HIERARCHICAL CLOCK TREE SYNTHESIS
In this section, we introduce our hierarchical clock tree synthe-

sis framework: partition, routing topology generation and buffer

optimization.

3.1 Formulation and Framework
In our framework, we design clock tree by a hierarchical process

with different sub-process at each level. For the sub-process at level

𝑘 , we let 𝑠𝑘
𝑖
∈ 𝒮𝑘

be the clock nodes at level 𝑘 , and divide these

nodes as several clusters with 𝑢𝑘
𝑗
∈ 𝒰𝑘

. Let 𝑛𝑘
𝑗
∈ 𝒩𝑘

be the net

in each round based on the diameter cost of the partitioned subsets. Our proposed

Bi-Cluster method achieves quick partitioning by recursively performing binary

partitions in a clustering manner.

of 𝑢𝑘
𝑗
, and 𝑠𝑘+1

𝑗
be the driver node of net 𝑛𝑘

𝑗
. Let 𝐿(𝑠𝑘+1

𝑗
) be the set

of leaf nodes of 𝑠𝑘+1
𝑗

and 𝑑𝑒𝑙𝑎𝑦 (𝑠𝑘+1
𝑗

, 𝑠𝑖 ) be the delay from 𝑠𝑘+1
𝑗

to

its leaf node 𝑠𝑖 ∈ 𝐿(𝑠𝑘+1
𝑗

). For level 𝑘 , there are its corresponding
constraints on skew, capacitance, fanout and wirelength. That is,

for each clock net 𝑛𝑘
𝑗
∈ 𝒩𝑘

, the following constraints should be

satisfied max

𝑠𝑖 ∈𝐿 (𝑠𝑘+1𝑗
)
{𝑑𝑒𝑙𝑎𝑦 (𝑠𝑘+1

𝑗
, 𝑠𝑖 )} − min

𝑠𝑖 ∈𝐿 (𝑠𝑘+1𝑗
)
{𝑑𝑒𝑙𝑎𝑦 (𝑠𝑘+1

𝑗
, 𝑠𝑖 )} ≤

𝑠𝑘𝑒𝑤_𝑏𝑜𝑢𝑛𝑑𝑘 , |𝑢𝑘
𝑗
| ≤ max _𝑓 𝑎𝑛𝑜𝑢𝑡𝑘 , 𝑊𝐿(𝑛𝑘

𝑗
) ≤ max _𝑙𝑒𝑛𝑔𝑡ℎ𝑘 ,

and

∑
𝑠𝑘
𝑖
∈𝑢𝑘

𝑗
𝐶𝑎𝑝𝑝𝑖𝑛 (𝑠𝑘𝑖 ) + 𝑐 ·𝑊𝐿(𝑛𝑘

𝑗
) ≤ max _𝑐𝑎𝑝𝑘 .

Our hierarchical clock tree synthesis framework is given in

Fig. 3. To manage fanout and minimize capacitance, we employ

a balanced K-means and min-cost flow clustering for efficient

clock node allocation. For optimizing capacitance, wirelength, and

fanout together, a simulated annealing (SA) method is proposed for

superior partitioning. Post-clustering, our CBS routing topology

method achieves a desirable SLLT with low latency, capacitance,

and skew compliance. Buffer insertion during clock net generation

is guided by driver capability and buffer delay estimation.

3.2 Partition Scheme
Latency and Capacitance Adaptive Clustering. At clustering
stage, by combining K-means clustering with the min-cost flow

(MCF), Ref. [16] controls the maximum number of nodes in cluster.

By evaluating the clustering quality, we can calculate the silhouette

score of K-means. To balance latency and capacitance, we define a

new evaluation metric by integrating the variances of capacitance

and delay as: 𝐶𝑜𝑠𝑡𝑘 = 𝑝 · 𝜎 (𝐶𝑎𝑝𝑘 ) + 𝑞 · 𝜎 (𝑇𝑘 ), where 𝐶𝑎𝑝𝑘 =

(𝐶𝑎𝑝𝑘
1
,𝐶𝑎𝑝𝑘

2
, · · · ,𝐶𝑎𝑝𝑘|𝒩𝑘 | ), and 𝐶𝑎𝑝

𝑘
𝑗
is the total capacitance of

clock net 𝑛𝑘
𝑗
∈ 𝒩𝑘

. Similarly, 𝑇𝑘 = (𝑇𝑘
1
,𝑇𝑘

2
, · · · ,𝑇𝑘

|𝒩𝑘 | ), where
𝑇𝑘
𝑗

= max

𝑠𝑖 ∈𝐿 (𝑠𝑘+1𝑗
)
{𝑑𝑒𝑙𝑎𝑦 (𝑠𝑘+1

𝑗
, 𝑠𝑖 )}. And 𝜎 (·) denotes the variance

function. In CTS, the delay will increase with the increase of levels,

and the load capacitance is mostly accumulated in the bottom level.

