
Invited Paper: Heterogeneous Acceleration for
Design Rule Checking

Zhuolun He Bei Yu
Department of Computer Science & Engineering

The Chinese University of Hong Kong

Abstract—The advances of heterogeneous CPU-GPU comput-
ing platforms have marked their great potential for algorithm
acceleration. Yet, how to orchestrate such hybrid devices re-
mains a concern for programmers and researchers. To obtain
a desired performance gain, different strategies, such as paral-
lel computing, heterogeneous scheduling, and data movement
minimization, should be carefully considered and effectively
combined. In this talk, we first review efforts for efficient design
rule checking in the literature. Then, we introduce the parallel
sweepline paradigm for design rule checking, and demonstrate
how to accelerate design rule checking with such paradigm on
heterogeneous CPU-GPU platforms.

I. INTRODUCTION

Graphics Processing Units (GPUs) are ubiquitous nowa-
days as they offer massive parallel computing power to sup-
port modern applications like high performance computing
and deep neural network execution. Conventionally, GPUs
are considered as accelerators, while CPUs are termed hosts
for managing I/O and scheduling in the context. On the
other hand, CPUs and GPUs have their unique features,
and hence the collaboration between them is inevitable to
maximize system performance [1]. In fact, many top500
supercomputers [2] are quipped with GPU cores, such as
Frontier [3], LUMI [4], and Leonardo [5]. In particular,
Frontier uses 37,888 GPUs (8,335,360 cores) and 9,472 CPUs
(606,208 cores) to achieve over one ExaFLOPS (1018) peak
performance. It is now clear that the CPU-GPU paradigm is
promising and new heterogeneous computing techniques are
required.

Recent years have seen massively parallel computing em-
ployed in electronic design automation (EDA) tools. Guo
et al. have developed GPU accelerated static timing anal-
ysis (STA) [6] by parallelizing RC computation and timing
propagation, achieving more than 3× speedup compared with
multithreaded OpenTimer [7]. Later on, Guo et al. developed
GPU accelerated path-based STA and achieved significant
speedup. Lin et al., Liu et al., and others have paid great
efforts to GPU accelerated global placement, resulting in
state-of-the-art academic placers DREAMPlace [8] and X-
place [9]. They also try to address detailed placement with
similar framework [10]. As for the routing stage, GPU accel-
erated pattern routing [11], maze routing [12], and Steiner tree

This work is supported in part by National Key R&D Program of China
2020YFA0711900, 2020YFA0711903, and Shanghai Artificial Intelligence
Laboratory.

construction [13] have been investigated. Other attempts in-
clude gate-level logic simulation [14], circuit simulation [15],
logic optimization [16], capacitance extraction [17], electro-
magnetic analysis [18], and so on. It is believed that GPU
acceleration has “opened up new directions for revisiting
classical EDA problems with advancement in AI hardware
and software” [8].

In this paper, we discuss heterogeneous acceleration for
design rule checking. Design rule checking ensures geometric
validity of layout, which is essential in physical design and
physical verification. Design rule checking could be time-
consuming due to the complexity and large number of rules,
the large scale of the design, and the large times of repeated
execution. Therefore, accelerating design rule checking is
critical to reduce design cycle time.

The rest of the paper is organized as follows: Section II
introduces related background. Section III reviews parallel
computing and relevant techniques for design rule checking in
the literature. Section IV recaps parallel sweepline paradigm
for design rule checking. Section V discusses heterogeneous
acceleration for design rule checking. Section VI concludes
the paper.

II. BACKGROUND

A. GPU and CUDA

GPU has gained tremendous development over past
decades. In general, GPU is a device containing device
memory, cache, and streaming multiprocessors. Streaming
multiprocessors consist of arithmetic cores for arithmetic
instructions and operations. It is connected with the CPU
host and host memory through PCIe buses.

