
IncreMacro: Incremental Macro Placement Refinement
Yuan Pu

The Chinese University of Hong Kong
Hong Kong SAR

Shanghai AI Laboratory, China

Tinghuan Chen
The Chinese University of Hong Kong

Hong Kong SAR

Zhuolun He
The Chinese University of Hong Kong

Hong Kong SAR
Shanghai AI Laboratory, China

Chen Bai
The Chinese University of Hong Kong

Hong Kong SAR

Haisheng Zheng
Shanghai AI Laboratory

China

Yibo Lin
Peking University, Beijing, China
Institue of EDA, Peking University,

Wuxi, China

Bei Yu
The Chinese University of Hong Kong

Hong Kong SAR

ABSTRACT
This paper proposes IncreMacro, a novel approach for macro place-
ment refinement in the context of integrated circuit (IC) design.
The suggested approach iteratively and incrementally optimizes the
placement of macros in order to enhance IC layout routability and
timing performance. To achieve this, IncreMacro utilizes several
methods including kd-tree-based macro diagnosis, gradient-based
macro shifting and constraint-graph-based LP for macro legaliza-
tion. By employing these techniques iteratively, IncreMacro meets
two critical solution requirements of macro placement: (1) pushing
macros to the chip boundary; and (2) preserving the original macro
relative positional relationship. The proposed approach has been
incorporated into DREAMPlace and AutoDMP, and is evaluated on
several RISC-V benchmark circuits at the 7-nm technology node.
Experimental results show that, compared with the macro place-
ment solution provided by DREAMPlace (AutoDMP), IncreMacro
reduces routed wirelength by 6.5% (16.8%), improves the routed
worst negative slack (WNS) and total negative slack (TNS) by 59.9%
(99.6%) and 63.9% (99.9%), and reduces the total power consumption
by 3.3% (4.9%).

CCS CONCEPTS
• Hardware→ Placement.

KEYWORDS
Macro Placement, Incremental Placement

ACM Reference Format:
Yuan Pu, Tinghuan Chen, Zhuolun He, Chen Bai, Haisheng Zheng, Yibo Lin,
and Bei Yu. 2024. IncreMacro: Incremental Macro Placement Refinement .
In Proceedings of the 2024 International Symposium on Physical Design (ISPD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISPD ’24, March 12–15, 2024, Taipei, Taiwan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0417-8/24/03. . . $15.00
https://doi.org/10.1145/3626184.3633321

’24), March 12–15, 2024, Taipei, Taiwan. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3626184.3633321

1 INTRODUCTION
Effective macro placement is a critical procedure of the physical
design flow for Very Large-Scale Integration (VLSI) circuits, ow-
ing to the sizable fraction of chip area occupied by pre-designed
macro blocks, particularly embeddedmemories. Inappropriatemacro
placement can result in macro blockage in the core center, which
harms the overall chip performance by causing unwanted effects
such as routing congestion, inferior wirelength, and timing perfor-
mance issues. Moreover, macro placement influences the placement
of standard cells, and poor macro placement might make it chal-
lenging to place these cells optimally, leading to an unsatisfactory
chip performance. As modern VLSI design increasingly includes
pre-designed macro blocks, effective macro placement is crucial to
improve routability and timing performance.

Analytical placers such as DREAMPlace [1], RePlace [2], ePlace
[3] and NTUplace3 [4] support mixed-size placement of standard
cells and macros. In macro placement, a well-established practice
among experienced engineers is to place macros towards the pe-
ripheral regions of the chip to prevent macro blockage. However,
existing analytical placers prioritize wirelength optimization during
placement, which diverges from the aforementioned practice and
can result in macro blockage in the core center. Such macro blockage
may negatively impact the placement of standard cells, and hamper
the subsequent routing stage. In Figure 1(a), we illustrate an instance
of mixed-size macro placement performed by an analytical placer.
The blue blocks represent macros, while the white area signifies the
available space for standard cell placement. In this example, macros
are placed within the core center, causing macro blockage. Such
macro blockage divides the remaining space for standard cell place-
ment into discontinuous sub-regions. Consequently, standard cells
associated with the same net may be dispersed across separate place-
ment sub-regions, introducing detours into the VLSI routing process.
Routing detours result in longer signal routing paths, reflected in
increased routed wirelength, along with elevated resistance and
capacitance. These factors significantly degrade timing performance

https://doi.org/10.1145/3626184.3633321
https://doi.org/10.1145/3626184.3633321

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Yuan Pu et al.

(a) (b) (c)

Figure 1: (a). Macro placement by an analytical placer. (b).
Macro placement refined by data structure-centric meta-
heuristics. (c). Macro placement refined by IncreMacro. The
blue block represents macro. The white region represents the
remaining space for standard cell placement and routing. A
6-pin net is denoted in red color.

and escalate power consumption. To achieve superior quality-of-
results (QoR) in the final physical design, meticulous attention to
macro placement to eliminate macro blockage is imperative.

Numerous academic studies have explored the subject of macro
placement, where reinforcement learning (RL) driven approaches
and other metaheuristics are frequently utilized. The RL-based tech-
nique [5–11] frames macro placement as a sequential Markov De-
cision Process (MDP) and employs reinforcement learning to solve
the problem. Within the context of the sequential MDP, interme-
diate macro placement solutions are represented as states and the
assignment of a macro to a legalized position on the chip canvas
is considered an action. Following macro placement, an analytical
placer is utilized for sequential standard cell placement. Instead of
refining existing macro placement, the RL-based approach gener-
ates macro placement from scratch. State-of-the-art (SOTA) data
structure-centric metaheuristics have been proposed for macro le-
galization. The proposed approaches utilize efficient data structures,
such as MP-tree, CP-tree, and modified corner sequence [12–21],
to represent the macro layout. Then, Simulated Annealing (SA)
algorithm is leveraged to remove overlaps among macros while op-
timizing objectives such as macro displacement, wirelength, and
routability. Recently, AutoDMP [22], a DREAMPlace-based macro
placement framework is proposed. AutoDMP explores the parame-
ter space of DREAMPlace by multi-objective Bayesian optimization,
and generates macro placement solutions with a good trade-off
among power, performance and area (PPA).

Existing academic studies for macro placement have two major
drawbacks: 1). The RL-based approach and AutoDMP are compu-
tationally prohibitive. To satisfy the desired PPA requirements, the
macro placement generation process of the RL-based approach and
AutoDMPmay be iterated for many times on different parameter set-
tings. 2). On refining the macro placement of the existing placement
prototype, the data structure-centric metaheuristics may disturb the
macro relative positional relationship of the placement prototype,
potentially leading to wirelength degradation and timing perfor-
mance issues. An example of applying the data structure-centric
metaheuristic approach to legalize an analytical placement proto-
type is shown in Figure 1(b). Although the approach successfully
eliminates macro overlaps and packs macros to the chip periphery,
it perturbs the original macro relative positional relationship of the

placement prototype, resulting in poor wirelength performance for
the 6-pin net.

