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Micro- and Nanolithography
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(a) Components of the lithography imaging system: illumination source, lenses, and pupil. (b)
Lithography simulation flow using source- and pupil-dependent optical kernels.




Summary of previous works

General flow of previous SOTA.
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Previous SOTA work on Aerial stage

(TEMPO [Ye+20]) and Resist
stage (DOINN [Yan-+22]).
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Drawbacks of previous works
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(a) t-SNE distribution of datasets.
(b) Comparison of generalization capability on out-of-distribution (OOD) datasets.



Drawbacks of previous works

Previous image-learning based simulator.

* X @ Bias on image distribution.

© Can not generalize on different layers.
© Performance is sensitive to dataset distribution.

* X @ Large models.
© Needs more parameters to remember the different

distribution on higher resolution images.
® Needs to train new models on new datasets.

* v © Fast prediction.

Industrial rigorous lithography simulator.

* v © Can work on different layer

types. Good generalization capability.

* v © The imaging models can be
pre-calculated and stored as kernels
and coefficients.

* X @ Computationally expensive.



Recap on rigorous lithography model

Hopkins Model and Transmission Cross-Coefficient (TCC)

The imaging equation:

FOf.8) = [[ T +£.8 +8) (F.NFM) (F +f.8 +8) FM) (f.g)df'dg’, (1)
where M is the mask, (f, g) is its frequencies. T is TCC given by:
T((f8)("8") H FO(OFH) +f 3+8) FE' (41" g +8)df dg. @)

where the weight factor ] solely depends on effective source, H is projector transfer
function.



. Computation graph of aerial image
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Computation graph of aerial image
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When the projector and source are fixed,

[: constant matrix

H: constant matrix

y

T: TCC is a constant matrix




Computation graph of aerial image
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J: Source H: Projector

When the projector and source are fixed,

[: constant matrix

H: constant matrix

y

T: TCC is a constant matrix

Instead of learning an
image-to-image mapping,

Would it be Possible to
learn the TCC optical kernels?
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The benefits of learning optical kernels

¢ Get rid of negative influence of layer types & dataset distribution.

¢ Less training data required & smaller model size.

Mask Optical

Kernels

Lithography

[ | |

(a) Previous (b) Ours

(a) Previous image-learning based methods. (b) Ours.




Our approach
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The obstacles of learning optical kernels

: no ground truth, need to design the optical kernels.
: are in frequency domain, need to support complex-valued
computations.

We need to learn something with no ground truth, no prior-knowledge about the
data structure and dimensions.

Mission
Impossible?



The solutions of learning optical kernels

What to learn : Design the kernel dimension based on physical “resolution limit”.

How to learn :
Network : Implement a set of differentiable complex-valued neuron layers.

Training : A new training paradigm separates the influence of masks and
optical kernels




Nitho Framework
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‘Aerial Image

The overall aerial image prediction pipeline of Nitho framework, which separates mask-related
linear operations from optical kernel regression using coordinate-based CMLP.



Sum of Coherent Sources Approach (SOCS)
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Optical kernel regression

Q1: How to design the kernel dimension

“Resolution limit”



Optical kernel regression

Q1: How to design the kernel dimension

“Resolution limit”

NA =nsin(6)
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(a) Nlustration of the numerical aperture (NA) of a microscope objective, (b) Two points are blurred
by diffraction, which results in a limited resolution. The smallest resolvable distance between two
points with an optical technique is limited by d = A/(2nsin 0)
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Resolution limit

Smallest feature and resolution.
d= 2 A R_1_2NA

2nsinf — 2NA’" — d A

Using this description, the kernel width and height can be set as:
m:(Wx%A)x2+l,n:(Hx%A)x2+l, 4)

where we use one-pixel width/height to represent 1nm, the mask pitch can be
replaced by mask image width W, height H.

Optical Kernel Dimension

Ke Crxnxm (5)



SOCS approximation

Since the eigenvalues «; in Equation (3) rapidly decay in magnitude, truncating
the summation at order r can be a decent approximation with error bounds
proven in [Pat+94].

So the SOCS can be approximated as:

I= i(fl (K; © F(M)) 2, (6)

where K is the i-th optical kernel, r is the total number of kernels.



Discussion about kernel size

IC c (Crxnxm

Given commonly used:
A =193nm,NA = 1.35,

We have:
m =~ 0.028 x W,n ~ 0.028 x H

In our settings: r < 60.
Previous image-learning based space R©W*!_ VS, Our space C™"*"™.