The CUDA toolkit is a computing platform for GPU pro-
gramming. It gives direct access to GPU’s abstract instruction
set and parallel computing elements [19]. CUDA provides
hierarchy of threads, where parallel kernels are composed of
many threads executing the same sequential program, and
threads are grouped into thread blocks. Threads inside the
same block can communicate through shared memory. These
threads and blocks have their unique IDs.

In a CUDA program, we refer to the CPU as host and
the GPU as device, and both of them maintain separate
memory spaces in their own DRAM. In the compilation
flow, a host compiler (e.g., GCC) compiles the host code
into an executable on the host, while Nvidia C Compiler
(NVCC) cross-compiles the device code (i.e., those qualified

Fig. 1 Illustration of formal design rule definition by set
operations. Adopted from [20].

by __device__) into CUDA binary, which will be handled
by the CUDA runtime system whenever it is invoked from
the host program.

B. Design Rule Checking

Design rules are constraints to layout objects imposed by
manufacturing technology and issues. These rules are usually
geometric shape and position requirements to improve chip
yield. Minimal distance constraints are the most common
constraints, which include, depending on the positional re-
lation between objects, width rules, spacing rules, extension
rules, enclosure rules, and so on. During physical design,
detailed routers and even other tools in previous stages have
to observe and conform to the design rules as much as
possible. During physical verification, design rule checker
must examine the whole layout and report existing design
rule violations. Usually the violations have to be fixed before
taping out.

III. EFFICIENT DESIGN RULE CHECKING: A SURVEY

In this section, we review efforts toward efficient design
rule checking in the literature.

A. Algebraic Design Rule Checking

In the early stage, people wish to develop layout model
and theoretical basis for VLSI design rule checkers in an
algebraic way. Historically, there are majorly two approaches
that try to define design rules in a formal way.

The first one by Modarres and Lomax [20] defines a
layout model using set theory notations, also known as mask-
based, where primitives are rectangles. Two set functions
(AND, DIFF) are defined on layers. The core idea to present
a design rule is to partition an edge (imagine that when
another polygon intersects with the edge, it partitions the
edge into several parts), and then use EXPAND or SHRINK
operations to mark a no-touch area. Fig. 1 illustrates the
first approach, where the no-touch areas are constructed by
partially shrinking the rectangle with respect to partition
(constructed by other set operations on edges) using the
SHRINK operation.

Fig. 2 Illustration of edge-based design rule description in
the JCH model. Adopted from [21].

Fig. 3 Illustration of binning. Adopted from [24].

The second one (the JCH model [21]) is edged-based,
which is later extended by Riepe and Sakallah [22]. In this
setting, the no-touch areas are defined w.r.t. polygon edges.
Fig. 2 illustrates the JCH model, where we use type1/type2,
type3/type2 to denote a rule check on an edge pair, where type
2 is in the middle between the two edges, and the other side
of the first edge (resp. the second edge) must be type1 (resp.
type3). For example, Ā/A, Ā/A represents a width check,
since the required minimum distance of type 2, denoted by
A, is inside an object. Similarly, A/Ā,A/Ā represents an
intra-layer spacing check as type 2 (Ā) is outside objects.
However, algebraic design rule checking focuses more on
the conceptual definition of rules, rather than an efficient
execution scheme.

B. Layout Data Structures

The straightforward way to represent layout objects is to
store them in a large list, where scanning the lists takes
linear time w.r.t. number of objects. Binning [23] is a popular
technique by dividing the layout into tiles, as illustrated
in Fig. 3. Many general spatial data structures have been
utilized, such as quad-tree [25] and kd-tree [26]. R-tree and
its variants store rectangles in a B+-tree like data structure
with heuristic optimization, which are widely adopted in
layout representation. Clever customization is important to
achieve good performance. Hinted quad tree [27] enables a
multi-storage scheme, which accelerates region query without
needing to start a search at the root of the tree. Fig. 4 illustrate

2

Fig. 4 Illustration of hinted quad tree that enables a multi-
storage scheme. Adopted from [27].