To overcome the above drawbacks and achieve a better trade-off
between computational time and solution quality for macro place-
ment, a macro placement refinement algorithm which eliminates
the macro blockage and preserves the macro relative positional rela-
tionship by the placement prototype is desired. Unfortunately, to the
best of our knowledge, there is no such prior work. We thus propose
IncreMacro, a novel incremental macro placement framework that
leverages an analytical placer and satisfies two key requirements.
Specifically, the refined solution is supposed to: (1) push macros
to the chip boundary, and (2) preserve the macro relative posi-
tional relationship established by the placement prototype.
Figure 1(c) presents an ideal macro placement solution achieved by
applying IncreMacro to an academic analytical placer. Compared
to Figure 1(a), this solution eliminates macro blockage in the core
center, creating continuous open space for subsequent standard cell
placement and routing. Compared to Figure 1(b), this placement
preserves the wirelength optimization accomplished by the analyt-
ical placer’s placement prototype, as evidenced by the preserved
relative positional relationship of the macros involved in the 6-pin
net, leading to a shorter net wirelength.

Our major contributions are summarized as follows:

• We propose IncreMacro which incrementally enhances macro
placement by state-of-the-art analytical placers.

• We propose a novel algorithmic workflow consisting of KD-
tree-based macro diagnosis, gradient-based macro shift and
constraint-graph-based linear programming for macro legal-
ization, to eliminate macro blockage in the chip center while
preserving the wirelength optimization by the analytical place-
ment prototype.

• We conduct experiments on several RISC-V circuits at 7-nm
technology node. Experimental results show that incorporating
IncreMacro into DREAMPlace improves the post-route WNS
and TNS by 59.9% and 63.9%, and reduces the routed wirelength
and total power consumption by 6.5% and 3.3%. Also, by in-
corporating IncreMacro into AutoDMP, the WNS and TNS are
improved by 99.6% and 99.9%, and the routed wirelength and
total power consumption are reduced by 16.8% and 4.9%, respec-
tively.

2 PROBLEM FORMULATION
In this section, we first introduce the mixed-size analytical place-
ment flow into which IncreMacro is incorporated. We then give the
definitions of macro regularity (including the definition of regularly-
placed macro, poorly-placed macro and macro diagnosis). Finally, the
definition of the macro placement refinement problem is given.

Figure 2(a) illustrates the mixed-size placement flow into which
IncreMacro is incorporated. The circuit information, comprising
LEF and DEF, is initially fed to the analytical placer, which generates
a mixed-size placement prototype with legalized macros. Subse-
quently, IncreMacro is leveraged iteratively and incrementally to
refine the macro placement. Upon the completion of incremental
refinement, the locations of macros are fixed based on the refined
macro placement solution, and an analytical placer is applied for the

IncreMacro: Incremental Macro Placement Refinement ISPD ’24, March 12–15, 2024, Taipei, Taiwan

remaining process of standard cell placement. Finally, the optimized
placement solution is obtained.

Prior to delving into the definitions of macro regularity, it is imper-
ative to first elucidate the effect of macro regularity on subsequent
VLSI processes, including standard cell placement and signal/clock
routing. As mentioned in Section 1, macros positioned in the center
of the core have been observed to engender macro blockages, leading
to the partitioning of available placement areas into non-contiguous
sub-regions. Consequently, standard cells associated with the same
net may be dispersed across different placement sub-regions, leading
to increased wirelength and the potential emergence of routing chal-
lenges such as detours, ultimately degrading the timing performance.
Macros with the potential to induce blockages are designated as
"poorly-placed macros". Conversely, their counterparts, referred to
as "regularly-placed macros", adhere to one of the following two cri-
teria: 1) adjacency to the peripheral boundaries of the chip (e.g.,𝑚4,
𝑚5,𝑚6,𝑚7,𝑚8 in Figure 3), or 2) regularly packing and alignment
with other macros (e.g.,𝑚2,𝑚3 in Figure 3). Based on the observa-
tions above, we give the formal definitions of macro regularity as
follows.

Definition 1 (Regularly-placed macro). Given a macro𝑚𝑖 and its
four Euclidean-distance-nearest neighbormacros𝑁𝑖 = {𝑚𝑖

1,𝑚
𝑖
2,𝑚

𝑖
3,𝑚

𝑖
4}

in a placement prototype, if 𝑁𝑖 can surround𝑚𝑖 , that is, if macros in
𝑁𝑖 are spatially and respectively to the north, south, west and east
direction of𝑚𝑖 , or if𝑚𝑖 clings to the chip boundary (the distance
between the center of𝑚𝑖 and its nearest chip boundary is less than
a threshold 𝛼), then𝑚𝑖 is a regularly-placed macro.

Definition 2 (Poorly-placed macro). If a macro𝑚𝑖 is not regularly-
placed, it is poorly-placed.

Definition 3 (Macro diagnosis). Given a macro placement solution
consists of macros 𝑀 = {𝑚1,𝑚2, ...,𝑚𝑛}, divide 𝑀 into two sets
𝑀𝑟𝑒𝑔𝑢𝑙𝑎𝑟 and 𝑀𝑝𝑜𝑜𝑟 such that 𝑀𝑟𝑒𝑔𝑢𝑙𝑎𝑟 contains only regularly-
placed macros, 𝑀𝑝𝑜𝑜𝑟 contains only poorly-placed macros, and
|𝑀 | = |𝑀𝑟𝑒𝑔𝑢𝑙𝑎𝑟 | + |𝑀𝑝𝑜𝑜𝑟 |.

The macro placement refinement problem is as follows.

Problem 1 (Macro Placement Refinement). A mixed-size place-
ment prototype by an analytical placer contains 1) a set of macros
M = {𝑚1,𝑚2, · · · ,𝑚𝑚}, 2) a set of standard cellsC = {𝑐1, 𝑐2, · · · , 𝑐𝑛}
which are in the same nets with macros in M, and 3) their origi-
nal positions COM = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), · · · , (𝑥𝑚, 𝑦𝑚)} and COC =

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), · · · , (𝑥𝑛, 𝑦𝑛)}. Our target is to find the legalized
positions of macros inM to optimize the objective of wirelength.

3 ALGORITHM
Figure 2(b) illustrates the flow of IncreMacro. Given the mixed-size
placement prototype by the analytical placer, a KD-tree-based macro
diagnosis method is rendered to distinguish poorly-placed macros
(macros causing blockage) from regularly-placed ones. Then, by
making an analogy between macro shift and the neural network
training process of deep learning, we utilize a deep learning toolkit
to iteratively shift the poorly-placed macros by a gradient-based
method to minimize the cost of wirelength and periphery. Finally,
based on the macro placement of the mixed-size placement proto-
type by the analytical placer, we construct two constraints graphs

LEF/DEF

Mixed-size
Placement
Solution

Incremental
Macro

Placement
Refinement

Standard Cell
Placement

KD-tree-
based
Macro

Diagnosis

Gradient-
based

 Macro Shift

Constraint-
graph-based

LP for Macro
Legalization

Meet Stop
Criteria?Optimized

Placement

Regularly-placed
macro

Poorly-placed
macro

(a) (b)
Figure 2: The mixed-size placement flow and our proposed
incremental macro placement refinement tool IncreMacro.

to constrain the relative positional relationships of macros horizon-
tally and vertically. A constraint-graph-based linear programming
method is then designed to eliminate the overlaps among macros,
minimize the macro displacement and further push poorly-placed
macros to the chip periphery, with the macro relative positional
relationship of the initial placement prototype preserved. The KD-
tree-based macro diagnosis method, gradient-based method and
constraint-graph-based linear programming are sequentially and
iteratively performed until the macro blockage is eliminated (which
satisfies the stop criteria).