Hence, this cost scheme adapts the level characteristic of clock net.

Optimizing Partition by Simulated Annealing. On the basis

of the above adaptive clustering result, we further optimize the

capacitance and wirelenth violation to obtain a better partition so-

lution by introducing simulated annealing. To improve the search

efficiency of SA, we use capacitance as the unified metric.

In such computations, all constraint costs have equivalent nu-

merical ranges. After formulating evaluation metric, a more crucial

thing is deciding the search neighborhood radius. During our ex-

perimental process, we have the following observations:

• To prevent the crossover of net interconnections, we should

prioritize selecting instances along the boundary of the net.

• Since the net costs are independent, greedy strategy can

effectively reduce the global cost by net cost in descending

order.

According to the above observations, we propose a local search

strategy for SA, as shown in Fig. 4.

3.3 Routing Topology Generation
The routing topology generated during the CTS phase provides

essential guidance for the subsequent Routing phase. Therefore,

we need to use different topology generation methods according

to the specific design requirements. Within our architecture, it

serves three primary functions:

• During the violation detection process, it is necessary to

quickly generate routing solutions to assess the occurrence

of violations.

4
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Figure 3: Hierarchical CTS Flow. (1) Achieve initial partition using balanced K-means and MCF, and optimize the partitioning result using simulated

annealing. (2) Generate routing topology. (3) Find the buffering solution.
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Figure 4: Simulated annealing operation. (1) Finding one 𝑛𝑘
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𝑗 ) located at the boundary (convex

hull) of 𝑛𝑘
𝑗
. (3) Finding the net 𝑛𝑘

𝑙
that is closest to these specific instances

𝑠𝑙 ∈ ℬ𝒮𝑘
𝑗 . (4) Adding 𝑠𝑙 into 𝑛

𝑘
𝑙
, and re-routing.

• The routing topology helps us determine the location of the

driver buffer. In a global clock tree, we can find the com-

mon ancestor node of bottom clock nodes as the reference

location of the driver buffer.

• It is crucial to develop an accurate routing solution that up-

dates the timing information of driver instance, facilitating

the progress to the next level of the process.

Design requirements dictate the choice of generation methods

for traditional CTS construction. Algorithms with skew-control

are preferred, while routability concerns necessitate lighter SLLT,

favoring FLUTE-like tree structures. For larger designs, minimizing

latency and the clock source-to-sink distance is key, requiring less

shallow SLLT for shorter paths.

With CBS, we can implement trade-offs for these scenarios. We

can fulfill the traditional CTS requirements for bounded skew,

while keeping the topology and Routing stage as close as possible,

and shortening the path length to reduce the maximum latency to

meet the challenges of large-scale clock tree design.

3.4 Buffering Optimization
Buffer Driver Capability Estimation. Slew and delay are calcu-

lated as in [19], with [18] showing a first-order model’s accuracy

through a linear buffer delay𝐷𝑏𝑢𝑓 (𝑡) equation dependent on input
slew 𝑆𝑙𝑒𝑤𝑖𝑛 (𝑡) and load capacitance 𝐶𝑎𝑝𝑙𝑜𝑎𝑑 (𝑡):

𝐷𝑏𝑢𝑓 (𝑡) = 𝜔𝑠 · 𝑆𝑙𝑒𝑤𝑖𝑛 (𝑡) + 𝜔𝑐 ·𝐶𝑎𝑝𝑙𝑜𝑎𝑑 (𝑡) + 𝜔𝑖 , (6)

where 𝜔𝑠 , 𝜔𝑐 , and 𝜔𝑖 represent slew, capacitance coefficients, and

inherent delay, respectively. We consider the following scenario:

𝑏𝑢𝑓𝑖 and 𝑏𝑢𝑓𝑗 linked by a wire with 𝑏𝑢𝑓𝑘 inserted between them.