Fig. 5 Illustration of corner stitching that supports efficient
incremental design rule checking. Adopted from [28].

such storage scheme. Corner stitching [24] is introduced to
support efficient incremental design rule checking. In the
corner stitching technique, rectangular objects are stitched
together at their corners, and empty space is also explicitly
represented, as illustrated in Fig. 5. Corner stitching supports
efficient neighbour search, which is the fundamental require-
ment for Magic [28] and other interactive layout editors.

C. Parallel Design Rule Checking

There have been extensive efforts towards parallel design
rule checking. Nandy [29] presented a distributed solution
for DRC by exploiting either spatial independence or layer
independence in layout data. Similarly, Hsu et al. [30] in-
troduced partition based strategy for layout operations. The
above two methods are considered region-based methods for
spatial parallelism. Gregoretti and Segall [31] introduced a
bottom up approach for DRC; Hedenstierna and Jeppson [32]
extended the halo algorithm for parallel processing, both
of which utilized design hierarchy for cell-level parallelism.
Carlson and Rutenbar [33] developed a parallel mask verifi-
cation algorithms for the Connect Machine. In their scanline
approach, they first assign each edge a direction, which can
be used to determine opaque regions and transparent regions.
Then they use a set of counters to number regions, which
are highly parallelizable and efficient for layout boolean
operations (see Fig. 6). The whole scheme is edge-based
for fine-grained parallelism with the sweepline algorithm,
which is also adopted by FPGA design rule checker [34],
and GPU accelerated X-check [35] and OpenDRC [36].
Marantz proposed in his master thesis [37] to decompose the

Fig. 6 Illustration of region numbering for (electrically)
connected region recognition. Adopted from [33].

design rule checking program and separate the commands
on different processors. This approach, understood as task
parallelism, is in fact very practical since modern rule deck
consists of a large number of rules. Macpherson and Banerjee
proposed ProperDRC [38] that combines task parallelism and
data parallelism.

In fact, these works gain benefits from different hard-
ware platforms, including SIMD engines [39], multiproces-
sors [33], [38], GPU [35], [36], specialized hardware [34],
[40], and distributed systems [29], [30], [37], [41].

TABLE I summarizes the parallel design rule checking
algorithms and engines in the literature. It can be seen
that coarse-grained parallelism are almost developed for
distributed systems, while edge-based algorithms, enabling
massively fine-grained parallelism, are suitable for multipro-
cessors, GPUs, and so on.

IV. PARALLEL SWEEPLINE FOR DRC

For completeness, we recap the parallel sweepline scheme
and its application for DRC introduced by X-Check [35].

A. Sweepline Algorithms

Sweepline algorithms can be conceptually regarded as
moving a sweepline on the plane to process a set of points
(a.k.a. event points) one by one. Event points pi ∈ P are
processed in a total order ≺: P × P 7→ {0, 1}. At each
point, the algorithm builds an intermediate data structure
ti ∈ T with the previous data structure ti−1 and the current
point pi using an update function h : T × P 7→ T (i.e.,
ti = h(ti−1, pi)). The initial prefix structure is t0. In this
way, we define a sweepline algorithm as a five tuple:

SW = {P,≺, T, t0, h}. (1)

To describe a parallel sweepline algorithm, two further two
operators are defined, a fold function ρ : ⟨P ⟩ 7→ T that
converts a sequence of points to a prefix structure, and a
combine function f : T × T 7→ T that combines/reduces two

3

Multiprocessor GPU Specialized Hardware Distributed Systems

Data-Parallelism
Region-based [29], [30]

Hierarchy-based [31] [32]
Edge-based [33] [35], [36] [34], [40]

Task-Parallelism [37]

Task- and Data-Parallelism [38]

TABLE I Summary of parallel design rule checking.