Notice that through IncreMacro, the area and boundary of the
chip remain the same as the initial placement prototype. In the
following subsections, we detail the techniques used in each stage.

3.1 KD-Tree-based Macro Diagnosis
For VLSI circuits, analytical placers are effective in placing macros
with similar sizes in a regular manner. However, as VLSI designs
become more complex, functional modules may require varying
memory sizes, resulting in diverse SRAM (macro) sizes. Placing
varying-size macros with analytical placers can lead to poorly-placed
macros and even macro blockage in the center of the chip. This
can hinder subsequent VLSI processes such as routing. An effective
and efficient methodology for macro diagnosis is required to help
refine the placement of poorly-placed macros and eliminate macro
blockage in the analytical placement prototype (the definitions of
regularly-placed macro, poorly-placed macro and macro diagnosis are
given in Definition 1, 2 and 3).

KD-tree is a versatile extension of the binary search tree, fa-
cilitating sorting, range searching, and neighbor searching within
𝑘-dimensional spaces. Each node in the KD-tree represents a 𝑘-
dimensional point, and non-leaf nodes uniformly divide the space
by means of generating split hyperplanes. KD-tree supports near-
est neighbor searching (NNS) with an expected time complexity of

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Yuan Pu et al.

m1

m2 m3

m4 m5 m6 m7

m8

Horizontal dimension

Ve
rti

ca
l d

im
en

si
on

m1

m2 m3

m5

m4 m6

m7

m8

(c)

Y

X

Y

Horizontal dimension

Ve
rti

ca
l d

im
en

si
on

m1

m2 m3

m5

m4 m6

m7

m8

(d)

Regularly placed macro Poorly placed macro

 4-nearest neighbour searching

Vertical hyperplaneHorizontal hyperplane

(a) (b)

m5 m8 m6

m4 m7
m3

m1

m2

Figure 3: Customization of KD-tree for macro diagnosis.

𝑂 (log𝑁), where 𝑁 represents the number of nodes [23]. KD-tree
can be represented as an efficient data structure for modeling the
relative positional relationship among macros in a placement proto-
type, and its application in nearest neighbor searching (NNS) can
be utilized for macro diagnosis.

Figure 3 depicts the process of customizing a KD-tree for macro
diagnosis. In Figure 3(a), a macro placement solution with 8 macros
is presented, based on which a KD-tree is constructed in Figure 3(b).
The space is partitioned by generating horizontal or vertical hy-
perplanes for each non-leaf node ({𝑚1,𝑚2,𝑚3,𝑚4}), as shown in
Figure 3(c) and Figure 3(d). For macro diagnosis, the KD-tree is uti-
lized to search for the four nearest neighbors of each macro, and
the macro regularity is determined by referring to definitions 1
and 2. The process of macro diagnosis for macro𝑚1 and𝑚3 is il-
lustrated in Figure 3(c) and Figure 3(d). Specifically, as shown in
Figure 3(c), the four nearest neighbor macros of 𝑚1, denoted as
𝑁1 = {𝑚2,𝑚3,𝑚7,𝑚8}, do not surround𝑚1 in the north direction,
and 𝑚1 does not cling to the chip boundary, indicating that 𝑚1
is categorized as poorly-placed. Conversely, as demonstrated in
Figure 3(d), the four nearest neighbor macros of 𝑚3, denoted as
𝑁3 = {𝑚1,𝑚2,𝑚6,𝑚7}, can surround𝑚3, suggesting that𝑚3 is di-
agnosed as regularly-placed.

With KD-tree utilized, the expected time complexity of macro
diagnosis is 𝑂 (𝑁 log𝑁), where 𝑁 is the total number of macros in
a macro placement solution.

3.2 Gradient-based Macro Shift
After macro diagnosis, poorly-placed macros are detected, and we
need to shift them to the chip periphery while preserving the wire-
length optimization by the analytical placer. Inspired byDREAMPlace
[1], we formulate macro placement as an analytical placement prob-
lem, make the analogy between macro placement and deep neural

Analytical
Placement
Prototype

WL
Gradient

Periphery
Gradient

Macro
Position
Update

Converge?
Macro

Legalization
Yes

No

Figure 4: The Macro shifting gradient descent process.

network training, and propose a gradient-based macro shift algo-
rithm. In the neural network training process, the neural network
model is denoted as𝑀 (𝑤), where𝑤 is the model weight. For a data
instance of feature vector 𝑥𝑖 and label 𝑦𝑖 , 𝑥𝑖 can be fed into𝑀 (𝑤),
and the corresponding label is predicted as 𝑂 (𝑥𝑖 ,𝑤). A loss func-
tion L is formulated to quantify the discrepancy between the true
labels and the prediction results by𝑀 (𝑤), and the purpose of neural
network training is to adjust the values of 𝑤 such that L is mini-
mized. In the analogy, we use the macro shift offset (Δ𝑥𝑖 ,Δ𝑦𝑖) of
each poorly-placed macro𝑚𝑖 to replace the model weight𝑤 , where
the macro shift offset denotes the horizontal and vertical movement
of the macro. Each data instance (𝑥𝑖 ,𝑦𝑖) is replaced with a macro-
involved net instance with a feature vector and a label zero, and the
loss function L is replaced by the convex forms of a wirelength cost
(Equation (1)) and a periphery cost (Equation (3)). Minimizing the
wirelength cost explicitly optimizes HPWL, while minimizing the
periphery cost pushes macros to the chip boundary, leaving more
continuous space for routing and implicitly optimizing routability
and timing performance. Finally, by elaborating the mechanism of
neural network training, we use backward propagation to calculate
the gradient of each poorly-placed macro. To update the position
of any poorly-placed macro 𝑚𝑖 , we sum up the calculated gradi-
ent (𝜕L/𝜕Δ𝑥𝑖 ,𝜕L/𝜕Δ𝑦𝑖) and the original position (𝑥𝑖 , 𝑦𝑖) as the new
position of𝑚𝑖 . The flow is shown in Figure 4.

Denote any net in the design netlist by 𝑒 , and 𝑒 contains a set of
instances (macros and standard cells) {𝑣1, 𝑣2, . . . , 𝑣𝑚}. The original
formulation of the half-perimeter wirelength (HPWL) of 𝑒 , as shown
in Equation (1), is neither smooth nor convex; We thus use the
weighted-average wirelength (WA) proposed by [24] to model the
wirelength cost. The parameter 𝛾 governs the trade-off between the
accuracy and smoothness of the approximation to half-perimeter
wirelength (HPWL). Decreasing 𝛾 enhances the accuracy of the
HPWL approximation while reducing its smoothness.

