Performance-Driven Analog Layout Automation: Current Status and Future Directions

Peng Xu, Jintao Li, Tusng-Yi Ho, Bei Yu, Keren Zhu

CSE Department
The Chinese University of Hong Kong

Jan. 23, 2024
Outline

1. Introduction
2. Related Work
3. Case Study
4. Perspectives and Future Directions
Introduction
Digital vs Analog Circuits

Data
- Digital
 - Boolean
 - "1"
 - "0"
- Analog
 - Real
 - ((●)))

Reliability
- Robust

Design
- Automated
- Sensitive
- Manual
• Heavily manual, iterative process involving multiple steps to achieve performance, power and area closure.

• More challenging with performance closure: complicated circuit performance metrics, sensitive signal integrity and performance trade-offs

• **Open question**: how can we optimize *performance* in automated layout generation?
Analog IC automation typical flow:

- Today we will focus on the back-end side
Develop optimization-based PNR algorithms for analog layouts

Pros

• Automatic optimization
• Low human efforts

Cons

• What is the optimization problem?
• How to consider performance?

The design flow of analog circuits.
Related Work
Analog circuit placement and routing are critical to optimal performance, but obtaining a decent circuit layout requires significant time and expertise:

- Unlike digital circuits, analog circuits are sensitive to layout parasitics and coupling, which can complicate the relationship between performance and layout.
- There lacks a practical way to produce generalized performance models for layout implementation\(^1\).

Let’s first take a look on existing attempts to consider performance in PNR

The existing analog layout placement methods are mainly focused on optimizing proxy objectives for performance:

- **Symmetry and common centroid**\(^2\);

For example, using common centroid placement to reduce parasitic mismatch. **Question:** Is symmetry good enough for the performance?

2-D symmetry (b) does not include placement (a) which also satisfies the common centroid constraint.

• **Current path and signal flow**

Zhu et al.\(^4\) propose to consider the critical signal paths in automatic AMS placement. **Question**: enough for general circuits?

The analog router cannot adopt specialized layout strategies for specific circuit classes like human layout experts, so proxy heuristic method is honored in performance-driven analog routing.

- **Symmetry** has been widely adopted as an essential component of the analog routing problem.

Example: different levels of geometrical matching constraints.

(a) Symmetric constraint. (b) Common-centroid constraint. (c) Topology-matching constraint. (d) Length-matching constraint.

Other works optimize power routing\(^7\) and propose shielding critical nets\(^8\).

• **Linear approximation model**

Lampaert et al.\(^9\) uses performance degradation term. Characterising performance degradation \(\Delta P_j\) using the precalculated sensitivity information:

\[
\Delta P_j = \sum_{k=1}^{m} \left(S_{C_p,k}^j C_p,k + \sum_{i=1}^{n_k} S_{R_p,ki}^j R_p,ki \right)
\]

(1)

Issues: sensitivity computation scalability and accuracy.

Machine learning methods provide a **direct** way to model the post-layout analog performance\(^\text{10}\)

- Automatically generate layout data and extract effective placement features based on functionality;
- Utilize 3D Convolutional Neural Networks (CNNs) as the performance predictor, incorporating coordinate channels.

There are also attempts to apply learning models to analog placement:

- Utilize the GNN performance model as a predictor.
- Employ the performance predictor to guide the simulated annealing process.

Case Study
The performance modeling cycle can be divided into three stages:

- **Data Acquisition**: The data acquisition stage includes PNR and parasitic parameter extraction (PEX) and post-layout performance simulation (Post-Sim).

- **Model Training**: The model training stage mainly includes the Training time for performance models.

- **Performance-aware PNR Inference**: The performance-aware PNR inference includes the model Inference time and a single **augmented PNR** process.
Case 1: Analog Performance Modeling Lifecycle

Profiling lifecycle for building a performance model on Operational Transconductance Amplifier (OTA) layout design using MAGICAL.

(a) The runtime breakdown of different methods on OTA1 benchmarks.
Observations from Case 1

We can draw two important observations from Case 1:

1. The **Data Collection** occupies **most** of the modeling lifecycle, which accounts for 92.89%.

2. The time required to obtain **inputs** \ll the time required to obtain **labels**. *(The PEX and Post-Sim time is roughly equivalent to 3-4 PNR iterations.)*
How to shorten the performance modeling lifecycle effectively?