Step1: Batching with T ′
kn/b = ρ(p(k−1)n/b+1, · · · , pkn/b)

T ′
n/b T ′

2n/b T ′
3n/b · · · T ′

n

Step2: Sweeping with Tkn/b = f (T(k−1)n/b, T
′
kn/b)

Tn/b T2n/b T3n/b · · · T ′
n

Step3: Refining with Ti = h(Ti−1, pi)

T1 T2 · · · Tn/b Tn/b+1 Tn/b+2 · · · T2n/b T2n/b+1 T2n/b+2 · · · T3n/b · · · Tn−b+1 Tn−b+2 · · · Tn

Fig. 7 Parallel prefix build for sweepline algorithms in three
steps: batching, sweeping, and refining. Each rectangle block
represents a prefix structure, where different colors indicate
different blocks. Each colored arrow represents workload of
a thread. Adapted from [42].

prefix structures. We require f to be associative. A parallel
sweepline paradigm is defined as:

PSW = {P,≺, T, t0, h, ρ, f}. (2)

The essence of the parallel sweepline algorithm is to make
use of the associativity of the combine function f . More
precisely, repeatedly updating a sequence of points ⟨P ⟩ into a
sequence of prefix structures ⟨T ⟩ using the update function h,
is equivalent to first converting the points into (partial) prefix
structures, and then combining the partial prefix structures
using the combine function f . In [42], they propose to
compute such prefix structures in three steps:

1) Batching. The inputs are sorted and evenly split into b
blocks. Each thread converts the consecutive n/b points
in one block into a partial sum (i.e., prefix) T ′

kn/b for
k = 1, 2, · · · , b using the fold function ρ.

2) Sweeping. A single thread is invoked to sweep the b
partial sums using the combine function f to compute
the prefix structures Tn/b, T2n/b, · · · , Tn.

3) Refining. The rest of the prefix structures are built using
the b prefix structures built in the second step. In each
block, the points are processed sequentially to update
the prefix structures using h. The b blocks can be done
in parallel.

Fig. 7 illustrates the parallel prefix structure build.

B. Distance Check

X-Check aims to solve a general distance check problem.

(a) Distance Check (informal) (b) Distance Check

Fig. 8 Distance check. See Problems 1 and 2.

Problem 1 (Distance Check (informal)). A layout can be seen
as a set of axis-parallel polygonal objects. The distance rule
says the following: any two edges must not be closer than
a predefined minimal distance. A distance violation is a pair
of edges in the layout that violate the distance rule. Given a
layout, the task is to report all the distance violations.

Without loss of generality, only horizontal segments are
considered. A more formal definition of the above problem
can be given:

Problem 2 (Distance Check). Given a set H of horizontal
segments in R2, report the segment pairs from H2 whose
horizontal projection is nonempty, and vertical distance is
smaller than δ. Formally, we want to report:

{([l1, r1]× y1, [l2, r2]× y2) ∈ H2}
s.t. [l1, r1] ∩ [l2, r2] ̸= ∅, |y1 − y2| < δ

(3)

Fig. 8 illustrates the problem formulation.

C. Parallel Sweepline for Distance Check
Firstly, sort segments in ascending y-coordinates. We ex-

plain the algorithm by introducing the components in Equa-
tion (2).

• The event point set P includes all the y-coordinates of
the segments.

• The total order ≺ is the total order < on the y-
coordinates.

• The prefix structure contains a set S of segments that
are below current segment within δ in y-direction.

• The identity t0 contains an empty set ∅.
• The update function h processes the segments by adding

the segment to S, and delete the segments that are below
current segment by more than δ.

4

• For the fold function ρ, it suffices to first binary search
for the lowest segment that is within δ to the highest
segment, and then add the segments in between to the
set S.

• The combine function f is defined by first taking the
union of the sets, and then delete the elements that are
below the target segment by more than δ. Note that f
is associative because the set operations are associative.

By the construction, the prefix structures contain all the
candidate segments below each segment, in the sense that
their distances in the y-direction are within δ. It remains
to check whether each pair of segments overlap in the x-
direction. Each violation will be reported by the algorithm
exactly once. Algorithm 1 summarizes the vertical sweeping
algorithm. Analysis shows that vertical sweeping runs in

Algorithm 1 Vertical Sweeping

Require: A set H of horizontal segments.
Ensure: Segment pairs that violate the distance rule.