𝐻𝑃𝑊𝐿𝑒 = max
𝑣𝑖 ∈𝑒

{𝑥𝑖 } −min
𝑣𝑖 ∈𝑒

{𝑥𝑖 } +max
𝑣𝑖 ∈𝑒

{𝑦𝑖 } −min
𝑣𝑖 ∈𝑒

{𝑦𝑖 }. (1)

𝑊𝐴𝑒 =

∑
𝑣𝑖 ∈𝑒 𝑥𝑖𝑒

𝑥𝑖
𝛾∑

𝑣𝑖 ∈𝑒 𝑒
𝑥𝑖
𝛾

−
∑

𝑣𝑖 ∈𝑒 𝑥𝑖𝑒
− 𝑥𝑖

𝛾∑
𝑣𝑖 ∈𝑒 𝑒

− 𝑥𝑖
𝛾

+
∑

𝑣𝑖 ∈𝑒 𝑦𝑖𝑒
𝑦𝑖
𝛾∑

𝑣𝑖 ∈𝑒 𝑒
𝑦𝑖
𝛾

−
∑

𝑣𝑖 ∈𝑒 𝑦𝑖𝑒
− 𝑦𝑖

𝛾∑
𝑣𝑖 ∈𝑒 𝑒

− 𝑦𝑖
𝛾

.

(2)

To use WA as the wirelength cost, in Equation (2), we replace the
position (𝑥𝑖 , 𝑦𝑖) of each poorly-placed macro𝑚𝑖 by (𝑥𝑖 +Δ𝑥𝑖 , 𝑦𝑖 +Δ𝑦𝑖)
while maintaining the positions of standard cells in C and regularly-
placed macros as constants. By doing so, we obtain the wirelength
cost item of each net 𝑒 , denoted by𝑊𝐿𝑒 .

The peripheral cost 𝑃𝑖 for a macro 𝑚𝑖 is also defined in Equa-
tion (3), consisting of the horizontal cost 𝑃𝐻

𝑖
and vertical cost 𝑃𝑉

𝑖
.

IncreMacro: Incremental Macro Placement Refinement ISPD ’24, March 12–15, 2024, Taipei, Taiwan

0
<latexit sha1_base64="tBWsZ1HjRhgXhdFxO9GATQGUpeg=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN8Ei1E1JpKjLohuXFewF2hAm02k7dDITZiZqCXkVNy4UceuLuPNtnLZZaOsPAx//OYdz5g9jRpV23W+rsLa+sblV3C7t7O7tH9iH5bYSicSkhQUTshsiRRjlpKWpZqQbS4KikJFOOLmZ1TsPRCoq+L2exsSP0IjTIcVIGyuwy49BioUkWXWcw1lgV9yaO5ezCl4OFcjVDOyv/kDgJCJcY4aU6nlurP0USU0xI1mpnygSIzxBI9IzyFFElJ/Ob8+cU+MMnKGQ5nHtzN3fEymKlJpGoemMkB6r5drM/K/WS/Twyk8pjxNNOF4sGibM0cKZBeEMqCRYs6kBhCU1tzp4jCTC2sRVMiF4y19ehfZ5zbuo1e/qlcZ1HkcRjuEEquDBJTTgFprQAgxP8Ayv8GZl1ov1bn0sWgtWPnMEf2R9/gBENJSY</latexit>

wcore(hcore)
<latexit sha1_base64="2REjKYbHK3kt6h4eS400ksrVMds=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoiRT0WvXisYD+gDWGz3bRLN5t0dyOG0D/hxYMiXv073vw3btsctPXBwOO9GWbm+TFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3449uZ33mkUrFIPOg0pm6Ih4IFjGBtpO6Tx6qpx869csWu2XOgVeLkpAI5ml75qz+ISBJSoQnHSvUcO9ZuhqVmhNNpqZ8oGmMyxkPaM1TgkCo3m987RWdGGaAgkqaERnP190SGQ6XS0DedIdYjtezNxP+8XqKDazdjIk40FWSxKEg40hGaPY8GTFKieWoIJpKZWxEZYYmJNhGVTAjO8surpH1Rcy5r9ft6pXGTx1GEEziFKjhwBQ24gya0gACHZ3iFN2tivVjv1seitWDlM8fwB9bnD4cBj6U=</latexit>

xi(yi)

<latexit sha1_base64="9iGqiM5VBecMGf/rFXODBdQDexc=">AAAB83icbVDLSsNAFL3xWeur6tLNYBHqpiRS1GXRTZcV7APaWCbTSTt0MgnzEErob7hxoYhbf8adf+OkzUJbD9zL4Zx7mTsnSDhT2nW/nbX1jc2t7cJOcXdv/+CwdHTcVrGRhLZIzGPZDbCinAna0kxz2k0kxVHAaSeY3GV+54lKxWLxoKcJ9SM8EixkBGsr9ZsD9tiuZL1xMSiV3ao7B1olXk7KkKM5KH31hzExERWacKxUz3MT7adYakY4nRX7RtEEkwke0Z6lAkdU+en85hk6t8oQhbG0JTSaq783UhwpNY0COxlhPVbLXib+5/WMDm/8lInEaCrI4qHQcKRjlAWAhkxSovnUEkwks7ciMsYSE21jKtoQvOUvr5L2ZdW7qtbua+X6bR5HAU7hDCrgwTXUoQFNaAGBBJ7hFd4c47w4787HYnTNyXdO4A+czx+4MpDW</latexit>

PV
i (PH

i)

(a)

B

A
3

4

12
<latexit sha1_base64="PEES4RMUkQme52nJU4iUjlbfOoo=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9nVol6EUi8eK9gPaNeSTbNtaJJdk6xQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjG6mfuuJKs0ieW/GMfUFHkgWMoKNldr1Xu2hee2d94olt+zOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjq7d4JOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xicx4ZWfMhknhkoyXxQmHJkITZ9HfaYoMXxsCSaK2VsRGWKFibERFWwI3uLLy6R5VvYuypW7Sqlay+LIwxEcwyl4cAlVuIU6NIAAh2d4hTfn0Xlx3p2PeWvOyWYO4Q+czx+w2o8Z</latexit>

PV
B = 13

<latexit sha1_base64="hip0V0aiE+ObqV6Jqc8YulHt0x0=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexKfFyEqBePEcwDkjXMTmaTITOz68ysEJb8hBcPinj1d7z5N06SPWhiQUNR1U13VxBzpo3rfju5peWV1bX8emFjc2t7p7i719BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGN5M/OYTVZpF8t6MYuoL3JcsZAQbK7Vq3auHxqV32i2W3LI7BVokXkZKkKHWLX51ehFJBJWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LJRZU++n03jE6skoPhZGyJQ2aqr8nUiy0HonAdgpsBnrem4j/ee3EhBd+ymScGCrJbFGYcGQiNHke9ZiixPCRJZgoZm9FZIAVJsZGVLAhePMvL5LGSdk7K1fuKqXqdRZHHg7gEI7Bg3Oowi3UoA4EODzDK7w5j86L8+58zFpzTjazD3/gfP4AslmPGg==</latexit>