RCXWXH > Qrxnxm
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CMLP

The CMLP is further constructed as,

where xN means there are N hidden blocks (CLinear — CReLU).

CMLP : CLinear — (CLinear — CReLU) x N ... — CLinear,

xN

CLinear

1

(CLinear — CReLU) x N
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The solutions of learning optical kernels

v Design the kernel dimension based on physical “resolution
limit”.

v: Implement a set of differentiable complex-valued neuron layers.

O : A new training paradigm separates the influence of masks and
optical kernels

Unresolved challenges:
No-ground truth for optical kernels

How to define the input, output.
What kind of network to use.

How to train the network.



NeRF

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [Mil+20]
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NeRF: problem settings

Problem defination

¢ Given a dataset containing RGB images of a static scene, their corresponding camera
poses, and intrinsic parameters,

¢ Predict the color and volume density for every viewing location and direction.

Inputs:
. 5D Input Output
° X,z Target position. Position + Direction Color + Density
. . ,2,0,¢) -
¢ 0, ¢: Target orientation. = (2589) ["][l (RGBo) T g
Outputs: : g

® ¢=(r,g,b): Color.

¢ o: Volume density.




NeRF: coordinates-based networks

st
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Spatlal Vlewmg Output Output
location direction color density

Fully-connected
neural network
9 layers,

256 channels



Insights from NeRF: Nitho
Nitho: NeRF inspired lithography simulator.

The lithography conditions are location dependent.

TCC is given by:

TP, (.8 = J[ FOMDFE) G 10 ) FHY (U f 2509 2, @2



Nitho: design

Inputs : the coordinates of TCC spectrum.
Outputs : TCC values
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Forward training paradigm
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‘Aerial Image

The overall aerial image prediction pipeline of Nitho framework, which separates mask-related
linear operations from optical kernel regression using coordinate-based CMLP.




Comparison with SOTA

Table: Result Comparison with State-of-the-Art.

Aerial Image

Resist Image

Bench TEMPO [Ye+20] DOINN [Yan+22] Nitho TEMPO* [Ye+20] | DOINN* [Yan-+22] Nitho
MSE ME PSNR| MSE ME PSNR| MSE ME PSNR|mPA mIlOU |mPA mIlOU |mPA mIOU
x107° %1072 dB | x107% x1072 dB | x107° x107%2 dB | (%) (%) (%) (%) (%) (%)

Bl 10829 1049 3201 | 555 194 4710 | 132 051 5075 | 9460 8870 |99.19 9832 | 99.45 99.21

Bam | 1899.04 1396 3077 | 120239 611 3164 | 2548  0.82  49.06 | 9824 9655 [9879 9710 | 9915 99.02

B2v 6.54 38 4276 | 226 275 4637 | 201 0.68  48.06 | 99.06 9328 |9921 9841 99.59 99.34

B2m+B2v | 435225 1521 2710 | 311424 1235 2992 | 3313 078 47.88 | 9863 9584 |9871 9668 | 99.61 99.36

Average |1591.53 10.88 33.16 | 1081.11 579  39.26 | 1549 070  48.94 | 97.63 9359 [9898  97.63 |9945 99.23

Ratio 10277 1555 068 | 69.81 827 080 | 1.00 1.00  1.00 | 098 0.94 0.99 098 1.00  1.00

* Models are re-trained using resist image dataset with an amendment to the final activation layer.

29,



Visualization

Visualization of the results of Nitho in aerial and resist stage.
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Runtime comparison
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Runtime comparison with SOTA.




Comparison on out-of-distribution (OOD) datasets.

Table: Comparison with SOTA on out-of-distribution dataset.

Benchmark | TEMPO [Ye+20] | DOINN [Yan+22] Nitho
Train Test | mPA mIOU | mPA mIOU | mPA mIOU
on on % % % % % %
Bl Blopc| 90.25 86.15 | 98.03 94.76 99.43 99.17

Drop +435 255 | |[116 [ 356 |]0.02 |0.04
B2m B2v | 9940 71.86 | 99.64 78.31 99.58 97.33
Drop 1034 2142|1043 12010 [}0.01 |2.01
B2v B2m | 66.06 55.82 | 76.43 68.73 98.08 97.18
Drop 13218 [40.73 |} 2236 2837 |]1.07 |1.84
Average 85.24 7128 | 91.36 80.60 99.03 97.90
Avg. Drop |]12.06 |2157 | 770 1734 |]0.37 |1.29




Ablation study on smaller training sets and kernels sizes
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(a) Comparison with SOTA on smaller training sets. (b) Ablation study on kernel size on different
datasets.
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