1: Sort segments by ascending y-coordinates;
2: Partition the sorted segments into b blocks;
3: For each block do in parallel ▷ Batching
4: Find the lowest segment that is within δ to the highest

segment in the block;
5: Endfor
6: Sweep the partial results among the b blocks; ▷ Sweep
7: For each block do in parallel ▷ Refine
8: Refine the prefix structures;
9: Endfor

10: For each prefix structure do in parallel ▷ Report
11: Report the violations in the prefix structure;
12: Endfor

O(n · polylog(n)) work and O(
√
n · polylog(n)) depth.

V. HETEROGENEOUS ACCELERATION FOR DRC

We now discuss heterogeneous acceleration for design rule
checking. Since recent works on DRC concentrate on simple
rules like width and spacing, we would like to examine if
the scheme works for complex rules. Specifically, we focus
on two common and important spacing rules, namely the
Parallel Run Length (PRL) spacing rule and the End-of-Line
(EOL) spacing rule. These rules appear in ISPD’18 [43] and
ISPD’19 [44] initial detailed routing contests.

A. PRL and EOL Spacing

In PRL spacing rule, a spacing table specifies the required
spacing between objects, which depends on the parallel run
length of the edges as well as the maximum width of both
objects. Since big spacing requirement may be triggered when
two wires run in parallel for a long distance, it is better to
be avoided by the router. Fig. 9 illustrates the PRL rule.

In EOL spacing rule, the required spacing from a short
edge is slightly larger than the common required spacing.
Fig. 10 illustrates the EOL rule, where any overlap on the
marked grey region is an EOL spacing violation.

Parallel Run Length

PRL Spacing
Width1

Width2

Fig. 9 Illustration of the Parallel Run Length spacing rule. The
required spacing depends on parallel run length as well as the
maximum width of both objects. Redrawn from LEF/DEF 5.8
Language Reference.

Any overlap here
is a violationEOL Spacing

EOL Width

End of Line

Fig. 10 Illustration of the EOL spacing rule. The required
spacing is for short edges, and any overlap on the marked grey
area is a violation. Redrawnz from LEF/DEF 5.8 Language
Reference.

B. Parallel Sweepline for PRL and EOL Spacing

To accelerate the above rules, the first step is to investigate
if the parallel sweepline scheme fits the rules. Intuitively,
since the two rules are still ‘spacing’ rules, they should
belong to the ‘distance check’ problems. As introduced in
previous sections, distance check problems can be handled
by the parallel sweepline paradigm. Having a closer look, it
can be easily derived that the many sweepline components,
including event points P , total order ≺, initial prefix structure
t0, combine function f , are directly reusable. The remaining
operators involve the ‘threshold’ δ, which is ambiguous in
the context, since there exists different spacing requirements
for different objects and cases. However, recall that the
final decision of violation is not handled by the sweepline
procedure itself; as long as enough information is provided,
the sweepline framework still functions as a highly efficient
filter to locate DRC region. In particular, suppose we use
the largest spacing requirement among 1) the spacing rule,
2) the largest spacing value in the spacing table, and 3) the
EOL spacing rule, then all kinds of spacing violation can still
be captured by our sweepline framework.

5

Design Size Rows CPU GPU GPU\S1 GPU\S2 GPU\S3 GPU\S4 GPU\S5 GPU\all

aes 294052 277 2128 189 187 193 213 192 186 202
ethmac 1007152 507 14318 436 441 455 430 520 440 534

ibex 303004 277 2404 187 194 197 194 202 193 212
jpeg 1182541 537 19692 455 465 480 458 526 503 575
sha3 301382 277 2298 180 178 192 177 185 191 217

Average 19.22 1.00 1.01 1.05 1.03 1.09 1.04 1.18

TABLE II Ablation study of heterogeneous acceleration. Runtimes are in ms.

S3

S2

S1

CPU
Data transfer
GPU

Fig. 11 Illustration of heterogeneous acceleration strategies
S1, S2, and S3 in orange boxes.