PV
A = 15

(b)

Figure 5: Peripheral cost illustration. (a) visualizes the math-
ematical expression of the peripheral cost, while (b) instan-
tiates the physical meaning of the vertical peripheral cost:
Denote the vertical position of macro𝑚𝐴 (𝑚𝐵) by 𝑦𝐴 (𝑦𝐵), and
assume ℎ𝑐𝑜𝑟𝑒 = 12, |ℎ𝑐𝑜𝑟𝑒/2 − 𝑦𝐴 | = 3 and |ℎ𝑐𝑜𝑟𝑒/2 − 𝑦𝐵 | = 4.
Since macro𝑚𝐵 is closer to the chip periphery compared with
macro𝑚𝐴, the vertical peripheral cost of macro𝑚𝐵 (𝑃𝑉

𝐵
= 13)

is smaller than that of macro𝑚𝐴 (𝑃𝑉
𝐴

= 15).

𝑤𝑐𝑜𝑟𝑒 (ℎ𝑐𝑜𝑟𝑒) denotes the width (height) of the chip core. As illus-
trated by Figure 5, the peripheral cost is convex, and the closer𝑚𝑖

is to the chip periphery, the smaller the cost is. For a macro𝑚𝑖 , if
𝑥𝑖 (𝑦𝑖) equals 0 or𝑤𝑐𝑜𝑟𝑒 (ℎ𝑐𝑜𝑟𝑒),𝑚𝑖 is at the chip periphery, and the
corresponding periphery cost 𝑃𝐻

𝑖
(𝑃𝑉
𝑖
) is minimized.

𝑃𝐻𝑖 =

���𝑤𝑐𝑜𝑟𝑒

2
− 𝑥𝑖

��� + (𝑤𝑐𝑜𝑟𝑒

2)2��𝑤𝑐𝑜𝑟𝑒

2 − 𝑥𝑖
��,

𝑃𝑉𝑖 =

����ℎ𝑐𝑜𝑟𝑒2
− 𝑦𝑖

���� + (ℎ𝑐𝑜𝑟𝑒2)2���ℎ𝑐𝑜𝑟𝑒2 − 𝑦𝑖

���,
𝑃𝑖 = 𝑃𝐻𝑖 + 𝑃𝑉𝑖 .

(3)

The objective function of the gradient-based method can be for-
mulated as Formulation (4):

min L =
∑︁

𝑒∈𝑁𝑒𝑡𝑚𝑎𝑐𝑟𝑜

𝑊𝐿𝑒 + 𝛼
∑︁

𝑚𝑖 ∈M𝑝𝑜𝑜𝑟

𝑃𝑖 , (4)

where 𝑁𝑒𝑡𝑚𝑎𝑐𝑟𝑜 is a set of nets such that each net 𝑒 in 𝑁𝑒𝑡𝑚𝑎𝑐𝑟𝑜

contains at least one macro, and 𝛼 is a parameter to trade off the
effect between wirelength cost and peripheral cost, we set 𝛼 to be 1
in this work.

The macro offsets are initialized as zero at the beginning of each
gradient-descent iteration. For each poorly-placed macro𝑚𝑖 , the
gradient (𝜕L/𝜕Δ𝑥𝑖 ,𝜕L/𝜕Δ𝑦𝑖) is directly used as the macro offset for
position update: We sum up the original position (𝑥𝑖 ,𝑦𝑖) with the
macro offset as the new position of𝑚𝑖 . If the update causes𝑚𝑖 to
exceed the chip boundary or overlap with other regularly-placed
macros, we discard the update and restore the original position of
𝑚𝑖 .

By gradient-based macro shift, the macros in the same net are
clustered together and pushed to the nearest chip boundary. How-
ever, overlaps may be generated among poorly-placed macros, as
shown in Figure 2.

3.3 Macro Legalization
A linear programming method based on constraint graphs is formu-
lated to remove the overlaps among poorly-placed macros, preserve
the macro relative positional relationship by the analytical placer

D
C

A

E

B

(a)

C

D

A

B

E

(b)

C

D

A

B E

(c)

Figure 6: An example of constraint graphs in macro place-
ment: (a) A sample of macro placement layout; (b) Horizontal
constraint graph; (c) Vertical constraint graph.

and further push macros to the chip boundary. In the context of
macro placement, a constraint graph is a directed acyclic graph
(DAG) with the vertex set being all macros in a macro placement
layout, and each edge in the graph constrains the relative positional
relationship between a pair of macros. We initialize two constraint
graphs, namely, 𝐺ℎ and 𝐺𝑣 , for horizontal and vertical constraints,
respectively. Assume in 𝐺ℎ(𝐺𝑣), a directed edge 𝑢𝑣 is between the
macro𝑚𝑢 and𝑚𝑣 , then𝑚𝑢 is completely to the left/upon𝑚𝑣 in the
layout. For each macro pair of the circuit, a directed edge connecting
them must appear in either 𝐺ℎ or 𝐺𝑣 , but not both. Figure 6 shows
an example of a macro placement layout and its corresponding
constraint graphs.

XDP [25] constructs horizontal and vertical constraint graphs
on a global placement prototype and uses linear programming to
eliminate the overlaps among macros. However, due to the existing
overlaps among macros in the placement prototype, the direction
of some edges in the graphs may require adjustment (move the
edge from the horizontal(vertical) graph to the vertical(horizontal)
graph) to avoid the macro expansion exceeding the chip periphery.
This adjustment compromises the relative positional relationship
of the macros and may degrade the wirelength-optimization by
the placement prototype. Different from [25], we construct 𝐺ℎ and
𝐺𝑣 on the macro-legalized placement prototype by the analytical
placer. For a macro pair (𝑚𝑢 ,𝑚𝑣), we denote their center positions
by (𝑥𝑢 , 𝑦𝑢) and (𝑥𝑣 , 𝑦𝑣). If |𝑥𝑢 − 𝑥𝑣 | is larger than |𝑦𝑢 − 𝑦𝑣 |, we
set the direction of edge 𝑢𝑣 to be horizontal; otherwise vertical.
This approach eliminates the ambiguity in the relative positional
relationship of macro pairs and preserves wirelength optimization
in the analytical placer.