Based on Equation (6), we can deduce the following result:

𝑇 (𝑖, 𝑗) −𝑇 ′ (𝑖, 𝑗) = 𝑟 · 𝑐 · (ln 9 · 𝜔𝑠 + 1) · 𝐿(𝑖, 𝑗)2
4

−𝜔𝑐 ·𝐶𝑎𝑝𝑝𝑖𝑛 −𝜔𝑖 ,

where 𝑟 represents the resistance per unit length of the wire. By

solving 𝑇 (𝑖, 𝑗) = 𝑇 ′ (𝑖, 𝑗), we can obtain the critical wirelength:

𝐿(𝑖, 𝑗) = 2

√︂
𝜔𝑐 ·𝐶𝑎𝑝𝑝𝑖𝑛+𝜔𝑖

𝑟 ·𝑐 · (ln 9·𝜔𝑠+1) . By substituting 𝐶𝑎𝑝𝑝𝑖𝑛 with 𝐶𝑎𝑝𝑙𝑜𝑎𝑑 ,

then �̂�(𝑖, 𝑗) = 2

√︃
𝜔𝑐 ·𝑪𝒂𝒑𝒍𝒐𝒂𝒅+𝜔𝑖

𝑟 ·𝑐 · (ln 9·𝜔𝑠+1) , we obtain a refined estimation

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒚𝒚𝑬𝑬𝑬𝑬𝑬𝑬 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒚𝒚𝑷𝑷𝑷𝑷𝒅𝒅 + 𝑬𝑬𝒅𝒅𝑬𝑬𝑬𝑬 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒚𝒚𝑷𝑷𝑷𝑷𝑬𝑬𝑬𝑬 > 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒚𝒚𝑬𝑬st + 𝑬𝑬𝑷𝑷𝒅𝒅𝒓𝒓𝒓𝒓𝒓𝒓𝒅𝒅

Traditional
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Pre-Buffer

Post-Buffer

Est-Buffer
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Figure 5: Buffering estimation.

as 𝐶𝑎𝑝𝑙𝑜𝑎𝑑 accounts for pin capacitance. Despite ignoring com-

plex net slew effects, this approximation, favoring capacitance, is

deemed acceptable for our analysis.

Insertion Delay Lower Bound Estimation. To correct skew,

previous methods necessitated adjustments in downstream buffer

sizes or iterative net construction. We discovered that estimating a

provisional delay for each node during timing analysis minimizes

downstream alterations upon upstream node merging. We use the

most conservative lower bound estimate:

�̂�𝑏𝑢𝑓 (𝑡) = 𝑚𝑖𝑛
∀𝑙𝑖𝑏∈𝐿𝑖𝑏

{𝜔𝑐 (𝑙𝑖𝑏)} ·𝐶𝑎𝑝𝑙𝑜𝑎𝑑 (𝑡)+ 𝑚𝑖𝑛
∀𝑙𝑖𝑏∈𝐿𝑖𝑏

{𝜔𝑖 (𝑙𝑖𝑏)}. (7)

In Fig. 5, we estimate delay 𝑡𝑒𝑠𝑡 prior to buffer insertion, initially

increasing delay. Post-buffer insertion, accounting for downstream

𝐶𝑎𝑝𝑙𝑜𝑎𝑑 (𝑡) and 𝜔𝑖 , downstream changes diminish. This method

lowers skew repair costs and latency by reducing downstream

node disparities.

In Equation (6), load capacitance impacts delay more than input

slew, yielding a smaller delay gap for an effective lower bound.

However, overly aggressive estimates may not always narrow the

delay gap, risking increased variations in downstream nodes.

4 EXPERIMENTAL RESULTS
Table 4: Design statistics.

Case s38584 s38417 s35932 salsa20 ethernet vga_lcd ysyx_0 ysyx_1 ysyx_2 ysyx_3

#Insts. 7510 6428 6113 13706 39945 60541 86933 93907 139178 139956

#FFs 1248 1564 1728 2375 10015 16902 18487 19090 27078 22810

Util 0.60 0.61 0.58 0.68 0.61 0.55 0.93 0.868 0.814 0.722

Table 5: Constraint list.
Constraint Skew Fanout Cap Wirelength

Val. 80ps 32 150f F 300µm
We performed experiments utilizing the 28nm manufacturing

process and a standard cell library. The input placement schemes

were executed utilizing the Cadence Innovus Implementation Sys-
tem v19.1 [3]. Our solution was developed employing C++ and

Tcl scripts, with all experiments conducted on a 2.40GHz Intel

Xeon Platinum-8260 server. To construct the reference clock tree

solution, we leveraged prominent commercial P&R tool alongside

the widely-used open-source tool OpenROAD [2].

We evaluate six open source designs and four internal testing

designs to assess the effectiveness of all solutions. These designs

include s38584, s38417, and s35932 from the ISCAS’89 [1], salsa20
5
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Table 6: Comparison between clock tree solutions from ours, commercial tool, and OpenROAD.