C. Heterogeneous Acceleration

The motivation for heterogeneous acceleration includes
both to improve resource usage and to match computation
patterns of algorithms and of hardware devices. Here are
some of the general strategies:

• Concurrent GPU computation and CPU computation.
• Concurrent GPU computation between streams.
• Overlap data transfer and computation.
• Minimize data transfer overhead.
• Avoid GPU invocation for small data batch.
OpenDRC [36] introduces an adaptive layout partition

scheme that partitions a layout into independent rows. This
partition scheme collects unique y coordinates of objects, runs
an interval merging algorithm to decide partition positions,
and finally performs DRC in a row-by-row manner. The
partition scheme enables some design space for heteroge-
neous acceleration. As guided by the general strategies,
we would like to consider the following techniques in the
implementation of design rule checking:

• S1: GPU computation of the previous row and CPU pre-
processing of the next row can be executed concurrently.

• S2: GPU computation for horizontal edges and vertical
edges can be executed concurrently by different streams.

• S3: Data movement for one batch of data and GPU
sorting of another can be overlapped.

• S4: Differentiate horizontal and vertical edges.
• S5: No GPU computation will be invoked if a row has

only a limited number of objects.
Fig. 11 illustrates heterogeneous acceleration strategies S1,

S2, and S3, where the purple boxes denote CPU execution,
golden boxes denote data transfer, and blue boxes denote
GPU execution. The dashed line separates the computation

patterns for different rows. The orange rectangles highlights
the heterogeneous acceleration. In fact, these three strategies
bear a similar idea to improve concurrency, which leads to
vertically overlapping rectangles in the pipeline figure.

D. Experimental Evaluation

Here we demonstrate experimental evaluation. All the
designs are synthesized by the OpenROAD [45] flow. We
run the spacing checks on the M1 layer of designs, and
perform ablation study to examine the effectiveness of the
above strategies. To avoid cold starts, we collect program
runtime after a few warm up runs. TABLE II lists all the
runtime results, where GPU\S[i] indicates removing the i-
th strategy from the implementation. It can be seen that
removing strategies each contributes to 1% to 9% speed-down
compared with the complete implementation. Strategy four is
the most significant one, as it directly affects the total amount
of data movement between host and device. Nevertheless,
even we remove all five strategies, the program is still
16.3× faster than CPU implementation, which indicates the
significance of GPU acceleration.

VI. CONCLUSION

Heterogeneous acceleration is no doubt a promising
paradigm to archive high performance computing. Together
with the prosperous development of artificial intelligence, the
CPU-GPU hybrid platforms are ubiquitous and revolutionized
the landscape of high performance computing. This paper
discusses heterogeneous acceleration for design rule check-
ing. We first reviews efforts to enable efficient design rule
checking in the literature, especially the parallel sweepline
paradigm for. Then we discuss how to extend the parallel
sweepline paradigm to more complex design rules, including
PRL and EOL design rules. Finally, we present strategies
to improve the performance of heterogeneous acceleration
for DRC, and demonstrate their effectiveness with ablation
studies.

Recent years have seen successful applications of parallel
and heterogeneous acceleration to EDA point tools. Accel-
eration does not only reduce runtime, but also indirectly
improves PPA as more design iterations are possible within
the same timing budget. However, improving tool quality with
parallel computing requires more systematic investigation
of comprehensive stages, as well as new and extensible
methodologies to accommodate very complex algorithms and
heursitics in reality. We wish to see more clever attempts
along this line.

6

REFERENCES

[1] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous
computing techniques,” ACM Computing Surveys, vol. 47, no. 4, pp.
1–35, 2015.

[2] “TOP500,” https://www.top500.org/lists/top500/2023/06/, accessed:
2023-08-24.

[3] “Frontier,” https://www.olcf.ornl.gov/frontier/, accessed: 2023-08-24.
[4] “LUMI,” https://www.lumi-supercomputer.eu/zw, accessed: 2023-08-

24.
[5] M. Turisini, G. Amati, and M. Cestari, “LEONARDO: A Pan-European

Pre-Exascale Supercomputer for HPC and AI Applications,” arXiv
preprint arXiv:2307.16885, 2023.