We introduce some related notions before the detailed linear pro-
gramming formulation. For any macro𝑚𝑖 in poorly-placed macro
set M𝑝𝑜𝑜𝑟 = {𝑚1,𝑚2, · · · ,𝑚𝑛}, its center positions before and af-
ter macro legalization are denoted by (𝑥𝑖 , 𝑦𝑖) and (𝑥 ′

𝑖
, 𝑦′

𝑖
), and its

width and height are denoted by𝑤𝑖 and ℎ𝑖 respectively. For the chip
placement region 𝑅, the positions of the left-bottom corner and the
right-top corner are (0, 0) and (𝑊,𝐻). Denote any edge in𝐺ℎ or𝐺𝑣

by 𝑒𝑖 𝑗 , the macro legalization can be in Formula (5).
Originally the expression of macro displacement is in the format

of absolute value (|𝑥𝑖−𝑥 ′𝑖 |+|𝑦𝑖−𝑦
′
𝑖
|), which cannot be solved by linear

programming. Adopting the equivalent transformationmentioned in
[26], we introduce a set of auxiliary variables ({𝑥𝑝

𝑖
, 𝑥

𝑞

𝑖
, 𝑦

𝑝

𝑖
, 𝑦

𝑞

𝑖
}, ∀𝑚𝑖 ∈

M𝑝𝑜𝑜𝑟) subjected to the first two constraints listed in Formula (5),
and convert the objective of macro displacement into 𝑥𝑝

𝑖
+𝑥𝑞

𝑖
+𝑦𝑝

𝑖
+𝑦𝑞

𝑖
.

By minimizing macro displacement, the displacement of each poorly-
placed macro is minimized and the wirelength-optimization by the
placement prototype is preserved. The secondary objective term
(min(𝑥𝑖 ,𝑊 −𝑥𝑖) +min(𝑦𝑖 , 𝐻 −𝑦𝑖)) is aimed at reducing the distances

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Yuan Pu et al.

between each macro𝑚𝑖 and its nearest horizontal and vertical chip
boundaries, thereby encouraging𝑚𝑖 to be positioned closer to the
chip’s periphery. This, in turn, creates more contiguous space in
the chip center for standard cell placement and routing. The third
and fourth inequalities in Formula (5) are derived from 𝐺ℎ and 𝐺𝑣

to eliminate any overlaps between macros while maintaining their
relative positional relationships based on the placement prototype.
The last inequality ensures that the legalized macros do not exceed
the physical chip boundary.

min
|𝑀𝑝𝑜𝑜𝑟 |∑︁
𝑖=1

𝑥
𝑝

𝑖
+ 𝑥

𝑞

𝑖
+ 𝑦𝑝

𝑖
+ 𝑦𝑞

𝑖

+min(𝑥𝑖 ,𝑊 − 𝑥𝑖) +min(𝑦𝑖 , 𝐻 − 𝑦𝑖)

s.t. 𝑥
𝑝

𝑖
− 𝑥

𝑞

𝑖
= 𝑥 ′𝑖 − 𝑥𝑖 , 𝑦

𝑝

𝑖
− 𝑦

𝑞

𝑖
= 𝑦′𝑖 − 𝑦𝑖 , ∀𝑚𝑖 ∈ M𝑝𝑜𝑜𝑟

𝑥
𝑝

𝑖
≥ 0, 𝑥𝑞

𝑖
≥ 0, 𝑦𝑝

𝑖
≥ 0, 𝑦𝑞

𝑖
≥ 0, ∀𝑚𝑖 ∈ M𝑝𝑜𝑜𝑟

𝑥 ′𝑗 − 𝑥 ′𝑖 ≥
𝑤𝑖 +𝑤 𝑗

2
, ∀𝑒𝑖 𝑗 ∈ 𝐺ℎ

𝑦′𝑗 − 𝑦′𝑖 ≥
ℎ𝑖 + ℎ 𝑗

2
, ∀𝑒𝑖 𝑗 ∈ 𝐺𝑣

𝑤𝑖

2
≤ 𝑥 ′𝑖 ≤𝑊 − 𝑤𝑖

2
,
ℎ𝑖

2
≤ 𝑦′𝑖 ≤ 𝐻 − ℎ𝑖

2
. ∀𝑚𝑖 ∈ M𝑝𝑜𝑜𝑟

(5)

4 EXPERIMENTS
We implement IncreMacro in Python with Pytorch [27] for its opti-
mizer and autograd engine, and Gurobi [28] for linear programming
solver. We run the program of IncreMacro on a Linux server with
80 Intel Xeon 1.90 GHz CPU cores and 1 NVIDIA GeForce RTX 3090
GPU.

We use RISC-V SoC RTL designs from chipyard [29], an open-
source framework for SoC agile development, as benchmarks. All the
designs are the variants of RISC-V SoC with the core(s) being Rocket
[30] and/or Boom [31]. To convert the RTL designs into gate-level
netlist, we first apply Barstools [29] tomap the RTLmemorymodules
to vendor SRAMs. Then, adopting an academic 7-nm technology
node (ASAP7 [32]), we leverage Cadence Genus for logic synthesis
to get the gate-level netlists. We obtain 7 benchmarks in total and
the detailed information of each benchmark is listed in Table 1.

4.1 Experiment Setting
To assess the efficacy of IncreMacro, we incorporate IncreMacro
into the placement flow of DREAMPlace and AutoDMP: Firstly,
DREAMPlace\AutoDMP is applied to generate a macro-legalized
placement prototype. Then, IncreMacro is leveraged on the place-
ment prototype for macro placement refinement. Once the macro
refinement is completed, the positions of refined macros are fixed,
and an analytical placer (DREAMPlace) is applied for standard cell
placement. Finally, the optimized placement solution is fed into
CadenceInnovus for clock tree synthesis (CTS), signal routing and
PPA evaluation.

The vanillamacro placement solutions ofDREAMPlace andAutoDMP
are used as the comparative baselines. We divide the mixed-size
placement flow of DREAMPlace\AutoDMP into two stages: at the
first placement stage, we use DREAMPlace\AutoDMP to generate

Table 1: Design information after logic synthesis

Benchmark # Macros # Std cells # Nets freq. (MHz)
Rocket 121 203633 208595 500.0

GemminiRocket 737 1176141 1189717 333.3
Sha3Rocket 121 235944 240907 666.7

LargeBoomAndRocket 636 856576 874017 333.3
FFTRocket 121 211543 216507 1000.0
SmallBoom 314 362479 372623 500.0

HwachaRocket 292 679667 687204 250.0

a macro-legalized placement prototype. By fixing the positions
of all macros and ignoring the standard cells, the baseline macro
placement is obtained. For the second stage, an analytical placer
(DREAMPlace) is applied for the remaining standard cell placement.
With such baseline setting, the subsequent VLSI flows of standard
cell placement and routing between baselines and the IncreMacro
refinement are consistent, and we solely evaluate the influence of
different macro placement solutions on the post-route PPA metrics.

Regarding the implementation of AutoDMP, we use the default
parameter space and PPA configuration provided in the official
Github repository 1, setting the iterations to 20 and the number
of parallel workers to 2. When generating multiple Pareto-Optimal
placement solutions for a circuit by AutoDMP, rather than applying
IncreMacro to each candidate, we select the placement solution with
the maximal congestion value from the Pareto-Optimal candidates
and apply IncreMacro solely to the chosen candidate.