Case Latency (ps) Skew (ps) #Buffers Buf Area (µm2
) Clk Cap (f F) Clk WL (µm) Runtime (s)

Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR.

s38584 71 76 93 13 8 17 43 43 45 26.6 26.8 39.7 904 1019 1087 3382.0 3366.5 3478.9 13 326 52

s38417 75 84 94 10 19 16 53 54 55 32.4 33.6 48.5 1083 1235 1284 3755.6 3867.4 3870.5 14 357 47

s35932 80 81 100 13 10 17 58 59 64 35.5 36.5 56.4 1217 1380 1433 4380.0 4420.9 4449.4 15 334 52

salsa20 82 87 112 19 21 29 81 83 109 49.6 51.8 96.1 1715 2050 2160 6446.9 6580.9 6863.5 17 390 54

ethernet 97 104 159 34 31 51 337 352 455 315.5 320.4 408.9 7314 8823 9210 26113.9 26105.5 27248.8 30 416 50

vga_lcd 134 146 206 41 49 92 575 597 775 416.9 451.8 812.1 12380 14920 15815 46763.1 45969.8 47484.1 55 1271 59

Avg. 1.000 1.072 1.417 1.000 1.062 1.708 1.000 1.036 1.310 1.000 1.051 1.668 1.000 1.196 1.259 1.000 0.994 1.028 1.000 21.486 2.181

Table 7: Comparison of ysyx designs among clock tree solutions from ours, commercial tool, and OpenROAD.

Case Latency (ps) Skew (ps) #Buffers Buf Area (µm2
) Clk Cap (f F) Clk WL (µm) Runtime (s)

Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR. Ours Com. OR.

ysyx_0 113 120 156 31 15 63 639 654 799 550.368 561.456 1719.018 29032 31662 17130 42698.49 42935.09 45389.69 51 573 43
ysyx_1 118 122 206 29 12 110 656 674 863 568.386 568.26 1896.426 29455 32204 17907 44538.49 45142.38 48113.24 55 556 43
ysyx_2 140 143 191 38 16 68 943 958 1113 801.234 814.59 2401.686 35272 39256 25491 64884.11 64901.76 69753.65 92 750 45
ysyx_3 144 139 193 36 16 59 798 808 914 671.832 688.968 1970.388 32483 35830 21484 57229.57 56918.98 59314.99 85 1350 148

Avg. 1.000 1.017 1.449 1.000 0.440 2.239 1.000 1.019 1.215 1.000 1.016 3.082 1.000 1.101 0.650 1.000 1.003 1.063 1.000 11.410 0.986

from OpenLane CI Designs [5], ethernet and vga_lcd from Open-

Cores [4], ysyx_0 to ysyx_3 from our internal testing. And we use

Synopsys Design Compiler R-2020.09-SP3a [6] to synthesize these

designs. The statistics of these designs are shown in Table 4.

The tools were configured with design constraints outlined in

Table 5, based on engineers’ practical experiences in chip fabri-

cation. Table 6 presents the experimental results obtained in this

study. The columns “Ours”, “Com.”, “OR.” represent our solution

and the commercial tool, OpenROAD’s solution, respectively. In

terms of maximum latency, our solution achieves a reduction

of 6.75% compared to commercial tool and a reduction of 29.45%

compared to OpenROAD.With regards to clock skew, we achieves

a reduction of 5.80% compared to commercial tool and a reduction

of 41.44% compared to OpenROAD, and in the case of vga_lcd,
the OpenROAD solution exceeds the constraint skew. In terms of

buffer count, buffer area, and clock capacitance, we outper-
form both the commercial tool and OpenROAD. Additionally, in

terms of total wirelength, the discrepancy between our solution

and commercial tool is a mere 0.59%, while compared to Open-

ROAD there is a reduction of 2.73%. In conclusion, our solution

demonstrates superior performance across all measured indica-

tors, while maintaining a similar total wirelength compared to the

commercial tool.

We conduct further experiments on our actual design ysyx as

shown in Table 4. The results of these experiments are presented in

Table 7. Our solution exhibits superior performance across various

metrics, includingmaximum latency, buffer count, buffering
area, and total wirelength. Compared to the commercial tool,

both solutions remain within the acceptable range dictated by

the constraints. In addition, OpenROAD’s solution violates the

skew constraints in certain designs. Regarding clock capacitance,

OpenROAD minimizes by employing a large number of larger

buffers.

5 CONCLUSION
Under the concept of SLLT, we have bridged the CTS and routing

phases, as well as several intermediate algorithms. From an algo-

rithmic perspective, the method we proposed effectively combines

traditional shallow-light tree and conventional clock tree methods.

This approach optimizes resource utilization while maintaining

skew control, thereby demonstrating superior low-power charac-

teristics of our design methodology and architecture in experimen-

tal results. In future research, we plan to develop a comprehensive

SLLT model, explore feasible metric transformations, and refine

the architecture further.
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