[6] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated static timing
analysis,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2020, pp. 1–9.

[7] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance
timing analysis tool,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 895–902.

[8] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan,
“DREAMPlace: Deep learning toolkit-enabled GPU acceleration for
modern VLSI placement,” in ACM/IEEE Design Automation Confer-
ence (DAC), 2019, pp. 1–6.

[9] L. Liu, B. Fu, M. D. Wong, and E. F. Young, “XPlace: an extremely
fast and extensible global placement framework,” in ACM/IEEE Design
Automation Conference (DAC), 2022, pp. 1309–1314.

[10] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCD-
Place: Accelerated batch-based concurrent detailed placement on mul-
tithreaded CPUs and GPUs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 39, no. 12, pp.
5083–5096, 2020.

[11] S. Liu, Y. Pu, P. Liao, H. Wu, R. Zhang, Z. Chen, W. Lv, Y. Lin,
and B. Yu, “FastGR: Global routing on CPU-GPU with heterogeneous
task graph scheduler,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2022.

[12] S. Lin, J. Liu, E. F. Young, and M. D. Wong, “GAMER: GPU-
Accelerated Maze Routing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 42, no. 2, pp.
583–593, 2022.

[13] Z. Guo, F. Gu, and Y. Lin, “GPU-Accelerated Rectilinear Steiner Tree
Generation,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2022, pp. 1–9.

[14] Y. Zhang, H. Ren, A. Sridharan, and B. Khailany, “Gatspi: GPU ac-
celerated gate-level simulation for power improvement,” in ACM/IEEE
Design Automation Conference (DAC), 2022, pp. 1231–1236.

[15] J. Zhao, Y. Wen, Y. Luo, Z. Jin, W. Liu, and Z. Zhou, “SFLU:
Synchronization-Free Sparse LU Factorization for Fast Circuit Simula-
tion on GPUs,” in ACM/IEEE Design Automation Conference (DAC),
2021, pp. 37–42.

[16] S. Lin, J. Liu, T. Liu, M. D. Wong, and E. F. Young, “NovelRewrite:
node-level parallel AIG rewriting,” in ACM/IEEE Design Automation
Conference (DAC), 2022, pp. 427–432.

[17] K. Zhai, W. Yu, and H. Zhuang, “GPU-friendly floating random
walk algorithm for capacitance extraction of VLSI interconnects,”
in IEEE/ACM Proceedings Design, Automation and Test in Eurpoe
(DATE). IEEE, 2013, pp. 1661–1666.

[18] J. Guan, S. Yan, and J.-M. Jin, “An accurate and efficient finite element-
boundary integral method with GPU acceleration for 3-D electro-
magnetic analysis,” IEEE Transactions on Antennas and Propagation,
vol. 62, no. 12, pp. 6325–6336, 2014.

[19] “Nvidia’s CUDA: The End of the CPU?” https://www.tomshardware.
com/reviews/nvidia-cuda-gpu,1954.html, accessed: 2023-08-26.

[20] H. Modarres and R. J. Lomax, “A formal approach to design-rule
checking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 6, no. 4, pp. 561–573, 1987.

[21] K. O. Jeppson, S. Christensson, and N. Hedenstierna, “Formal defi-
nitions of edge-based geometric design rules,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 12, no. 1, pp. 59–69, 1993.

[22] M. A. Riepe and K. A. Sakallah, “The edge-based design rule model
revisited,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 3, no. 3, pp. 463–486, 1998.

[23] J. L. Bentley and J. H. Friedman, “Data structures for range searching,”
ACM Computing Surveys, vol. 11, no. 4, pp. 397–409, 1979.

[24] J. K. Ousterhout, “Corner stitching: A data-structuring technique for
VLSI layout tools,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 3, no. 1, pp. 87–100,
1984.

[25] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974.

[26] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[27] G. G. Lai, D. S. Fussell, and D. Wong, “Hinted quad trees for VLSI
geometry DRC based on efficient searching for neighbors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 15, no. 3, pp. 317–324, 1996.