4.2 Overall Comparisons
To demonstrate the improvement in routability and timing achieved
by IncreMacro, we report the post-route PPA metrics, including
routed wirelength (WL), timing (setup WNS and TNS) and power.

We integrate IncreMacro into the placement flow ofDREAMPlace
and AutoDMP, with Table 2 and Table 3 presenting the respective
PPA results and runtime. The runtime of baselines (DREAMPlace and
AutoDMP) is the total runtime of the two-stage placement, while
for IncreMacro, the runtime accounts for mixed-size placement pro-
totyping (first placement stage), IncreMacro macro refinement and
standard cell placement (second placement stage). Note that due
to the fixed-outline nature of IncreMacro, the core area of each
design remains consistent between the baseline approach and the
IncreMacro refinement. Following the official code’s parameter set-
tings, AutoDMP fails to complete the placement flow for several
benchmarks, including Sha3Rocket, LargeBoomAndRocket and Small-
Boom. Consequently, we only present the PPA results comparison
for the remaining four benchmarks in Table 3.

Table 2 and Table 3 demonstrate enormous post-route timing
improvement by incorporating IncreMacro into the placement flow
of DREAMPlace and AutoDMP. The routed wirelength is reduced
by 6.5% and 16.8%, respectively. The setup WNS and TNS is im-
proved by 59.9% and 63.9% for DREAMPlace, 99.6% and 99.9% for
AutoDMP. Besides, the incorporation of IncreMacro also reduces the
post-route power consumption by 3.3% and 4.9% for DREAMPlace
and AutoDMP, respectively.

1https://github.com/NVlabs/AutoDMP

IncreMacro: Incremental Macro Placement Refinement ISPD ’24, March 12–15, 2024, Taipei, Taiwan

Table 2: Post-Route PPA results for the incorporation of IncreMacro to DREAMPlace

Benchmark
DREAMPlace (two stage placement) DREAMPlace + IncreMacro

WL WNS TNS Power Runtime WL WNS TNS Power Runtime
(um) (ns) (ns) (mW) (s) (um) (ns) (ns) (mW) (s)

Rocket 14838552 -1.40 -67.16 72.54 64.55 11794141 -0.05 -0.88 68.90 101.77
GemminiRocket 62420588 -3.06 -15146.20 520.73 207.83 69708870 -2.45 -4927.20 497.50 418.82
Sha3Rocket 11584499 -0.22 -40.84 95.49 77.15 11570282 -0.21 -48.60 95.08 99.61

LargeBoomAndRocket 36201457 0 0 132.57 298.71 33286377 0.09 0 131.46 533.97
FFTRocket 10740986 -0.01 -0.02 70.80 63.19 9716426 0.02 0 67.06 72.89
SmallBoom 13967377 -0.13 -22.01 98.10 112.40 13547457 0.01 0 96.55 153.29

HwachaRocket 48096700 -0.10 -2.82 145.55 146.64 40552488 0.03 0 137.48 253.25
Normalize 1.065 1.599 1.639 1.033 1.000 1.000 1.000 1.000 1.000 1.600

Table 3: Post-Route PPA results for the incorporation of IncreMacro to AutoDMP

Benchmark
AutoDMP (two-stage placement) AutoDMP + IncreMacro

WL WNS TNS Power Runtime WL WNS TNS Power Runtime
(um) (ns) (ns) (mW) (s) (um) (ns) (ns) (mW) (s)

Rocket 14704880 -0.41 -354.87 74.33 69.24 11186898 0.01 0 68.43 82.99
GemminiRocket 41031737 -0.24 -17.76 301.39 205.95 34580828 -0.01 -0.01 287.51 381.58

FFTRocket 8108137 -0.001 -0.001 55.43 55.14 8176606 0.05 0 55.31 101.73
HwachaRocket 31675727 -0.05 -0.14 130.37 193.24 22684613 0.35 0 121.66 321.65
Normalize 1.168 1.996 1.999 1.049 1.000 1.000 1.000 1.000 1.000 1.640

(a) GemminiRocket: DREAMPlace (b) GemminiRocket: DREAMPlace +
IncreMacro

(c) GemminiRocket: AutoDMP (d) GemminiRocket: AutoDMP +
IncreMacro

Figure 7: Visualization of Post-Route layout of Gem-
miniRocket, with andwithout the incorporation of IncreMacro.
Blue blocks are macros, and green blocks are standard cells.

4.3 Analysis, Visualization, and Profiling
We owe the timing improvement and power reduction to the two
macro placement requirements satisfied by IncreMacro, namely, (1)
pushing macros to the chip boundary and (2) preserving origi-
nal macro relative positional relationship. Firstly, IncreMacro
repositions the macros blocked in the chip center to the chip periph-
ery and eliminates the macro blockage, leaving more continuous
space for the following flow of standard cell placement and net
routing, thus relieving routing detours. Secondly, after the refine-
ment from IncreMacro, by preserving the macro relative positional
relationship by the placement prototype of the analytical placer
(DREAMPlace), macros in the same net(s) are placed spatially close
to each other. The fulfillment of these two requirements results in a
notable reduction in the total routed wirelength. This reduction sub-
sequently translates into decreased wire capacitance and resistance.
As a consequence, signal propagation delay is decreased, leading to
a significant enhancement in timing performance. For the analysis
of total power consumption reduction, reduced signal propagation
infers faster signal transition, which directly reduces short-circuit
power and switching power: On the one hand, short-circuit power
is associated with the overlap of the ON states of NMOS and PMOS
transistors in a CMOS gate during signal transitions. It occurs when
both transistors are partially conducting simultaneously. Faster sig-
nal transitions lead to a decrease in short-circuit power because the
duration of simultaneous conduction is shorter. On the other hand,
switching power consumption is primarily related to the charging
and discharging of the gate and interconnect capacitance during sig-
nal transitions. Faster signal transitions reduce the transition time,
which, in turn, reduces the amount of energy required to charge or
discharge the capacitance. This results in a decrease in switching
power.

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Yuan Pu et al.

43%

First stage placement (place-
ment prototyping)

40%

IncreMacro refinement

17%

Second stage placement
(standard cell placement)

Figure 8: Average runtime breakdown of IncreMacro +
DREAMPlace.

Figure 7 visualizes the post-route layout of GemminiRocket for
DREAMPlace and AutoDMP, before and after the incorporation of
IncreMacro:When comparing themacro placements ofDREAMPlace
(Figure 7(a)) and AutoDMP (Figure 7(c)), AutoDMP demonstrates
superior performance with reduced macro blockage, leading to en-
hanced routability and timing. The difference of performance is fur-
ther accentuated by IncreMacro, resulting inAutoDMP + IncreMacro
(see Figure 7(d)) getting better routability and timing thanDREAMPlace
+ IncreMacro (see Figure 7(b)). Therefore, by setting the same clock
frequency (333.3 MHz) of GemminiRocket for both DREAMPlace
and AutoDMP, the values of WNS and TNS of GemminiRocket in
Table 2 is much larger than that in Table 3. Figure 8 shows the
runtime breakdown of DREAMPlace + IncreMacro averaged on 7
benchmarks in Table 2. The first stage placement (mixed-size place-
ment prototyping) of DREAMPlace accounts for the largest ratio
of the total runtime (43%), while IncreMacro takes 40% of the total
runtime.