Reduce the time spent on data acquisition, especially PEX and Post-Sim.

There are several promising solutions:

- From advancements in hardware-accelerated EDA workflows12, we can see that parallelizing PEX and Post-Sim is an effective solution.

- Considering the cost of acquiring data inputs and labels, selecting representative samples through active learning13 may also be an economically efficient approach.

- ...

In the case shown in the Table 1, we quantitatively discuss the issue of performance model transferability on OTA designs.

From Scratch

- A small amount of sampling data for the current design is collected.
- We then model the prediction as a binary classification problem to achieve accurate predictions\(^\text{14}\).

Transfer

- The pre-trained model obtained from other designs is leveraged.
- We can obtain a relatively accurate model with a few samples through fine-tuning, which requires less time.

We mainly consider two scenarios of Transfer:

Transfer between the same topology
- We first train a performance model on OTA3. **OTA3 has the same topology and different sizing configurations as OTA1.**
- We then test the accuracy of model predictions on OTA1.

Transfer between different topologies
- We first train a performance model on OTA3. **OTA3 has different topologies from OTA2.**
- We then test the accuracy of model predictions on OTA2.
From these data results, we can identify two important findings:

- The transferability of the models varies under different scenarios and metrics, with the accuracy reduction ranging from 3% to 22%.
- Transfer between different sizing configurations is often easier than transfer between different topologies.
From a Generalization Perspective

• We consider how to improve transfer training by obtaining effective pretraining weights using methods like meta-learning15.

From a Detection Perspective

• We consider different distributions to determine when the transfer is safe.
• Current research on out-of-distribution (OOD) detection16 provides technical support for identifying when the model is effective.

16Qitian Wu et al. (2022). “Energy-based Out-of-Distribution Detection for Graph Neural Networks”. In: Proc. ICLR.
In this case, we aim to demonstrate the importance of multi-objective optimization by comparing the placements obtained through weighted-based Bayesian optimization (BO) and multi-objective optimization Bayesian optimization (MOBO)\(^\text{17}\) in four OTA benchmarks.

Weighted Method

- It is common practice to use a user-defined figure-of-merit (FOM) representation, a weighted sum of post-layout simulation metrics.

Multi-objective Optimization

- One alternative objective is to find solutions not dominated by others, known as Parcel optimal solutions.
- The problem of finding Pareto optimal solutions given multiple criteria is called multi-objective optimization.

As shown in Figure 12, the MOBO method outperforms Weighted-BO in terms of the number of top-1 metrics achieved for the obtained layout.

The number of top-1 metrics for different methods.

- MOBO achieves top-1 performance in almost all metrics in Offset Voltage, CMRR, BandWidth, and DC Gain.
- For all designs, MOBO outperforms the Weighted-BO for 3 to 5 metrics.
The results corroborate that the multi-objective optimization method moves the layout solution toward the Pareto frontier.

Recent advancements have been witnessed in the field of multi-objective optimization, especially for gradient-based strategies18.

It is imperative to carefully consider how these advancements in the field of multi-objective optimization can be applied to enhance performance-driven analog layout automation.

Perspectives and Future Directions
Efficient Data Acquisition

- Data collection bottleneck in building performance models;
- Active learning for selecting representative samples19;
- Smart layout selection for an efficient training process;
- Accelerating simulation for more training data20;

Better Transferability

- Transferring pre-trained models to unseen circuits Managing multimodal input features;
- A general multimodal neural network for performance modeling may benefit the field\(^\text{21}\);
- Adopting a pretraining methodology for data efficiency\(^\text{22}\);

Placement and Routing Representation

• Placement and Routing Representation: An overlooked problem in ML-enabled performance-driven analog physical design is how to represent placement and routing. The work23 treats the performance modeling as a black box.

• Bridging Placement and Routing Representation for Optimization: BO-based framework tunes net weights as a proxy to generate different placements in24.

23Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin Sapatnekar, et al. (2020). “A Customized Graph Neural Network Model for Guiding Analog IC Placement”. In: Proc. ICCAD.

Multi-objective Optimization

- Complexity of analog circuit performance
- Multiple competing performance metrics
- Efficient and effective multi-objective physical design optimization
THANK YOU!