[28] G. S. Taylor and J. K. Ousterhout, “Magic’s incremental design-rule
checker,” in ACM/IEEE Design Automation Conference (DAC), 1984,
pp. 160–165.

[29] S. Nandy, “Geometric Design Rule Check of VLSI Layouts in Dis-
tributed Computing Environment,” International Conference on VLSI
Design, vol. 1, no. 2, pp. 155–167, 1994.

[30] K.-T. Hsu, S. Sinha, Y.-C. Pi, C. Chiang, and T.-Y. Ho, “A distributed
algorithm for layout geometry operations,” in ACM/IEEE Design
Automation Conference (DAC). IEEE, 2011, pp. 182–187.

[31] F. Gregoretti and Z. Segall, “Analysis and evaluation of VLSI design
rule checking implementation in a multiprocessor,” in International
Conference on Parallel Processing (ICPP), 1984, pp. 7–14.

[32] N. Hedenstierna and K. Jeppson, “A parallel hierarchical design rule
checker,” in European Conference on Design Automation. IEEE
Computer Society, 1992, pp. 142–143.

[33] E. C. Carlson and R. A. Rutenbar, “Mask verification on the connection
machine,” in ACM/IEEE Design Automation Conference (DAC). IEEE,
1988, pp. 134–140.

[34] Z. Luo, M. Martonosi, and P. Ashar, “An edge-endpoint-based config-
urable hardware architecture for VLSI layout Design Rule Checking,”
International Conference on VLSI Design, vol. 10, no. 3, pp. 249–263,
2000.

[35] Z. He, Y. Ma, and B. Yu, “X-check: Gpu-accelerated design rule check-
ing via parallel sweepline algorithms,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2022, pp. 1–9.

[36] Z. He, Y. Zuo, J. Jiang, H. Zheng, Y. Ma, and B. Yu, “OpenDRC: An
Efficient Open-Source Design Rule Checking Engine with Hierarchical
GPU Acceleration,” in ACM/IEEE Design Automation Conference
(DAC), 2023, pp. 1–6.

[37] J. D. Marantz, “Exploiting parallelism in VLSI CAD,” 1986.
[38] K. MacPherson and P. Banerjee, “Parallel algorithms for VLSI layout

verification,” Journal of Parallel and Distributed Computing, vol. 36,
no. 2, pp. 156–172, 1996.

[39] S. Koranne, “A high performance SIMD framework for design rule
checking on Sony’s PlayStation 2 Emotion Engine platform [IC lay-
out],” in International Symposium on Signals, Circuits and Systems.
IEEE, 2004, pp. 371–376.

[40] R. Kane and S. Sahni, “A systolic design rule checker,” in ACM/IEEE
Design Automation Conference (DAC). IEEE, 1984, pp. 243–250.

[41] A. Pais, M. Anido, and C. Oliveira, “Developing a distributed ar-
chitecture for design rule checking,” in IEEE International Midwest
Symposium on Circuits and Systems (MWSCAS), vol. 2, 2001, pp. 678–
681.

[42] Y. Sun and G. E. Blelloch, “Parallel range, segment and rectangle
queries with augmented maps,” in Workshop on Algorithm Engineering
and Experiments (ALENEX). SIAM, 2019, pp. 159–173.

[43] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, “ISPD 2018
initial detailed routing contest and benchmarks,” in ACM International
Symposium on Physical Design (ISPD), 2018, pp. 140–143.

[44] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and G. Posser,
“ISPD 2019 initial detailed routing contest and benchmark with ad-
vanced routing rules,” in ACM International Symposium on Physical
Design (ISPD), 2019, pp. 147–151.

[45] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an
open-source digital flow: First learnings from the openroad project,” in
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–4.

7

https://www.top500.org/lists/top500/2023/06/
https://www.olcf.ornl.gov/frontier/
https://www.lumi-supercomputer.eu/zw
https://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954.html
https://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954.html