5 CONCLUSION
We propose an incremental macro placement framework incorpo-
rated with analytical placers, IncreMacro, which incrementally and
iteratively refines the placement of poorly-placedmacros. IncreMacro
integrates several techniques for macro placement, including a KD-
tree-based macro diagnosis method, a gradient-based macro shift,
and constraint-graph-based linear programming for macro legaliza-
tion. With such algorithmic workflow, IncreMacro eliminates the
macro blockages in the core center while preserving the macro
relative positional relationship, thus preserving the wirelength-
optimization by analytical placers, and leaves more continuous
centric space for routing. Experimental results have demonstrated
the effectiveness of our framework, compared with state-of-the-art
macro placement solutions.

ACKNOWLEDGEMENT
This work is partially supported by AI Chip Center for Emerging
Smart Systems (ACCESS) and The Research Grants Council of Hong
Kong SAR (No. CUHK14210723).

REFERENCES
[1] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “Dreamplace: Deep

learning toolkit-enabled gpu acceleration for modern vlsi placement,” in Proc. DAC,
2019, pp. 1–6.

[2] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution
quality and routability validation in global placement,” IEEE TCAD, vol. 38, no. 9,
pp. 1717–1730, 2018.

[3] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and C.-K. Cheng,
“ePlace: Electrostatics-based placement using fast fourier transform and Nesterov’s
method,” ACM TODAES, vol. 20, no. 2, pp. 1–34, 2015.

[4] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “Ntuplace3: An
analytical placer for large-scale mixed-size designs with preplaced blocks and
density constraints,” IEEE TCAD, vol. 27, no. 7, pp. 1228–1240, 2008.

[5] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, A. Nazi et al., “A graph placement methodology for fast
chip design,” Nature, vol. 594, no. 7862, pp. 207–212, 2021.

[6] R. Cheng and J. Yan, “On joint learning for solving placement and routing in chip
design,” Proc. NeurIPS, vol. 34, pp. 16 508–16 519, 2021.

[7] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, S. Bae et al., “Chip placement with deep reinforcement
learning,” arXiv preprint arXiv:2004.10746, 2020.

[8] R. Cheng, X. Lyu, Y. Li, J. Ye, J. Hao, and J. Yan, “The policy-gradient placement
and generative routing neural networks for chip design,” Proc. NeurIPS, vol. 35, pp.
26 350–26 362, 2022.

[9] Y. Lai, Y. Mu, and P. Luo, “Maskplace: Fast chip placement via reinforced visual
representation learning,” arXiv preprint arXiv:2211.13382, 2022.

[10] Y. Lai, J. Liu, Z. Tang, B. Wang, J. Hao, and P. Luo, “Chipformer: Transferable chip
placement via offline decision transformer,” arXiv preprint arXiv:2306.14744, 2023.

[11] Z. Jiang, E. Songhori, S. Wang, A. Goldie, A. Mirhoseini, J. Jiang, Y.-J. Lee, and D. Z.
Pan, “Delving into macro placement with reinforcement learning,” in Proc. MLCAD.
IEEE, 2021, pp. 1–3.

[12] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang, and D. Liu, “MP-trees: A packing-
based macro placement algorithm for mixed-size designs,” in Proc. DAC, 2007, pp.
447–452.

[13] Y.-F. Chen, C.-C. Huang, C.-H. Chiou, Y.-W. Chang, and C.-J. Wang, “Routability-
driven blockage-aware macro placement,” in Proc. DAC, 2014, pp. 1–6.

[14] C.-H. Chiou, C.-H. Chang, S.-T. Chen, and Y.-W. Chang, “Circular-contour-based
obstacle-aware macro placement,” in Proc. ASPDAC, 2016, pp. 172–177.

[15] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement
based on rectangle-packing by the sequence-pair,” IEEE TCAD, vol. 15, no. 12, pp.
1518–1524, 1996.

[16] X. Hong, “Non-slicing floorplan and placement using corner block list topological
representation,” IEEE TCAS I, vol. 51, no. 5, pp. 228–233, 2004.

[17] Y.-C. Liu, T.-C. Chen, Y.-W. Chang, and S.-Y. Kuo, “Mdp-trees: multi-domain macro
placement for ultra large-scale mixed-size designs,” in Proc. ASPDAC, 2019, pp.
557–562.

[18] A. B. Kahng, R. Varadarajan, and Z. Wang, “RTL-MP: toward practical, human-
quality chip planning and macro placement,” in Proc. ISPD, 2022, pp. 3–11.

[19] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on fast simulated
annealing,” in Proc. ISPD, 2005, pp. 104–112.

[20] C.-H. Chang, Y.-W. Chang, and T.-C. Chen, “A novel damped-wave framework for
macro placement,” in Proc. ICCAD, 2017, pp. 504–511.

[21] H.-C. Chen, Y.-L. Chuang, Y.-W. Chang, and Y.-C. Chang, “Constraint graph-based
macro placement for modern mixed-size circuit designs,” in Proc. ICCAD, 2008, pp.
218–223.

[22] A. Agnesina, P. Rajvanshi, T. Yang, G. Pradipta, A. Jiao, B. Keller, B. Khailany,
and H. Ren, “AutoDMP: Automated DREAMPlace-based Macro Placement,” in
Proc. ISPD, 2023, pp. 149–157.

[23] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best
matches in logarithmic expected time,” ACM Transactions on Mathematical Soft-
ware, vol. 3, no. 3, pp. 209–226, 1977.

[24] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “TSV-aware analytical placement for
3-D IC designs based on a novel weighted-average wirelength model,” IEEE TCAD,
vol. 32, no. 4, pp. 497–509, 2013.

[25] J. Cong and M. Xie, “A robust detailed placement for mixed-size ic designs,” in
Proc. ASPDAC, 2006, pp. 7–pp.

[26] D. F. Shanno and R. L. Weil, ““linear” programming with absolute-value function-
als,” Operations Research, vol. 19, no. 1, pp. 120–124, 1971.

[27] “Pytorch,” https://pytorch.org/.
[28] “Gurobi,” https://www.gurobi.com/.
[29] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Magyar,

H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated design, simulation, and
implementation framework for custom SoCs,” IEEE Micro, vol. 40, no. 4, pp. 10–21,
2020.

[30] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip generator,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4,
2016.

[31] K. Asanovic, D. A. Patterson, and C. Celio, “The berkeley out-of-order machine
(boom): An industry-competitive, synthesizable, parameterized risc-v processor,”
University of California at Berkeley Berkeley United States, Tech. Rep., 2015.

[32] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy,
and G. Yeric, “ASAP7: A 7-nm FinFET predictive process design kit,” Microelec-
tronics Journal, vol. 53, pp. 105–115, 2016.

https://pytorch.org/
https://www.gurobi.com/

